1
|
Panigrahi B, Doig LE, Ezugba I, Davila-Arenas CE, Liber K. Water quality assessment of a novel pilot-scale pit lake in the alberta oil sands region. ENVIRONMENTAL RESEARCH 2025; 272:121142. [PMID: 39956420 DOI: 10.1016/j.envres.2025.121142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/08/2025] [Accepted: 02/14/2025] [Indexed: 02/18/2025]
Abstract
The Alberta oil sands (AOS), Canada, represent a vital energy resource; however, the extraction of oil from these deposits poses significant environmental challenges. In particular, the eventual reclamation of significant volumes of waste materials is required. As a potential solution to incorporate and remediate AOS mine wastes in-situ, a pilot-scale pit lake, Lake Miwasin (LM), was constructed in 2017-18. It used a combination of coagulated and flocculated fluid fine tailings (bottom substrate) capped with a blend of oil-sands process affected water and runoff water from the surrounding catchment. The objective of the study described here is to assess the resultant surface water quality of this artificial lake and its regional comparability with natural systems. Furthermore, we explored the physicochemical characteristics, the mechanisms regulating lake water chemistry, and calculated various water quality indices for both LM and surrounding natural water bodies. Based on water quality indices, our study results showed that the overall water quality of LM's surface water was not yet similar to surrounding water bodies in the AOS region. Surface water from LM is slightly alkaline with elevated total dissolved solids (TDS) and differs chemically from surrounding water bodies. Predominant ions in LM are Na+, K+ (pore water from tailings), whereas surrounding water bodies exhibit Ca2+, CO3-, and HCO3- (gypsum, dolomite, and calcite dissolution). Therefore, water chemistry of LM is more typical of a Na-Cl water type, while surrounding bodies show a Ca-HCO3 water type. Evaluations based on different water quality indices highlighted the importance of monitoring specific variables in LM such as conductivity, TDS, alkalinity, and NH3. The analysis and assessment of LM surface water is imperative for gaining insight into the potential character and trajectories of water quality in future pit lakes and informing design considerations and application of this novel reclamation approach in the AOS region.
Collapse
Affiliation(s)
- Banamali Panigrahi
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.
| | - Lorne E Doig
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Immanuela Ezugba
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | | | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada; School of Environment and Sustainability, 117 Science Place, University of Saskatchewan, Saskatoon, SK, S7N 5C8, Canada.
| |
Collapse
|
2
|
Li J, Arslan M, Yang L, Gamal El-Din M. Fate of dissolved organics in oil sands process water during long-term storage: Mechanistic insights into toxicity removal and microbial processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125050. [PMID: 40117921 DOI: 10.1016/j.jenvman.2025.125050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
Refining oil sand process water (OSPW), a byproduct of bitumen extraction from oil sands in Canada, presents significant environmental challenges due to its complex makeup. This complexity is mainly due to the presence of naphthenic acids (NAs), which play a substantial role in contributing to the toxicity of OSPW. Although various treatment technologies have been explored, the long-term behaviour of OSPW dissolved organics under different storage conditions has not been studied extensively. This study is the first to delve deeply into the natural attenuation of OSPW under diverse controlled conditions, focusing on the effects of temperature, dissolved oxygen, and ozone pretreatment on water quality, NAs degradation, toxicity, and bioavailability. Our results revealed the critical role of temperature in OSPW characteristics, with long-term storage at 4 °C demonstrating minimal degradation of dissolved organics, providing the first empirical support for current OSPW storage practices. In contrast, at 20 °C, ozoned OSPW exhibited maximum reduction in the following parameters: total NAs, 72.6 %; chemical oxygen demand, 25.3 %; acute toxicity towards A. fischeri by 60.7 %; and bioavailability of organics by 35.2 %. This suggests that ozone pretreatment facilitates the biodegradation process by breaking down NAs into more readily metabolized compounds, which are further degraded by microbial activity over time. Furthermore, the study identified evolving microbial communities during OSPW storage, highlighting the presence of Bacillus and Fontimonas genera, which may play a role in organics degradation but require further investigation into their specific functions. These findings provide critical insights into the long-term dynamics of organics in OSPW and provide a foundation for optimizing management strategies.
Collapse
Affiliation(s)
- Jia Li
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Muhammed Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Lingling Yang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
3
|
Miles SM, Balaberda AL, Leshuk TMC, Peru K, Headley J, Gu F, Ulrich AC. A multi-step approach: Coupling of biodegradation and UV photocatalytic oxidation TiO 2 for the treatment of naphthenic acid fraction compounds in oil sands process-affected water. CHEMOSPHERE 2024; 361:142502. [PMID: 38838863 DOI: 10.1016/j.chemosphere.2024.142502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Bitumen extraction in Alberta's oil sands region uses large volumes of water, leading to an abundance of oil sands process-affected water (OSPW). OSPW contains naphthenic acid fraction compounds (NAFCs) which have been found to contribute to OSPW toxicity. This study utilized a multistep treatment, coupling biological degradation with UV photocatalytic oxidation, and nutrient addition to boost the native microbial community's degradation capacity. OSPW initially contained 40-42 mg/L NAFCs with a toxicity of 3.8-3.9 TU. Initial biodegradation (Step 1) was used to remove the easily biodegradable NAFCs (11-25% removal), followed by a light or heavy dose of oxidation (Step 2) to breakdown the recalcitrant NAFCs (66-82% removal). Lastly, post-oxidation biodegradation with nutrients (Step 3) removed the residual bioavailable NAFCs (16-31% removal). By the end of the multistep treatment, the final NAFC concentrations and toxicity ranged from 5.3 to 6.8 mg/L and 1.1-1.2 TU. Analysis showed that OPSW was limited in phosphorus (below detection limit), and the addition of nutrients improved the degradation of NAFCs. Two treatments throughout the multistep treatment never received nutrients and showed minimal NAFC degradation post-oxidation. The native microbial community survived the stress from UV photocatalytic oxidation as seen by the post-oxidation NAFC biodegradation. Microbial community diversity was reduced considerably following oxidation, but increased with nutrient addition. The microbial community consisted predominately of Proteobacteria (Gammaproteobacteria and Alphaproteobacteria), and the composition shifted depending on the level of oxidation received. Possible NAFC-degrading microbes identified after a light oxidation dose included Pseudomonas, Acinetobacter and Xanthomonadales, while Xanthobacteracea and Rhodococcus were the dominant microbes after heavy oxidation. This experiment confirms that the microbial community is capable of degrading NAFCs and withstanding oxidative stress, and that degradation is further enhanced with the addition of nutrients.
Collapse
Affiliation(s)
- Sarah M Miles
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Amy-Lynne Balaberda
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Timothy M C Leshuk
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Kerry Peru
- Water Science and Technology Directorate, Environment and Climate Change Canada, Saskatoon, SK S7N 3H5, Canada
| | - John Headley
- Water Science and Technology Directorate, Environment and Climate Change Canada, Saskatoon, SK S7N 3H5, Canada
| | - Frank Gu
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ania C Ulrich
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
4
|
Li J, Usman M, Arslan M, Gamal El-Din M. Molecular and microbial insights towards anaerobic biodegradation of anionic polyacrylamide in oil sands tailings. WATER RESEARCH 2024; 258:121757. [PMID: 38768520 DOI: 10.1016/j.watres.2024.121757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Anionic polyacrylamide (A-PAM) is widely used as a flocculant in the management of oil sands tailings. Nevertheless, apprehensions arise regarding its potential biodegradation and environmental consequences within the context of oil sands tailings. Consequently, it is imperative to delve into the anaerobic biodegradation of A-PAM in oil sands tailings to gain a comprehensive understanding of its influence on tailings water quality. This work explored the dynamics of A-PAM biodegradation across concentrations: 50, 100, 250, 500, 1000, and 2000 mg/kg TS. The results showed a significant decrease in A-PAM concentration and molecular weight at lower concentrations (50 and 100 mg/kg TS) compared to higher ones, suggesting enhanced degradation efficiency. Likewise, the organic transformation and methane production exhibited dependency on A-PAM concentrations. The peak concentrations observed were 20.0 mg/L for volatile fatty acids (VFAs), 0.07 mg/L for acrylamide (AMD), and 8.9 mL for methane yield, with these maxima being recorded at 50 mg/kg TS. The biodegradation efficiency diminishes at higher concentrations of A-PAM, potentially due to the inhibitory effects of polyacrylic acid accumulation. A-PAM biodegradation under anaerobic condition did not contribute to acute toxicity or genotoxicity. SEM-EDS, FT-IR and XRD analyses further revealed that higher concentrations of A-PAM inhibited the biodegradation by altering floc structure and composition, thereby restricting the microbial activity. Major microorganisms, including Smithella, Candidatus_Cloacimonas, W5, XBB1006, and DMER64 were identified, highlighting A-PAM's dual role as a source of carbon and nitrogen under anaerobic conditions. The above findings from this research not only significantly advance understanding of A-PAM's environmental behavior but also contribute to the effective management practices in oil sands tailings.
Collapse
Affiliation(s)
- Jia Li
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
5
|
Yang L, Bekele A, Gamal El-Din M. Comprehensive characterization of organics in oil sands process water in constructed mesocosms utilizing multiple analytical methods. ENVIRONMENTAL RESEARCH 2024; 252:118972. [PMID: 38657851 DOI: 10.1016/j.envres.2024.118972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
This study aims to provide a thorough characterization of dissolved organics in oil sands process water (OSPW) in field-based aquatic mesocosms at both molecular and bulk measurement levels using multiple analytical methods. In a 3-year outdoor mesocosm experiment, the analysis of naphthenic acid (NA) species was conducted using ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOFMS). The results revealed the removal of both total NAs (38% and 35%) and classical NAs (O2-NAs, 58% and 49%) in undiluted and half-diluted OSPW, respectively. The increased ratios of oxidized NAs (O3-O6 NAs) to classical NAs suggested a transformation trend. The results also indicated that O2-NAs with higher carbon number and lower double bond equivalent (DBE) were more easily degraded in the mesocosm systems. Biomimetic extraction using solid-phase microextraction (BE-SPME) measurement displayed 26% (undiluted OSPW) and 30% (half-diluted OSPW) decrease in total bioavailable organics over 3 years. Naphthenic acids fraction compounds (NAFCs) obtained by liquid-liquid extraction (LLE) were also determined using Fourier transform infrared spectroscopy (FTIR). Reduction in acute toxicity for undiluted (43%) and half-diluted (26%) OSPW was observed over 3 years, which are well correlated with the decreases of NAs and BE-SPME concentrations. Moreover, BE-SPME values were found to be linearly correlated with total NAs concentrations (r = 0.96) and NAFCs (r = 0.96). Additionally, the linear relationships of individual O2-O6 NA species and BE-SPME concentrations unveiled the changes in the relative abundances of O2-O6 NA species in total bioavailable organics over time in the mesocosms. The present study has provided comprehensive insights by integrating various analytical methods, contributing valuable information for assessing the effectiveness of aquatic mesocosm systems in studying the temporal changes of organics in OSPW.
Collapse
Affiliation(s)
- Lingling Yang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Asfaw Bekele
- Technology and Surface Engineering, Imperial Oil Resources Limited, Calgary, Alberta T2C 4P3, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
6
|
Chen Y, Wang Y, Headley JV, Huang R. Sample preparation, analytical characterization, monitoring, risk assessment and treatment of naphthenic acids in industrial wastewater and surrounding water impacted by unconventional petroleum production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169636. [PMID: 38157903 DOI: 10.1016/j.scitotenv.2023.169636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Industrial extraction of unconventional petroleum results in notable volumes of oil sands process water (OSPW), containing elevated concentrations of naphthenic acids (NAs). The presence of NAs represents an intricate amalgamation of dissolved organic constituents, thereby presenting a notable hurdle for the domain of environmental analytical chemistry. There is growing concern about monitoring the potential seepage of OSPW NAs into nearby groundwater and river water. This review summarizes recent studies on sample preparation, characterization, monitoring, risk assessment, and treatment of NAs in industrial wastewater and surrounding water. Sample preparation approaches, such as liquid-liquid extraction, solid phase microextraction, and solid phase extraction, are crucial in isolating chemical standards, performing molecular level analysis, assessing aquatic toxicity, monitoring, and treating OSPW. Instrument techniques for NAs analysis were reviewed to cover different injection modes, ionization sources, and mass analyzers. Recent studies of transfer and transformation of NAs provide insights to differentiate between anthropogenic and natural bitumen-derived sources of NAs. In addition, related risk assessment and treatment studies were also present for elucidation of environmental implication and reclamation strategies. The synthesis of the current state of scientific knowledge presented in this review targets government regulators, academic researchers, and industrial scientists with interests spanning analytical chemistry, toxicology, and wastewater management.
Collapse
Affiliation(s)
- Yu Chen
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yongjian Wang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - John V Headley
- Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon, SK S7N 3H5, Canada
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
7
|
Asiedu E, Zhao K, Anwar MN, Ross M, Balaberda AL, Ulrich AC. Biodegradation in oil sands process-affected water: A comprehensive laboratory analysis of the in situ biodegradation of dissolved organic acids. CHEMOSPHERE 2024; 349:141018. [PMID: 38141671 DOI: 10.1016/j.chemosphere.2023.141018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
Oil sands process-affected water (OSPW) is a by-product of the extraction of bitumen, and volumes of OSPW have accumulated across the Alberta oil sands region due to the governments zero-discharge policy. Some dissolved organics in OSPW, including toxic naphthenic acids (NAs), can be biodegraded in oxic conditions, thereby reducing the toxicity of OSPW. While there has been much focus on degradation of NAs, the biodegradation of other dissolved organic chemicals by endogenous organisms remains understudied. Here, using the HPLC-ultrahigh resolution Orbitrap mass spectrometry, we examined the microbial biodegradation of dissolved organic acids in OSPW. Non-targeted analysis enabled the estimation of biodegradation rates for unique heteroatomic chemical classes detected in negative ion mode. The microcosm experiments were conducted with and without nutrient supplementation, and the changes in the microbial community over time were investigated. Without added nutrients, internal standard-adjusted intensities of all organics, including NAs, were largely unchanged. The addition of nutrients increased the biodegradation rate of O2- and SO2- chemical classes. While anoxic biodegradation can occur in tailings ponds and end pit lakes, microbial community analyses confirmed that the presence of oxygen stimulated biodegradation of the OSPW samples studied. We detected several aerobic hydrocarbon-degrading microbes (e.g., Pseudomonas and Brevundimonas), and microbes capable of degrading sulfur-containing hydrocarbons (e.g., Microbacterium). Microbial community diversity decreased over time with nutrient addition. Overall, the results from this study indicate that toxic dissolved organics beyond NAs can be biodegraded by endogenous organisms in OSPW, but reaffirms that biological treatment strategies require careful consideration of how nutrients and dissolved oxygen may impact efficacy.
Collapse
Affiliation(s)
- Evelyn Asiedu
- Division of Analytical & Environmental Toxicology, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mian Nabeel Anwar
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Matthew Ross
- Department of Physical Sciences, MacEwan University, Edmonton, Alberta, T5J 2P2, Canada
| | - Amy-Lynne Balaberda
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Ania C Ulrich
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
8
|
Strong OKL, France HE, Scotland K, Wright K, Vreugdenhil AJ. Selenite Adsorption and Reduction via Iron(II) Impregnated Activated Carbon Produced from the Phosphoric Acid Activation of Construction Waste Wood. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 85:485-497. [PMID: 37816969 DOI: 10.1007/s00244-023-01032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/23/2023] [Indexed: 10/12/2023]
Abstract
Chemical activation of waste materials, to form activated carbon, (AC) is complicated by the large amounts of chemical activating agents required and wastewater produced. To address these problems, we have developed an optimized process for producing AC, by phosphoric acid activation of construction waste. Waste wood from construction sites was ground and treated with an optimized phosphoric acid digestion and activation that resulted in high surface areas (> 2000 m2/g) and a greater recovery of phosphoric acid. Subsequently the phosphoric acid activated carbon (PAC), was functionalized with iron salts and evaluated for its efficacy on the adsorption of selenite and selenate. Total phosphoric acid recovery was 96.7% for waste wood activated with 25% phosphoric acid at a 1:1 ratio, which is a substantially higher phosphoric acid recovery, than previous literature findings. Post activation impregnation of iron salts resulted in iron(II) species adsorbed to the PAC surface. The iron(II) chloride impregnated AC removed up to 11.41 ± 0.502 mg selenium per g Iron-PAC. Competitive ions such as sulfate and nitrate had little effect on selenium adsorption, however, phosphate concentration did negatively impact the selenium uptake at high phosphate levels. At 250 ppm, approximately 75% of adsorption capacity of both the selenate and the selenite solutions was lost, although selenium was still preferentially adsorbed. Peak adsorption occurred between a pH of 4 and 11, with a complete loss of adsorption at a pH of 13.
Collapse
Affiliation(s)
- Oliver K L Strong
- Material Science, Department of Chemistry, Trent University, 1600 West Bank Dr., Peterborough, ON, K9L 0G2, Canada
| | - Hamant E France
- Environmental and Life Sciences, Trent University, 1600 West Bank Dr., Peterborough, ON, K9L 0G2, Canada
| | - Kevin Scotland
- Material Science, Department of Chemistry, Trent University, 1600 West Bank Dr., Peterborough, ON, K9L 0G2, Canada
| | - Kelly Wright
- Material Science, Department of Chemistry, Trent University, 1600 West Bank Dr., Peterborough, ON, K9L 0G2, Canada
| | - Andrew J Vreugdenhil
- Material Science, Department of Chemistry, Trent University, 1600 West Bank Dr., Peterborough, ON, K9L 0G2, Canada.
| |
Collapse
|
9
|
Trepanier KE, Vander Meulen IJ, Ahad JME, Headley JV, Degenhardt D. Evaluating the attenuation of naphthenic acids in constructed wetland mesocosms planted with Carex aquatilis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1228. [PMID: 37725196 PMCID: PMC10509100 DOI: 10.1007/s10661-023-11776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
Surface oil sands mining and extraction in northern Alberta's Athabasca oil sands region produce large volumes of oil sands process-affected water (OSPW). OSPW is a complex mixture containing major contaminant classes including trace metals, polycyclic aromatic hydrocarbons, and naphthenic acid fraction compounds (NAFCs). Naphthenic acids (NAs) are the primary organic toxicants in OSPW, and reducing their concentrations is a priority for oil sands companies. Previous evidence has shown that constructed wetland treatment systems (CWTSs) are capable of reducing the concentration of NAs and the toxicity of OSPW through bioremediation. In this study, we constructed greenhouse mesocosms with OSPW or lab process water (LPW) (i.e., water designed to mimic OSPW minus the NAFC content) with three treatments: (1) OSPW planted with Carex aquatilis; (2) OSPW, no plants; and (3) LPW, no plants. The OSPW-C. aquatilis treatment saw a significant reduction in NAFC concentrations in comparison to OSPW, no plant treatments, but both changed the distribution of the NAFCs in similar ways. Upon completion of the study, treatments with OSPW saw fewer high-molecular-weight NAs and an increase in the abundance of O3- and O4-containing formulae. Results from this study provide invaluable information on how constructed wetlands can be used in future remediation of OSPW in a way that previous studies were unable to achieve due to uncontrollable environmental factors in field experiments and the active, high-energy processes used in CWTSs pilot studies.
Collapse
Affiliation(s)
- Kaitlyn E Trepanier
- Canadian Forest Service, Northern Forestry Centre, Natural Resources Canada, Edmonton, AB, Canada
| | - Ian J Vander Meulen
- Environment and Climate Change Canada, National Hydrology Research Centre, Saskatoon, SK, Canada
- Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jason M E Ahad
- Geological Survey of Canada, Natural Resources Canada, Québec, QC, Canada
| | - John V Headley
- Environment and Climate Change Canada, National Hydrology Research Centre, Saskatoon, SK, Canada
| | - Dani Degenhardt
- Canadian Forest Service, Northern Forestry Centre, Natural Resources Canada, Edmonton, AB, Canada.
| |
Collapse
|
10
|
Lillico DME, Hussain NAS, Choo-Yin YY, Qin R, How ZT, El-Din MG, Stafford JL. Using immune cell-based bioactivity assays to compare the inflammatory activities of oil sands process-affected waters from a pilot scale demonstration pit lake. J Environ Sci (China) 2023; 128:55-70. [PMID: 36801042 DOI: 10.1016/j.jes.2022.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 06/18/2023]
Abstract
In this study, we provide evidence that oil sands process-affected waters (OSPW) contain factors that activate the antimicrobial and proinflammatory responses of immune cells. Specifically, using the murine macrophage RAW 264.7 cell line, we establish the bioactivity of two different OSPW samples and their isolated fractions. Here, we directly compared the bioactivity of two pilot scale demonstration pit lake (DPL) water samples, which included expressed water from treated tailings (termed the before water capping sample; BWC) as well as an after water capping (AWC) sample consisting of a mixture of expressed water, precipitation, upland runoff, coagulated OSPW and added freshwater. Significant inflammatory (i.e. macrophage activating) bioactivity was associated with the AWC sample and its organic fraction (OF), whereas the BWC sample had reduced bioactivity that was primarily associated with its inorganic fraction (IF). Overall, these results indicate that at non-toxic exposure doses, the RAW 264.7 cell line serves as an acute, sensitive and reliable biosensor for the screening of inflammatory constituents within and among discrete OSPW samples.
Collapse
Affiliation(s)
- Dustin M E Lillico
- Department of Biological Sciences, University of Alberta, Alberta T6G 2E9, Canada
| | - Nora A S Hussain
- Department of Biological Sciences, University of Alberta, Alberta T6G 2E9, Canada
| | - Yemaya Y Choo-Yin
- Department of Biological Sciences, University of Alberta, Alberta T6G 2E9, Canada
| | - Rui Qin
- Department of Civil and Environmental Engineering, University of Alberta, Alberta T6G 2E9, Canada
| | - Zuo Tong How
- Department of Civil and Environmental Engineering, University of Alberta, Alberta T6G 2E9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Alberta T6G 2E9, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Alberta T6G 2E9, Canada.
| |
Collapse
|
11
|
Hussain NAS, Stafford JL. Abiotic and biotic constituents of oil sands process-affected waters. J Environ Sci (China) 2023; 127:169-186. [PMID: 36522051 DOI: 10.1016/j.jes.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/17/2023]
Abstract
The oil sands in Northern Alberta are the largest oil sands in the world, providing an important economic resource for the Canadian energy industry. The extraction of petroleum in the oil sands begins with the addition of hot water to the bituminous sediment, generating oil sands process-affected water (OSPW), which is acutely toxic to organisms. Trillions of litres of OSPW are stored on oil sands mining leased sites in man-made reservoirs called tailings ponds. As the volume of OSPW increases, concerns arise regarding the reclamation and eventual release of this water back into the environment. OSPW is composed of a complex and heterogeneous mix of components that vary based on factors such as company extraction techniques, age of the water, location, and bitumen ore quality. Therefore, the effective remediation of OSPW requires the consideration of abiotic and biotic constituents within it to understand short and long term effects of treatments used. This review summarizes selected chemicals and organisms in these waters and their interactions to provide a holistic perspective on the physiochemical and microbial dynamics underpinning OSPW .
Collapse
Affiliation(s)
- Nora A S Hussain
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2N8, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2N8, Canada.
| |
Collapse
|
12
|
Chung TH, Zakaria BS, Meshref MNA, Dhar BR. Enhancing quorum sensing in biofilm anode to improve biosensing of naphthenic acids. Biosens Bioelectron 2022; 210:114275. [PMID: 35447397 DOI: 10.1016/j.bios.2022.114275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022]
Abstract
The feasibility of enhancing quorum sensing (QS) in anode biofilm to improve the quantifications of commercial naphthenic acid concentrations (9.4-94 mg/L) in a microbial electrochemical cell (MXC) based biosensor was demonstrated in this study. First, three calibration methods were systematically compared, and the charging-discharging operation was selected for further experiments due to its 71-227 folds higher electrical signal outputs than the continuous closed-circuit operation and cyclic voltammetry modes. Then, the addition of acylase (5 μg/L) as an exogenous QS autoinducer (acylase) was investigated, which further improved the biosensor's electrical signal output by ∼70%, as compared to the control (without acylase). The addition of acylase increased the relative expression of QS-associated genes (lasR, lasI, rhlR, rhlI, lasA, and luxR) by 7-100%, along with increased abundances of known electroactive bacterial genera, such as Geobacter (from 42% to 47%) and Desulfovibrio (from 6% to 11%). Furthermore, toxicities of different NAs concentrations measured with the Microtox bioassay test were correlated with corresponding electrical signals, indicating that MXC-biosensor can provide a dual platform for rapid assessment of both NA concentrations and NA-associated toxicity.
Collapse
Affiliation(s)
- Tae Hyun Chung
- Civil and Environmental Engineering, University of Alberta, 9211-116, Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, 9211-116, Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Mohamed N A Meshref
- Civil and Environmental Engineering, University of Alberta, 9211-116, Street NW, Edmonton, AB, T6G 1H9, Canada; Public Works Department, Faculty of Engineering, Ain Shams University, 1 El Sarayat St., Abbassia, Cairo, 11517, Egypt
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 9211-116, Street NW, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
13
|
Arslan M, Müller JA, Gamal El-Din M. Aerobic naphthenic acid-degrading bacteria in petroleum-coke improve oil sands process water remediation in biofilters: DNA-stable isotope probing reveals methylotrophy in Schmutzdecke. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:151961. [PMID: 34843771 DOI: 10.1016/j.scitotenv.2021.151961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
There is an increasing interest in treatment of oil sands process water (OSPW) via biofiltration with petroleum coke (PC) as a substratum. In fixed bed biofilters (FBBs) with PC, the dominance of anaerobic digestion of dissolved organics results in poor removal of naphthenic acids (NAs) along with a high degree of methanogenesis. In this study, the operation of FBBs was modified to improve OSPW remediation by supporting the filtering bed with aerobic naphthenic acid-degrading bacteria treating aerated OSPW (FBBbioaugmentation). The results were compared with a biofilter operated under controlled conditions (FBBcontrol). To this end, a consortium of three aerobic NAs-degrading bacterial strains was immobilized on PC as a top layer (10 cm). These bacteria were pre-screened for growth on 15 different NAs surrogates as a sole carbon source, and for the presence of catabolic genes coding alkane hydroxylase (CYP153) and alkane monooxygenase (alkB) enzymes. The results illustrated that biofiltration in FBBbioaugmentation removed 32% of classical NAs in 15 days; while in the FBBcontrol, degradation was limited to 19%. The degradation of fluorophore (aromatic) compounds was also improved from 16% to 39% for single ring (OI), 22% to 29% for double ring (OII), and 15% to 23% for three rings (OIII) compounds. DNA-Stable Isotope Probing revealed that potential hydrocarbons degraders such as Pseudomonas (inoculated), Pseudoxanthomonas (indigenous) were present up to 9.0% in the 13C-labelled DNA fraction. Furthermore, a high abundance of methylotrophs was observed in the Schmutzdecke, with Methylobacillus comprising more than two-third of the total community. This study shows that bioaugmentation rapidly improved OSPW remediation. Aeration mostly contributed to methane consumption in the top layer, thus minimizing its release into the environment.
Collapse
Affiliation(s)
- Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jochen A Müller
- Institute for Biological Interfaces (IBG 5), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
14
|
Transcriptome Analysis of Environmental Pseudomonas Isolates Reveals Mechanisms of Biodegradation of Naphthenic Acid Fraction Compounds (NAFCs) in Oil Sands Tailings. Microorganisms 2021; 9:microorganisms9102124. [PMID: 34683445 PMCID: PMC8540809 DOI: 10.3390/microorganisms9102124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022] Open
Abstract
Naphthenic acid fraction compounds (NAFCs) are highly recalcitrant constituents of oil sands tailings. Although some microorganisms in the tailings can individually and synergistically metabolize NAFCs, the biochemical mechanisms that underpin these processes are hitherto unknown. To this end, we isolated two microorganisms, Pseudomonas protegens and Pseudomonas putida, from oils sands tailings and analyzed their transcriptomes to shed light on the metabolic processes employed by them to degrade and detoxify NAFCs. We identified 1048, 521 and 1434 genes that are upregulated in P. protegens, P. putida and a 1:1 co-culture of the strains, respectively. We subsequently enumerated the biochemical activities of enriched genes and gene products to reveal the identities of the enzymes that are associated with NAFC degradation. Separately, we analyzed the NAFCs that are degraded by the two pseudomonads and their 1:1 co-culture and determined the composition of the molecules using mass spectrometry. We then compared these molecular formulas to those of the cognate substrates of the enriched enzymes to chart the metabolic network and understand the mechanisms of degradation that are employed by the microbial cultures. Not only does the consortium behave differently than the pure cultures, but our analysis also revealed the mechanisms responsible for accelerated rate of degradation of NAFCs by the co-culture. Our findings provide new directions for engineering or evolving microorganisms and their consortia for degrading NAFCs more stably and aggressively.
Collapse
|
15
|
Arslan M, Gamal El-Din M. Bacterial diversity in petroleum coke based biofilters treating oil sands process water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146742. [PMID: 33839672 DOI: 10.1016/j.scitotenv.2021.146742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Adopting nature-based solutions for the bioremediation of oil sands process water (OSPW) is of significant interest, which requires a thorough understanding of how bacterial communities behave within treatment systems operated under natural conditions. This study investigates the OSPW remediation potential of delayed petroleum-coke (PC), which is a byproduct of bitumen upgrading process and is readily available at oil refining sites, in fixed-bed biofilters particularly for the degradation of naphthenic acids (NAs) and aromatics. The biofilters were operated continuously and total and active bacterial communities were studied by DNA and RNA-based amplicon sequencing in a metataxonomic fashion to extrapolate the underlying degradation mechanisms. The results of total community structure indicated a high abundance of aerobic bacteria at all depths of the biofilter, e.g., Porphyrobacter, Legionella, Pseudomonas, Planctomyces. However, redox conditions within the biofilters were anoxic (-153 to -182 mV) that selected anaerobic bacteria to actively participate in the remediation of OSPW, i.e., Ruminicoccus, Eubacterium, Faecalibacterium, Dorea. After 15 days of operation, the removal of classical NAs was recorded up to 20% whereas oxidized NAs species were poorly removed, i.e., O3-NAs: 4.8%, O4-NAs: 1.2%, O5-NAs: 1.7%, and O6-NAs: 0.5%. Accordingly, monoaromatics, diaromatics, and triaromatics were removed up to 16%, 22%, and 15%, respectively. The physiology of the identified genera suggested that the degradation in the PC-based biofilters was most likely proceeded in a scheme similar to beta-oxidation during anaerobic digestion process. The presence of hydrogenotrophic methanogens namely Methanobrevibacter and Methanomassiliicoccus and quantification of mcrA gene (2.4 × 102 to 8.7 × 102 copies/mg of PC) revealed that methane production was likely occurring in a syntrophic mechanism during the OSPW remediation. A slight reduction in toxicity was also observed. This study suggests that PC-based biofilters may offer some advantages in the remediation of OSPW; however, the production of methane could be of future concerns if operated at field-scale.
Collapse
Affiliation(s)
- Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
16
|
Deng S, Wang B, Zhang W, Su S, Dong H, Banat IM, Sun S, Guo J, Liu W, Wang L, She Y, Zhang F. Elucidate microbial characteristics in a full-scale treatment plant for offshore oil produced wastewater. PLoS One 2021; 16:e0255836. [PMID: 34383807 PMCID: PMC8360554 DOI: 10.1371/journal.pone.0255836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/24/2021] [Indexed: 11/19/2022] Open
Abstract
Oil-produced wastewater treatment plants, especially those involving biological treatment processes, harbor rich and diverse microbes. However, knowledge of microbial ecology and microbial interactions determining the efficiency of plants for oil-produced wastewater is limited. Here, we performed 16S rDNA amplicon sequencing to elucidate the microbial composition and potential microbial functions in a full-scale well-worked offshore oil-produced wastewater treatment plant. Results showed that microbes that inhabited the plant were diverse and originated from oil and marine associated environments. The upstream physical and chemical treatments resulted in low microbial diversity. Organic pollutants were digested in the anaerobic baffled reactor (ABR) dominantly through fermentation combined with sulfur compounds respiration. Three aerobic parallel reactors (APRs) harbored different microbial groups that performed similar potential functions, such as hydrocarbon degradation, acidogenesis, photosynthetic assimilation, and nitrogen removal. Microbial characteristics were important to the performance of oil-produced wastewater treatment plants with biological processes.
Collapse
Affiliation(s)
- Shuyuan Deng
- School of Energy Resources, China University of Geosciences (Beijing), Beijing, China
| | - Bo Wang
- School of Energy Resources, China University of Geosciences (Beijing), Beijing, China
| | - Wenda Zhang
- College of Petroleum Engineering, Yangtze University, Wuhan, Hubei, China
| | - Sanbao Su
- College of Petroleum Engineering, Yangtze University, Wuhan, Hubei, China
| | - Hao Dong
- College of Petroleum Engineering, Yangtze University, Wuhan, Hubei, China
| | - Ibrahim M. Banat
- Faculty of Life and Health Sciences, University of Ulster, Coleraine, N. Ireland, United Kingdom
| | - Shanshan Sun
- College of Petroleum Engineering, Yangtze University, Wuhan, Hubei, China
| | - Jianping Guo
- School of Energy Resources, China University of Geosciences (Beijing), Beijing, China
| | - Weiming Liu
- Sinopec Shengli Oilfield, Dongying, Shangdong, China
| | - Linhai Wang
- CNOOC Energy Development Co. Ltd. Technology Branch, Beijing, China
| | - Yuehui She
- College of Petroleum Engineering, Yangtze University, Wuhan, Hubei, China
| | - Fan Zhang
- School of Energy Resources, China University of Geosciences (Beijing), Beijing, China
- * E-mail:
| |
Collapse
|
17
|
Liang J, Wang Q, Li J, Guo S, Ke M, Gamal El-Din M, Chen C. Effects of anaerobic granular sludge towards the treatment of flowback water in an up-flow anaerobic sludge blanket bioreactor: Comparison between mesophilic and thermophilic conditions. BIORESOURCE TECHNOLOGY 2021; 326:124784. [PMID: 33548817 DOI: 10.1016/j.biortech.2021.124784] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Cost-effective treatment of flowback water remains a challenge for the sustainability of shale gas development. This study evaluated the efficiency of anaerobic granular sludge (AnGS) technology for flowback water treatment under mesophilic and thermophilic conditions. The granule characteristics and metagenomic characterization were also investigated. Thermophilic AnGS achieved 70.9% of COD removal and 362 NmL/d of methane production, higher than those for mesophilic AnGS (60.0% and 241 NmL/d). Thermophilic AnGS had higher extracellular polymeric substances content but low granular size and settleability. Metagenomic analysis revealed the genes related to hydrolysis acidification and carbohydrate metabolism were upregulated during thermophilic condition. Thermophilic condition most likely improved the hydrolysis of complex organics in the flowback water such as guar gum and hydrolyzed polyacrylamide, and led to higher COD removal and methane production. These results suggest that AnGS technology is a promising alternative for the treatment of flowback water, particularly when operated at thermophilic condition.
Collapse
Affiliation(s)
- Jiahao Liang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qinghong Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jin Li
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Shaohui Guo
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Ming Ke
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
18
|
Abdalrhman AS, Zhang Y, Arslan M, Gamal El-Din M. Low-current electro-oxidation enhanced the biodegradation of the recalcitrant naphthenic acids in oil sands process water. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122807. [PMID: 32497857 DOI: 10.1016/j.jhazmat.2020.122807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/18/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Combining electro-oxidation (EO) with biodegradation for real oil sands process water (OSPW) treatment was evaluated in terms of naphthenic acid (NA) biodegradation enhancement. Ion mobility spectrometry (IMS) qualitative analysis showed that EO by graphite was able to degrade the different NA clusters in OSPW including: classical, oxidized and heteroatomic NAs. Applying EO even at current density as low as 0.2 mA/cm2 was still able to reduce classical NAs and acid extractable fraction (AEF) by 19% and 7%, respectively. EO pretreatment preferentially broke long carbon chains and highly cyclic carboxylic fractions of NAs in OSPW to improve the biodegradation of NAs. Aerobic biodegradation for 40 days reduced NAs by up to 30.9% when the samples were pre-treated with EO. Applying EO at current densities below 2 mA/cm2 maintained current efficiency as high as 48% and resulted in improvement in the biodegradation rate of remaining NAs by up to 2.7 folds. It was further revealed that applying EO before biodegradation could reduce the biodegradation half-life of classical NAs by up to 4.4 folds. 16S amplicon sequencing analysis showed that the samples subjected to biodegradation had increased abundances of Sphingomonadales and Rhodocyclales with increasing applied current density for EO pre-treatments.
Collapse
Affiliation(s)
| | - Yanyan Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, New Mexico, 88003, United States
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 2W2, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 2W2, Canada.
| |
Collapse
|
19
|
Zhang L, Zhang Y, Patterson J, Arslan M, Zhang Y, Gamal El-Din M. Biofiltration of oil sands process water in fixed-bed biofilm reactors shapes microbial community structure for enhanced degradation of naphthenic acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137028. [PMID: 32109809 DOI: 10.1016/j.scitotenv.2020.137028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/12/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Naphthenic acids (NAs) are a complex mixture of carboxylic acids present in oil sands process water (OSPW). Their recalcitrant nature makes them difficult to be removed from the environment using conventional remediation strategies. This study hypothesized that, upon continuous operation, biofiltration of OSPW in fixed-bed biofilm reactors would allow the development of NA-degrading microbial community within the biofilter following successful removal. Both raw and ozonated OSPW were treated in the biofilters and changes in microbial community were tested via 16S/18S amplicon sequencing and metatranscriptomics. Through switch from suspended growth to attached growth, a shift in indigenous microbial community was seen following by an increase in alpha diversity. Concomitantly, improved degradation of NAs was monitored, i.e., 35.8% and 69.4% of NAs were removed from raw and ozonated OSPW, respectively. Metatranscriptomics analysis suggested the presence of genes involved in the degradation of organic acids and petroleum-related compounds. Specifically, functional abundance of aromatic compounds' metabolism improved from 0.05% to 0.76%; whereas abundance of benzoate transport and degradation pathway increased from 0.04% to 0.64%. These changes conclude that continuous operation of OSPW in the bioreactors was in favor of shaping the overall microbiome towards better NA degradation.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, PR China
| | - Yanyan Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Jordan Patterson
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, PR China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
20
|
Scott AC, Zubot W, Davis CW, Brogly J. Bioaccumulation potential of naphthenic acids and other ionizable dissolved organics in oil sands process water (OSPW) - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:134558. [PMID: 31831242 DOI: 10.1016/j.scitotenv.2019.134558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 05/05/2023]
Abstract
Bitumen recovery via mining in Alberta's Athabasca region generates large quantities of oil sands process water (OSPW). Aquatic toxicity of OSPW has been well-studied and the class of organic compounds referred to as naphthenic acids (NAs) are consistently implicated as the primary driver. Proposed lease closure options include treated produced waters in reclaimed landscapes such as pit lakes and wetlands. Consequently, it is crucial to understand the bioaccumulation potential of NAs and other OSPW dissolved organics in these environments. Early studies were focussed only on NAs due to analytical limitations, however, later studies investigated additional classes of dissolved organics in OSPW. Reported bioconcentration factors (BCFs) for NAs in fish and amphibians range from 0.24 to 53 L/kg wet-weight. Most quantitative assessments of NAs bioaccumulation potential evaluated commercial NAs mixtures as a surrogate for OSPW and used using single-ion monitoring for measuring NAs concentrations. The resulting BCF values are based on the NA isomers that conform to the formula, C13H22O2. More recently, an advanced analytical technique capable of determining the profile of different isomer classes in OSPW showed that NAs and other OSPW ionizable dissolved organics (OSPW-IDO) have low partitioning to simulated biological storage lipids, suggesting low bioaccumulation potential. Using the same analytical technique to assess in vivo fish exposures, a subsequent study reported a range of BCFs for OSPW NAs between 0.7 and 53 L/kg wet-weight and heteroatomic isomer classes containing S or N heteroatoms had BCFs between 0.6 and 28 L/kg wet-weight. Reported BCFs for all isomer classes of the OSPW-IDO fraction were less than the Canadian standard for bioaccumulative designation (i.e., BCF ≥ 5000).
Collapse
Affiliation(s)
- Angela C Scott
- Unaffiliated private contractor, correspondence c/o Canada's Oil Sands Innovation Alliance (COSIA), 520 5th Avenue SW, Suite 1700, Calgary, AB T2P3R7, Canada.
| | - Warren Zubot
- Syncrude Canada Ltd., Edmonton Research Centre, 9421 17 Avenue, Edmonton, AB T6N1H4, Canada.
| | - Craig W Davis
- ExxonMobil Biomedical Sciences, Inc., 1545 US Highway 22 East, Annandale, NJ 08801, United States.
| | - John Brogly
- Canada's Oil Sands Innovation Alliance (COSIA), 520 5th Avenue SW, Suite 1700, Calgary, AB T2P3R7, Canada.
| |
Collapse
|
21
|
Gong Z, Liu C, Wang M, Wang Z, Li X. Experimental study on catalytic pyrolysis of oil sludge under mild temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135039. [PMID: 31787314 DOI: 10.1016/j.scitotenv.2019.135039] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
The pyrolysis performance of oil sludge (OS) was studied using a thermal gravimetric analysis apparatus and a tube furnace reactor. The oil recovery rate of OS pyrolysis showed a rapid growth trend at 450 °C. Moreover, the co-pyrolysis experiments of the OS and catalysts, including walnut shells, Fe2O3, K2CO3, polyvinyl chloride (PVC), and OS pyrolysis char with addition ratios of 5, 7, and 9 wt%, respectively, were conducted in a tube furnace reactor at 450 °C. The experiments demonstrated that all catalysts increased the oil recovery rate, but the optimal addition ratios differed. The pyrolysis chars produced above 450 °C had a well-developed pore structure, and the catalytic pyrolysis of OS at 450 °C could increase the yield of pyrolysis oil and reduce the potential ecological risk of heavy metals in the pyrolysis char. Therefore, catalytic pyrolysis is an inexpensive and highly efficient approach for treating solid waste.
Collapse
Affiliation(s)
- Zhiqiang Gong
- State Key Laboratory of Heavy Oil, China University of Petroleum (East China), 266580 Qingdao, China.
| | - Chang Liu
- State Key Laboratory of Heavy Oil, China University of Petroleum (East China), 266580 Qingdao, China
| | - Mi Wang
- Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
| | - Zhenbo Wang
- State Key Laboratory of Heavy Oil, China University of Petroleum (East China), 266580 Qingdao, China.
| | - Xiaoyu Li
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| |
Collapse
|
22
|
Fang Z, Huang R, Chelme-Ayala P, Shi Q, Xu C, Gamal El-Din M. Comparison of UV/Persulfate and UV/H 2O 2 for the removal of naphthenic acids and acute toxicity towards Vibrio fischeri from petroleum production process water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133686. [PMID: 31400695 DOI: 10.1016/j.scitotenv.2019.133686] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
The ultraviolet light-activated persulfate process (UV/Persulfate) has received much attention in recent years as a novel advanced oxidation method for the treatment of municipal and industrial wastewater. This work investigated the UV/Persulfate and UV/H2O2 processes for the treatment of real oil sands process water (OSPW) at ambient pH condition using a medium pressure mercury lamp (emission between 200 and 530 nm). The degradation performances towards fluorophore organic compounds and naphthenic acids (NAs) in OSPW were evaluated using synchronous fluorescence spectrometry and ultra performance liquid chromatography time-of-flight mass spectrometry, respectively. Compared to the UV/H2O2 process, the UV/Persulfate process exhibited higher efficiency to remove both NAs and fluorophore organic compounds. Under 40 min of UV exposure and incident irradiance of 3.50 mW cm-2, fluorophore organic compounds were greatly degraded by UV/Persulfate (2 mM) and two- and three-ring fused organics were completely removed. 59.4%, 83.8% and 92.2% of O2-NAs in OSPW were removed with persulfate dosages of 0.5, 2, and 4 mM, respectively. The removal efficiency decreased along with the number of oxygen atoms in NAs (83.8%, 49.3%, and 46.8% for O2-, O3-, and O4-NAs, respectively) with 2 mM of persulfate, because of the formation of oxidized NAs in the same process. The structure-reactivity of O2-NA compounds fitted pseudo-first order kinetics in UV/Persulfate process with the rate constants ranging from 0.0156 min-1 to 0.1511 min-1. NAs with higher carbon numbers and double bond equivalence were more reactive in the UV/Persulfate oxidation process. The acute toxicity of OSPW to Vibrio fischeri was significantly reduced after the UV/Persulfate and UV/H2O2 treatments. Overall results demonstrated that the UV/Persulfate oxidation can be an effective alternative for future reclamation of OSPW.
Collapse
Affiliation(s)
- Zhi Fang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Rongfu Huang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Pamela Chelme-Ayala
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
23
|
Zhang L, Zhang Y, Gamal El-Din M. Integrated mild ozonation with biofiltration can effectively enhance the removal of naphthenic acids from hydrocarbon-contaminated water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:197-206. [PMID: 31075586 DOI: 10.1016/j.scitotenv.2019.04.302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/30/2019] [Accepted: 04/20/2019] [Indexed: 06/09/2023]
Abstract
An innovative biofiltration-ozonation-biofiltration process was established and applied for the treatment of oil sands process water (OSPW). With an equivalent hydraulic retention time (HRT) of 8 h, the biofiltration pretreatment removed 24.4% of classical naphthenic acids (NAs) and 3.3% of oxidized NAs from raw OSPW with removal rate of 0.4 mg/L/h and 0.1 mg/L. Oxidized NAs showed higher resistance to the biofiltration process than classical NAs. The mild ozonation process (with utilized ozone dose of 30 mg/L) removed 84.8% of classical NAs and 11.5% of oxidized NAs from the biofiltrated OSPW with a degradation efficiency of 0.3 mg classical NAs/mg O3 and 0.1 mg oxidized NAs/mg O3. However, by using the same utilized ozone dose, the degradation of classical NAs and oxidized NAs from raw OSPW was 32.1% and 3.9% with ozonation efficiency of 0.1 mg classical NAs/mg O3 and 0.0 mg oxidized NAs/mg O3, respectively. Compared with the biofiltration pretreatment, the post biofiltration process (with HRT of 8 h) showed higher degradation effect on oxidized NAs with removal ratio of 22.9% and removal rate of 0.4 mg/L/h, but showed lower degradation effect on classical NAs with removal ratio of 6.7% and removal rate of 0.0 mg/L/h. After biofiltration-ozonation-biofiltration treatment, the microbial community structure in the biofilter was investigated by next generation sequencing. Proteobacteria and Rhodococcus were dominant bacterial phyla and genus in the biofilter, the abundance of which were 47.21% and 9.50% which were different from those in raw OSPW (62.88% and 0.72%). The change of microbial community structure could be resulted from the interaction between microbial community and the circulating OSPW. The ozonation integrated biodegradation process removed 89.3% and 34.0% of classical and oxidized NAs from OSPW which shows high potential to be applied by the oil and gas industry.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yanyan Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
24
|
Abdalrhman AS, Zhang Y, Gamal El-Din M. Electro-oxidation by graphite anode for naphthenic acids degradation, biodegradability enhancement and toxicity reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:270-279. [PMID: 30928756 DOI: 10.1016/j.scitotenv.2019.03.262] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/06/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
Electro-oxidation (EO) by using graphite anode and at relatively low current densities was successfully applied for the degradation of commercial naphthenic acids (NAs) mixture in water samples. At current densities of 0.5, 2.5, and 5 mA/cm2, acid extractable fraction (AEF) was removed by 42.2%, 57.0% and 67.9%, respectively, while classical NAs were degraded by 76.9%, 77.6% and 82.4%, respectively. EO reactivity towards NAs increased with increasing the carbon number (n) and was higher for cyclic NAs compared to the acyclic component. Oxidized NAs containing O3 and O4 were also degraded effectively during EO. The biodegradability of organics in the NA mixture was clearly improved by 1.7, 2.5 and 2.7 folds when the samples were pre-treated with EO at current densities of 0.5, 2.5, and 5 mA/cm2, respectively. The aromatic fraction in the commercial NA mixture consisted mainly of single-ring aromatics and was degraded effectively by EO. Biodegradation alone was able to reduce the toxicity of the commercial NA mixture towards Vibrio fischeri; however, the combination of EO with biodegradation resulted in a complete removal of the toxicity, showing a synergistic effect of combining these two processes. Coupling EO with aerobic biodegradation can result in an effective and energy-efficient treatment option for NA-bearing waters such as oil sands process water (OSPW) and refinery effluents.
Collapse
Affiliation(s)
| | - Yanyan Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
25
|
Tiwari SS, Iorhemen OT, Tay JH. Aerobic granular sludge and naphthenic acids treatment by varying initial concentrations and supplemental carbon concentrations. JOURNAL OF HAZARDOUS MATERIALS 2019; 362:348-357. [PMID: 30243258 DOI: 10.1016/j.jhazmat.2018.09.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Aerobic granular sludge (AGS) has previously been utilized in the treatment of toxic compounds due to its diverse and dense microbial structure. The present study subjected mature AGS to model naphthenic acids (NAs) representative of the Canadian oil sands. To this effect, three NA concentrations (10, 50 and 100 mg/L) and three supplemental carbon source concentrations (600, 1200 and 2500 mg/L) were studied in batch reactors for 5 days. The responding variables were chemical oxygen demand (COD), NA concentrations and nutrients. Cyclohexane carboxylic acid (CHCA), cyclohexane acetic acid (CHAA) and 1-adamantane carboxylic acid (ACA) were chosen to study structure-based degradation kinetics. The optimal COD according to the runs was 1200 mg/L. CHCA was removed completely with biodegradation rate constants increasing with lower NA concentrations and lower COD concentrations. CHAA was also removed completely, however, an optimal rate constant of 1.9 d-1 was achieved at NA and COD concentrations of 50 mg/L and 1200 mg/L, respectively. ACA removal trends did not follow statistically significant regressions; however, degradation and sorption helped remove ACA up to 19.9%. Pseudomonas, Acinetobacter, Hyphomonas and Brevundimonas spp. increased over time, indicating increased AGS adaptability to NAs.
Collapse
Affiliation(s)
- Shubham S Tiwari
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Alberta, T2N 1N4, Canada.
| | - Oliver T Iorhemen
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Alberta, T2N 1N4, Canada
| | - Joo Hwa Tay
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Alberta, T2N 1N4, Canada
| |
Collapse
|
26
|
Fang Z, Chelme-Ayala P, Shi Q, Xu C, Gamal El-Din M. Degradation of naphthenic acid model compounds in aqueous solution by UV activated persulfate: Influencing factors, kinetics and reaction mechanisms. CHEMOSPHERE 2018; 211:271-277. [PMID: 30077106 DOI: 10.1016/j.chemosphere.2018.07.132] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/30/2018] [Accepted: 07/22/2018] [Indexed: 06/08/2023]
Abstract
Naphthenic acids (NAs) are one of the constituents of concerns in oil sands process water (OSPW) because of their persistence and recalcitrance. Herein, we investigated the degradation of five model NA compounds by UV-activated persulfate (UV/persulfate) process under medium-pressure UV lamp irradiation at pH 8.0. UV/persulfate process showed higher degradation efficiency towards cyclohexanoic acid (CHA) compared to UV/H2O2 process under the same experimental conditions. CHA (0.39 mM) was completely removed within 30 min when 2 mM persulfate was used as oxidant, while more than 60 min were needed for the UV/H2O2 process. The removal of CHA decreased from 100% to 10% when 300 mM tert-butyl alcohol (TBA) was used as the scavenger, indicating that hydroxyl radical (OH) was responsible for the CHA degradation in the UV/persulfate process. Sulfate (SO4-) radicals reacted slowly with CHA in the UV/persulfate process with a second-order rate constant of k = 5.3 × 107 M-1s-1. Relative kinetics studies using binary mixtures of model NA compounds showed similar structure-reactivity to that under UV/H2O2 process. NAs with long carbon chain, cyclic ring, and aromatic ring were more reactive in the UV/persulfate process. The presence of high concentration of chloride ions dramatically inhibited the reaction. The OH radicals in the UV/persulfate process were generated by capturing OH- in solutions, as evidenced by the decrease of the pH value from 8.0 to 2.8 before and after treatment, respectively, in a pure water matrix. Primary intermediate products (oxy-CHA, hydroxyl-CHA, and dihydroxyl-CHA) of UV/persulfate process were confirmed by UPLC-MS.
Collapse
Affiliation(s)
- Zhi Fang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Pamela Chelme-Ayala
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
27
|
Tiwari S, Iorhemen O, Tay J. Semi-continuous treatment of naphthenic acids using aerobic granular sludge. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|