1
|
Wang L, Ma WL, Yang PF, Huo CY, Hu PT, Li WL, Fu MQ. Occurrence, spatial-seasonal variation and air-soil exchange of traditional and novel organochlorine pesticides across 30° latitude in Eastern China: Old tales and new realities. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137772. [PMID: 40022934 DOI: 10.1016/j.jhazmat.2025.137772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
While traditional organochlorine pesticides (OCPs) have been phased out under international regulations, novel OCPs are increasingly used as substitutes, however, their environmental behavior was not well clarified. Here, the first comprehensive study on the occurrence, seasonal-spatial variation, and air-soil exchange of both traditional and novel OCPs across a 30° latitudinal gradient (22°N to 52°N) in Eastern China were conducted. Air concentrations of ΣOCPs peaked during summer months, whereas soil concentrations were elevated in winter. Notably, novel OCPs exhibited pronounced spatial-seasonal variations due to the influence of ongoing application practices. Distinct source-sink relationships were observed between traditional and novel OCPs: soils acted as a "secondary source" for traditional OCPs year-round, while for novel OCPs, soils changed from a "secondary source" in summer to a "sink" in winter. Air-soil exchange net fluxes demonstrated significant seasonal variations, with enhancement at higher temperatures and lower latitudes. Emission fluxes to soil for traditional OCPs were concentrated in central and northeastern regions influenced by historical use and distillation effect. In contrast, novel OCPs showed higher emission fluxes in central and southeastern regions, correlating with current usage patterns. In summary, this study provided baseline information on the pollution characteristics and environmental behaviors of both traditional and novel OCPs, which would help us for better understanding their migration and fate in China, even on the global scale.
Collapse
Affiliation(s)
- Liang Wang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Laboratory of Marine Ecological Environment Early Warning and Monitoring, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China.
| | - Pu-Fei Yang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chun-Yan Huo
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Peng-Tuan Hu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Wen-Long Li
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Meng-Qi Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
2
|
Debler F, Gandrass J, Paul Ramacher MO, Koenig AM, Zimmermann S, Joerss H. Currently used and legacy pesticides in the marine atmosphere from Patagonia to Europe. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126175. [PMID: 40180298 DOI: 10.1016/j.envpol.2025.126175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
Pesticides can enter the atmosphere upon application due to spray drift, volatilization, or wind erosion. Subsequently, certain pesticides undergo atmospheric transport to non-target areas, where they deposit. To investigate their potential long-range transport, 329 pesticides were analyzed in air samples collected on a south-north Atlantic Ocean transect between South America and Europe in 2023. In total, twelve currently used pesticides (CUPs) and one transformation product (TP) were quantified in concentrations ranging from 1.6 to 420 pg/m3. Additionally, nine pesticides (three CUPs, three TPs and three legacy pesticides) were detected in the air samples but could not be quantified as the method performance acceptability criteria were not met for these compounds. All CUPs and TPs were found in the marine atmosphere across the Atlantic Ocean for the first time. Higher pesticide concentrations were observed in the atmosphere of the northern hemisphere, while the number of pesticides per sample was comparable between the northern and southern hemisphere. Air mass back trajectories showed a high marine influence for the majority of samples, indicating a potential long-range transport of the found pesticides. This research provides the first empirical evidence for the long-range transport potential of 12 CUPs and 4 TPs to the remote atmospheric environment of the Atlantic Ocean. The calculated atmospheric half-lives of less than two days for these compounds indicate the importance to complement the model predictions with measurements of airborne pesticides in remote areas to assess their long-range atmospheric transport potential.
Collapse
Affiliation(s)
- Freya Debler
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Organic Environmental Chemistry, Max-Planck-Str. 1, 21502 Geesthacht, Germany; Universität Hamburg, Department of Chemistry, Institute of Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany.
| | - Juergen Gandrass
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Organic Environmental Chemistry, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Martin Otto Paul Ramacher
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Chemistry Transport Modeling, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Alkuin Maximilian Koenig
- Helmholtz-Zentrum Hereon, Institute of Coastal Systems - Analysis and Modeling, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Simon Zimmermann
- Universität Rostock, Institute of Chemistry, Albert-Einstein-Straße 3a, 18059 Rostock, Germany
| | - Hanna Joerss
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Organic Environmental Chemistry, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| |
Collapse
|
3
|
Zhao J, Dai Y, Wang L, Lu D, Cui X, Lu L, Zhang J, Li K, Wang X. Spatiotemporal distribution and fate of typical pesticides in the Bohai Sea and surrounding rivers, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125934. [PMID: 40020900 DOI: 10.1016/j.envpol.2025.125934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Pesticide leakage has lasting and profound effects on the stability and health of marine ecosystems. To explore the occurrence, distribution, and fate of typical pesticides in marine environments, three sampling campaigns were conducted in the Bohai Sea and surrounding rivers. Atrazine was the most pronounced pesticide, with a high concentration and detection frequency in both seawater and sediment. The presence of typical organophosphorus pesticides (OPs) was significantly lower than historical levels. Pesticide concentrations decreased from inshore to offshore. Furthermore, the spatiotemporal distribution characteristics of the pesticides highlighted the agricultural patterns and differences in pesticide use. Environmental factors and physicochemical properties jointly determined the behaviors and fates of pesticides in the marine environment. Sediment served as both a sink for widely used atrazine and a source of restricted OPs. Although some pesticides have been restricted or banned, such as dimethoate and chlorpyrifos, the risks caused by their long-term use and environmental accumulation cannot be ignored and the normalized monitoring of typical pesticides is necessary in the marine environment.
Collapse
Affiliation(s)
- Jing Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou, 535011, China
| | - Yufei Dai
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Limin Wang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Dongliang Lu
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou, 535011, China
| | - Xiaoru Cui
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Li Lu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jingyu Zhang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Keqiang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Xiulin Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
4
|
Birgül A, Güzel E, Dağlıoğlu N, Taşdemir Y, Cindoruk SS, Kurt-Karakuş PB. Evaluation of the concentrations of current use pesticides (CUPs) in urban air and rainfall, and their wet deposition flux in a metropolitan environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178850. [PMID: 39954470 DOI: 10.1016/j.scitotenv.2025.178850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
This study assesses the wet deposition fluxes and washout ratios of current-use pesticides (CUPs) in Bursa, Turkey, to better understand their environmental impact. It investigates the temporal and spatial fluctuations of these compounds, particularly focusing on CUPs like benomyl, dichlorvos, dimethoate, imidacloprid, monochrotophos, and pymetrozine. The concentrations of CUPs in both ambient air and precipitation showed seasonal variations, with peaks in spring and summer due to increased agricultural activities. Precipitation concentrations of CUPs also varied, when the detection rates based on CUP congeners are analyzed, benomyl (70 %) and pymetrozine (66 %) are the most frequently detected congeners in the collected samples, particularly during the peak agricultural season. Wet deposition fluxes were highest in spring and summer, while dry deposition fluxes peaked in autumn and winter. Benomyl, dichlorvos, dimethoate, and imidacloprid were determined the most abundant CUP congeners in both phase (gas and particle phase). The dry deposition velocities ranged from 0.001 to 2.26 cm/s, and washout ratios varied between 1.35 × 10-4 and 1.18 × 10-6, depending on the CUP congeners. These findings underscore the need for ongoing monitoring, enhanced measurement techniques, and interdisciplinary collaboration to better understand CUP distribution and its environmental and health impacts, while developing effective management strategies.
Collapse
Affiliation(s)
- Aşkın Birgül
- Faculty of Engineering and Natural Sciences, Department of Environmental Engineering, Bursa Technical University, Mimar Sinan Mahallesi Mimar Sinan Bulvarı Eflak Caddesi No: 177, 16310 Yıldırım, Bursa, Turkiye.
| | - Evşen Güzel
- Faculty of Fisheries, Department of Basic Sciences, University of Cukurova, 01330 Adana, Turkiye
| | - Nebile Dağlıoğlu
- Institute of Forensic Sciences, Department of Forensic Toxicology Ankara University, Ankara, Turkiye
| | - Yücel Taşdemir
- Faculty of Engineering, Department of Environmental Engineering, Bursa Uludag University, 16059 Nilufer, Bursa, Turkiye
| | - S Sıddık Cindoruk
- Faculty of Engineering, Department of Environmental Engineering, Bursa Uludag University, 16059 Nilufer, Bursa, Turkiye
| | - Perihan Binnur Kurt-Karakuş
- Faculty of Engineering and Natural Sciences, Department of Environmental Engineering, Bursa Technical University, Mimar Sinan Mahallesi Mimar Sinan Bulvarı Eflak Caddesi No: 177, 16310 Yıldırım, Bursa, Turkiye
| |
Collapse
|
5
|
Yu QQ, Zhang Y, Zhao S, Pang M, Jiang P, Qu P. Comprehensive analysis of ionomic profiling in Chlorella exposed to chlorpyrifos. FRONTIERS IN MARINE SCIENCE 2025; 12. [DOI: 10.3389/fmars.2025.1524885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
IntroductionChlorpyrifos (CPF), a widely used organophosphorus insecticide, is highly toxic to non-target aquatic organisms and has relatively high persistence in water, posing a serious threat to marine ecosystems. However, little is known about the toxicological mechanism of CPF on marine microalgae, which is the main primary producer in the marine ecosystem.MethodsThis study explored the ion changes of microalgae Chlorella vulgaris under the stress of CPF through Inductively Coupled Plasma Mass Spectrometry (ICP-MS).ResultsSignificant disparities in ionomics among control and treatment group were observed through pattern recognition analysis (principal component analysis, PCA; orthogonal partial least squares discriminant analysis, OPLS-DA), indicating that CPF may impede their growth by disrupting the homeostasis of crucial elements within algal cells.DiscussionThis study elucidated the inhibitory impact of CPF on green algae growth and its potential mechanism of toxicity through ICP-MS, providing crucial insights for a comprehensive understanding of the influence of organophosphorus pesticides on aquatic ecosystems.
Collapse
|
6
|
Pinto EP, Paredes E, Santos-Echeandía J, Campillo JA, León VM, Bellas J. Comparative assessment of microplastics and microalgae as vectors of mercury and chlorpyrifos in the copepod Acartia tonsa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173791. [PMID: 38862041 DOI: 10.1016/j.scitotenv.2024.173791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Microplastics (MPs) raise concerns not only as pollutants themselves, but also due to their ability to act as vectors of pollutants adsorbed from seawater, transferring them to marine organisms. However, the relevance of MPs as carriers of pollutants compared to microalgae needs further exploration. This study compared the role of MPs (2-10 μm non-oxidized and 10-15 μm oxidized high-density polyethylene) and natural organic particles (Rhodomonas lens microalgae, MA) as carriers of mercury (Hg, 2.3 μg Hg/L) and chlorpyrifos (CPF, 1.0 μg CPF/L) to adult Acartia tonsa copepods, after 24-48 h exposure. Dose-response experiments were first performed with adult female copepods exposed to oxidized MPs (0.25-4.0 mg/L), waterborne Hg (0.01-10.0 μg/L) and Ox MPs + Hg (0.25-4.0 mg oxidized MPs/L + 0.50-8.0 μg Hg/L) for 48 h, to complement previous studies that focused on the pesticide CPF. Effects were evaluated with four replicates for physiological and reproductive responses (6 females/replicate), biochemical techniques (40 individuals/replicate) and Hg/CPF bioaccumulation measurements (1000 individuals/replicate). Copepods accumulated Hg/CPF similarly from dissolved pollutants (6204 ± 2265 ng Hg/g and 1251 ± 646 ng CPF/g) and loaded MPs (3125 ± 1389 ng Hg/g and 1156 ± 266 ng CPF/g), but significantly less from loaded MA (21 ± 8 ng Hg/g and 173 ± 80 ng CPF/g). After 24-48 h, copepods exposed to MPs + Hg/CPF showed generally greater biological effects than those exposed to dissolved Hg/CPF or to MA + Hg/CPF, although differences were not statistically significant. MA + CPF had significantly lower AChE inhibition (1073.4 nmol min-1 mg-1) and MA + Hg lower GRx induction (48.8 nmol min-1 mg-1) compared to MPs + Hg/CPF and dissolved Hg/CPF (182.8-236.4 nmol min-1 mg-1 of AChE and 74.1-101.7 nmol min-1 mg-1 of GRx). Principal component analysis suggested different modes of action for Hg and CPF.
Collapse
Affiliation(s)
- Estefanía P Pinto
- Centro de Investigación Mariña Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, ECOCOST, 36310 Vigo, Spain.
| | - Estefanía Paredes
- Centro de Investigación Mariña Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, ECOCOST, 36310 Vigo, Spain
| | - Juan Santos-Echeandía
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida Radio Faro, 50, 36390 Vigo, Spain
| | - Juan Antonio Campillo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO-CSIC), Calle Varadero, 1, 30740, San Pedro del Pinatar, Murcia, Spain
| | - Víctor M León
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO-CSIC), Calle Varadero, 1, 30740, San Pedro del Pinatar, Murcia, Spain
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida Radio Faro, 50, 36390 Vigo, Spain
| |
Collapse
|
7
|
Zhao S, Nigar R, Zhong G, Li J, Geng X, Yi X, Tian L, Bing H, Wu Y, Zhang G. Occurrence and fate of current-use pesticides in Chinese forest soils. ENVIRONMENTAL RESEARCH 2024; 255:119087. [PMID: 38719064 DOI: 10.1016/j.envres.2024.119087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/19/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Pesticides play a crucial role in securing global food production to meet increasing demands. However, because of their pervasive use, they are now ubiquitous environmental pollutants that have adverse effects on both ecosystems and human health. In this study, the environmental occurrence and fate of 16 current-use pesticides (CUPs) were investigated in 93 forest soil samples obtained from 11 distinct mountains in China. The concentrations of the target pesticides ranged from 0.36 to 55 ng/g dry weight. Cypermethrin, dicofol, chlorpyrifos, chlorothalonil, and trifluralin were the most frequently detected CUPs. The CUP concentrations were generally higher in the O-horizon than in the A-horizon. Chlorpyrifos, chlorothalonil, and dicofol were detected in most deep layers in soil profiles from three mountains selected to represent distinct climate zones. No clear altitudinal trend in organic carbon-normalized concentrations of CUPs was observed in the O- or A-horizons within individual mountains. A negative correlation was noted between the CUP concentrations and the altitudes across all sampling sites. This indicated that proximity to emission sources was a key factor affecting the spatial distribution of CUPs in mountain forest soil on a national scale. The ecological risk assessment showed that dicofol and cypermethrin pose potential risks to earthworms. This study emphasizes the importance of source control when setting management strategies for CUPs.
Collapse
Affiliation(s)
- Shizhen Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China.
| | - Refayat Nigar
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangcai Zhong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China
| | - Xiaofei Geng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xin Yi
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Lele Tian
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haijian Bing
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yanhong Wu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China
| |
Collapse
|
8
|
Tao H, Fang C, Xiao Y, Jin Y. The toxicity and health risk of chlorothalonil to non-target animals and humans: A systematic review. CHEMOSPHERE 2024; 358:142241. [PMID: 38705408 DOI: 10.1016/j.chemosphere.2024.142241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Chlorothalonil (CTL), an organochloride fungicide applied for decades worldwide, has been found to be present in various matrixes and even accumulates in humans or other mammals through the food chain. Its high residue and diffusion in the environment have severely affected food security and public health. More and more research has considered CTL as a possible toxin to environmental non-target organisms, via influencing multiple systems such as metabolic, developmental, endocrine, genetic, and reproductive pathways. Aquatic organisms and amphibians are the most vulnerable species to CTL exposure, especially during the early period of development. Under experimental conditions, CTL can also have toxic effects on rodents and other non-target organisms. As for humans, CTL exposure is most often reported to be relevant to allergic reactions to the skin and eyes. We hope that this review will improve our understanding of the hazards and risks that CTL poses to non-target organisms and find a strategy for rational use.
Collapse
Affiliation(s)
- Huaping Tao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China; Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Chanlin Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
9
|
Huang Y, Li Z. Assessing pesticides in the atmosphere: A global study on pollution, human health effects, monitoring network and regulatory performance. ENVIRONMENT INTERNATIONAL 2024; 187:108653. [PMID: 38669719 DOI: 10.1016/j.envint.2024.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Pesticides are widely used in agriculture, but their impact on the environment and human health is a major concern. While much attention has been given to their presence in soil, water, and food, there have been few studies on airborne pesticide pollution on a global scale. This study aimed to assess the extent of atmospheric pesticide pollution in countries worldwide and identify regional differences using a scoring approach. In addition to analyzing the health risks associated with pesticide pollution, we also examined agricultural practices and current air quality standards for pesticides in these countries. The pollution scores varied significantly among the countries, particularly in Europe. Asian and Oceanic countries generally had higher scores compared to those in the Americas, suggesting a relatively higher level of air pollution caused by pesticides in these regions. It is worth noting that the current pollution levels, as assessed theoretically, pose minimal health risks to humans. However, studies in the literature have shown that excessive exposure to pesticides present in the atmosphere has been associated with various health problems, such as cancer, neuropsychiatric disorders, and other chronic diseases. Interestingly, European countries had the highest overall pesticide application intensities, but this did not necessarily correspond to higher atmospheric pesticide pollution scores. Only a few countries have established air quality standards specifically for pesticides. Furthermore, pollution scores across states in the USA were investigated and the global sampling sites were mapped. The findings revealed that the scores varied widely in the USA and the current sampling sites were limited or unevenly distributed in some countries, particularly the Nordic countries. These findings can help global relevant environmental agencies to set up comprehensive monitoring networks. Overall, the present research highlights the need to create a pesticide monitoring system and increase efforts to enhance pesticide regulation, ensure consistency in standards, and promote international cooperation.
Collapse
Affiliation(s)
- Yabi Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
10
|
Cao Z, Ding Y, Zhang L, Zhang J, Liu L, Cai M, Tang J. Distribution, sources, and eco-risk of Current-Use Pesticides (CUPs) in the coastal waters of the northern Shandong Peninsula, China. MARINE POLLUTION BULLETIN 2024; 201:116159. [PMID: 38364526 DOI: 10.1016/j.marpolbul.2024.116159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
This study investigated the spatial distributions and seasonal variations of 19 CUPs in the coastal areas of the Shandong Peninsula and its surrounding rivers and assessed their ecological risk. In freshwater and seawater, insecticides (chlorpyrifos, methoxychlor, and pyridaben), as well as fungicides (fenarimol) and herbicides (dichlobenil) were the main pollutants (Detection Frequency: 100 %). Spatially, during winter, the regional pollution levels of Σ19CUPs in seawater showed a trend of Laizhou Bay (LZB, mean:4.13 ng L-1) > Yellow River Estuary (YRE, mean:2.57 ngL-1) > Bohai Bay (BHB, mean:2.21 ng L-1) > Yanwei Area (YWA, mean:1.94 ng L-1). The similarities of major substances between rivers and the marine environment suggest that river discharge is the main source of CUPs pollution in coastal areas. In summer, CUPs in rivers posed a high risk. In winter, the risk significantly decreased, indicating a moderate overall risk. Seawater exhibited a low risk in winter.
Collapse
Affiliation(s)
- Zhijian Cao
- College of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, CAS, Yantai 264003, China
| | - Yunhao Ding
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| | - Lihong Zhang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jian Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, CAS, Yantai 264003, China
| | - Lin Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Minghong Cai
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China.
| | - Jianhui Tang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, CAS, Yantai 264003, China; School of Marine Science, Beibu Gulf University, Qingzhou 535011, China.
| |
Collapse
|
11
|
Chaudhary V, Kumar M, Chauhan C, Sirohi U, Srivastav AL, Rani L. Strategies for mitigation of pesticides from the environment through alternative approaches: A review of recent developments and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120326. [PMID: 38387349 DOI: 10.1016/j.jenvman.2024.120326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Chemical-based peticides are having negative impacts on both the healths of human beings and plants as well. The World Health Organisation (WHO), reported that each year, >25 million individuals in poor nations are having acute pesticide poisoning cases along with 20,000 fatal injuries at global level. Normally, only ∼0.1% of the pesticide reaches to the intended targets, and rest amount is expected to come into the food chain/environment for a longer period of time. Therefore, it is crucial to reduce the amounts of pesticides present in the soil. Physical or chemical treatments are either expensive or incapable to do so. Hence, pesticide detoxification can be achieved through bioremediation/biotechnologies, including nano-based methodologies, integrated approaches etc. These are relatively affordable, efficient and environmentally sound methods. Therefore, alternate strategies like as advanced biotechnological tools like as CRISPR Cas system, RNAi and genetic engineering for development of insects and pest resistant plants which are directly involved in the development of disease- and pest-resistant plants and indirectly reduce the use of pesticides. Omics tools and multi omics approaches like metagenomics, genomics, transcriptomics, proteomics, and metabolomics for the efficient functional gene mining and their validation for bioremediation of pesticides also discussed from the literatures. Overall, the review focuses on the most recent advancements in bioremediation methods to lessen the effects of pesticides along with the role of microorganisms in pesticides elimination. Further, pesticide detection is also a big challenge which can be done by using HPLC, GC, SERS, and LSPR ELISA etc. which have also been described in this review.
Collapse
Affiliation(s)
- Veena Chaudhary
- Department of Chemistry, Meerut College, Meerut, Uttar-Pradesh, India
| | - Mukesh Kumar
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Chetan Chauhan
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Ujjwal Sirohi
- National Institute of Plant Genome Research, New Delhi, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Lata Rani
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
12
|
Wang L, Cao G, Zhang ZF, Liu LY, Jia SM, Fu MQ, Ma WL. Occurrence, seasonal variation and gas/particle partitioning of current used pesticides (CUPs) across 60 °C temperature and 30° latitudes in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132983. [PMID: 37984139 DOI: 10.1016/j.jhazmat.2023.132983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Gas and particle phases samples were collected at three sites in China in 2019-2020, with 60 °C temperature span and 30° latitude range. Totally, among 76 target current used pesticides (CUPs) with four types, 51 were quantified in at least one sample. The concentrations of individual CUPs ranged from 8 orders of magnitude, indicating different pollution levels. Herbicides were the dominated CUPs in Northeast China, while higher concentrations of fungicides were found in Southeast China. The highest concentrations of CUPs were observed in Southeast China in spring and winter, while in summer and autumn in Northeast China, caused by local climates and crop cultivation patterns. The gas/particle (G/P) partitioning of CUPs was mainly influenced by their physicochemical properties and ambient temperature. The G/P partitioning study indicated that the L-M-Y model was the optimum prediction model for herbicides, fungicides and pyrethroids. The L-M-Y model and the H-B model presented equal performance for organophosphate insecticides. To our knowledge, the L-M-Y model was firstly applied for the study of the G/P partitioning of CUPs, which provided new insights into the related fields of new emergency contaminates.
Collapse
Affiliation(s)
- Liang Wang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Gang Cao
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Shi-Ming Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Meng-Qi Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
13
|
Wang L, Cao G, Liu LY, Zhang ZF, Jia SM, Fu MQ, Ma WL. Cross-regional scale studies of organochlorine pesticides in air in China: Pollution characteristic, seasonal variation, and gas/particle partitioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166709. [PMID: 37659555 DOI: 10.1016/j.scitotenv.2023.166709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Few simultaneous studies of organochlorine pesticides (OCPs) in the atmosphere have been conducted across Southeast and Northeast China, and no data on the gas/particle (G/P) partitioning behaviors of several current-use OCPs are available. In this study, a one-year synchronous monitoring program was conducted for OCPs in Chinese atmosphere spanning 30° latitude and 60 °C temperature. A total of 111 pairs of gas and particle samples were collected from Mohe and Harbin in Northeast China and from Shenzhen in Southeast China. The detection frequency for 66.7 % of the OCPs exceeded 80 %, indicating their prevalence in the atmosphere. The concentrations of individual OCPs spanned six orders of magnitude, indicating different pollution levels. Highest levels of hexachlorobenzene were observed at all sites. Banned OCPs were found predominantly in secondary distribution patterns, whereas current-use OCPs were dominated by primary distribution patterns. In Harbin and Mohe, the concentrations of OCPs were highest in summer, followed by autumn and winter. No obvious seasonal variation was observed in Shenzhen associated with different cultivation types. At all three sites, OCPs were predominantly found in the gas phase, and higher percentages of particle-phase OCPs were observed in Harbin and Mohe than in Shenzhen. In this study, G/P partitioning models were used to study the G/P partitioning mechanism of OCPs. The Li-Ma-Yang model provided the most accurate prediction of the G/P partitioning behavior of OCPs with high molecular weights and low vapor pressures, particularly at low temperatures. However, OCPs with lower molecular weights and higher vapor pressures were predominantly in the equilibrium state, for which the Junge-Pankow model was suitable. This systematic cross-scale study provides new insights into pollution, G/P partitioning, and the environmental behavior of OCPs in the atmosphere.
Collapse
Affiliation(s)
- Liang Wang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Gang Cao
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Shi-Ming Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Meng-Qi Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
14
|
Chaka B, Osano AM, Wesley ON, Forbes PBC. Seasonal variation in pesticide residue occurrences in surface waters found in Narok and Bomet Counties, Kenya. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1050. [PMID: 37589911 DOI: 10.1007/s10661-023-11629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/22/2023] [Indexed: 08/18/2023]
Abstract
Narok and Bomet are agricultural counties in Kenya which depend on flowing surface waters for farming activities. Agrochemicals have frequently been used to increase agricultural produce in this region. Occasionally, appropriate pesticide utilization measures are not followed. These surface waters are also consumed domestically by humans, livestock, and wild animals thus posing safety concerns to them. The current study sought to evaluate the levels and nature of pesticide residues found in surface waters in the dry and wet seasons of these counties. Eight water samples were collected in July (dry season) and October (wet season) at four different river sites in each of the two counties predetermined by the agricultural activity of its proximate environs. Pesticides extracted by solid phase extraction were analyzed by gas chromatography-mass spectrometry. At least 38 different pesticides were detected in the two counties with the highest concentration being recorded for chlorpyrifos and piperidine in Narok and Bomet counties, respectively. The pesticides chlorpyrifos, cypermethrin, cyfluthrin, and cyhalothrin were more prevalent in Narok County while triazine, semicarbazone, and epinephrine were more prevalent in Bomet County. There were significantly more pesticides detected during the wet season (P ≤ 0.05). Out of the nine prevalent pesticides detected, four of them posed serious ecotoxicology concerns with risk quotients above 1.0 (high risk); thus, there is a need for more government policy interventions in deterring farming near riparian lands and in training of famers regarding best practice for pesticide applications.
Collapse
Affiliation(s)
- Bakari Chaka
- Department of Mathematics and Physical Sciences, Maasai Mara University, P.O. Box 861-20500, Narok, Kenya
| | - Aloys M Osano
- Department of Mathematics and Physical Sciences, Maasai Mara University, P.O. Box 861-20500, Narok, Kenya.
| | - Omwoyo N Wesley
- Department of Mathematics and Physical Sciences, Maasai Mara University, P.O. Box 861-20500, Narok, Kenya
| | - Patricia B C Forbes
- Department of Chemistry, Faculty of Agriculture and Natural Sciences, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
15
|
Xing R, Zhang P, Zheng N, Ji H, Shi R, Ge L, Ma H. Organophosphate esters in the seawater of the Bohai Sea: Environmental occurrence, sources and ecological risks. MARINE POLLUTION BULLETIN 2023; 191:114883. [PMID: 37105055 DOI: 10.1016/j.marpolbul.2023.114883] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Organophosphate esters (OPEs) are widely distributed in surface water systems, but limited information was available on the spatial occurrence and ecological risks of OPEs in the Bohai Sea. In this study, 89 water samples in the Bohai Sea and the five surrounding rivers were investigated for the determination of 15 OPEs. The concentration of ∑15OPEs ranged from 373.20 to 2931.27 ng·L-1 in the river water and 137.81 to 2641.30 ng·L-1 in the seawater, with high levels of OPEs in Liaodong Bay. Tris(2-chloroethyl) phosphate (TCEP, 10- 92 %) and triethyl phosphate (TEP, 5- 64 %) were dominant for OPEs. The correlation analysis, principal component analysis and hierarchical cluster analysis suggested the conjunction of municipal wastewater via river input and maritime shipping was the main source of OPEs in the Bohai Sea. The ecological risk assessment indicated that the individual OPEs arise low ecological risks in the Bohai Sea, while medium ecological risks of ∑15OPEs are in minority river samples.
Collapse
Affiliation(s)
- Rongguang Xing
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xian 710021, China
| | - Peng Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xian 710021, China; National Marine Environmental Monitoring Center, Dalian 116021, China.
| | - Nan Zheng
- National Marine Environmental Monitoring Center, Dalian 116021, China
| | - Hao Ji
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xian 710021, China
| | - Ren Shi
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xian 710021, China
| | - Linke Ge
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xian 710021, China.
| | - Hongrui Ma
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xian 710021, China
| |
Collapse
|
16
|
Maceira A, Borrull F, Marcé RM. Occurrence of organic contaminants bonded to the particulate matter from outdoor air influenced by industrial activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76644-76667. [PMID: 36169846 DOI: 10.1007/s11356-022-23103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
This paper discusses the occurrence of organic contaminants bonded to particulate matter (PM) in ambient air. We describe the presence and concentration levels of contaminants mainly reported in atmospheres close to factories or at locations influenced by them, and the relationship between factory emissions and the type of organic contaminants found in PM samples from the surrounding air. Many organic contaminants have been found in these types of samples, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs). Their sources, fates and distributions in the ambient atmosphere are therefore well known. However, in addition to these most studied compounds, others are also of concern nowadays due to their detection and toxic effects on the environment. The continuous updating of regulations on these contaminants and the appearance of new air pollutants make it important to be aware of their occurrence. This will help to either establish new guidelines for the newer contaminants or reassess existing limitations for known ones. Moreover, if we know their occurrence, we can analyse their sources, destinations and distributions in the outdoor air.
Collapse
Affiliation(s)
- Alba Maceira
- Department of Analytical Chemistry and Organic Chemistry, Faculty of Chemistry, Campus Sescelades, Universitat Rovira i Virgili, Marcel∙lí Domingo s/n, 43007, Tarragona, Spain
| | - Francesc Borrull
- Department of Analytical Chemistry and Organic Chemistry, Faculty of Chemistry, Campus Sescelades, Universitat Rovira i Virgili, Marcel∙lí Domingo s/n, 43007, Tarragona, Spain.
| | - Rosa Maria Marcé
- Department of Analytical Chemistry and Organic Chemistry, Faculty of Chemistry, Campus Sescelades, Universitat Rovira i Virgili, Marcel∙lí Domingo s/n, 43007, Tarragona, Spain
| |
Collapse
|
17
|
Jing Q, Liu J, Chen A, Chen C, Liu J. The spatial-temporal chemical footprint of pesticides in China from 1999 to 2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75539-75549. [PMID: 35657547 DOI: 10.1007/s11356-022-20602-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
The massive use of pesticides brings considerable environmental and human health impacts. This study conducted an overall assessment of the ecological impact of the extensive pesticide use in China from 1999 to 2018 through the Chemical Footprint (ChF) calculation. The results demonstrated that the primary ecological impacts caused by pesticides occurred in the most central and eastern regions in China, e.g., provinces of Shandong, Henan, Hubei, Anhui, and Jiangsu. The northeastern, some southern and central provinces, e.g., Heilongjiang, Jilin, Liaoning, Yunnan, Guangxi, Guangdong, Ningxia, and Shaanxi, got moderate impacts, whereas the northwest regions, e.g., Qinghai, Xinjiang, and Tibet, had much lighter impacts relatively. The agricultural soil in inland areas and surface sea waters in coastal provinces bore the major impacts of the pesticide pollution in China, shared above 80% of the ChF across all environmental compartments. Chlorpyrifos, pymetrozine, fenpropathrin, pyridaben, atrazine, etc., were the pesticides that had the greatest impacts on the ecosystem, which contributed over 95% of the total ChF of pesticides used in China, although the use amount of these pesticides accounted for less than 10% of the total use amount of all pesticides annually. The study also indicated that the overall ChF of pesticide use in China has been declining since 2010, which was corresponding with the control actions of highly hazardous pesticides, especially the elimination of high toxic organophosphorus insecticides during the past decade.
Collapse
Affiliation(s)
- Qiaonan Jing
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Junzhou Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Anna Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Chengkang Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jianguo Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
18
|
Bellas J, Rial D, Valdés J, Vidal-Liñán L, Bertucci JI, Muniategui S, León VM, Campillo JA. Linking biochemical and individual-level effects of chlorpyrifos, triphenyl phosphate, and bisphenol A on sea urchin (Paracentrotus lividus) larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46174-46187. [PMID: 35165844 PMCID: PMC9209388 DOI: 10.1007/s11356-022-19099-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/03/2022] [Indexed: 05/04/2023]
Abstract
The effects of three relevant organic pollutants: chlorpyrifos (CPF), a widely used insecticide, triphenyl phosphate (TPHP), employed as flame retardant and as plastic additive, and bisphenol A (BPA), used primarily as plastic additive, on sea urchin (Paracentrotus lividus) larvae, were investigated. Experiments consisted of exposing sea urchin fertilized eggs throughout their development to the 4-arm pluteus larval stage. The antioxidant enzymes glutathione reductase (GR) and catalase (CAT), the phase II detoxification enzyme glutathione S-transferase (GST), and the neurotransmitter catabolism enzyme acetylcholinesterase (AChE) were assessed in combination with responses at the individual level (larval growth). CPF was the most toxic compound with 10 and 50% effective concentrations (EC10 and EC50) values of 60 and 279 μg/l (0.17 and 0.80 μM), followed by TPHP with EC10 and EC50 values of 224 and 1213 μg/l (0.68 and 3.7 μM), and by BPA with EC10 and EC50 values of 885 and 1549 μg/l (3.9 and 6.8 μM). The toxicity of the three compounds was attributed to oxidative stress, to the modulation of the AChE response, and/or to the reduction of the detoxification efficacy. Increasing trends in CAT activity were observed for BPA and, to a lower extent, for CPF. GR activity showed a bell-shaped response in larvae exposed to CPF, whereas BPA caused an increasing trend in GR. GST also displayed a bell-shaped response to CPF exposure and a decreasing trend was observed for TPHP. An inhibition pattern in AChE activity was observed at increasing BPA concentrations. A potential role of the GST in the metabolism of CPF was proposed, but not for TPHP or BPA, and a significant increase of AChE activity associated with oxidative stress was observed in TPHP-exposed larvae. Among the biochemical responses, the GR activity was found to be a reliable biomarker of exposure for sea urchin early-life stages, providing a first sign of damage. These results show that the integration of responses at the biochemical level with fitness-related responses (e.g., growth) may help to improve knowledge about the impact of toxic substances on marine ecosystems.
Collapse
Affiliation(s)
- Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390, Vigo, Spain.
| | - Diego Rial
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390, Vigo, Spain
| | - Juliana Valdés
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO, CSIC), Varadero 1, San Pedro del Pinatar, 30740, Murcia, Spain
| | - Leticia Vidal-Liñán
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390, Vigo, Spain
| | - Juan I Bertucci
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390, Vigo, Spain
| | - Soledad Muniategui
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Química Analítica, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain
| | - Víctor M León
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO, CSIC), Varadero 1, San Pedro del Pinatar, 30740, Murcia, Spain
| | - Juan A Campillo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO, CSIC), Varadero 1, San Pedro del Pinatar, 30740, Murcia, Spain
| |
Collapse
|
19
|
Caumo S, Yera AB, Vicente A, Alves C, Roubicek DA, de Castro Vasconcellos P. Particulate matter-bound organic compounds: levels, mutagenicity, and health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31293-31310. [PMID: 35001282 DOI: 10.1007/s11356-021-17965-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Increased industrialization and consumption of fossil fuels in the Metropolitan Region of São Paulo (MRSP), Brazil, have caused a growth of the particulate matter emissions to the atmosphere and an increase in population health problems. Particulate and gaseous phase samples were collected in different short campaigns (2015, 2016, and 2017) near an urban-industrial area. Organic carbon (OC), elemental carbon (EC), polycyclic aromatic hydrocarbons (PAH), and its derivatives (nitro and oxy-PAH), n-alkanes, hopanes, and pesticides were determined. The Salmonella/microsome test confirmed the mutagenic activity of these samples. Among PAH, benzo(a)pyrene was detected as one of the most abundant compounds. Benzo(a)pyrene equivalent concentrations for PAH and nitro-PAH, and the associated risk of lung cancer, showed values above those recommended in the literature. The profile of n-alkanes confirmed the predominance of anthropogenic sources. Pesticide concentrations and estimated risks, such as the daily inhalation exposure and hazard quotient, suggest that exposure to these compounds in this area may be dangerous to human health.
Collapse
Affiliation(s)
- Sofia Caumo
- Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil.
| | - Aleinnys B Yera
- Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Ana Vicente
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Célia Alves
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Deborah A Roubicek
- Dept. Environmental Analyses, São Paulo State Environmental Agency, CETESB, São Paulo, Brazil
| | | |
Collapse
|
20
|
Avellan A, Duarte A, Rocha-Santos T. Organic contaminants in marine sediments and seawater: A review for drawing environmental diagnostics and searching for informative predictors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152012. [PMID: 34856284 DOI: 10.1016/j.scitotenv.2021.152012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Marine ecosystems represent major sinks for persistent organic pollutants (POPs). Yet, while their regulations fit localized activity and emissions, POPs are mobile and can persist away from their source. The present review draws an environmental diagnostic of the organic substances studied over the past forty months, which ones accumulated the most, and where. Maximum reported concentration was used as a proxy for the accumulation of contaminants. POPs occurrences studied in the Jan 2018-April 2021 period were recorded into a database, along with (i) the geographical location of the sample and its coastal or offshore origin, (ii) the type of compartment analyzed (water vs sediment), as well as (iii) the POPs and the sample physical-chemical parameters reported. In the articles reviewed, maximum reported concentrations of POPs were in the ng/L range in seawater and in the μg/kg range in sediments. Some hotspots presented concentrations high enough to represent a hazard for sea organisms in the water columns (μg/L range) or in surficial sediments (mg/kg range). On a global scale, offshore (>1 km from the coast) maximum reported concentrations were, for the majority of the POPs, equivalent or higher than coastal ones. Finally, a POP solubility threshold (900 mg/L) was observed above which POPs would not be found in offshore waters, but only in sediments. This review highlights that studying POP accumulation away from their sources is fundamental for the diagnostic of long-lasting marine POPs contaminations. Further, POPs lipophilicity is a good predictor for offshore transport, and an indicator of interest for predicting sediment accumulation. Although POPs fate and transport in oceans is complex and require a finer analysis that this review could provide, the present work is a step forward identifying the hotspots in which POPs could be of particular concern, along with chemical indicators to predict for POPs accumulation in marine reservoirs.
Collapse
Affiliation(s)
- Astrid Avellan
- Department of Chemistry and CESAM, Universidade de Aveiro, Portugal.
| | - Armando Duarte
- Department of Chemistry and CESAM, Universidade de Aveiro, Portugal
| | | |
Collapse
|
21
|
Degrendele C, Klánová J, Prokeš R, Příbylová P, Šenk P, Šudoma M, Röösli M, Dalvie MA, Fuhrimann S. Current use pesticides in soil and air from two agricultural sites in South Africa: Implications for environmental fate and human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150455. [PMID: 34634720 DOI: 10.1016/j.scitotenv.2021.150455] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 05/27/2023]
Abstract
Concerns about the possible negative impacts of current use pesticides (CUPs) for both the environment and human health have increased worldwide. However, the knowledge on the occurrence of CUPs in soil and air and the related human exposure in Africa is limited. This study investigated the presence of 30 CUPs in soil and air at two distinct agricultural sites in South Africa and estimated the human exposure and related risks to rural residents via soil ingestion and inhalation (using hazard quotients, hazard index and relative potency factors). We collected 12 soil and 14 air samples over seven days during the main pesticide application season in 2018. All samples were extracted, purified and analyzed by high-performance liquid chromatography coupled with tandem mass spectrometry. In soils, nine CUPs were found, with chlorpyrifos, carbaryl and tebuconazole having the highest concentrations (up to 63.6, 1.10 and 0.212 ng g-1, respectively). In air, 16 CUPs were found, with carbaryl, tebuconazole and terbuthylazine having the highest levels (up to 25.0, 22.2 and 1.94 pg m-3, respectively). Spatial differences were observed between the two sites for seven CUPs in air and two in soils. A large dominance towards the particulate phase was found for almost all CUPs, which could be related to mass transport kinetics limitations (non-equilibrium) following pesticide application. The estimated daily intake via soil ingestion and inhalation of individual pesticides ranged from 0.126 fg kg-1 day-1 (isoproturon) to 14.7 ng kg-1 day-1 (chlorpyrifos). Except for chlorpyrifos, soil ingestion generally represented a minor exposure pathway compared to inhalation (i.e. <5%). The pesticide environmental exposure largely differed between the residents of the two distinct agricultural sites in terms of levels and composition. The estimated human health risks due to soil ingestion and inhalation of pesticides were negligible although future studies should explore other relevant pathways.
Collapse
Affiliation(s)
| | - Jana Klánová
- Masaryk University, RECETOX Centre, 625 00 Brno, Czech Republic
| | - Roman Prokeš
- Masaryk University, RECETOX Centre, 625 00 Brno, Czech Republic
| | - Petra Příbylová
- Masaryk University, RECETOX Centre, 625 00 Brno, Czech Republic
| | - Petr Šenk
- Masaryk University, RECETOX Centre, 625 00 Brno, Czech Republic
| | - Marek Šudoma
- Masaryk University, RECETOX Centre, 625 00 Brno, Czech Republic
| | - Martin Röösli
- University of Basel, 4002 Basel, Switzerland; Swiss Tropical and Public Health Institute (Swiss TPH), 4002 Basel, Switzerland
| | - Mohamed Aqiel Dalvie
- Centre for Environmental and Occupational Health Research, School of Public Health and Family Medicine, University of Cape Town, 7925 Cape Town, South Africa
| | - Samuel Fuhrimann
- University of Basel, 4002 Basel, Switzerland; Swiss Tropical and Public Health Institute (Swiss TPH), 4002 Basel, Switzerland; Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 Utrecht, the Netherlands
| |
Collapse
|
22
|
Sun C, Chen L, Zhao S, Guo W, Luo Y, Wang L, Tang L, Li F, Zhang J. Seasonal distribution and ecological risk of phthalate esters in surface water and marine organisms of the Bohai Sea. MARINE POLLUTION BULLETIN 2021; 169:112449. [PMID: 34029801 DOI: 10.1016/j.marpolbul.2021.112449] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
The spatiotemporal variability and ecological risks related to 16 phthalate esters (PAEs) were investigated in surface water and marine organisms of the Bohai Sea. The average PAE concentrations in the surface water were 8.02, 4.53, and 3.16 μg L-1 in spring, summer, and winter, respectively. Additionally, suspended particle matter was positive related to PAE content in seawater in spring and winter. The predominant PAEs in both water and biota were dimethyl phthalate (DMP), di-butyl phthalate (DBP), di-isobutyl phthalate (DIBP), and diethylhexyl-phthalate (DEHP). Because they do not exhibit long-distance migratory behavior, Chaeturichthys hexanema, Cynoglossus lighti, and Loligo japonica were good candidate indicator organisms for PAE pollution in Bohai Sea. The risk quotient method revealed that DIBP, DBP, and DEHP posed relatively greater risks to the aquatic system. This research establishes baseline data from which future management strategies to control PAEs in the Bohai Sea can be developed.
Collapse
Affiliation(s)
- Cuizhu Sun
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Faculty of Agricultural, Life and Environmental Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Lingyun Chen
- Faculty of Agricultural, Life and Environmental Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Shasha Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wei Guo
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yadan Luo
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Lu Wang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Liao Tang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Jing Zhang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
23
|
Kalyabina VP, Esimbekova EN, Kopylova KV, Kratasyuk VA. Pesticides: formulants, distribution pathways and effects on human health - a review. Toxicol Rep 2021; 8:1179-1192. [PMID: 34150527 PMCID: PMC8193068 DOI: 10.1016/j.toxrep.2021.06.004] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Pesticides are commonly used in agriculture to enhance crop production and control pests. Therefore, pesticide residues can persist in the environment and agricultural crops. Although modern formulations are relatively safe to non-target species, numerous theoretical and experimental data demonstrate that pesticide residues can produce long-term negative effects on the health of humans and animals and stability of ecosystems. Of particular interest are molecular mechanisms that mediate the start of a cascade of adverse effects. This is a review of the latest literature data on the effects and consequences of contamination of agricultural crops by pesticide residues. In addition, we address the issue of implicit risks associated with pesticide formulations. The effects of pesticides are considered in the context of the Adverse Outcome Pathway concept.
Collapse
Affiliation(s)
- Valeriya P. Kalyabina
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Elena N. Esimbekova
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Kseniya V. Kopylova
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
| | - Valentina A. Kratasyuk
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| |
Collapse
|
24
|
Zhen X, Li Y, Tang J, Wang X, Liu L, Zhong M, Tian C. Decabromodiphenyl Ether versus Decabromodiphenyl Ethane: Source, Fate, and Influencing Factors in a Coastal Sea Nearing Source Region. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7376-7385. [PMID: 33998794 DOI: 10.1021/acs.est.0c08528] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Both decabromodiphenyl ether (BDE 209) and decabromodiphenyl ethane (DBDPE) are still produced in large quantities in China, especially in the Shandong Province closed to the Bohai Sea (BS). This study conducted a comprehensive investigation of the distribution and budget of brominated flame retardants (BFRs) in the BS. BDE 209 was the predominant BFR in most of the investigated rivers flowing into the BS, although DBDPE exceeded BDE 209 in certain rivers as a result of the replacement of BDE 209 with DBDPE in North China. The spatial distributions of BFRs in the rivers were controlled by the proximity of the BFR manufacturing base and the extent of urbanization. BFRs' spatial distribution in the BS was influenced by a combination of land-based pollution sources, environmental parameters (e.g., suspended particulate matter, particulate organic carbon, and particulate black carbon), and hydrodynamic conditions. The spatial variation trend of BDE 209/DBDPE ratios in various environmental media provided useful information. Vertically, the BDE 209/DBDPE ratio decreased from the seawater surface layer to the sediment, indicating their differential transport in the BS. A multi-box mass balance model and analysis of BDE 209 showed that degradation was the primary sink of BFRs in seawater (∼68%) and surface sediment (∼72%) in the BS.
Collapse
Affiliation(s)
- Xiaomei Zhen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510631, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Yanfang Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jianhui Tang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510631, China
| | - Lin Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510631, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Mingyu Zhong
- Yantai University, Yantai, Shandong 264005, China
| | - Chongguo Tian
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
25
|
Du M, Peng X, Zhang H, Ye C, Dasgupta S, Li J, Li J, Liu S, Xu H, Chen C, Jing H, Xu H, Liu J, He S, He L, Cai S, Chen S, Ta K. Geology, environment, and life in the deepest part of the world's oceans. ACTA ACUST UNITED AC 2021; 2:100109. [PMID: 34557759 PMCID: PMC8454626 DOI: 10.1016/j.xinn.2021.100109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
The hadal zone, mostly comprising of deep trenches and constituting of the deepest part of the world’s oceans, represents the least explored habitat but one of the last frontiers on our planet. The present scientific understanding of the hadal environment is still relatively rudimentary, particularly in comparison with that of shallower marine environments. In the last 30 years, continuous efforts have been launched in deepening our knowledge regarding the ecology of the hadal trench. However, the geological and environmental processes that potentially affect the sedimentary, geochemical and biological processes in hadal trenches have received less attention. Here, we review recent advances in the geology, biology, and environment of hadal trenches and offer a perspective of the hadal science involved therein. For the first time, we release high-definition images taken by a new full-ocean-depth manned submersible Fendouzhe that reveal novel species with an unexpectedly high density, outcrops of mantle and basaltic rocks, and anthropogenic pollutants at the deepest point of the world’s ocean. We advocate that the hydration of the hadal lithosphere is a driving force that influences a variety of sedimentary, geochemical, and biological processes in the hadal trench. Hadal lithosphere might host the Earth’s deepest subsurface microbial ecosystem. Future research, combined with technological advances and international cooperation, should focus on establishing the intrinsic linkage of the geology, biology, and environment of the hadal trenches. This paper provides a comprehensive review on hadal geology, environment, and biology, as well as potential interactions among them For the first time, we release high-definition images taken by a new full-ocean-depth manned submersible Fendouzhe The hydration of the hadal lithosphere is a driving force that influences a variety of sedimentary, geochemical, and biological processes in the hadal trench The development of deep-sea technology and international cooperation will greatly promote the progress of hadal science
Collapse
Affiliation(s)
- Mengran Du
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Xiaotong Peng
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- Corresponding author
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Cong Ye
- China Ship Scientific Research Center, Wuxi 214082, China
| | - Shamik Dasgupta
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Jiwei Li
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Jiangtao Li
- State Key Lab of Marine Geology, Tongji University, Shanghai 200092, China
| | - Shuangquan Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Hengchao Xu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Chuanxu Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Hongmei Jing
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Hongzhou Xu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Jun Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Shunping He
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lisheng He
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Shanya Cai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Shun Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Kaiwen Ta
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| |
Collapse
|
26
|
Figueiredo DM, Krop EJM, Duyzer J, Gerritsen-Ebben RM, Gooijer YM, Holterman HJ, Huss A, Jacobs CMJ, Kivits CM, Kruijne R, Mol HJGJ, Oerlemans A, Sauer PJJ, Scheepers PTJ, van de Zande JC, van den Berg E, Wenneker M, Vermeulen RCH. Pesticide Exposure of Residents Living Close to Agricultural Fields in the Netherlands: Protocol for an Observational Study. JMIR Res Protoc 2021; 10:e27883. [PMID: 33908892 PMCID: PMC8116989 DOI: 10.2196/27883] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 01/17/2023] Open
Abstract
Background Application of pesticides in the vicinity of homes has caused concern regarding possible health effects in residents living nearby. However, the high spatiotemporal variation of pesticide levels and lack of knowledge regarding the contribution of exposure routes greatly complicates exposure assessment approaches. Objective The objective of this paper was to describe the study protocol of a large exposure survey in the Netherlands assessing pesticide exposure of residents living close (<250 m) to agricultural fields; to better understand possible routes of exposure; to develop an integrative exposure model for residential exposure; and to describe lessons learned. Methods We performed an observational study involving residents living in the vicinity of agricultural fields and residents living more than 500 m away from any agricultural fields (control subjects). Residential exposures were measured both during a pesticide use period after a specific application and during the nonuse period for 7 and 2 days, respectively. We collected environmental samples (outdoor and indoor air, dust, and garden and field soils) and personal samples (urine and hand wipes). We also collected data on spraying applications as well as on home characteristics, participants' demographics, and food habits via questionnaires and diaries. Environmental samples were analyzed for 46 prioritized pesticides. Urine samples were analyzed for biomarkers of a subset of 5 pesticides. Alongside the field study, and by taking spray events and environmental data into account, we developed a modeling framework to estimate environmental exposure of residents to pesticides. Results Our study was conducted between 2016 and 2019. We assessed 96 homes and 192 participants, including 7 growers and 28 control subjects. We followed 14 pesticide applications, applying 20 active ingredients. We collected 4416 samples: 1018 air, 445 dust (224 vacuumed floor, 221 doormat), 265 soil (238 garden, 27 fields), 2485 urine, 112 hand wipes, and 91 tank mixtures. Conclusions To our knowledge, this is the first study on residents’ exposure to pesticides addressing all major nondietary exposure sources and routes (air, soil, dust). Our protocol provides insights on used sampling techniques, the wealth of data collected, developed methods, modeling framework, and lessons learned. Resources and data are open for future collaborations on this important topic. International Registered Report Identifier (IRRID) RR1-10.2196/27883
Collapse
Affiliation(s)
- Daniel M Figueiredo
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Esmeralda J M Krop
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Jan Duyzer
- TNO Urban Environment and Safety, Utrecht, Netherlands
| | | | | | - Henk J Holterman
- Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Cor M J Jacobs
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, Netherlands
| | | | - Roel Kruijne
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, Netherlands
| | - Hans J G J Mol
- Wageningen Food Safety Research, Wageningen University and Research, Wageningen, Netherlands
| | - Arné Oerlemans
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Pieter J J Sauer
- Department of Pediatrics, University Medical Center Groningen, Groningen, Netherlands
| | - Paul T J Scheepers
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan C van de Zande
- Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | - Erik van den Berg
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, Netherlands
| | - Marcel Wenneker
- Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
27
|
Dasgupta S, Peng X, Xu H, Ta K, Chen S, Li J, Du M. Deep seafloor plastics as the source and sink of organic pollutants in the northern South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144228. [PMID: 33412380 DOI: 10.1016/j.scitotenv.2020.144228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Large plastic litter (as opposed to microplastics and plastic pellets) could adsorb organic pollutants and thus pose a serious threat to the marine environment. We report high levels of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) adsorbed to plastic litter sampled from depths of 1800-3100 m in the Xisha Trough region of the northern South China Sea (NSCS). ∑PCBs on plastics ranged from 126.9-142.1 ng/g, with tri-PCBs accounting for 92-97% of the total PCB concentrations in all samples. Levels of ∑OCPs varied from 4280 to 5351 ng/g (average 4690 ng/g), with a total of 19 compounds detected in the seven samples. While no parent DDT (dichlorodiphenyltrichloroethane) was detected, op'-DDE (metabolite of DDT) was most abundant, with concentrations ranging from 947.5-1551.7 ng/g. ∑CHLs (heptachlor + heptachlor epoxide A + heptachlor epoxide B + cis-chlordane + trans-chlordane) ranged from 1083.1-1263.7 ng/g (mean 1153 ng/g) and accounted for 24% of ∑OCPs. Various compositional ratios of HCH (hexachlorocyclohexane) and DDT metabolites improved our understanding of the sources and transport pathways of OCPs. The total absence of DDT may be a "ghost indicator" of no recent DDT inputs into the oceans. There could well be inputs of DDT, but only as the degraded metabolites DDE and DDD when they are adsorbed to seafloor plastic litter. A comparison of HCH isomer ratios in seafloor plastics with technical HCH ratios revealed that HCHs were possibly not from early residues but from later inputs. An ecological risk assessment of the contaminants indicated a high risk from ∑DDTs, p,p-DDE, and γ-HCH in all the sampled locations. Finally, we propose a descriptive model depicting the movements and transportation of PCBs and OCPs from the ocean surface to seafloor plastics in the NSCS.
Collapse
Affiliation(s)
- Shamik Dasgupta
- Deep Sea Science Division, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences (CAS), Sanya, Hainan 572000, China
| | - Xiaotong Peng
- Deep Sea Science Division, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences (CAS), Sanya, Hainan 572000, China.
| | - Hengchao Xu
- Deep Sea Science Division, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences (CAS), Sanya, Hainan 572000, China
| | - Kaiwen Ta
- Deep Sea Science Division, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences (CAS), Sanya, Hainan 572000, China
| | - Shun Chen
- Deep Sea Science Division, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences (CAS), Sanya, Hainan 572000, China; Southern Marine Science and Engineering Laboratory (Zhuhai), Zhuhai 519000, China
| | - Jiwei Li
- Deep Sea Science Division, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences (CAS), Sanya, Hainan 572000, China
| | - Mengran Du
- Deep Sea Science Division, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences (CAS), Sanya, Hainan 572000, China
| |
Collapse
|
28
|
Riascos-Flores L, Bruneel S, Van der Heyden C, Deknock A, Van Echelpoel W, Forio MAE, De Saeyer N, Vanden Berghe W, Spanoghe P, Bermudez R, Dominguez-Granda L, Goethals P. Polluted paradise: Occurrence of pesticide residues within the urban coastal zones of Santa Cruz and Isabela (Galapagos, Ecuador). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142956. [PMID: 33129533 DOI: 10.1016/j.scitotenv.2020.142956] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Although pesticides are frequently used for agriculture in the Galapagos Islands (Ecuador), there are, to date, no investigations of pesticide occurrences in its coastal waters. We examined the presence of pesticide residues in the coastal waters of urban areas in two islands of the Galapagos archipelago using a repeated sampling design. Quantification was performed by solid-phase extraction, followed by chemical analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-electron capture detector (GC-ECD). The diversity and concentration of pesticide residues in Santa Cruz island were higher compared to Isabela island. In total, sixteen pesticides were detected, including three persistent organic pollutants. Carbendazim (23.93 μg·L-1), cadusafos (4.74 μg·L-1), DDT (2.99 μg·L-1), diuron (1.61 μg·L-1) and aldrin (1.55 μg·L-1) were detected with the highest concentrations between samples. Repetitions in locations show that concentrations of pesticide residues varied considerably in space and time. Comparison with local products indicated agricultural activities on the islands as a possible source. Furthermore, evaluation through ecological risk quotients showed that the observed concentration levels of seven pesticides pose a relatively high risk for three biotic groups (i.e. algae, invertebrates and fishes). Taken together, this study provides insights into the need to regulate, monitor and assess the presence of pesticides in the islands. At a global scale, this study is moreover valuable for the many islands that are facing the same challenges.
Collapse
Affiliation(s)
- Lenin Riascos-Flores
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Laboratorio de Investigaciones Ambientales, Facultad de Ingeniería en Ciencias Agropecuarias y Ambientales, Universidad Técnica del Norte, Ibarra, Ecuador.
| | - Stijn Bruneel
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Christine Van der Heyden
- Faculty of Science and Technology, University College Ghent, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Arne Deknock
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Wout Van Echelpoel
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Marie Anne Eurie Forio
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Nancy De Saeyer
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Wim Vanden Berghe
- Laboratory of Epigenetic Signaling (PPES), Faculty of Biomedical Sciences, University of Antwerp, Belgium
| | - Pieter Spanoghe
- Department of Plants and Crops, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Rafael Bermudez
- Facultad de Ingeniería Marítima y Ciencias del Mar, Escuela Superior Politécnica del Litoral ESPOL, Campus Gustavo Galindo, Guayaquil, Ecuador; International Atomic Energy Agency, Marine Environment Laboratories, Principality of Monaco, Monaco; Galapagos Marine Research and Exploration, GMaRE. Joint ESPOL-CDF program, Charles Darwin Research Station, Galapagos Islands, Ecuador
| | - Luis Dominguez-Granda
- Facultad de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral ESPOL, Campus Gustavo Galindo, Guayaquil, Ecuador
| | - Peter Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
29
|
Miglioranza KSB, Ondarza PM, Costa PG, de Azevedo A, Gonzalez M, Shimabukuro VM, Grondona SI, Mitton FM, Barra RO, Wania F, Fillmann G. Spatial and temporal distribution of Persistent Organic Pollutants and current use pesticides in the atmosphere of Argentinean Patagonia. CHEMOSPHERE 2021; 266:129015. [PMID: 33261838 DOI: 10.1016/j.chemosphere.2020.129015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
XAD-based passive air samplers (PAS) were used to evaluate organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and some current use pesticides (chlorotalonil, trifluralin and dichlofluanid) in the atmosphere of Argentinian Patagonia. The PAS were deployed for 12 months during three consecutive years along a longitudinal (Rio Negro watershed) and a latitudinal (Patagonian coast) transect. Endosulfan, trifluralin and DDT-related substances were the most prevalent pesticides in the Rio Negro watershed, an intensive agricultural basin, consistent with ongoing use of endosulfan at the time of sampling. Concentrations of industrial contaminants were low (mean 25 pg/m3 and 1.9 pg/m3 for Σ38 PCBs, and Σ5PBDEs, respectively) and similar among sites. However, along the Patagonian coast, air concentrations of total contaminants were highly variable (14-400 pg/m3) with highest values recorded at Bahia Blanca, an important industrial area that is also downwind of the most intensively agriculturally used area of Argentina. Contaminant levels decreased toward the south, with the exception of the southernmost sampling site (Rio Gallegos) where a slight increase of total pollutant levels was observed, mainly due to the lower chlorinated PCB congeners. Interannual variability was small, although the last year tended to have slightly higher levels for different contaminant groups at most sampling sites. This large-scale spatial atmospheric monitoring of POPs and some CUPs in the South of Argentina highlights the important and continuing role of rural and urban areas as emission sources of these chemicals.
Collapse
Affiliation(s)
- Karina S B Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar Del Plata-CONICET, Mar Del Plata, Argentina. Funes 3350, Mar Del Plata, 7600, Argentina.
| | - Paola M Ondarza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar Del Plata-CONICET, Mar Del Plata, Argentina. Funes 3350, Mar Del Plata, 7600, Argentina
| | - Patricia G Costa
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática, Universidade Federal Do Río Grande, Rio Grande, RS, Brazil
| | - Amaro de Azevedo
- Instituto Federal de Ciência e Tecnologia Do Rio Grande Do Sul, Caxias Do Sul, RS, Brazil.Programa de Pós-graduação Em Química Tecnológica e Ambiental, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Mariana Gonzalez
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar Del Plata-CONICET, Mar Del Plata, Argentina. Funes 3350, Mar Del Plata, 7600, Argentina
| | - Valeria M Shimabukuro
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar Del Plata-CONICET, Mar Del Plata, Argentina. Funes 3350, Mar Del Plata, 7600, Argentina
| | - Sebastián I Grondona
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar Del Plata-CONICET, Mar Del Plata, Argentina. Funes 3350, Mar Del Plata, 7600, Argentina; Instituto de Geología de Costas y Del Cuaternario, Universidad Nacional de Mar Del Plata, Argentina
| | - Francesca M Mitton
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar Del Plata-CONICET, Mar Del Plata, Argentina. Funes 3350, Mar Del Plata, 7600, Argentina
| | - Ricardo O Barra
- Departamento de Sistemas Acuáticos, Facultad de Ciencias Ambientales y Centro EULA, Universidad de Concepción, 4070386, Chile
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Gilberto Fillmann
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática, Universidade Federal Do Río Grande, Rio Grande, RS, Brazil
| |
Collapse
|
30
|
Tudi M, Daniel Ruan H, Wang L, Lyu J, Sadler R, Connell D, Chu C, Phung DT. Agriculture Development, Pesticide Application and Its Impact on the Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1112. [PMID: 33513796 PMCID: PMC7908628 DOI: 10.3390/ijerph18031112] [Citation(s) in RCA: 725] [Impact Index Per Article: 181.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Pesticides are indispensable in agricultural production. They have been used by farmers to control weeds and insects, and their remarkable increases in agricultural products have been reported. The increase in the world's population in the 20th century could not have been possible without a parallel increase in food production. About one-third of agricultural products are produced depending on the application of pesticides. Without the use of pesticides, there would be a 78% loss of fruit production, a 54% loss of vegetable production, and a 32% loss of cereal production. Therefore, pesticides play a critical role in reducing diseases and increasing crop yields worldwide. Thus, it is essential to discuss the agricultural development process; the historical perspective, types and specific uses of pesticides; and pesticide behavior, its contamination, and adverse effects on the natural environment. The review study indicates that agricultural development has a long history in many places around the world. The history of pesticide use can be divided into three periods of time. Pesticides are classified by different classification terms such as chemical classes, functional groups, modes of action, and toxicity. Pesticides are used to kill pests and control weeds using chemical ingredients; hence, they can also be toxic to other organisms, including birds, fish, beneficial insects, and non-target plants, as well as air, water, soil, and crops. Moreover, pesticide contamination moves away from the target plants, resulting in environmental pollution. Such chemical residues impact human health through environmental and food contamination. In addition, climate change-related factors also impact on pesticide application and result in increased pesticide usage and pesticide pollution. Therefore, this review will provide the scientific information necessary for pesticide application and management in the future.
Collapse
Affiliation(s)
- Muyesaier Tudi
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (J.L.)
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia; (H.D.R.); (R.S.); (C.C.); (D.T.P.)
| | - Huada Daniel Ruan
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia; (H.D.R.); (R.S.); (C.C.); (D.T.P.)
- Environmental Science Program, Beijing Normal University-Hong Kong Baptist University United International College, 2000 Jintong Road, Tangjiawan, Zhuhai 519080, China
| | - Li Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (J.L.)
- Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Jia Lyu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (J.L.)
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Road, Beijing 100050, China
| | - Ross Sadler
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia; (H.D.R.); (R.S.); (C.C.); (D.T.P.)
| | - Des Connell
- School of Environment and Science, Griffith University, 170 Kessel Road, Nathan, QLD 4111, Australia;
| | - Cordia Chu
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia; (H.D.R.); (R.S.); (C.C.); (D.T.P.)
| | - Dung Tri Phung
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia; (H.D.R.); (R.S.); (C.C.); (D.T.P.)
| |
Collapse
|
31
|
Li X, Yao Y, Wang S, Xu S. Resveratrol relieves chlorothalonil-induced apoptosis and necroptosis through miR-15a/Bcl2-A20 axis in fish kidney cells. FISH & SHELLFISH IMMUNOLOGY 2020; 107:427-434. [PMID: 33186708 DOI: 10.1016/j.fsi.2020.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Chlorothalonil (CT) is a commonly used fungicide and its excessive application seriously threatens aquatic life and human health. Resveratrol (RSV) is a natural polyphenol and can be used as a therapeutic and preventive agent for the treatment of various diseases. To explore the toxic mechanism of CT exposure on fish kidney cell, as well as the alleviation effect of RSV, we established CT poisoning and/or RSV treatment fish kidney cell models. Ctenopharyngodon idellus kidney (CIK) cell line was treated with CT (5 μg/L) and/or RSV (10 μM) for 48 h. The results showed that CT exposure activated cytochromeP450s (CYPs) including CYP1A1, CYP1B1 and CYP1C, caused malondialdehyde (MDA) accumulation, inhibited glutathione (GSH) levels and glutathione peroxidase (GPX) activities, increased the expression of miR-15a and downregulated BCL2 and TNFα-induced protein 3 (TNFAIP3, A20), triggered mitochondrial pathway mediated apoptosis and receptor interacting serine/threonine kinase (RIP)-dependent necroptosis in CIK cells. However, cell death under CT exposure could be relieved by RSV treatment through inhibiting the expression of CYP1 family genes and restoring miR-15a/BCL2-A20 axis disorders. Overall, we conclude that RSV could relieve CT-induced apoptosis and necroptosis through miR-15a/Bcl2-A20 axis in CIK cells. These results enrich the toxicological mechanisms of the CT and confirm that RSV can be used as a potential antidote for CT poisoning.
Collapse
Affiliation(s)
- Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
32
|
Chen C, Zou W, Cui G, Tian J, Wang Y, Ma L. Ecological risk assessment of current-use pesticides in an aquatic system of Shanghai, China. CHEMOSPHERE 2020; 257:127222. [PMID: 32505951 DOI: 10.1016/j.chemosphere.2020.127222] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
The widespread use of current-use pesticides (CUPs) in modern agriculture has threatened the survival of aquatic organisms. Therefore, the residual levels, spatial distribution, and ecological risk assessment of 18 CUPs are investigated in an aquatic system of Shanghai. The aquatic system focused on a freshwater system that contains particles smaller than 0.45 μm in size, which are easily absorbed by aquatic organisms. The mean values of chlorpyrifos, napropamide, and atrazine were found to be the highest concentration CUPs, and propazine, mevinphos, ametryn, butylate, dichlorvos, ethoprop, and prometryn displayed the most significant positive correlations with each other. The concentration of the ∑18CUPs was higher in the southern areas of Shanghai (generally greater than 100 ng/L), but it was relatively low in the central areas (generally smaller than 75 ng/L). Six important CUPs were identified, and the differences in the concentration contribution rates and contribution amounts among different intensive land-use types were noticeable. The ecological risk in most areas of this aquatic system of Shanghai was high. Chlorpyrifos and butachlor produced the maximum toxic unit (mTU) for daphnid and green algae, respectively, and their toxic unit contribution rates to the entire mixture toxicity were both greater than 50%. This confirms that the mixture toxicity of the CUPs to aquatic organisms in this aquatic system of Shanghai primarily resulted from a few dominant toxic pesticides. However, for each sensitive organism, there will still be a risk contribution of approximately 5%-30% due to other CUPs.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Wenbing Zou
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Guolu Cui
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Jichen Tian
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yuncai Wang
- College of Architecture and Urban Planning, Tongji University, Shanghai, 200092, PR China
| | - Limin Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
33
|
Qi Z, Zhang Y, Chen ZF, Yang C, Song Y, Liao X, Li W, Tsang SY, Liu G, Cai Z. Chemical identity and cardiovascular toxicity of hydrophobic organic components in PM 2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110827. [PMID: 32535366 DOI: 10.1016/j.ecoenv.2020.110827] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Numerous experimental and epidemiological studies have demonstrated that exposure to PM2.5 may result in pathogenesis of several major cardiovascular diseases (CVDs), which can be attributed to the combined adverse effects induced by the complicated components of PM2.5. Organic materials, which are major components of PM2.5, contain thousands of chemicals, and most of them are environmental hazards. However, the contamination profile and contribution to overall toxicity of PM2.5-bound organic components (OCs) have not been thoroughly evaluated yet. Herein, we aim to provide an overview of the literature on PM2.5-bound hydrophobic OCs, with an emphasis on the chemical identity and reported impairments on the cardiovascular system, including the potential exposure routes and mechanisms. We first provide an update on the worldwide mass concentration and composition data of PM2.5, and then, review the contamination profile of PM2.5-bound hydrophobic OCs, including constitution, concentration, distribution, formation, source, and identification. In particular, the link between exposure to PM2.5-bound hydrophobic OCs and CVDs and its possible underlying mechanisms are discussed to evaluate the possible risks of PM2.5-bound hydrophobic OCs on the cardiovascular system and to provide suggestions for future studies.
Collapse
Affiliation(s)
- Zenghua Qi
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhi-Feng Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chun Yang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Liao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weiquan Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Guoguang Liu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zongwei Cai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
34
|
Lai Z, Guo X, Cheng Z, Ruan G, Du F. Green Synthesis of Fluorescent Carbon Dots from Cherry Tomatoes for Highly Effective Detection of Trifluralin Herbicide in Soil Samples. ChemistrySelect 2020. [DOI: 10.1002/slct.201904517] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhan Lai
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Xinyuan Guo
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Zhenfang Cheng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Guihua Ruan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Fuyou Du
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
- College of Biological and Environmental Engineering Changsha University Changsha 410022 PR China
| |
Collapse
|
35
|
Maceira A, Marcé RM, Borrull F. Analytical methods for determining organic compounds present in the particulate matter from outdoor air. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Cui S, Hough R, Yates K, Osprey M, Kerr C, Cooper P, Coull M, Zhang Z. Effects of season and sediment-water exchange processes on the partitioning of pesticides in the catchment environment: Implications for pesticides monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134228. [PMID: 31505364 DOI: 10.1016/j.scitotenv.2019.134228] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Current and historic pesticide use has potential to compromise e.g. drinking water sources due to both primary and secondary emission sources. Understanding the spatial and temporal dynamics of emissions might help inform management decisions. To explore this potential; water, sediment and soil samples were concurrently collected from the River Ugie, Scotland over four seasons. Occurrence and fate of nine pesticides including four historic-use pesticides (HUPs): simazine, atrazine, isoproturon and permethrin, and five current-use pesticides (CUPs): metaldehyde, chlorpyrifos, chlortoluron, epoxiconazole and cypermethrin were analysed. Concentrations of target pesticides in water, sediments and soils were 4.5-45.6 ng·L-1, 0.9-4.6 ng·g-1 dw (dry weight) and 1.7-8.0 ng·g-1 dw, respectively. Concentrations of pesticides in water were found to significantly differ between seasons (p < 0.05). Significant differences in pesticide concentrations also occurred spatially within sediments (p < 0.01), indicating spatial and temporal associations with pesticide use. Sediment-water exchange showed that the sediment acts as an important secondary emission source particularly for the HUPs, while current local application and sediment emission are both major driving forces for CUPs in the riverine environment. These findings were supported by concentration ratios between different media, which showed potential as a preliminary assessment tool for identifying the source of pollutants in aquatic environments.
Collapse
Affiliation(s)
- Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Kyari Yates
- The Robert Gordon University, Garthdee, Aberdeen AB10 7JG, UK
| | - Mark Osprey
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Christine Kerr
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Pat Cooper
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Malcolm Coull
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
37
|
Zhen X, Liu L, Wang X, Zhong G, Tang J. Fates and ecological effects of current-use pesticides (CUPs) in a typical river-estuarine system of Laizhou Bay, North China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:573-579. [PMID: 31185345 DOI: 10.1016/j.envpol.2019.05.141] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
Current-use pesticides (CUPs) are widely applied in agriculture; however, little is known about their environmental behaviors, especially in the freshwater-seawater transitional zone. Water and sediment samples were collected in an intensively human impacted river (Xiaoqing River) from the headwaters to Laizhou Bay to investigate the distributions and environmental fates of four CUPs: trifluralin, chlorothalonil, chlorpyrifos, and dicofol. These CUPs were frequently detected in water and sediment samples. ∑CUPs in water and sediment samples ranged from 1.20 to 100.2 ng L-1 and 6.6-2972.5 ng g-1 dry weight (dw), respectively. Chlorpyrifos and chlorothalonil were the most abundant CUPs in water and sediment samples, respectively. Spatial distribution of CUPs in the Xiaoqing River aquatic ecosystem was mainly influenced by point sources, agricultural activities, the dilution effect by seawater, and environmental parameters. Field-based sediment water partitioning coefficients, normalized by organic carbon (log Koc), were calculated. Interestingly, temperature and salinity exhibited significant impacts on the distribution of log Koc of the four CUPs. The effect of temperature on the distribution of log Koc of the four CUPs varied between the CUPs. In most water samples, the levels of chlorpyrifos exceed the freshwater screening benchmarks. Hence, urgent control measures need to be devised and implemented.
Collapse
Affiliation(s)
- Xiaomei Zhen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510631, China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510631, China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510631, China
| | - Guangcai Zhong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510631, China
| | - Jianhui Tang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
38
|
Camacho M, Herrera A, Gómez M, Acosta-Dacal A, Martínez I, Henríquez-Hernández LA, Luzardo OP. Organic pollutants in marine plastic debris from Canary Islands beaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:22-31. [PMID: 30684899 DOI: 10.1016/j.scitotenv.2018.12.422] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 05/22/2023]
Abstract
Given their capacity to adsorb chemical pollutants, microplastics represent a growing environmental concern in the oceans. The levels of 81 chemical compounds in two types of beached microplastic (pellets and fragments) were monitored across the Canary Islands (Spain). The highest concentrations were found for polycyclic aromatic hydrocarbons (PAH) (52.1-17,023.6ng/g and 35.1-8725.8ng/g for pooled pellets and fragments, respectively). The polychlorinated biphenyl (PCB) concentrations were 0.9-2285.8 and 1.6-772.5ng/g for pooled pellets and fragments, respectively, whereas organochlorine pesticides (OCP) ranged from 0.4-13,488.7 and 0.4-3778.8ng/g, respectively. The sum of polychlorinated biphenyls and diphenyl-dichloro-ethane (DDT) metabolites was significantly higher in beaches on Gran Canaria, which is the most populated and industrialized island. The sum of ultraviolet filters (UV-filters) was higher in those beaches more frequented by tourists (Famara and Las Canteras), than in occasionally or very rarely visited beaches (Cuervitos and Lambra), with values ranging from 0 to 37,740.3ng/g and 3.7-2169.3ng/g for pellets and fragments, respectively. Furthermore, the sum of brominated diphenyl ethers (BDE) (0-180.58ng/g for pooled pellets and 0.06-3923.9ng/g for pooled fragments) and organophosphorus flame retardants (OPFR) (20.0-378.0ng/g for pooled pellets, and 22.6-7013.9ng/g for pooled fragments) was significantly higher in an urban beach (Las Canteras) than in the rest of the studied beaches. Finally, the concentrations of the pesticide chlorpyrifos were much higher on Gran Canaria beaches than in the rest. In this research we provide further evidence of the important role of plastic debris in the adsorption of a wide range of marine pollutants. The regional pattern of chemical contamination of plastics reveals that the sorption of many compounds probably occurs in coastal waters. Further investigation is necessary to understand the relationship between plastic types and adsorption of different pollutants, especially for emerging pollutants.
Collapse
Affiliation(s)
- María Camacho
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Alicia Herrera
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35017, Spain
| | - May Gómez
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35017, Spain
| | - Andrea Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Ico Martínez
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35017, Spain
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain.
| |
Collapse
|
39
|
Zhou Y, Shen C, Du H, Bao Y, He C, Wang C, Zuo Z. Bioassay system for the detection of aryl hydrocarbon receptor agonists in waterborne pesticides using zebrafish cyp1a1 promoter-luciferase recombinant hepatic cells. CHEMOSPHERE 2019; 220:61-68. [PMID: 30579175 DOI: 10.1016/j.chemosphere.2018.12.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
Currently used pesticides are widely distributed in surface water. Most of them are harmful to aquatic animals. In the present study, a novel recombinant hepatic cell line was developed for detecting the activity of aryl hydrocarbon receptor (AhR) agonists, and their potential bio-toxicity to aquatic animals was evaluated. First, HepG2 cells were stably transfected with a luciferase reporter plasmid containing a zebrafish (Danio rerio) cyp1a1 promoter with twelve copies of dioxin-responsive elements. The minimal detection limit was a 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) concentration of 0.3 ng/L (equivalent to 0.93 pM). The AhR agonist activity of thirty-seven pesticides was screened by measuring luciferase expression in the recombinant cells. Four pesticides (ipconazole, mepanipyrim, quinoxyfen and pencycuron) significantly induced luciferase expression. Additionally, cells treated with these four pesticides increased the cyp1a1 mRNA expression level, which further confirmed that they are AhR agonists. In conclusion, for the first time, we developed recombinant hepatic cells with a luciferase reporter plasmid containing a modified zebrafish cyp1a1 promoter. The cyp1a1 promoter luciferase reporter cells can be used as a sensitive and specific model to screen AhR agonists among currently used pesticides in water, which could be beneficial for risk assessment in aquatic environments.
Collapse
Affiliation(s)
- Yixi Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Hong Du
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yuanyuan Bao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
40
|
Rauert C, Harner T, Schuster JK, Eng A, Fillmann G, Castillo LE, Fentanes O, Ibarra MV, Miglioranza KSB, Rivadeneira IM, Pozo K, Aristizábal Zuluaga BH. Air monitoring of new and legacy POPs in the Group of Latin America and Caribbean (GRULAC) region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1252-1262. [PMID: 30268978 DOI: 10.1016/j.envpol.2018.09.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/07/2018] [Accepted: 09/07/2018] [Indexed: 05/21/2023]
Abstract
A special initiative in the Global Atmospheric Passive Sampling (GAPS) Network was implemented to provide information on new and emerging persistent organic pollutants (POPs) in the Group of Latin America and Caribbean (GRULAC) region. Regional-scale atmospheric concentrations of the new and emerging POPs hexachlorobutadiene (HCBD), pentachloroanisole (PCA) and dicofol indicators (breakdown products) are reported for the first time. HCBD was detected in similar concentrations at all location types (<20-120 pg/m3). PCA had elevated concentrations at the urban site Concepción (Chile) of 49-222 pg/m3, with concentrations ranging <1-8.5 pg/m3 at the other sites in this study. Dicofol indicators were detected at the agricultural site of Sonora (Mexico) at concentrations ranging 30-117 pg/m3. Legacy POPs, including a range of organochlorine (OC) pesticides and polychlorinated biphenyls (PCBs), were also monitored to compare regional atmospheric concentrations over a decade of monitoring under the GAPS Network. γ-hexachlorocyclohexane (HCH) and the endosulfans significantly decreased (p < 0.05) from 2005 to 2015, suggesting regional levels are decreasing. However, there were no significant changes for the other legacy POPs monitored, likely a reflection of the persistency and slow decline of environmental levels of these POPs. For the more volatile OCs, atmospheric concentrations derived from polyurethane foam (PUF) (acting as an equilibrium sampler) and sorbent impregnated PUF (SIP) (acting as a linear phase sampler), were compared. The complimentary methods show a good agreement of within a factor of 2-3, and areas for future studies to improve this agreement are further discussed.
Collapse
Affiliation(s)
- Cassandra Rauert
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada.
| | - Jasmin K Schuster
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | - Anita Eng
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | - Gilberto Fillmann
- Universidade Federal do Rio Grande, Instituto de Oceanografia, Rio Grande, RS, 96203-900, Brazil; Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, Pavillion A29, 62500 Brno, Czech Republic
| | - Luisa Eugenia Castillo
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
| | | | | | | | | | - Karla Pozo
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción, 4080871, Chile
| | | |
Collapse
|