1
|
Li Z, Tong Y, Wu Z, Liao B, Liu G, Xia L, Liu C, Zhao L. Management strategies to reduce microbial mercury methylation in constructed wetlands: Potential routes and future challenges. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138009. [PMID: 40132266 DOI: 10.1016/j.jhazmat.2025.138009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Constructed wetlands (CWs) are widely recognized as the potential hotspots for producing highly toxic methylmercury (MeHg). This presents an obstacle to the widespread application of CWs. A comprehensive discussion on strategies to control mercury methylation in CWs is currently lacking. This review highlighted the potential impacts of differences in oxygen supply and consumption in various CWs, the characteristics of influent quality, the interactions between different substrates and mercury (including mercury adsorption, reduction), and plants on microbial mercury methylation in CWs. We also proposed the potential strategies for human intervention in regulating or controlling microbial mercury methylation in CWs, including oxygenation, nitrate inhibition, selection of substrates with high adsorption capacity, weak reducibility and low organic matter release, and plant management. Knowledge summarized in this review would help achieve a comprehensive understanding of various research gaps in previous studies and point out future research directions by focusing on CWs types, influent quality, substrates selection and plants management, to reduce the mercury methylation in CWs.
Collapse
Affiliation(s)
- Zhike Li
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China; Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bing Liao
- Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Guo Liu
- Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Lei Xia
- Department of Earth and Environmental Sciences, Kasteelpark Arenberg 20, Leuven 3001, Belgium
| | - Chang Liu
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China
| | - Li Zhao
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China
| |
Collapse
|
2
|
Luo G, Cheng Z, He T, Wu P, Yin D. Anaerobic fermentation of straw with sulfate addition: A suitable approach for straw utilization in mercury-contaminated areas. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123908. [PMID: 39729719 DOI: 10.1016/j.jenvman.2024.123908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 12/29/2024]
Abstract
Returning raw straw to the soil can significantly elevate soil methylmercury (MeHg) and crop mercury (Hg) levels, underscoring the need to investigate safer approaches to straw utilization in mercury-contaminated regions. In this study, rice straw underwent anaerobic fermentation with the addition of sulfate, and the resulting fermentation products were utilized in a pot experiment involving water spinach to assess the impact of anaerobically fermented straw return on soil Hg methylation and its bioaccumulation. Findings revealed that the addition of sulfate during straw fermentation markedly increased the fermentation degree of the products, and sulfate was converted into organic sulfur-containing ligands that can functionalize the fermentation residuals. These changes enhanced adsorption or complexation of the fermentation products with Hg. Consequently, compared with raw straw returning to the soil, adding co-fermentation products of straw and sulfate to the soil can significantly reduce the bioavailable Hg and MeHg in the soil, the total mercury (THg) and MeHg in plants, with the maximum reduction rates being 68%, 92%, 66% and 78%, respectively. Therefore, returning the straw that has been anaerobically co-fermented with sulfate to the soil can effectively mitigate Hg methylation and bioaccumulation, while simultaneously increasing biomass, offering a suitable straw utilization method in Hg-contaminated cultivation areas.
Collapse
Affiliation(s)
- Guangjun Luo
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Faculty of Architecture and Engineering, Guizhou Polytechnic of Construction, Guiyang, 551400, China
| | - Zongfu Cheng
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China.
| | - Pan Wu
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China
| |
Collapse
|
3
|
Majumdar A, Upadhyay MK, Ojha M, Biswas R, Dey S, Sarkar S, Moulick D, Niazi NK, Rinklebe J, Huang JH, Roychowdhury T. A critical review on the organo-metal(loid)s pollution in the environment: Distribution, remediation and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175531. [PMID: 39147056 DOI: 10.1016/j.scitotenv.2024.175531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Toxic metal(loid)s, e.g., mercury, arsenic, lead, and cadmium are known for several environmental disturbances creating toxicity to humans if accumulated in high quantities. Although not discussed critically, the organo-forms of these inorganic metal(loid)s are considered a greater risk to humans than their elemental forms possibly due to physico-chemical modulation triggering redox alterations or by the involvement of biological metabolism. This extensive review describes the chemical and physical causes of organometals and organometal(loid)s distribution in the environment with ecotoxicity assessment and potential remediation strategies. Organo forms of various metal(loid)s, such as mercury (Hg), arsenic (As), lead (Pb), tin (Sn), antimony (Sb), selenium (Se), and cadmium (Cd) have been discussed in the context of their ecotoxicity. In addition, we elaborated on the transformation, speciation and transformation pathways of these toxic metal(loid)s in soil-water-plant-microbial systems. The present review has pointed out the status of toxic organometal(loid)s, which is required to make the scientific community aware of this pressing condition of organometal(loid)s distribution in the environment. The gradual disposal and piling of organometal(loid)s in the environment demand a thorough revision of the past-present status with possible remediation strategies prescribed as reflected in this review.
Collapse
Affiliation(s)
- Arnab Majumdar
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom; School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Munish Kumar Upadhyay
- Centre for Environmental Science & Engineering, Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Megha Ojha
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pashan, Maharashtra 411008, India
| | - Rakesh Biswas
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, South Korea
| | - Saikat Dey
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Jen-How Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
4
|
Zhong H, Su Y, Wu X, Nunes L, Li C, Hao Y, Liu YR, Tang W. Mercury supply limits methylmercury production in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172335. [PMID: 38604369 DOI: 10.1016/j.scitotenv.2024.172335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/18/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
The neurotoxic methylmercury (MeHg) is a product of inorganic mercury (IHg) after microbial transformation. Yet it remains unclear whether microbial activity or IHg supply dominates Hg methylation in paddies, hotspots of MeHg formation. Here, we quantified the response of MeHg production to changes in microbial activity and Hg supply using 63 paddy soils under the common scenario of straw amendment, a globally prevalent agricultural practice. We demonstrate that the IHg supply is the limiting factor for Hg methylation in paddies. This is because IHg supply is generally low in soils and can largely be facilitated (by 336-747 %) by straw amendment. The generally high activities of sulfate-reducing bacteria (SRB) do not limit Hg methylation, even though SRB have been validated as the predominant microbial Hg methylators in paddies in this study. These findings caution against the mobilization of legacy Hg triggered by human activities and climate change, resulting in increased MeHg production and the subsequent flux of this potent neurotoxin to our dining tables.
Collapse
Affiliation(s)
- Huan Zhong
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, China
| | - Yao Su
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, China
| | - Xinda Wu
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, China
| | - Luís Nunes
- Faculty of Sciences and Technology, Civil Engineering Research and Innovation for Sustainability Center, University of Algarve, Faro, Portugal
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Yunyun Hao
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Wenli Tang
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, China.
| |
Collapse
|
5
|
Zhou Y, Li S, Hintelmann H, Tang W, Zhong H. New insights into HgSe antagonism: Minor impact on inorganic Hg mobility while potential impacts on microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169705. [PMID: 38160847 DOI: 10.1016/j.scitotenv.2023.169705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/13/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Selenium (Se) is a crucial antagonistic factor of mercury (Hg) methylation in soil, with the transformation of inorganic Hg (IHg) to inert mercury selenide (HgSe) being the key mechanism. However, little evidence has been provided of the reduced Hg mobility at environmentally relevant doses of Hg and Se, and the potential impacts of Se on the activities of microbial methylators have been largely ignored. This knowledge gap hinders effective mitigation for methylmercury (MeHg) risks, considering that Hg supply and microbial methylators serve as materials and workers for MeHg production in soils. By monitoring the mobility of IHg and microbial activities after Se spike, we reported that 1) active methylation might be the premise of HgSe antagonism, as higher decreases in MeHg net production were found in soils with higher constants of Hg methylation rate; 2) IHg mobility did not significantly change upon Se addition in soils with high DOC concentrations, challenging the long-held view of Hg immobilization by Se; and 3) the activities of iron-reducing bacteria (FeRB), an important group of microbial methylators, might be potentially regulated by Se addition at a dose of 4 mg/kg. These findings provide empirical evidence that IHg mobility may not be the limiting factor under Se amendment and suggest the potential impacts of Se on microbial activities.
Collapse
Affiliation(s)
- Yang Zhou
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, China
| | - Shouying Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, China
| | - Holger Hintelmann
- Department of Chemistry, Trent University, Peterborough, ON, Canada; Water Quality Centre, Trent University, Peterborough, ON, Canada
| | - Wenli Tang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, China.
| | - Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, China.
| |
Collapse
|
6
|
Rizwan M, Murtaza G, Zulfiqar F, Moosa A, Iqbal R, Ahmed Z, Khan I, Siddique KHM, Leng L, Li H. Tuning active sites on biochars for remediation of mercury-contaminated soil: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115916. [PMID: 38171108 DOI: 10.1016/j.ecoenv.2023.115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Mercury (Hg) contamination is acknowledged as a global issue and has generated concerns globally due to its toxicity and persistence. Tunable surface-active sites (SASs) are one of the key features of efficient BCs for Hg remediation, and detailed documentation of their interactions with metal ions in soil medium is essential to support the applications of functionalized BC for Hg remediation. Although a specific active site exhibits identical behavior during the adsorption process, a systematic documentation of their syntheses and interactions with various metal ions in soil medium is crucial to promote the applications of functionalized biochars in Hg remediation. Hence, we summarized the BC's impact on Hg mobility in soils and discussed the potential mechanisms and role of various SASs of BC for Hg remediation, including oxygen-, nitrogen-, sulfur-, and X (chlorine, bromine, iodine)- functional groups (FGs), surface area, pores and pH. The review also categorized synthesis routes to introduce oxygen, nitrogen, and sulfur to BC surfaces to enhance their Hg adsorptive properties. Last but not the least, the direct mechanisms (e.g., Hg- BC binding) and indirect mechanisms (i.e., BC has a significant impact on the cycling of sulfur and thus the Hg-soil binding) that can be used to explain the adverse effects of BC on plants and microorganisms, as well as other related consequences and risk reduction strategies were highlighted. The future perspective will focus on functional BC for multiple heavy metal remediation and other potential applications; hence, future work should focus on designing intelligent/artificial BC for multiple purposes.
Collapse
Affiliation(s)
- Muhammad Rizwan
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Urumqi 848300, China
| | - Imran Khan
- School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth WA 6001, Australia.
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China; Xiangjiang Laboratory, Changsha 410205, China.
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
7
|
Chen J, Hu G, Liu J, Poulain AJ, Pu Q, Huang R, Meng B, Feng X. The divergent effects of nitrate and ammonium application on mercury methylation, demethylation, and reduction in flooded paddy slurries. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132457. [PMID: 37669605 DOI: 10.1016/j.jhazmat.2023.132457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023]
Abstract
The production of methylmercury (MeHg) in flooded paddy fields determines its accumulation in rice grains; this, in turn, results in MeHg exposure risks for not only rice-eating humans but also wildlife. Nitrogen (N) fertilizers have been widely applied in rice cultivation fields to supply essential nutrients. However, the effects of N fertilizer addition on mercury (Hg) transformations are not unclear. This limits our understanding of MeHg formation in rice paddy ecosystems. In this study, we spiked three Hg tracers (200HgII, Me198Hg, and 202Hg0) in paddy slurries fertilized with urea, ammonium, and nitrate. The influences of N fertilization on Hg methylation, demethylation, and reduction and the underlying mechanisms were elucidated. The results revealed that dissimilatory nitrate reduction was the dominant process in the incubated paddy slurries. Nitrate addition inhibited HgII reduction, HgII methylation, and MeHg demethylation. Competition between nitrates and other electron acceptors (e.g., HgII, sulfate, or carbon dioxide) under dark conditions was the mechanism underlying nitrate-regulated Hg transformation. Ammonium and urea additions promoted HgII reduction, and anaerobic ammonium oxidation coupled with HgII reduction (Hgammox) was likely the reason. This work highlighted that nitrate addition not only inhibited HgII methylation but also reduced the demethylation of MeHg and therefore may generate more accumulation of MeHg in the incubated paddy slurries. Findings from this study link the biogeochemical cycling of N and Hg and provide crucial knowledge for assessing Hg risks in intermittently flooded wetland ecosystems.
Collapse
Affiliation(s)
- Ji Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Gongren Hu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Alexandre J Poulain
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
8
|
Tian X, Chai G, Xie Q, Li G. Response of methylmercury in paddy soil and paddy rice to pristine biochar: A meta-analysis and environmental implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114933. [PMID: 37099962 DOI: 10.1016/j.ecoenv.2023.114933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 05/08/2023]
Abstract
Biochar has received increased research attention due to its effectiveness in mitigating the potential risks of mercury (Hg) in agricultural soils. However, there is a lack of consensus on the effect of pristine biochar on the net production, availability, and accumulation of methylmercury (MeHg) in the paddy rice-soil system. As such, a meta-analysis with 189 observations was performed to quantitatively assess the effects of biochar on Hg methylation, MeHg availability in paddy soil, and the accumulation of MeHg in paddy rice. Results suggested that biochar application could significantly increase the production of MeHg in paddy soil by 19.01%; biochar could also decrease the dissolved and available MeHg in paddy soil by 88.64% and 75.69%, respectively. More importantly, biochar application significantly inhibited the MeHg accumulation in paddy rice by 61.10%. These results highlight that biochar could decrease the availability of MeHg in paddy soil and thus inhibit MeHg accumulation in paddy rice, although it might facilitate the net production of MeHg in paddy soil. Additionally, results also indicated that the biochar feedstock and its elementary composition significantly impacted the net MeHg production in paddy soil. Generally, biochar with a low carbon content, high sulfur content, and low application rate might be beneficial for inhibiting Hg methylation in paddy soil, meaning that Hg methylation depends on biochar feedstock. These findings suggested that biochar has great potential to inhibit MeHg accumulation in paddy rice, and further research should focus on selecting biochar feedstock to control Hg methylation potential and determine its long-term effects.
Collapse
Affiliation(s)
- Xiaosong Tian
- College of Resources, Environment and Safety, Chongqing Vocational Institute of Engineering, Chongqing 402260, China.
| | - Guanqun Chai
- Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Qing Xie
- College of Resources, Environment and Safety, Chongqing Vocational Institute of Engineering, Chongqing 402260, China.
| | - Guanghui Li
- Chongqing Engineering Research Center for Soil Contamination Control and Remediation, Chongqing 400067, China
| |
Collapse
|
9
|
Liu J, Chen J, Poulain AJ, Pu Q, Hao Z, Meng B, Feng X. Mercury and Sulfur Redox Cycling Affect Methylmercury Levels in Rice Paddy Soils across a Contamination Gradient. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8149-8160. [PMID: 37194595 PMCID: PMC10234277 DOI: 10.1021/acs.est.3c02676] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Methylmercury (MeHg) contamination in rice via paddy soils is an emerging global environmental issue. An understanding of mercury (Hg) transformation processes in paddy soils is urgently needed in order to control Hg contamination of human food and related health impacts. Sulfur (S)-regulated Hg transformation is one important process that controls Hg cycling in agricultural fields. In this study, Hg transformation processes, such as methylation, demethylation, oxidation, and reduction, and their responses to S input (sulfate and thiosulfate) in paddy soils with a Hg contamination gradient were elucidated simultaneously using a multi-compound-specific isotope labeling technique (200HgII, Me198Hg, and 202Hg0). In addition to HgII methylation and MeHg demethylation, this study revealed that microbially mediated reduction of HgII, methylation of Hg0, and oxidative demethylation-reduction of MeHg occurred under dark conditions; these processes served to transform Hg between different species (Hg0, HgII, and MeHg) in flooded paddy soils. Rapid redox recycling of Hg species contributed to Hg speciation resetting, which promoted the transformation between Hg0 and MeHg by generating bioavailable HgII for fuel methylation. Sulfur input also likely affected the microbial community structure and functional profile of HgII methylators and, therefore, influenced HgII methylation. The findings of this study contribute to our understanding of Hg transformation processes in paddy soils and provide much-needed knowledge for assessing Hg risks in hydrological fluctuation-regulated ecosystems.
Collapse
Affiliation(s)
- Jiang Liu
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Ji Chen
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
- College
of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Alexandre J. Poulain
- Biology
Department, University of Ottawa, 30 Marie Curie, Ottawa ON K1N 6N5, Canada
| | - Qiang Pu
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Zhengdong Hao
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Meng
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Xinbin Feng
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| |
Collapse
|
10
|
Li Y, Dai SS, Zhao J, Hu ZC, Liu Q, Feng J, Huang Q, Gao Y, Liu YR. Amendments of nitrogen and sulfur mitigate carbon-promoting effect on microbial mercury methylation in paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130983. [PMID: 36860084 DOI: 10.1016/j.jhazmat.2023.130983] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The imbalance of nutrient elements in paddy soil could affect biogeochemical processes; however, how the key elements input influence microbially-driven conversion of mercury (Hg) to neurotoxic methylmercury (MeHg) remains virtually unknown. Herein, we conducted a series of microcosm experiments to explore the effects of certain species of carbon (C), nitrogen (N) and sulfur (S) on microbial MeHg production in two typical paddy soils (yellow and black soil). Results showed that the addition of C alone into the soils increased MeHg production approximately 2-13 times in the yellow and black soils; while the combined addition of N and C mitigated the C- promoting effect significantly. Added S also had a buffering effect on C-facilitated MeHg production in the yellow soil despite the extent being lower than that of N addition, whereas this effect was not obvious for the black soil. MeHg production was positively correlated with the abundance of Deltaproteobactera-hgcA in both soils, and the changes in MeHg production were related to the shifts of Hg methylating community resulting from C, N, and S imbalance. We further found that the changes in the proportions of dominant Hg methylators such as Geobacter and some unclassified groups could contribute to the variations in MeHg production under different treatments. Moreover, the enhanced microbial syntrophy with adding N and S might contribute to the reduced C-promoting effect on MeHg production. This study has important implications for better understanding of microbes-driven Hg conversion in paddies and wetlands with nutrient elements input.
Collapse
Affiliation(s)
- Yunyun Li
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China
| | - Shu-Shen Dai
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiating Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| | - Zhi-Cheng Hu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiao Feng
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxi Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
Zhang L, Yin Y, Sun Y, Liang X, Graham DE, Pierce EM, Löffler FE, Gu B. Inhibition of Methylmercury and Methane Formation by Nitrous Oxide in Arctic Tundra Soil Microcosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5655-5665. [PMID: 36976621 PMCID: PMC10100821 DOI: 10.1021/acs.est.2c09457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Climate warming causes permafrost thaw predicted to increase toxic methylmercury (MeHg) and greenhouse gas [i.e., methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O)] formation. A microcosm incubation study with Arctic tundra soil over 145 days demonstrates that N2O at 0.1 and 1 mM markedly inhibited microbial MeHg formation, methanogenesis, and sulfate reduction, while it slightly promoted CO2 production. Microbial community analyses indicate that N2O decreased the relative abundances of methanogenic archaea and microbial clades implicated in sulfate reduction and MeHg formation. Following depletion of N2O, both MeHg formation and sulfate reduction rapidly resumed, whereas CH4 production remained low, suggesting that N2O affected susceptible microbial guilds differently. MeHg formation strongly coincided with sulfate reduction, supporting prior reports linking sulfate-reducing bacteria to MeHg formation in the Arctic soil. This research highlights complex biogeochemical interactions in governing MeHg and CH4 formation and lays the foundation for future mechanistic studies for improved predictive understanding of MeHg and greenhouse gas fluxes from thawing permafrost ecosystems.
Collapse
Affiliation(s)
- Lijie Zhang
- Environmental
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department
of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yongchao Yin
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Center
for Environmental Biotechnology, University
of Tennessee, Knoxville, Tennessee 37996, United States
- Department
of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yanchen Sun
- Center
for Environmental Biotechnology, University
of Tennessee, Knoxville, Tennessee 37996, United States
- Department
of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xujun Liang
- Environmental
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - David E. Graham
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Eric M. Pierce
- Environmental
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Frank E. Löffler
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Center
for Environmental Biotechnology, University
of Tennessee, Knoxville, Tennessee 37996, United States
- Department
of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department
of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department
of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Baohua Gu
- Environmental
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department
of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
12
|
Gfeller L, Caplette JN, Frossard A, Mestrot A. Organo-mercury species in a polluted agricultural flood plain: Combining speciation methods and polymerase chain reaction to investigate pathways of contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119854. [PMID: 35998774 DOI: 10.1016/j.envpol.2022.119854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/16/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The analysis of organic mercury (Hg) species in polluted soils is a necessary tool to assess the environmental risk(s) of mercury in contaminated legacy sites. The artificial formation of monomethylmercury (MeHg) during soil extraction and/or analysis is a well-known limitation and is especially relevant in highly polluted areas where MeHg/Hg ratios are notoriously low. Although this has been known for almost 30 years, the thorough characterisation of artificial formation rates is rarely a part of the method development in scientific literature. Here we present the application of two separate procedures (inorganic Hg (iHg) spiking and double-spike isotope dilution analyses (DSIDA)) to determine and correct for artificial Hg methylation in MeHg-selective acid-leaching/organic solvent extraction procedure. Subsequently, we combined corrected MeHg and ethylmercury (EtHg) measurements with PCR amplification of hgcA genes to distinguish between naturally formed MeHg from primary deposited MeHg in soils from a legacy site in a Swiss mountain valley. We found the DSIDA procedure incompatible with the organomercury selective extraction method due to the quantitative removal of iHg. Methylation factors from iHg spiking were in the range of (0.0075 ± 0.0001%) and were consistent across soils and sediment matrices. Further, we suggest that MeHg was deposited and not formed in-situ in two out of three studied locations. Our line of evidence consists of 1) the concomitant detection of EtHg, 2) the elevated MeHg concentrations (up to 4.84 μg kg-1), and 3) the absence of hgcA genes at these locations. The combination of Hg speciation and methylation gene (hgcA) abundance analyses are tools suited to assess Hg pollution pathways at Hg legacy sites.
Collapse
Affiliation(s)
- Lorenz Gfeller
- Institute of Geography, University of Bern, Hallerstrasse 12, CH-3012 Bern, Switzerland
| | - Jaime N Caplette
- Institute of Geography, University of Bern, Hallerstrasse 12, CH-3012 Bern, Switzerland
| | - Aline Frossard
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Adrien Mestrot
- Institute of Geography, University of Bern, Hallerstrasse 12, CH-3012 Bern, Switzerland.
| |
Collapse
|
13
|
Zhang S, Wang M, Liu J, Tian S, Yang X, Xiao G, Xu G, Jiang T, Wang D. Biochar affects methylmercury production and bioaccumulation in paddy soils: Insights from soil-derived dissolved organic matter. J Environ Sci (China) 2022; 119:68-77. [PMID: 35934467 DOI: 10.1016/j.jes.2022.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
Biochar has been used increasingly as a soil additive to control mercury (Hg) pollution in paddy rice fields. As the most active component of soil organic matter, soil dissolved organic matter (DOM) plays a vital role in the environmental fate of contaminants. However, there are very few studies to determine the impact of biochar on the Hg cycle in rice paddies using insights from DOM. This study used original and modified biochar to investigate their effect on DOM dynamics and their potential impact on methylmercury (MeHg) production and bioaccumulation in rice plants. Porewater DOM was collected to analyze the variations in soil-derived DOM in paddy soils. The results showed that the addition of biochar, whether in original or modified form, significantly reduced the bioaccumulation of MeHg in rice plants, especially in hulls and grains (p<0.05). However, MeHg production in soils was only inhibited by the modified biochar. Biochar addition induced a significant increase in DOM's aromaticity and molecular weight (p<0.05), which decreased Hg bioavailability. Furthermore, enhanced microbial activity was also observed in DOM (p<0.05), further increasing MeHg production in the soil. Thus, the effect of biochar on the fate of Hg cycle involves competition between the two different roles of DOM. This study identified a specific mechanism by which biochar affects Hg behavior in rice paddy soil and contributes to understanding the more general influence of biochar in agriculture and contaminant remediation.
Collapse
Affiliation(s)
- Siqi Zhang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Mingxing Wang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Shanyi Tian
- Soil Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueling Yang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Guangquan Xiao
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Guomin Xu
- National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550014, China; Guizhou Material Industrial Technology Institute, Guiyang 550014, China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Dingyong Wang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| |
Collapse
|
14
|
Ran S, He T, Zhou X, Yin D. Effects of fulvic acid and humic acid from different sources on Hg methylation in soil and accumulation in rice. J Environ Sci (China) 2022; 119:93-105. [PMID: 35934469 DOI: 10.1016/j.jes.2022.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 06/15/2023]
Abstract
Humus is often used as an organic modifier to reduce the bioaccumulation of heavy metals in plants, but the effects of different humus components from different sources on the fate of mercury (Hg) in paddy fields are still unclear. Here, fulvic acid (FA) and humic acid (HA) extracted from composted straw (CS), composted cow dung (CCD), peat soil (PM) and lignite coal (LC) were used to understand their effects on the methylation and bioaccumulation of Hg in paddy soil by pot experiments. Amendments of both FA and HA largely increased the abundance of Hg-methylating microbes and low-molecular-weight organic matters (e.g, cysteine) in paddy soil. They were also found to change the aromaticity, molecular size and Chromophoric DOM concentration of DOM, and resulted in heterogeneous effects on migration and transformation of Hg. All the FA-amended treatments increased the mobility and methylation of Hg in soil and its absorption in roots. Nevertheless, FA from different sources have heterogeneous effects on transport of Hg between rice tissues. FA-CCD and FA-PM promoted the translocation of MeHg from roots to rice grains by 32.95% and 41.12%, while FA-CS and FA-LC significantly inhibited the translocation of inorganic Hg (IHg) by 52.65% and 66.06% and of MeHg by 46.65% and 36.23%, respectively. In contrast, all HA-amended treatments reduced the mobility of soil Hg, but promoted Hg methylation in soil. Among which, HA-CCD and HA-PM promoted the translocation of MeHg in rice tissues by 88.95% and 64.10%, while its accumulation in rice grains by 28.43% and 28.69%, respectively. In general, the application of some FA and HA as organic modifiers to reduce Hg bioaccumulation in rice is not feasible.
Collapse
Affiliation(s)
- Shu Ran
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China.
| | - Xian Zhou
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China.
| |
Collapse
|
15
|
Tang W, Tang C, Lei P. Sulfur-driven methylmercury production in paddies continues following soil oxidation. J Environ Sci (China) 2022; 119:166-174. [PMID: 35934461 DOI: 10.1016/j.jes.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Methylmercury (MeHg) production in paddy soils and its accumulation in rice raise global concerns since rice consumption has been identified as an important pathway of human exposure to MeHg. Sulfur (S) amendment via fertilization has been reported to facilitate Hg methylation in paddy soils under anaerobic conditions, while the dynamic of S-amendment induced MeHg production in soils with increasing redox potential remains unclear. This critical gap hinders a comprehensive understanding of Hg biogeochemistry in rice paddy system which is characterized by the fluctuation of redox potential. Here, we conducted soil incubation experiments to explore MeHg production in slow-oxidizing paddy soils amended with different species of S and doses of sulfate. Results show that the elevated redox potential (1) increased MeHg concentrations by 10.9%-35.2%, which were mainly attributed to the re-oxidation of other S species to sulfate and thus the elevated abundance of sulfate-reducing bacteria, and (2) increased MeHg phytoavailability by up to 75% due to the reductions in acid volatile sulfide (AVS) that strongly binds MeHg in soils. Results obtained from this study call for attention to the increased MeHg production and phytoavailability in paddy soils under elevated redox potentials due to water management, which might aggravate the MeHg production induced by S fertilization and thus enhance MeHg accumulation in rice.
Collapse
Affiliation(s)
- Wenli Tang
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China.
| | - Chao Tang
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China
| | - Pei Lei
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
16
|
Gong H, Zhao L, Rui X, Hu J, Zhu N. A review of pristine and modified biochar immobilizing typical heavy metals in soil: Applications and challenges. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128668. [PMID: 35325861 DOI: 10.1016/j.jhazmat.2022.128668] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 05/28/2023]
Abstract
In recent years, the application of biochar in the remediation of heavy metals (HMs) contaminated soil has received tremendous attention globally. We reviewed the latest research on the immobilization of soil HMs by biochar almost in the last 5 years (until 2021). The methods, effects and mechanisms of biochar and modified biochar on the immobilization of typical HMs in soil have been systematically summarized. In general, the HMs contaminating the soil can be categorized into two groups, the oxy-anionic HMs (As and Cr) and the cationic HMs (Pb, Cd, etc.). Reduction and precipitation of oxy-anionic HMs by biochar/modified biochar are the dominant mechanism for reducing HMs toxicity. Pristine biochar can effectively immobilize cationic HMs. The commonly applied modification method is to add substances that can precipitate HMs to the biochar. In addition, we assessed the risks of biochar applications. For instance, biochar may cause the leaching of certain HMs; biochar aging; co-transportation of biochar nanoparticles with HMs. Future work should focus on the artificial/intelligent design of biochar to make it suitable for remediation of multiple HMs contaminated soil.
Collapse
Affiliation(s)
- Huabo Gong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuan Rui
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
17
|
Sun T, Wang Y, Li C, Huang J, Hua Y, Yue C, Chao H, Zhang D, Zhang Y, Wang D. Use smaller size of straw to alleviate mercury methylation and accumulation induced by straw incorporation in paddy field. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127002. [PMID: 34474359 DOI: 10.1016/j.jhazmat.2021.127002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Straw sizes were found to affect the methylmercury (MeHg) accumulation in rice grains induced by straw incorporation. The mechanism behind, however, still remains unclear. Here, we incorporated rice straw in different sizes (powder, 2 cm and 5 cm) into a Hg-contaminated paddy soil. Our results showed that straw sizes regulated the release of different fractions of organic matter (OM) in straw residues and further Hg methylation in paddy soil. The easily degradable OM (EDOM) was a key driving factor that facilitated net Hg methylation, though it only occupied a small fraction (1.12-3.12%) of the soil OM. Powdered straw reduced the duration of net Hg methylation by 74.39% compared to 5 cm straw, resulting in a strong and rapid net Hg methylation in paddy soil before the rice flowering. After the release of EDOM, the humified OM dominated in paddy soil and bound to MeHg, leading to less MeHg being transported to rice grains during the grain filling. Powdered straw decreased MeHg accumulation by 25.32% in the mature rice grains compared with 5 cm straw. Our study suggests that straw powdering before incorporation provides a feasible pathway for reducing MeHg accumulation in rice grains induced by straw incorporation.
Collapse
Affiliation(s)
- Tao Sun
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yongmin Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Chuxian Li
- Department of Forest Ecology & Management, Swedish University of Agricultural Sciences, Umeå 90136, Sweden
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Yingpeng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Caipeng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dingxi Zhang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjiang Zhang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Department of Environment and Quality Test, Chongqing Chemical Industry Vocational College, Chongqing 401220, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
18
|
Lv W, Zhan T, Abdelhafiz MA, Feng X, Meng B. Selenium-amended biochar mitigates inorganic mercury and methylmercury accumulation in rice (Oryza sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118259. [PMID: 34600068 DOI: 10.1016/j.envpol.2021.118259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Rice, as a dominant crop in China and Asia, can be a major route of methylmercury (MeHg) exposure for humans in inland China, especially in those living in mercury (Hg) polluted areas. Soil is the most prominent MeHg accumulation source for rice grains. The development of management practices to reduce MeHg in rice grains is crucial. This study explored the mitigation effect of biochar (BC) and sodium selenite-amended biochar (BC + Se) on MeHg production in paddy soil and accumulation in rice. Mercury-contaminated soil was treated with 1% and 5% of both BC and BC + Se. Soil MeHg concentration slightly increased under 1% BC/BC + Se compared to control soil but decreased at the rate of 5%. Moreover, soil phytoavailable MeHg (P-MeHg) diminished as the amount of Se-amended BC increased. BC + Se effectively mitigated MeHg accumulation in rice grains. The highest average contents of MeHg and inorganic Hg (IHg) in rice seeds were found in the control samples, followed by the 1%-BC, 5%-BC, 1%-BC + Se, and 5%-BC + Se samples. Under the 5%-BC + Se treatment, rice MeHg levels were reduced significantly (94%) compared to the control, and P-MeHg concentrations in soil were lower than all the other experimental groups throughout the rice-growing season. These results demonstrate the effectiveness of BC + Se in reducing MeHg and IHg accumulation in rice and could be employed for remediation of Hg polluted paddies.
Collapse
Affiliation(s)
- Wenqiang Lv
- School of Geography and Resources, Guizhou Education University, Guiyang, Guizhou, 550018, China
| | - Tianli Zhan
- Institute of Mountain Resources of Guizhou Province, Guiyang, 550001, China
| | - Mahmoud A Abdelhafiz
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Geology Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|
19
|
Zhao Q, Wang J, OuYang S, Chen L, Liu M, Li Y, Jiang F. The exacerbation of mercury methylation by Geobacter sulfurreducens PCA in a freshwater algae-bacteria symbiotic system throughout the lifetime of algae. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125691. [PMID: 33773254 DOI: 10.1016/j.jhazmat.2021.125691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Mine-polluted wastewater with mercury (Hg) poses severe environmental pollution since Hg(II) can be converted to highly neurotoxic methylmercury (MeHg) under anaerobic conditions. Previous studies on Hg methylation have focused on aquatic sediments, but few have investigated the MeHg formation in water layers containing algae. In this study, we investigated the dynamic effect of algae on Hg methylation throughout the lifetime of algae. We found that Chlorella pyrenoidosa was a non-methylating alga and exhibited good tolerance to Hg stress (1-20 μg/L); thus Hg(II) could not inhibit the process of eutrophication. However, the presence of C. pyrenoidosa significantly enhanced the Hg methylation by Geobacter sulfurreducens PCA. Compared to the control sample without algae, the MeHg production rate of algae-bacteria samples remarkably exacerbated by 62.3-188.3% with the algal growth period at cell densities of 1.5 × 106-25 × 106 cells/mL. The increase of algal organic matter and thiols with the algal growth period resulted in the exacerbation of MeHg production. The Hg methylation was also enhanced with the presence of dead algae, of which the enhancement was ~62.4% lower than that with the presence of live algae. Accordingly, the potential mechanism of Hg methylation in a freshwater algae-bacteria symbiotic system throughout the algal lifetime was proposed.
Collapse
Affiliation(s)
- Qingxia Zhao
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jinting Wang
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shenyu OuYang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Laiguo Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Ming Liu
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Yu Li
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Feng Jiang
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
20
|
Lei P, Tang C, Wang Y, Wu M, Kwong RWM, Jiang T, Zhong H. Understanding the effects of sulfur input on mercury methylation in rice paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146325. [PMID: 33725612 DOI: 10.1016/j.scitotenv.2021.146325] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 05/28/2023]
Abstract
Sulfur could be introduced into paddy soils via dry or wet deposition, irrigation, and fertilization, which subsequently impacts the production of methylmercury (MeHg), a bioaccumulative neurotoxicant. However, effects of sulfur input on MeHg production are variable, possibly due to the multiple effects of sulfur on Hg mobility and/or microbial Hg methylators, leading to uncertainties in predicting MeHg risk. To address that, we explored the effects of different types and amounts of sulfur as well as concentrations of ambient sulfate on Hg methylation in paddy soils, and elucidated the mechanisms by quantifying changes in (1) Hg mobility and (2) microbial Hg methylators (e.g., sulfate-reducing bacteria, SRB). Our results indicated that MeHg levels increased by 40-86% and 30-96% in soils under various types (i.e., 200 mg kg-1 elemental sulfur, ammonium sulfate, sulfur-coated urea and potassium sulfate (K2SO4)) and different amounts (i.e., 100, 200 and 400 mg kg-1 K2SO4) of sulfur input. The enhanced MeHg production could be explained by increased Hg mobility but not changes in microbial Hg methylators. Besides, sulfate input increased MeHg levels (89-240%) in soils with low ambient sulfate levels (<100 mg kg-1) but had no effect on high-sulfate soils (>380 mg kg-1). These could be explained by the diverse responses of Hg mobility and microbial Hg methylators to sulfate input at different ambient sulfate levels. Our study opens the "black box" of Hg methylation under sulfur input, which would help reduce uncertainties in predicting MeHg risk in soils.
Collapse
Affiliation(s)
- Pei Lei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chao Tang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yongjie Wang
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - MengJie Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | | | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå SE-90183, Sweden
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Environmental and Life Science Program (EnLS), Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
21
|
Duan D, Lei P, Lan W, Li T, Zhang H, Zhong H, Pan K. Litterfall-derived organic matter enhances mercury methylation in mangrove sediments of South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142763. [PMID: 33069467 DOI: 10.1016/j.scitotenv.2020.142763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) contamination in mangrove ecosystems has received increasing attention in recent years. Although many studies have investigated methylmercury (MeHg) contamination and its relationship to a number of environmental factors in mangrove sediments, the production of MeHg in this carbon-rich ecosystem has not been fully evaluated. In this study, we measured the total mercury (THg) and MeHg concentrations in the sediments collected from seven mangrove forests in China. In addition, we examined the origin and quality of sedimentary organic matter (OM), trying to evaluate their influence on the MeHg accumulation in mangrove sediments. We found that litterfall played an important role in regulating THg and MeHg contents in mangrove sediments. THg and MeHg concentrations in the mangrove sediments were positively correlated to OM content and the labile fraction of the OM. Multiple evidence (stable carbon isotopes, monosaccharide compositions, and biogenic silica) suggested that OM in mangrove sediments was dominated by input from litterfall. THg and MeHg concentrations were elevated at the sediments with higher input of mangrove OM. We observed that addition of mangrove litter stimulated the production of MeHg under anaerobic conditions. Overall, our results suggested that litterfall acted as a source of inorganic Hg, labile carbon, and low-molecular-weight OM which greatly favor the Hg methylation. Our study provides new insights into the MeHg production in mangrove sediments.
Collapse
Affiliation(s)
- Dandan Duan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Pei Lei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Wenlu Lan
- Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China; Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai 536000, China
| | - Tianshen Li
- Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China; Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai 536000, China
| | - Hao Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
22
|
Gamboa-Herrera JA, Ríos-Reyes CA, Vargas-Fiallo LY. Mercury speciation in mine tailings amended with biochar: Effects on mercury bioavailability, methylation potential and mobility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143959. [PMID: 33348158 DOI: 10.1016/j.scitotenv.2020.143959] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/08/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Biochar is a low-cost and environmentally friendly amendment with strong ability for adsorption of mercury (Hg) from aqueous solutions, contaminated soils, and sediments. In the present study, six biochars were prepared from the pyrolysis of cocoa pod husk, sugarcane bagasse and banana pseudostem at 400 and 600 °C in order to use them as an organic amendment and to evaluate their capacities to reduce the bioavailability, methylation potential, and mobility of Hg present in mine tailings without environmental treatment. To quantify the effects of each variety of biochar, incubation experiments of soil were established by mixing mine tailings with 5% by weight of biochar for 90 days. Once the incubation time concluded, sequential extraction procedures were carried out to determine the fractionation of the Hg species. Speciation analysis results indicated that the remedial effects of biochar depended on the source of organic matter and pyrolysis temperature. The bioavailable and organic Hg fractions decreased respectively by up to 75 and 79%, indicating a methylation potential reduction. Immobile Hg fraction increased to 76% with respect to the control. Adsorption and stabilization to HgS from the soluble forms of Hg reduce the percentage of bioavailable Hg. The organic Hg fraction reduction was correlated with the decrease of the bioavailable Hg fraction and with direct adsorption processes in the biochar structure. Highly porous biochars developed at high temperature, with large contents of superficial polar functional groups (H/C), and high pH, electrical conductivity, ash percentage and cation exchange capacity values favor the stabilization and adsorption of Hg in mine tailings. In summary, the application of biochar could be an effective method for the remediation of Hg-contaminated mine tailings, transforming the Hg species into less toxic, soluble, reactive, and bioavailable forms.
Collapse
Affiliation(s)
- J A Gamboa-Herrera
- Escuela de Geología, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - C A Ríos-Reyes
- Escuela de Geología, Universidad Industrial de Santander, Bucaramanga 680002, Colombia.
| | - L Y Vargas-Fiallo
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| |
Collapse
|
23
|
Su Y, Kwong RWM, Tang W, Yang Y, Zhong H. Straw return enhances the risks of metals in soil? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111201. [PMID: 32905933 DOI: 10.1016/j.ecoenv.2020.111201] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Interactions between organic matter (OM) and metals in soils are important natural mechanisms that can mitigate metal bioaccumulation in terrestrial environments. A primary source of OM in soils is straw return, accounting for more than 65% of OM input. Straw-OM has long been believed to reduce metal bioaccumulation, e.g., by immobilizing metals in soils. However, there is growing evidence that straw return could possibly enhance bioavailability and thus risks (i.e., food safety) of some metals in crops, including Cd, Hg, and As. Poor understanding of straw return-induced increases in metal bioavailability would add uncertainty in assessing or mitigating risks of metals in contaminated farming soils. Here, 863 pieces of literature (2000-2019) that reported the effects of straw return on metal bioavailability and bioaccumulation were reviewed. Mechanisms responsible for the increased metal mobility and bioavailability under straw return are summarized, including the effects of dissolution, complexation, and methylation. Effects of straw return on the physiology and the absorption of metals in plants is also discussed (i.e., physiological effect). These mechanisms are then used to explain the observed increases in the mobility, bioavailability, and bioaccumulation of Cd, Hg, and As under straw amendment. Information summarized in this study highlights the importance to re-consider the current straw return policy, particularly in metal-contaminated farmlands.
Collapse
Affiliation(s)
- Yao Su
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, 210023, PR China
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Wenli Tang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, 210023, PR China
| | - Yanan Yang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, 210023, PR China
| | - Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, 210023, PR China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, ON, K9L 0G2, Canada.
| |
Collapse
|
24
|
Wang AO, Ptacek CJ, Paktunc D, Mack EE, Blowes DW. Application of biochar prepared from ethanol refinery by-products for Hg stabilization in floodplain soil: Impacts of drying and rewetting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115396. [PMID: 32882459 DOI: 10.1016/j.envpol.2020.115396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated three biochars derived from bioenergy by-products - manure-based anaerobic digestate (DIG), distillers' grains (DIS), and a mixture thereof (75G25S) - as amendments to stabilize Hg in contaminated floodplain soil under long-term saturated (up to 200 d) and cyclic drying and rewetting conditions. Greater total Hg (THg) removal (72 to nearly 100%) and limited MeHg production (<65 ng L-1) were observed in digestate-based biochar-amended systems under initial saturated conditions. Drying and rewetting resulted in limited THg release, increased aqueous MeHg, and decreased solid MeHg in digestate-based biochar-amended systems. Changes in Fe and S chemistry as well as microbial communities during drying and rewetting potentially affected MeHg production. Digestate-based biochars may be more effective as amendments to control Hg release and minimize MeHg production in floodplain soils under long-term saturated and drying and rewetting conditions compared to distillers' grains biochar.
Collapse
Affiliation(s)
- Alana O Wang
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada.
| | - Dogan Paktunc
- CanmetMINING, Natural Resource Canada, Ottawa, ON, K1A 0G1, Canada
| | - E Erin Mack
- Formerly E. I. du Pont de Nemours and Company, 974 Centre Road, Wilmington, DE, 19805, USA
| | - David W Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
25
|
Wang Y, He T, Yin D, Han Y, Zhou X, Zhang G, Tian X. Modified clay mineral: A method for the remediation of the mercury-polluted paddy soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111121. [PMID: 32798754 DOI: 10.1016/j.ecoenv.2020.111121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/23/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Rice is easy to accumulate mercury (Hg), especially methylmercury (MeHg) with high toxicity, and this leads to a serious health risk for residents in some Hg-polluted areas of Asia. Thus, there is an urgent need to find soil remediation techniques that can both guarantee agricultural production and protect human health in these Hg-contaminated areas. In this study, montmorillonite (Mont) and medical stone (Med) were modified by a thiol-based material (-SH) and by chitosan to obtain modified clay mineral adsorbents. Pot experiments were then performed to explore their ability to reduce the levels of Hg and MeHg in rice and their reduction mechanisms. Compared with unmodified clay minerals, modified clay minerals had better Hg reduction efficiencies in rice. The amendment of SH-modified Med (Med-SH) had the highest THg and MeHg reduction efficiencies in rice, reaching up to 78% and 81%, respectively, and brought the THg concentration in the rice below China's health guidelines for rice (20 ng g-1). Not only did amendment of the SH-modified clay minerals reduce the exchangeable and specially adsorbed Hg in the soil, as did the other amendments, but they also significantly reduced the amount of oxide-bound Hg and MeHg in the soil, and greatly enhanced the retention of Hg and MeHg in soil, thus significantly reduced the concentration of Hg and MeHg in rice.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Resources and Environment, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Resources and Environment, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| | - Yixin Han
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xian Zhou
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Ge Zhang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xiang Tian
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
26
|
Tang Z, Fan F, Deng S, Wang D. Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury - A critical review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110950. [PMID: 32800226 DOI: 10.1016/j.ecoenv.2020.110950] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Human exposure to methylmercury (MeHg) through rice consumption is raising health concerns. It has long been recognized that MeHg found in rice grain predominately originated from paddy soil. Anaerobic conditions in paddy fields promote Hg methylation, potentially leading to high MeHg concentrations in rice grain. Understanding the transformation and migration of Hg in the rice paddy system, as well as the effects of farming activities, are keys to assessing risks and developing potential mitigation strategies. Therefore, this review examines the current state of knowledge on: 1) sources of Hg in paddy fields; 2) how MeHg and inorganic Hg (IHg) are transformed (including abiotic and biotic processes); 3) how IHg and MeHg enter and translocate in rice plants; and 4) how regular farming activities (including the application of fertilizer, cultivation methods, choice of cultivar), affect Hg cycling in the paddy field system. Current issues and controversies on Hg transformation and migration in the paddy field system are also discussed.
Collapse
Affiliation(s)
- Zhenya Tang
- Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China.
| | - Fangling Fan
- School of Energy and Environment Science, Yunnan Normal University, Kunming, China.
| | - Shiping Deng
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, USA.
| | - Dingyong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China; State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, College of Resources and Environment, Southwest University, Chongqing, China.
| |
Collapse
|
27
|
Liu W, Feng Y, Zhong H, Ptacek C, Blowes D, Liu Y, Finfrock YZ, Liu P, Wang S. Aqua regia digestion cannot completely extract Hg from biochar: A synchrotron-based study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115002. [PMID: 32563950 DOI: 10.1016/j.envpol.2020.115002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) is commonly extracted from solid phase samples using aqua regia for total Hg (tHg) analysis. However, uncertainties exist regarding the complete extraction of Hg by aqua regia, especially from carbonaceous materials. To investigate whether aqua regia can completely extract Hg from biochars, batch-style experiments were carried out to evaluate extraction efficiency of aqua regia with respect to Hg-loaded biochar and to characterize the residual Hg speciation and spatial distribution. Different types of biochars (raw, FeCl3-modified, and FeSO4-modified, prepared at different temperatures) were reacted with Hg-spiked solution before the digestion experiments. Adsorption analyses indicate the biochars were successfully loaded with Hg and that the Hg content was higher in biochars pyrolyzed at higher temperature (900 versus 300 or 600 °C). The results of digestion experiments indicate Hg could not be completely extracted from the biochars tested, with a greater percentage of residual Hg in biochars pyrolyzed at 600 (60 ± 15%) and 900 (75 ± 22%) than 300 °C (7 ± 2%). Furthermore, the fraction of residual Hg in FeSO4-modified biochars after aqua regia digestion was significantly lower than in FeCl3-modified and unmodified biochars. Confocal micro-X-ray fluorescence imaging (CMXRFI) showed residual Hg in biochars is concentrated on surfaces prior to digestion, but more homogeneously distributed after digestion, which indicates Hg on biochar surface is more easily digested. Hg extended X-ray absorption fine structure (EXAFS) spectra modelling showed residual Hg in biochars mainly exists as Hg(II)-Cl. These results indicate extra caution should be paid for tHg determinations using aqua regia digestion method in soil (especially in forest), sediment, and peat samples containing black carbon, activated carbon, or biochar.
Collapse
Affiliation(s)
- Wenfu Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yu Feng
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Huan Zhong
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China
| | - Carol Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - David Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - YingYing Liu
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Y Zou Finfrock
- Science Division, Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada; CLS@APS Sector 20, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Peng Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Sheng Wang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
28
|
Bishop K, Shanley JB, Riscassi A, de Wit HA, Eklöf K, Meng B, Mitchell C, Osterwalder S, Schuster PF, Webster J, Zhu W. Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137647. [PMID: 32197286 DOI: 10.1016/j.scitotenv.2020.137647] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
This review documents recent advances in terrestrial mercury cycling. Terrestrial mercury (Hg) research has matured in some areas, and is developing rapidly in others. We summarize the state of the science circa 2010 as a starting point, and then present the advances during the last decade in three areas: land use, sulfate deposition, and climate change. The advances are presented in the framework of three Hg "gateways" to the terrestrial environment: inputs from the atmosphere, uptake in food, and runoff with surface water. Among the most notable advances: These and other advances reported here are of value in evaluating the effectiveness of the Minamata Convention on reducing environmental Hg exposure to humans and wildlife.
Collapse
Affiliation(s)
- Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007 Uppsala, Sweden.
| | | | - Ami Riscassi
- Department of Environmental Sciences, University of Virginia, P.O. Box 400123, Charlottesville, VA 22904-4123, USA.
| | - Heleen A de Wit
- Norwegian Institute for Water Research, Gaustadalléen 21, NO-0349, Norway.
| | - Karin Eklöf
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007 Uppsala, Sweden.
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China.
| | - Carl Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada.
| | - Stefan Osterwalder
- Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble 18 INP, 38000 Grenoble, France.
| | - Paul F Schuster
- U.S. Geological Survey, 3215 Marine Street, Suite E-127, Boulder, CO 80303-1066, USA.
| | - Jackson Webster
- Department of Civil Engineering, California State University, 400 W. 1st Street, 21 95929-0930 Chico, CA, USA.
| | - Wei Zhu
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden.
| |
Collapse
|
29
|
Feng Y, Liu P, Wang Y, Liu W, Liu Y, Finfrock YZ. Mechanistic investigation of mercury removal by unmodified and Fe-modified biochars based on synchrotron-based methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137435. [PMID: 32114231 DOI: 10.1016/j.scitotenv.2020.137435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Improved surface characteristics and incorporated Fe, S, and Cl species are reported in Fe-modified biochar, which makes it a prospective material for Hg(II) removal. In this study, aqueous Hg(II) was removed from solution by unmodified, FeCl3-modified, and FeSO4-modified biochars pyrolyzed at 300, 600, or 900 °C. Higher pyrolytic temperature resulted in higher removal efficiency, with the biochars pyrolyzed at 900 °C removing >96% of Hg(II). Fe-modification enhanced Hg(II) removal for biochars pyrolyzed at 600 °C (from 88% to >95%) or 900 °C (from 96% to 99%). Based on synchronous extended X-ray absorption fine structure (EXAFS) analysis, Hg coordinated to S in modified and unmodified biochars pyrolyzed at 900 °C, where thiol was reported, and in FeSO4-modified biochars pyrolyzed at 600 or 900 °C, where sulfide was recognized; in other biochars, Hg bound to O or Cl. Additionally, confocal micro-X-ray fluorescence imaging (CMXRFI) demonstrated Hg was distributed in agreement with S in biochars where HgS was formed; otherwise, Hg distribution was influenced by Hg species in solution and the pore characteristics of the biochar. This investigation provides information on the effectiveness and mechanisms of Hg removal that is critical for evaluating biochar applications and optimizing modification methods in groundwater remediation.
Collapse
Affiliation(s)
- Yu Feng
- School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Peng Liu
- School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Yanxin Wang
- School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Wenfu Liu
- School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - YingYing Liu
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Y Zou Finfrock
- CLS@APS sector 20, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA; Science Division, Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| |
Collapse
|
30
|
Tang WL, Liu YR, Guan WY, Zhong H, Qu XM, Zhang T. Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136827. [PMID: 32018974 DOI: 10.1016/j.scitotenv.2020.136827] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Methylmercury (MeHg) is a neurotoxin, mainly derived from microbial mercury methylation in natural aquatic environments, and poses threats to human health. Polar regions and paddy soils are potential hotspots of mercury methylation and represent environmental settings that are susceptible to natural and anthropogenic perturbations. The effects of changing environmental conditions on the methylating microorganisms and mercury speciation due to global climate change and farming practices aimed for sustainable agriculture were discussed for polar regions and paddy soils, respectively. To better understand and predict microbial mercury methylation in the changing environment, we synthesized current understanding of how to effectively identify active mercury methylators and assess the bioavailability of different mercury species for methylation. The application of biomarkers based on the hgcAB genes have demonstrated the occurrence of potential mercury methylators, such as sulfate-reducing bacteria, iron-reducing bacteria, methanogen and syntrophs, in a diverse variety of microbial habitats. Advanced techniques, such as enriched stable isotope tracers, whole-cell biosensor and diffusive gradient thin film (DGT) have shown great promises in quantitatively assessing mercury availability to microbial methylators. Improved understanding of the complex structure of microbial communities consisting mercury methylators and non-methylators, chemical speciation of inorganic mercury under geochemically relevant conditions, and the pathway of cellular mercury uptake will undoubtedly facilitate accurate assessment and prediction of in situ microbial mercury methylation.
Collapse
Affiliation(s)
- Wen-Li Tang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu-Rong Liu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen-Yu Guan
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Environmental and Life Science Program (EnLS), Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Xiao-Min Qu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| |
Collapse
|
31
|
Wang AO, Ptacek CJ, Blowes DW, Finfrock YZ, Paktunc D, Mack EE. Use of hardwood and sulfurized-hardwood biochars as amendments to floodplain soil from South River, VA, USA: Impacts of drying-rewetting on Hg removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136018. [PMID: 32050399 DOI: 10.1016/j.scitotenv.2019.136018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/24/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Periodic flooding and drying conditions in floodplains affect the mobility and bioavailability of Hg in aquatic sediments and surrounding soils. Sulfurized materials have been recently proposed as Hg sorbents due to their high affinity to bind Hg, while sulfurizing organic matter may enhance methylmercury (MeHg) production, offsetting the beneficial aspects of these materials. This study evaluated hardwood biochar (OAK) and sulfurized-hardwood biochar (MOAK) as soil amendments for controlling Hg release in a contaminated floodplain soil under conditions representative of periodic flooding and drying in microcosm experiments in three stages: (1) wet biochar amended-systems with river water in an anoxic environment up to 200 d; (2) dry selected reaction vessels in an oxic environment for 90 d; (3) rewet such vessels with river water in an anoxic environment for 90 d. In Stage 1, greater Hg removal (17-98% for unfiltered total Hg (THg) and 47-99% for 0.45-μm THg) and lower MeHg concentrations (<20 ng L-1) were observed in MOAK-amended systems (10%MOAKs). In Stage 3, release of Hg in 10%MOAKs was eight-fold lower than in soil controls (SedCTRs), while increases in aqueous (up to 21 ng L-1) and solid (up to 88 ng g-1) MeHg concentrations were observed. The increases in MeHg corresponded to elevated aqueous concentrations of Mn, Fe, SO42-, and HS- in Stage 3. Results of S K-edge X-ray absorption near edge structure (XANES) analysis suggest oxidation of S in Stage 2 and formation of polysulfur in Stage 3. Results of pyrosequencing analysis indicate sulfate-reducing bacteria (SRB) became abundant in Stage 3 in 10%MOAKs. The shifts in biogeochemical conditions in 10%MOAKs in Stage 3 may increase the bioavailability of Hg to methylating bacteria. The results suggest limited impacts on Hg removal during drying and rewetting, while changes in biogeochemical conditions may affect MeHg production in sulfurized biochar-amended systems.
Collapse
Affiliation(s)
- Alana O Wang
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada.
| | - David W Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Y Zou Finfrock
- CLS@APS, Sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA; Science Division, Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada
| | - Dogan Paktunc
- CanmetMINING, Natural Resource Canada, Ottawa, ON K1A 0G1, Canada
| | - E Erin Mack
- Formerly E. I. du Pont de Nemours and Company, 974 Centre Road, Wilmington, DE 19805, USA
| |
Collapse
|
32
|
Palansooriya KN, Shaheen SM, Chen SS, Tsang DCW, Hashimoto Y, Hou D, Bolan NS, Rinklebe J, Ok YS. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. ENVIRONMENT INTERNATIONAL 2020; 134:105046. [PMID: 31731004 DOI: 10.1016/j.envint.2019.105046] [Citation(s) in RCA: 493] [Impact Index Per Article: 98.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 07/21/2019] [Indexed: 05/18/2023]
Abstract
Soil contamination by potentially toxic elements (PTEs) has led to adverse environmental impacts. In this review, we discussed remediation of PTEs contaminated soils through immobilization techniques using different soil amendments with respect to type of element, soil, and amendment, immobilization efficiency, underlying mechanisms, and field applicability. Soil amendments such as manure, compost, biochar, clay minerals, phosphate compounds, coal fly ash, and liming materials are widely used as immobilizing agents for PTEs. Among these soil amendments, biochar has attracted increased interest over the past few years because of its promising surface properties. Integrated application of appropriate amendments is also recommended to maximize their use efficiency. These amendments can reduce PTE bioavailability in soils through diverse mechanisms such as precipitation, complexation, redox reactions, ion exchange, and electrostatic interaction. However, soil properties such as soil pH, and clay, sesquioxides and organic matter content, and processes, such as sorption/desorption and redox processes, are the key factors governing the amendments' efficacy for PTEs immobilization in soils. Selecting proper immobilizing agents can yield cost-effective remediation techniques and fulfill green and sustainable remediation principles. Furthermore, long-term stability of immobilized PTE compounds and the environmental impacts and cost effectiveness of the amendments should be considered before application.
Collapse
Affiliation(s)
- Kumuduni Niroshika Palansooriya
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt
| | - Season S Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yohey Hashimoto
- Department of Bioapplications and Systems Engineering, Tokyo University of Agriculture and Technology, Japan
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; CRC for High Performance Soil, Callaghan, NSW-2308, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea.
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Gygax S, Gfeller L, Wilcke W, Mestrot A. Emerging investigator series: mercury mobility and methylmercury formation in a contaminated agricultural flood plain: influence of flooding and manure addition. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:2008-2019. [PMID: 31617529 DOI: 10.1039/c9em00257j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The fate and the methylation of mercury (Hg) in the terrestrial environment are still poorly understood and although the main drivers of release and methylation of mercury in soils are known (low redox potential and microbial carbon availability) their interactions are not well understood. This is of concern since many agriculturally used floodplains, where the recurring flooding and agricultural practices (e.g. manure amendments) may have an impact on the fate and the biomethylation of Hg, are at the same time Hg-contaminated. In this study, we modified and validated existing methods to extract and analyze methylmercury (MeHg) by HPLC-ICP-MS in soils and we assessed the Hg and MeHg concentrations in three fields situated in a Hg polluted agricultural floodplain. Further, we incubated the top soil from the three studied fields for 11 days under flooded conditions in presence or absence of 2 mass% of cow manure, a common agricultural amendment in the area. Total Hg and MeHg concentrations ranged from <limit of detection (LOD, 0.012 mg kg-1) to 28.2 mg kg-1 and from 1.2 to 7.8 μg kg-1 respectively. Hg was released to the soil solution after 12 hours with a maximum between day 2 and day 7. MeHg levels in the soil solution were <LOD although it was found in the soil before and after the incubation. The addition of cow manure to saturated soils led to an increase in the MeHg concentrations of the soil solid phase by up to fivefold to a maximum of 26.4 ± 1.1 μg kg-1 (n = 3). Our study demonstrates that the combination of low redox potential because of flooding with common agricultural practices such as the amendment of manures enhances the formation of toxic MeHg.
Collapse
Affiliation(s)
- Sebastian Gygax
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
| | | | | | | |
Collapse
|
34
|
Muller KA, Brandt CC, Mathews TJ, Brooks SC. Methylmercury sorption onto engineered materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 245:481-488. [PMID: 31170637 DOI: 10.1016/j.jenvman.2019.05.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Four commercially available sorbents (BioChar (BC), ThiolSAMMS® (TS), SediMite (SM), and Organoclay™ PM-199 (OC-199)) were tested for their ability to sorb methylmercury (MeHg) and MeHg complexed with dissolved organic matter (DOM). Testing sorption behavior with DOM is more representative of the environmental conditions and mercury speciation expected during in-situ remediation efforts. Isotherms were fit using a robust, iterative re-weighting scheme. This fitting approach improves upon the traditionally used indirect sorption method by removing the dependence between aqueous and solid phase concentrations in isotherm fitting. Developed isotherms show that without DOM, BC, TS, and SM adsorbed similar amounts of MeHg while OC-199 sorbed substantially less MeHg. Below an equilibrium concentration of 5.6 ng L-1 BC was the best performing sorbent, between 5.6 and 20.9 ng L-1 SM sorbed the most MeHg, and above an equilibrium concentration of 20.9 ng L-1 TS outperformed the other sorbents. BC and OC-199 showed indication of MeHg sorption saturation over the tested concentration range of 3.5-680 ng L-1. With DOM, SM outperformed the other sorbents at equilibrium concentrations less than 0.98 ng L-1 and TS was the superior MeHg:DOM sorbent at higher concentrations. MeHg:DOM sorption was controlled by DOM-sorbent interactions. DOM decreased MeHg sorption onto BC and SM whereas TS exhibited similar sorption with and without DOM. OC-199 had slightly higher MeHg uptake with DOM. East Fork Poplar Creek (EFPC), an industrially Hg contaminated site, was used as a case study example to build a relationship between aqueous and fish MeHg concentrations and subsequently compare the cost of sorbent materials required to meet regulatory objectives. For this case study, SM provided the most cost-effective sorbent option for in-situ remediation efforts to reduce aqueous MeHg concentrations.
Collapse
Affiliation(s)
- Katherine A Muller
- Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS 6038, Oak Ridge, TN, 37831-6038, United States
| | - Craig C Brandt
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS 6038, Oak Ridge, TN, 37831-6038, United States
| | - Teresa J Mathews
- Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS 6038, Oak Ridge, TN, 37831-6038, United States
| | - Scott C Brooks
- Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS 6038, Oak Ridge, TN, 37831-6038, United States.
| |
Collapse
|
35
|
He L, Zhong H, Liu G, Dai Z, Brookes PC, Xu J. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:846-855. [PMID: 31202137 DOI: 10.1016/j.envpol.2019.05.151] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/15/2019] [Accepted: 05/29/2019] [Indexed: 05/21/2023]
Abstract
There are global concerns about heavy metal (HM) contamination in soils, which in turn has produced an increased demand for soil remediation. Biochar has been widely documented to effectively immobilize metals in contaminated soils and has received increasing attention for use in soil remediation. Here, we review recent progresses in understanding metal-biochar interactions in soils, potential risks associated with biochar amendment, and application of biochar in soil remediation in China. These recent studies indicate that: (1) the remediation effect depends on the characteristics of both biochar and soil and their interactions; (2) biochar applications could decrease the mobility/bioavailability of HMs in soils and HM accumulation in plants; and (3) despite its advantages, biochar applications could pose ecological and health risks, e.g., by releasing toxic substances into soils or by inhalation of biochar dust. Research gaps still exist in the development of practical methods for preparing and applying different biochars that target specific HMs. In the future, the long term effects and security of biochar applications on soil remediation, soil organisms and plant growth need to be considered.
Collapse
Affiliation(s)
- Lizhi He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Guangxia Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Philip C Brookes
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
36
|
Liu P, Ptacek CJ, Blowes DW. Mercury Complexation with Dissolved Organic Matter Released from Thirty-Six Types of Biochar. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:175-180. [PMID: 30008039 DOI: 10.1007/s00128-018-2397-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Previous studies show mercury (Hg) can be effectively removed from solution by biochar, but limited attention was paid on the complexation between Hg and components released from biochars, e.g. dissolved organic matter (DOM). Here, aqueous data from batch-style experiments were modeled using PHREEQC, incorporating thermodynamic constants between Hg and DOM, which was assumed to be composed of thiol, carboxylic, and phenolic functional groups. Modelling results suggest that > 99% Hg complexed with thiol groups in DOM. The modelled concentrations of Hg-DOM complexes from low-T (low-temperature, 300°C) biochars were greater than from high-T (600°C) biochars. The concentrations of Hg-DOM complexes were lower in wood-based than in agricultural residue- and manure-based biochars. Hg-DOM complexes may affect Hg speciation, bioavailability, transport, and methylation processes. This research describes a method to evaluate Hg-DOM interactions, and the results indicate extra caution regarding Hg-DOM complex formation is required in the selection of biochar for Hg remediation.
Collapse
Affiliation(s)
- Peng Liu
- School of Environmental Studies, China University of Geosciences, 388 Lumo Rd., Wuhan, 430074, Hubei, People's Republic of China
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada.
| | - David W Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
37
|
Turull M, Fontàs C, Díez S. Conventional and novel techniques for the determination of Hg uptake by lettuce in amended agricultural peri-urban soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:40-46. [PMID: 30851683 DOI: 10.1016/j.scitotenv.2019.02.244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Peri-urban agriculture provides environmental benefits to the nearby urban areas. However, domestic and industrial infrastructures can be sources of pollution that can affect agricultural production. In this work, the diffusive gradient in thin film (DGT) technique was used to assess the bioavailability of mercury (Hg) in organic-amended agricultural soils, and uptake by lettuce. Two different amendments were studied individually in three different sets using a wood-based biochar at two rates (3% and 6%, w/w), and compost at one rate (30% w/w). The effect of the amendments on Hg bioavailability, mobility and uptake was investigated by means of both DGT analyses and accumulation of Hg by lettuce. DGT manufactured in-house devices with polyacrylamide gel using both open and restricted diffusive layers (ODL and RDL, respectively) were used to determine organic and inorganic Hg labile species in soils, respectively. The Hg concentration in lettuce leaves and roots were analyzed and compared with DGT measurements to predict the uptake of Hg from the different organic-amended soils and the non-amended soils. Results show that the application of biochar reduces the bioavailability of Hg in soil and, in consequence, the Hg uptake by lettuce. Inorganic Hg species were predominant in all the different sets of the experiment (62-97%), although the addition of the different amendments reduced the free ionic species in soil.
Collapse
Affiliation(s)
- Marta Turull
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034 Barcelona, Spain
| | - Clàudia Fontàs
- Department of Chemistry, University of Girona, C/Maria Aurèlia Capmany 69,17003 Girona, Spain
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034 Barcelona, Spain.
| |
Collapse
|
38
|
Lei P, Nunes LM, Liu YR, Zhong H, Pan K. Mechanisms of algal biomass input enhanced microbial Hg methylation in lake sediments. ENVIRONMENT INTERNATIONAL 2019; 126:279-288. [PMID: 30825746 DOI: 10.1016/j.envint.2019.02.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 05/25/2023]
Abstract
Eutrophication is a major environmental concern in lake systems, impacting the ecological risks of contaminants and drinking water safety. It has long been believed that eutrophication and thus algal blooms would reduce methylmercury (MeHg) levels in water, as well as MeHg bioaccumulation and trophic transfer (e.g., by growth dilution). In this study, however, we demonstrated that algae settlement and decomposition after algal blooms increased MeHg levels in sediments (54-514% higher), as evidenced by the results from sediments in 10 major lakes in China. These could in turn raise concerns about enhanced trophic transfer of MeHg and deterioration of water quality after algal blooms, especially considering that 9 out of the 10 examined lakes also serve as drinking water sources. The enhanced microbial MeHg production in sediments could be explained by the algal organic matter (AOM)-enhanced abundances of microbial methylators as well as the input of algae-inhabited microbes into sediments, but not Hg speciation in sediments: (1) Several AOM components (e.g., aromatic proteins and soluble microbial by product-like material with generally low molecular weights), rather than the bulk AOM, played key roles in enhancing the abundances of microbial methylators. The copies of Archaea-hgcA methylation genes were 51-397% higher in algae-added sediments; thus, MeHg production was also higher. (2) Input of algal biomass-inhabited microbial methylators contributed to 2-21% of total Archaea-hgcA in the 10 lake sediments with added algal biomass. (3) However, AOM-induced changes in Hg speciation, with implications on Hg availability to microbial methylators, played a minor role in enhancing microbial Hg methylation in sediments as seen in X-ray absorption near edge structure (XANES) data. Our results suggest the need to better understand the biogeochemistry and risks of contaminants in eutrophic lakes, especially during the period of algae settlement and decomposition following algal blooms.
Collapse
Affiliation(s)
- Pei Lei
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Luís M Nunes
- Civil Engineering Research and Innovation for Sustainability Center, University of Algarve, Faro, Portugal
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Environmental and Life Science Program (EnLS), Trent University, Peterborough, Ontario, Canada.
| | - Ke Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
39
|
He M, Tian L, Braaten HFV, Wu Q, Luo J, Cai LM, Meng JH, Lin Y. Mercury-Organic Matter Interactions in Soils and Sediments: Angel or Devil? BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:621-627. [PMID: 30600387 DOI: 10.1007/s00128-018-2523-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Many studies have suggested that organic matter (OM) substantially reduces the bioavailability and risks of mercury (Hg) in soils and sediments; however, recent reports have supported that OM greatly accelerates Hg methylation and increases the risks of Hg exposure. This study aims to summarize the interactions between Hg and OM in soils and sediments and improve our understanding of the effects of OM on Hg methylation. The results show that OM characteristics, promotion of the activity of Hg-methylating microbial communities, and the microbial availability of Hg accounted for the acceleration of Hg methylation which increases the risk of Hg exposure. These three key aspects were driven by multiple factors, including the types and content of OM, Hg speciation, desorption and dissolution kinetics and environmental conditions.
Collapse
Affiliation(s)
- Mei He
- School of Resources and Environment, Yangtze University, Wuhan, 430100, People's Republic of China
| | - Lei Tian
- School of Petroleum Engineering, Yangtze University, Wuhan, 430100, People's Republic of China
| | | | - Qingru Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jie Luo
- School of Resources and Environment, Yangtze University, Wuhan, 430100, People's Republic of China
| | - Li-Mei Cai
- School of Resources and Environment, Yangtze University, Wuhan, 430100, People's Republic of China
| | - Jiang-Hui Meng
- Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan, 430100, People's Republic of China
| | - Yan Lin
- School of Resources and Environment, Yangtze University, Wuhan, 430100, People's Republic of China.
- Norwegian Institute for Water Research, 0349, Oslo, Norway.
| |
Collapse
|
40
|
Li H, Lin X, Zhao J, Cui L, Wang L, Gao Y, Li B, Chen C, Li YF. Intestinal Methylation and Demethylation of Mercury. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:597-604. [PMID: 30515547 DOI: 10.1007/s00128-018-2512-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/30/2018] [Indexed: 05/20/2023]
Abstract
Mercury (Hg) is a global pollutant, which is linked with different diseases. The methylation of Hg and demethylation of methylmercury (MeHg) in the environment were extensively studied and summarized; however, the transformation of Hg in the intestine is less presented. In this review, the research progress and the perspectives on the intestinal transformation of Hg were discussed. Studies found that MeHg could be formed when exposed to inorganic Hg by the gut microbiota in aquatic organisms, terrestrial invertebrates, and mammals, etc. hgcAB genes could be used as indicators for predicting Hg methylation potential. In vitro studies using fecal specimen, intestinal contents, and the isolated intestinal microbes confirmed the intestinal demethylation of MeHg. The investigation on the effects of Hg exposure to the abundance and diversity of intestinal microbes and their metabolites could shed light on the mechanism of the toxicity of Hg, especially the neurotoxicity of MeHg, which deserves further study.
Collapse
Affiliation(s)
- Hong Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoying Lin
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiating Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Liwei Cui
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Liming Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxi Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Bai Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100191, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
41
|
Tang W, Su Y, Gao Y, Zhong H. Effects of Farming Activities on the Biogeochemistry of Mercury in Rice-Paddy Soil Systems. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:635-642. [PMID: 31053868 DOI: 10.1007/s00128-019-02627-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
The biogeochemistry of mercury (Hg) in rice-paddy soil systems raises concerns, given that (1) the redox potential in paddy soil favors Hg methylation and (2) rice plants have a strong ability to accumulate methylmercury (MeHg), making rice an important source for MeHg exposure to humans. Therefore, all factors affecting the behavior of Hg in rice-paddy soils might impact Hg accumulation in rice, with its subsequent potential risks. As a typical wetland, paddy soils are managed by humans and affected by anthropogenic activities, such as agronomic measures, which would impact soil properties and thus Hg biogeochemistry. In this paper, we reviewed recent advances in the effects of farming activities including water management, fertilizer application and rotation on Hg biogeochemistry, trying to elucidate the factors controlling Hg behavior and thus the ecological risks in rice-paddy soil systems. This review might provide new thoughts on Hg remediation and suggest avenues for further studies.
Collapse
Affiliation(s)
- Wenli Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Yao Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Yuxi Gao
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control, Laboratory of Metallomics and Nanometallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China.
- Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, ON, Canada.
| |
Collapse
|
42
|
Liu P, Ptacek CJ, Blowes DW, Finfrock YZ. Mercury distribution and speciation in biochar particles reacted with contaminated sediment up to 1030 days: A synchrotron-based study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:915-922. [PMID: 30708306 DOI: 10.1016/j.scitotenv.2019.01.148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/13/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
A previous long-term microcosm experiment showed mercury (Hg) in the aqueous phase of contaminated sediment was effectively stabilized through the addition of biochar. The present study focuses on the application of synchrotron-related methods to evaluate the distribution and speciation of Hg in the biochar particles reacted for 235, 387, and 1030 days. The study provided more information on Hg stabilization mechanisms in addition to the information obtained by the previous studies. Confocal micro-X-ray fluorescence imaging (CMXRFI) and micro-X-ray fluorescence (micro-XRF) maps show that mercury co-exists with S, Cu, Fe, Mn, and Zn on the surface and inside the particles of biochar. Extended X-ray absorption fine structure (EXAFS) modeling shows that Hg is in an oxide form on the surface of an iron (hydro)oxide particle from fresh sediment and in Hg-sulfide forms in biochar samples. S X-ray absorption near-edge structure (XANES) analyses show that sulfide is present within the biochar particles. After amendment with biochars, a fraction of the Hg originally present in unstable forms (dissolvable, HgO, colloidal, nano, etc.) in the sediment was likely stabilized as less soluble Hg-sulfide phases on the surface or within the biochar particle. These results suggest Hg accumulation by the biochar particles renders it less potential for transport and bioavailability.
Collapse
Affiliation(s)
- Peng Liu
- School of Environmental Studies, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430000, PR China; Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo N2L3G1, Ontario, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo N2L3G1, Ontario, Canada.
| | - David W Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo N2L3G1, Ontario, Canada
| | - Y Zou Finfrock
- Science Division, Canadian Light Source, 44 Innovation Bld., Saskatoon S7N2V3, Saskatchewan, Canada; CLS@APS Sector 20, Advanced Photon Source, 9700 South Cass Ave., Lemont, IL 60439, United States of America
| |
Collapse
|
43
|
Schwartz GE, Sanders JP, McBurney AM, Brown SS, Ghosh U, Gilmour CC. Impact of dissolved organic matter on mercury and methylmercury sorption to activated carbon in soils: implications for remediation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:485-496. [PMID: 30724289 DOI: 10.1039/c8em00469b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Activated carbon (AC) amendments have shown promise in reducing inorganic mercury (Hg(ii) complexes, "Hg") and methylmercury (MeHg) risk in contaminated soils. However, the effectiveness of AC in Hg and MeHg immobilization has varied among studies, suggesting that site biogeochemistry might dictate efficacy. In this study, we examined the effect of dissolved organic matter (DOM) on MeHg and Hg sorption to AC. We evaluated the impact of Suwannee River Humic Acid (SRHA) on sorption to AC directly using an isotherm approach and in a soil/AC mixture using slurry microcosms. Aqueous sorption coefficients to AC (log KAC) for Hg-SRHA and MeHg-SRHA complexes were one to two orders of magnitude lower (Hg-SRHA = 4.53, MeHgSRHA = 4.35) than those for chloride complexes (HgCl2 = 6.55, MeHgCl = 4.90) and more closely resembled the log KAC of SRHA (3.64). In anoxic, sulfidic soil slurries, the KAC for sulfide species appeared stronger than for chloride or SRHA species for both Hg and MeHg. AC significantly reduced porewater concentrations of both ambient MeHg and a fresh Me199Hg spike, and the addition of up to 60 mg L-1 SRHA did not reduce sorption to AC. The AC also reduced ambient Hg and 201Hg porewater concentrations, but as SRHA concentration increased, the magnitude of solid phase sorption decreased. Speciation modeling revealed that SRHA may have impacted Hg distribution to the solid phase by reducing HgS precipitation. This study highlights the need for site-specific evaluation of AC efficacy and the value in developing biogeochemical models of AC performance for Hg control.
Collapse
Affiliation(s)
- Grace E Schwartz
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD 21037, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Wang AO, Ptacek CJ, Blowes DW, Gibson BD, Landis RC, Dyer JA, Ma J. Application of hardwood biochar as a reactive capping mat to stabilize mercury derived from contaminated floodplain soil and riverbank sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:549-561. [PMID: 30368184 DOI: 10.1016/j.scitotenv.2018.10.213] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 05/09/2023]
Abstract
Hardwood biochar (pyrolyzed at 700 °C), a potential candidate for Hg removal, has been proposed for use as reactive capping mats along groundwater discharge zones or riverbanks to control release of Hg from contaminated riverbank sediments. Frequent flooding and drainage in fluvial settings can influence the effectiveness of remediation systems in contaminated riverbank sediments and floodplain soils. This study evaluated the effectiveness of Hg removal using hardwood biochar under hydrogeochemical conditions representative of those present within a reactive capping mat installed in a fluvial setting. Two sets of treatment columns, containing 50% v.v biochar and quartz sand, were subjected to 100 weekly wetting/drying cycles that included dry air, water-saturated air, and drainage using leachate derived from two source columns as input solutions: 1. Passing simulated acid rain water through floodplain soil, 2. Passing river water through riverbank sediment. In both treatment columns, >80% of the Hg was retained on the biochar without promoting Hg methylation and the release of other unintended dissolved constituents (including N, P, DOC). Results from solidphase extraction analyses suggest that Hg accumulated near the air/biochar-sand interface (0-2 cm) in the treatment columns at low loadings but was present at greater depths at higher loadings. Results of micro X-ray fluorescence (μ-XRF) mapping and micro X-ray absorption near edge structure (μ-XANES) for the biochar collected at depths 0-2 cm in treatment columns suggest retention of Hg-bearing particles derived from riverbank sediment and floodplain soil within the pore structure of the biochar. Sulfur K-edge XANES analysis of the unused biochar and the biochar after treatment suggest formation of Hg complexes on the biochar surface. These results indicate that hardwood biochar is potentially an effective media for application in reactive mats for controlling Hg discharging from contaminated riverbank sediments.
Collapse
Affiliation(s)
- Alana O Wang
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - David W Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Blair D Gibson
- Formerly at Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Richard C Landis
- Formerly at E.I. du Pont de Nemours and Company, Wilmington, DE 19085, USA
| | - James A Dyer
- Formerly at E.I. du Pont de Nemours and Company, Wilmington, DE 19085, USA
| | - Jing Ma
- Formerly at Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|