1
|
Del Mar Gómez-Ramos M, Gómez-Ramos MJ, Díaz-Galiano FJ, Murcia-Morales M, Oller-Serrano JL, Martikkala M, Kristiansen P, Vejsnæs F, Fernández-Alba AR. Evaluation of the honeybee exposome in European apiaries by combining passive samplers and liquid chromatography with Zeno trap-time-of-flight mass spectrometry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125781. [PMID: 39952587 DOI: 10.1016/j.envpol.2025.125781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/03/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
This study introduces an analytical methodology that combines passive sampling with ultra-high pressure liquid chromatography coupled with a high-end quadrupole-time-of-flight mass spectrometer (UHPLC-QTOF-MS) for monitoring the honeybee (Apis mellifera L.) exposome across various European regions and seasons. The sampling methodology employs the recently developed adsorb pesticide in-hive strips (APIStrip) passive samplers, which use TENAX® TA adsorbent, to collect a wide range of chemicals when placed inside beehives. Following acetonitrile-based desorption, extracts were analyzed by UHPLC-QTOF-MS, equipped with an advanced ion trap -the Zeno trap- that enhances tandem-mass spectrometry (MS/MS) signals and improves mass accuracy, facilitating efficient feature annotation. A non-targeted analysis (NTA) approach, combined with multivariate analysis, was used to simultaneously identify exposure analytes (e.g.natural products) and effect-related metabolites associated with honeybee health and condition (e.g. pheromones and other compounds emitted by bees). This methodology revealed geographical and seasonal variations in the chemical profiles of honeybee hives. In the evaluated Nordic countries, natural products from plants and pollen, along with bee-emitted substances such us neurotransmitters and pheromones, were prevalent. Seasonal analysis in Denmark revealed distinct chemical profiles associated with blooming flowers and peak brood rearing activity in April. This integrated, non-invasive methodology has proven highly effective in assessing the honeybee exposome, providing valuable insights into how environmental factors influence the chemical profiles emitted by bees.
Collapse
Affiliation(s)
- María Del Mar Gómez-Ramos
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), Almería, 04120, Spain
| | - María José Gómez-Ramos
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), Almería, 04120, Spain.
| | - Francisco José Díaz-Galiano
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), Almería, 04120, Spain
| | - María Murcia-Morales
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), Almería, 04120, Spain
| | - José Luis Oller-Serrano
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), Almería, 04120, Spain
| | | | - Preben Kristiansen
- Finnish Beekeepers Association, Ullanlinnankatu 1, Helsinki, 00130, Finland
| | | | - Amadeo R Fernández-Alba
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), Almería, 04120, Spain
| |
Collapse
|
2
|
Izquierdo-Sandoval D, Sancho JV, Hernández F, Portoles T. Approaches for GC-HRMS Screening of Organic Microcontaminants: GC-APCI-IMS-QTOF versus GC-EI-QOrbitrap. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2436-2448. [PMID: 39887319 DOI: 10.1021/acs.est.4c11032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
This study explores the capabilities of GC-APCI-IMS-QTOF MS and GC-EI-QOrbitrap MS in screening applications and different strategies for wide-scope screening of organic microcontaminants using target suspect and nontarget approaches. On one side, GC-APCI-IMS-QTOF MS excels at preserving molecular information and adds ion mobility separation, facilitating screening through the list of componentized features containing accurate mass, retention time, CCS, and fragmentation data. On the other side, the extensive and robust fragmentation of GC-EI-QOrbitrap MS allows the application of different strategies for target and nontarget approaches using the NIST library spectra. Our findings revealed that GC-EI-QOrbitrap MS is more sensitive in target approaches. Automated workflows for suspect screening in GC-APCI-IMS-QTOF MS minimize false annotations but face challenges with false negatives due to in-source fragmentation and limitations when using in silico fragmentation tools. Conversely, a nontarget approach in GC-EI-QOrbitrap MS can reliably identify unknowns but results in more false annotations in complex matrices. This work highlights the strengths and limitations of each system and guides for their optimal application for wide-scope screening in environmental and food safety applications.
Collapse
Affiliation(s)
- David Izquierdo-Sandoval
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, Castellón de la Plana 12071, Spain
| | - Juan Vicente Sancho
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, Castellón de la Plana 12071, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, Castellón de la Plana 12071, Spain
| | - Tania Portoles
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, Castellón de la Plana 12071, Spain
| |
Collapse
|
3
|
Zhang L, Chen H, Ma S, Fan W, Chen S, Yu A, Yuan H, Ouyang G, Zhang Y, Zhao W. Microfluidic synthesis of gold nanoparticle-doped microspherical photonic crystal as SERS substrate for methylene blue detection. Mikrochim Acta 2025; 192:119. [PMID: 39890678 DOI: 10.1007/s00604-025-06978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/12/2025] [Indexed: 02/03/2025]
Abstract
A novel microfluidic approach is presented for the one-step synthesis of gold nanoparticle-doped microspherical photonic crystal (AuNP-MPC) for ultrasensitive surface-enhanced Raman spectroscopy (SERS) detection of methylene blue (MB), a common environmental pollutant. The AuNP-MPC microspheres exhibited excellent SERS activity due to the surface plasmon resonance of Au nanoparticles. And the SERS signal was significantly enhanced by strategically manipulating the photonic band gap (PBG) of the AuNP-MPC microspheres to achieve optimal overlap with the excitation laser wavelength. The SERS signal of MB was significantly enhanced by this, reaching an EF as high as 3.03 × 106. The AuNP-MPC microspheres demonstrated rapid adsorption of MB within just 5 min, making them suitable for rapid detection applications. Notably, the limit of quantification was as low as 1 × 10-8 mol/L, highlighting the exceptional sensitivity of this approach. Furthermore, the AuNP-MPC microspheres exhibited excellent homogeneity, reproducibility, and stability of SERS signals, which are crucial qualities for practical SERS applications. This work presents a promising avenue for developing SERS-active microfluidic platforms for the rapid detection of trace organic pollutants in environmental monitoring.
Collapse
Affiliation(s)
- Luyang Zhang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Huan Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, College of Chemistry, Nankai University, Tianjin, 300071, China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Shanshan Ma
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Wu Fan
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Sheng Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Ajuan Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Hang Yuan
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Gangfeng Ouyang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yanhao Zhang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Wuduo Zhao
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
4
|
Rugji J, Erol Z, Taşçı F, Musa L, Hamadani A, Gündemir MG, Karalliu E, Siddiqui SA. Utilization of AI - reshaping the future of food safety, agriculture and food security - a critical review. Crit Rev Food Sci Nutr 2024:1-45. [PMID: 39644464 DOI: 10.1080/10408398.2024.2430749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Artificial intelligence is an emerging technology which harbors a suite of mechanisms that have the potential to be leveraged for reaping value across multiple domains. Lately, there is an increased interest in embracing applications associated with Artificial Intelligence to positively contribute to food safety. These applications such as machine learning, computer vision, predictive analytics algorithms, sensor networks, robotic inspection systems, and supply chain optimization tools have been established to contribute to several domains of food safety such as early warning of outbreaks, risk prediction, detection and identification of food associated pathogens. Simultaneously, the ambition toward establishing a sustainable food system has motivated the adoption of cutting-edge technologies such as Artificial Intelligence to strengthen food security. Given the myriad challenges confronting stakeholders in their endeavors to safeguard food security, Artificial Intelligence emerges as a promising tool capable of crafting holistic management strategies for food security. This entails maximizing crop yields, mitigating losses, and trimming operational expenses. AI models present notable benefits in efficiency, precision, uniformity, automation, pattern identification, accessibility, and scalability for food security endeavors. The escalation in the global trend for adopting alternative protein sources such as edible insects and microalgae as a sustainable food source reflects a growing recognition of the need for sustainable and resilient food systems to address the challenges of population growth, environmental degradation, and food insecurity. Artificial Intelligence offers a range of capabilities to enhance food safety in the production and consumption of alternative proteins like microalgae and edible insects, contributing to a sustainable and secure food system.
Collapse
Affiliation(s)
- Jerina Rugji
- Department of Food Hygiene and Technology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zeki Erol
- Department of Food Hygiene and Technology, Necmettin Erbakan University, Ereğli, Konya, Turkey
| | - Fulya Taşçı
- Department of Food Hygiene and Technology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Ambreen Hamadani
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Esa Karalliu
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| | | |
Collapse
|
5
|
Mokh S, Lacalle-Bergeron L, Izquierdo-Sandoval D, Corell MC, Beltran J, Sancho JV, Portolés T. Identification and quantification of flavor compounds in smoked tuna fish based on GC-Orbitrap volatolomics approach. Food Chem 2024; 449:139312. [PMID: 38608606 DOI: 10.1016/j.foodchem.2024.139312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Cold smoking enhances the appeal of fish products, offering consumers a smooth texture and a delicate smoky flavor. This study aims to explore variations in the volatile profile from different exposure times during cold smoking processing (light, moderate, and full-cure) in tune samples. An innovative untargeted analytical approach, headspace solid-phase microextraction combined with gas chromatography and a hybrid quadrupole-orbitrap mass analyzer, was employed to identify 86 volatiles associated with the cold smoking process. Most of these compounds, including phenols, furan derivates, aldehydes, cyclic ketones, and different aromatic species, were found to contribute to the smoke odor. The development of a QuEChERS-based extraction and clean-up method facilitated the quantification of 25 relevant smoky markers across all smoking degrees, revealing significant concentration differences after 15 h of smoking. This research sheds light on the dynamics of cold smoking impact and its on the flavor profile and safety quality of processed fish products.
Collapse
Affiliation(s)
- Samia Mokh
- National Council for Scientific Research CNRS - Lebanese Atomic Energy Commission LAEC - Laboratory for Analysis of Organic Compound LACO, Airport Road, P.O. Box 11-8281, Beirut, Lebanon
| | - Leticia Lacalle-Bergeron
- Enviromental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, 12071 Castellón de la Plana, Spain
| | - David Izquierdo-Sandoval
- Enviromental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, 12071 Castellón de la Plana, Spain
| | - M Carmen Corell
- Sea Delight Europe, S.L, C/ Sao Paulo, 14 Planta 2ª Oficina n°3-P.I. El Sebadal, 35008 Las Palmas de Gran Canaria, Spain
| | - Joaquim Beltran
- Enviromental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, 12071 Castellón de la Plana, Spain
| | - Juan Vicente Sancho
- Enviromental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, 12071 Castellón de la Plana, Spain
| | - Tania Portolés
- Enviromental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, 12071 Castellón de la Plana, Spain..
| |
Collapse
|
6
|
Qian M, Zhang Y, Bian Y, Feng XS, Zhang ZB. Nitrophenols in the environment: An update on pretreatment and analysis techniques since 2017. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116611. [PMID: 38909393 DOI: 10.1016/j.ecoenv.2024.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Nitrophenols, a versatile intermediate, have been widely used in leather, medicine, chemical synthesis, and other fields. Because these components are widely applied, they can enter the environment through various routes, leading to many hazards and toxicities. There has been a recent surge in the development of simple, rapid, environmentally friendly, and effective techniques for determining these environmental pollutants. This review provides a comprehensive overview of the latest research progress on the pretreatment and analysis methods of nitrophenols since 2017, with a focus on environmental samples. Pretreatment methods include liquid-liquid extraction, solid-phase extraction, dispersive extraction, and microextraction methods. Analysis methods mainly include liquid chromatography-based methods, gas chromatography-based methods, supercritical fluid chromatography. In addition, this review also discusses and compares the advantages/disadvantages and development prospects of different pretreatment and analysis methods to provide a reference for further research.
Collapse
Affiliation(s)
- Min Qian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Zhong-Bo Zhang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
7
|
Oró-Nolla B, Campioni L, Lacorte S. Optimization and uncertainty assessment of a gas chromatography coupled to Orbitrap mass spectrometry method to determine organic contaminants in blood: A case study of an endangered seabird. J Chromatogr A 2024; 1722:464870. [PMID: 38604058 DOI: 10.1016/j.chroma.2024.464870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Birds are excellent bioindicators of environmental pollution, and blood provides information on contaminant exposure, although its analysis is challenging because of the low volumes that can be sampled. The objective of the present study was to optimize and validate a miniaturized and functional extraction and analytical method based on gas chromatography coupled to Orbitrap mass spectrometry (GCOrbitrap-MS) for the trace analysis of contaminants in avian blood. Studied compounds included 25 organochlorine pesticides (OCPs), 6 polychlorinated biphenyls (PCBs), 8 polybrominated diphenyl ethers (PBDEs) and 15 polycyclic aromatic hydrocarbons (PAHs). Four extraction and clean-up conditions were optimized and compared in terms of efficiency, accuracy, and uncertainty assessment. Extraction with hexane:dichloromethane and miniaturized Florisil pipette clean-up was the most adequate considering precision and accuracy, time, and costs, and was thereafter used to analyse 20 blood samples of a pelagic seabird, namely the Bermuda petrel (Pterodroma cahow). This species, endemic to the Northwest Atlantic, is among the most endangered seabirds of the region that in the '60 faced a decrease in the breeding success likely linked to a consistent exposure to dichloro-diphenyl-trichloroethane (DDT). Indeed, p,p'-DDE, the main DDT metabolite, was detected in all samples and ranged bewteen 1.13 and 6.87 ng/g wet weight. Other ubiquitous compounds were PCBs (ranging from 0.13 to 6.76 ng/g ww), hexachlorobenzene, and mirex, while PAHs were sporadically detected at low concentrations, and PBDEs were not present. Overall, the extraction method herein proposed allowed analysing very small blood volumes (∼ 100 µL), thus respecting ethical principles prioritising the application of less-invasive sampling protocols, fundamental when studying threatened avian species.
Collapse
Affiliation(s)
- Bernat Oró-Nolla
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona, Catalonia 08034, Spain
| | - Letizia Campioni
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Ispa 10 - Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, Lisboa, Portugal
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona, Catalonia 08034, Spain.
| |
Collapse
|
8
|
Shi B, Meng J, Wang T, Li Q, Zhang Q, Su G. The main strategies for soil pollution apportionment: A review of the numerical methods. J Environ Sci (China) 2024; 136:95-109. [PMID: 37923480 DOI: 10.1016/j.jes.2022.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/07/2023]
Abstract
Nowadays, a large number of compounds with different physical and chemical properties have been determined in soil. Environmental behaviors and source identification of pollutants in soil are the foundation of soil pollution control. Identification and quantitative analysis of potential pollution sources are the prerequisites for its prevention and control. Many efforts have made to develop methods for identifying the sources of soil pollutants. These efforts have involved the measurement of source and receptor parameters and the analysis of their relationships via numerical statistics methods. We have comprehensively reviewed the progress made in the development of source apportionment methodologies to date and present our synthesis. The numerical methods, such as spatial geostatistics analysis, receptor models, and machine learning methods are addressed in depth. In most cases, however, the effectiveness of any single approach for source apportionment remains limited. Combining multiple methods to address soil quality problems can reduce uncertainty about the sources of soil pollution. This review also constructively highlights the key strategies of combining mathematical models with the assessment of chemical profiles to provide more accurate source attribution. This review intends to provide a comprehensive summary of source apportionment methodologies to help promote further development.
Collapse
Affiliation(s)
- Bin Shi
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Qianqian Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qifan Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijin Su
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Liu Y, Li H, Wang Z, Zhang Q, Bai H, Lv Q. Nontargeted analysis and comparison strategies for volatile and semivolatile substances in toys made of different materials. CHEMOSPHERE 2023; 342:140170. [PMID: 37716563 DOI: 10.1016/j.chemosphere.2023.140170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
A nontargeted broad-spectrum analysis method for unknown volatile and semivolatile substances in toys was established by gas chromatography-Orbitrap high-resolution mass spectrometry. Based on the NIST spectrum library, unknown substances could be accurately identified by comprehensive scoring, retention index, chemical ionization, and fine comparison of ion fragments. For substances not included in the library, the molecular formulas of unknown substances were retrieved through online compound databases. Possible structural formulas were verified by high-resolution spectra and fragmentation mechanisms. Taking teether toys as an example, the substances differences of products made of different materials were compared through the digitization of chemical composition. Specifically, 59 substances were identified in 50 teether toys. The toys made of two different materials each had their own substance distribution, and the types and quantities of substances in thermoplastic polyurethanes samples were more than those in silicone samples. Substances with high risk included phenol, N-methylaniline, cyclohexanone, and 4-tert-amylphenol. This work can serve as a reference for the identification of unknown substances in toys and other products, as well as for the comparison the chemical composition of products made of different materials. Thus, this work has positive significance in promoting the quality and safety of toys and reducing chemical harm to children.
Collapse
Affiliation(s)
- Yahui Liu
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Hongyan Li
- Zhejiang Institute of Product Quality and Safety Science, Hangzhou, 310018, China
| | - Zhijuan Wang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Qing Zhang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Hua Bai
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Qing Lv
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
10
|
Yang Y, Yang L, Zheng M, Cao D, Liu G. Data acquisition methods for non-targeted screening in environmental analysis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
11
|
Huang Q, Cai Z, Li W, Chen R, Zhang W, Jin K, Zhao Y, Li Y, Sun T. Novel, Selective Calix[6]Arene - Polyethylene Glycol (C6A-PEG) Stationary Phase for Capillary Gas Chromatography (GC). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2143794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Qiuchen Huang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, China
| | - Zhiqiang Cai
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, China
| | - Wei Li
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, China
| | - Ruonan Chen
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, China
| | - Wei Zhang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, China
| | - Keyun Jin
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, China
| | - Yi Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, China
| | - Yiwen Li
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, China
| | - Tao Sun
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, China
- Hebei Key Laboratory of Heterocyclic Compounds, Handan University, Handan, China
| |
Collapse
|
12
|
Liu Y, Li N, Li X, Qian W, Liu J, Su Q, Chen Y, Zhang B, Zhu B, Cheng J. A high-resolution Orbitrap Mass spectral library for trace volatile compounds in fruit wines. Sci Data 2022; 9:496. [PMID: 35963960 PMCID: PMC9376066 DOI: 10.1038/s41597-022-01594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022] Open
Abstract
The overall aroma is an important factor of the sensory quality of fruit wines, which attributed to hundreds of volatile compounds. However, the qualitative determination of trace volatile compounds is considered to be very challenging work. GC-Orbitrap-MS with high resolution and high sensitivity provided more possibilities for the determination of volatile compounds, but without the high-resolution mass spectral library. For accuracy of qualitative determination in fruit wines by GC-Orbitrap-MS, a high-resolution mass spectral library, including 76 volatile compounds, was developed in this study. Not only the HRMS spectrum but also the exact ion fragment, relative abundance, retention indices (RI), CAS number, chemical structure diagram, aroma description and aroma threshold (ortho-nasally) were provided and were shown in a database website (Food Flavor Laboratory, http://foodflavorlab.cn/). HRMS library was used to successfully identify the volatile compounds mentioned above in 16 fruit wines (5 blueberry wines, 6 goji berry wines and 5 hawthorn wines). The library was developed as an important basis for further understanding of trace volatile compounds in fruit wines. Measurement(s) | volatile compounds | Technology Type(s) | GC-Orbitrap-MS |
Collapse
Affiliation(s)
- Yaran Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Na Li
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoyao Li
- School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Wenchao Qian
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jiani Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Qingyu Su
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yixin Chen
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Bolin Zhang
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Jinxin Cheng
- China People's Police University, Hebei, 065000, China.
| |
Collapse
|
13
|
Izquierdo-Sandoval D, Fabregat-Safont D, Lacalle-Bergeron L, Sancho JV, Hernández F, Portoles T. Benefits of Ion Mobility Separation in GC-APCI-HRMS Screening: From the Construction of a CCS Library to the Application to Real-World Samples. Anal Chem 2022; 94:9040-9047. [PMID: 35696365 PMCID: PMC9974067 DOI: 10.1021/acs.analchem.2c01118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The performance of gas chromatography (GC) combined with the improved identification properties of ion mobility separation coupled to high-resolution mass spectrometry (IMS-HRMS) is presented as a promising approach for the monitoring of (semi)volatile compounds in complex matrices. The soft ionization promoted by an atmospheric pressure chemical ionization (APCI) source designed for GC preserves the molecular and/or quasi-molecular ion information enabling a rapid, sensitive, and efficient wide-scope screening. Additionally, ion mobility separation (IMS) separates species of interest from coeluting matrix interferences and/or resolves isomers based on their charge, shape, and size, making IMS-derived collision cross section (CCS) a robust and matrix-independent parameter comparable between instruments. In this way, GC-APCI-IMS-HRMS becomes a powerful approach for both target and suspect screening due to the improvements in (tentative) identifications. In this work, mobility data for 264 relevant multiclass organic pollutants in environmental and food-safety fields were collected by coupling GC-APCI with IMS-HRMS, generating CCS information for molecular ion and/or protonated molecules and some in-source fragments. The identification power of GC-APCI-IMS-HRMS for the studied compounds was assessed in complex-matrix samples, including fish feed extracts, surface waters, and different fruit and vegetable samples.
Collapse
|
14
|
Li H, Liu Y, Wang Z, Zhang Q, Xing J, Lv Q. Nontargeted analysis of potential volatile chemicals in correction stationery by using headspace gas chromatography-Orbitrap mass spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
The Oral Wound Healing Potential of Thai Propolis Based on Its Antioxidant Activity and Stimulation of Oral Fibroblast Migration and Proliferation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3503164. [PMID: 35664934 PMCID: PMC9162842 DOI: 10.1155/2022/3503164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022]
Abstract
Introduction. Propolis has demonstrated wound healing effects. Propolis’ effects vary based on its composition and geographical origin. However, there are few reports on the effects of propolis on oral wound healing. The aim of this study was to evaluate the antioxidant and in vitro gingival wound healing effects of the n-hexane extract of propolis (HEP), ethyl acetate extract of propolis (EEP), and aqueous extract of propolis (AEP) fractions of the ethanol extract of Thai propolis. Materials and Methods. The crude ethanol extract of propolis was obtained by maceration with 95% ethanol that was sequentially fractionated with hexane, ethyl acetate, and distilled water. The chemical profiles of the samples were assessed by thin-layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS). Antioxidant activity was determined using DPPH and FRAP assays. The effects of the propolis fractions on human gingival fibroblast (HGF) proliferation, migration, and in vitro wound healing were determined by MTT, modified Boyden chamber, and scratch assay, respectively. Results. We found that solvent polarity greatly affected the extract yield and TLC profiles. The highest extract yield was found in HEP (38.88%), followed by EEP (19.8%) and AEP (1.42%). TLC revealed 7 spots in the crude ethanol extract (Rf 0.36–0.80), 6 spots in HEP (Rf 0.42–0.80) and EEP (Rf 0.36–0.72), and 4 spots in AEP (Rf 0.17–0.79). GC-MS analysis revealed a high amount of triterpenoids in HEP (82.97%) compared with EEP (28.96%). However, no triterpenoid was found in AEP. The highest antioxidant activity and stimulation of HGF proliferation were observed in HEP, followed by EEP and AEP. HEP and EEP, but not AEP, enhanced HGF migration. However, all propolis fractions induced wound closure. Conclusions. HEP contained a large amount of triterpenoids. Antioxidant and in vitro wound closure effects were found in HEP, EEP, and AEP fractions.
Collapse
|
16
|
Li H, Liu Y, Wang Z, Zhang Q, Xing J, Bai H, Lv Q. Non-targeted analysis of unknown volatile components in scented stationery via headspace GC-Orbitrap MS. Talanta 2022; 242:123285. [DOI: 10.1016/j.talanta.2022.123285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 01/30/2023]
|
17
|
Dürig W, Alygizakis NA, Wiberg K, Ahrens L. Application of a novel prioritisation strategy using non-target screening for evaluation of temporal trends (1969-2017) of contaminants of emerging concern (CECs) in archived lynx muscle tissue samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153035. [PMID: 35026275 DOI: 10.1016/j.scitotenv.2022.153035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Most environmental monitoring studies of contaminants of emerging concern (CECs) focus on aquatic species and target specific classes of CECs. Even with wide-scope target screening methods, relevant CECs may be missed. In this study, non-target screening (NTS) was used for tentative identification of potential CECs in muscle tissue of the terrestrial top predator Eurasian lynx (Lynx lynx). Temporal trend analysis was applied as a prioritisation tool for archived samples, using univariate statistical tests (Mann-Kendall and Spearman rank). Pooled lynx muscle tissue collected from 1969 to 2017 was analysed with an eight-point time series using a previously validated screening workflow. Following peak detection, peak alignment, and blank subtraction, 12,941 features were considered for statistical analysis. Prioritisation by time-trend analysis detected 104 and 61 features with statistically significant increasing and decreasing trends, respectively. Following probable molecular formula assignment and elucidation with MetFrag, two compounds with increasing trends, and one with a decreasing trend, were tentatively identified. These results show that, despite low expected concentration levels and high matrix effects in terrestrial species, it is possible to prioritise CECs in archived lynx samples using NTS and univariate statistical approaches.
Collapse
Affiliation(s)
- Wiebke Dürig
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| | - Nikiforos A Alygizakis
- Environmental Institute, Okruzná 784/42, 97241 Koš, Slovak Republic; Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Greece.
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
18
|
Liu Y, Wang Z, Wang W, Xing J, Zhang Q, Ma Q, Lv Q. Non-targeted analysis of unknown volatile chemicals in medical masks. ENVIRONMENT INTERNATIONAL 2022; 161:107122. [PMID: 35121498 DOI: 10.1016/j.envint.2022.107122] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
This paper reports the non-targeted analysis of unknown volatile chemicals in medical masks through headspace gas chromatography-Orbitrap high-resolution mass spectrometry. In view of the difficulties that may be encountered in the qualitative analysis of unknown substances, several typical cases and the corresponding reliable solutions are given from the perspective of comprehensive score and retention index, chemical ionization identification molecular formula, fragment ion detail comparison for distinguishing isomers, and identification of alkanes. With this method, 69 volatile substances were identified in 60 masks. The identified substances were divided into nine categories. Alkanes, esters, benzenes, and alcohols were the top four groups of substances identified in masks and accounted for 34.8%, 15.9%, 10.1%, and 7.2% of the total substances, respectively. In addition, ketones, ethers, phenolics, amides, and other substances were identified. Ethanol, 1,4-dichlorobenzene, toluene, m-xylene, dimethyl glutarate, and N,N-dimethylacetamide had high detection rates. The identified substances were further filtered and screened according to their detection rate, toxicity, and response intensity. Finally, 12 high-risk volatile chemicals in medical masks were listed. This study could serve as a reference for identifying unknown substances and a guide for monitoring volatile chemicals in masks and promoting chemical safety improvements in products.
Collapse
Affiliation(s)
- Yahui Liu
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Zhijuan Wang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Wan Wang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | | | - Qing Zhang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qiang Ma
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qing Lv
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
19
|
Escolà Casas M, Matamoros V. Linking plant-root exudate changes to micropollutant exposure in aquatic plants (Lemna minor and Salvinia natans). A prospective metabolomic study. CHEMOSPHERE 2022; 287:132056. [PMID: 34481172 DOI: 10.1016/j.chemosphere.2021.132056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Recent findings indicate that plant-root exudates can stimulate plant-associated microorganisms to enhance the biodegradation of contaminants in constructed wetlands. To understand this process, we studied the root-exudation changes of two aquatic plants (Lemna minor and Salvinia natans) upon micropollutants exposure (10, 100 and 1000 μg/L mixes containing naproxen, diclofenac, carbamazepine, and benzotriazole). After a 2-day exposure, plant exudates were collected, extracted and non-target analysis was performed with a gas chromatography-high resolution Orbitrap mass-spectrometer. Plants didn't show morphological or growth differences between the control and spiked reactors, but exudation changes were observed in both plants at all concentration levels. Partial least squares discriminant analysis showed that, for Lemna minor, the increase of micropollutants exposure was linked to the reduction of sugar and fatty acid exudation. This may trigger changes in the microbial community living on complex carbon forms. Instead, in Salvinia natans, micropollutants exposure was linked to the release of long-chain compounds such as cuticular waxes and sesquiterpenoids, which might be related to stress signaling. These results demonstrate that plant micropollutant-exposure at environmentally relevant concentration levels triggers changes in root exudates. This may help to design new strategies to enhance micropollutants degradation in nature based solutions such as in constructed wetlands.
Collapse
Affiliation(s)
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| |
Collapse
|
20
|
Hajeb P, Zhu L, Bossi R, Vorkamp K. Sample preparation techniques for suspect and non-target screening of emerging contaminants. CHEMOSPHERE 2022; 287:132306. [PMID: 34826946 DOI: 10.1016/j.chemosphere.2021.132306] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
The progress in sensitivity and resolution in mass spectrometers in recent years provides the possibility to detect a broad range of organic compounds in a single procedure. For this reason, suspect and non-target screening techniques are gaining attention since they enable the detection of hundreds of known and unknown emerging contaminants in various matrices of environmental, food and human sources. Sample preparation is a critical step before analysis as it can significantly affect selectivity, sensitivity and reproducibility. The lack of generic sample preparation protocols is obvious in this fast-growing analytical field, and most studies use those of traditional targeted analysis methods. Among them, solvent extraction and solid phase extraction (SPE) are widely used to extract emerging contaminants from solid and liquid sample types, respectively. Sequential solvent extraction and a combination of different SPE sorbents can cover a broad range of chemicals in the samples. Gel permeation chromatography (GPC) and adsorption chromatography, including acidification, are typically used to remove matrix components such as lipids from complex matrices, but usually at the expense of compound losses. Ideally, the purification of samples intended for non-target analysis should be selective of matrix interferences. Recent studies have suggested quality assurance/quality control measures for suspect and non-target screening, based on expansion and extrapolation of target compound lists, but method validations remain challenging in the absence of analytical standards and harmonized sample preparation approaches.
Collapse
Affiliation(s)
- Parvaneh Hajeb
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Linyan Zhu
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Rossana Bossi
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Roskilde, Denmark.
| |
Collapse
|
21
|
Manz KE, Yamada K, Scheidl L, La Merrill MA, Lind L, Pennell KD. Targeted and Nontargeted Detection and Characterization of Trace Organic Chemicals in Human Serum and Plasma Using QuEChERS Extraction. Toxicol Sci 2021; 185:77-88. [PMID: 34668567 PMCID: PMC8714361 DOI: 10.1093/toxsci/kfab121] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Humans are exposed to a broad range of organic chemicals. Although targeted gas chromatography mass spectrometry techniques are used to quantify a limited number of persistent organic pollutants and trace organic contaminants in biological samples, nontargeted, high-resolution mass spectrometry (HRMS) methods assess the human exposome more extensively. We present a QuEChERS extraction for targeted and nontargeted analysis of trace organic contaminants using HRMS and compare this method to a traditional, cartridge-based solid-phase extraction (SPE). Following validation using reference and spiked serum samples, the method was applied to plasma samples (n = 75) from the Prospective investigation of Obesity, Energy, and Metabolism (POEM) study. We quantified 44 analytes using targeted analysis and 6247 peaks were detected using the nontargeted approach. Over 90% of targeted analytes were at least 90% recovered using the QuEChERS method in spiked serum samples. In nontargeted analysis, 84% of the peaks were above the method detection limit with area counts up to 3.0 × 105 times greater using the QuEChERS method. Of the targeted compounds, 88% were also identified in the nontargeted analysis. We categorized the 4212 chemicals assigned an identity in using EPA's CompTox Dashboard and 1076 chemicals were found in at least one list. The category with the highest number of chemicals was "androgen or estrogen receptor activity." The findings demonstrate that a QuEChERS technique is suitable for both targeted and nontargeted analysis of trace organic contaminants in biological samples.
Collapse
Affiliation(s)
- Katherine E Manz
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Kyle Yamada
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Lukas Scheidl
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, Davis, California 95616, USA
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala 752 36, Sweden
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
22
|
Nowak A, Nowak I. Review of harmful chemical pollutants of environmental origin in honey and bee products. Crit Rev Food Sci Nutr 2021:1-23. [PMID: 34904474 DOI: 10.1080/10408398.2021.2012752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Honey is a natural food with many pro-health properties, which comprises a wide variety of valuable ingredients. It can also be the source of chemical contaminants of environmental origin, including POPs that can contribute to adverse health effects to human. Monitoring the degree of pollution of honey/bee products with hazardous chemicals is important from a nutraceutical point of view. In the present work, overview of recent literature data on chemical pollutants in honey/bee products originating from the environment was performed. Their MLs, MRLs and EDI were discussed. It can be concluded that huge amount of research concerned on the presence of TMs and pesticides in honey. Most of the studies have shown that honey/bee products sampled from urban and industrialized areas were more contaminated than these sampled from ecological and rural locations. More pollutants were usually detected in propolis and bee pollen than in honey. Based on their research and regulations, authors stated, that most of the toxic pollutants of environmental origin in honey/bee products are at levels that do not pose a threat to the health of the potential consumer. The greatest concern relates to pesticides and TMs, because in some research MLs in individual samples were highly exceeded.
Collapse
Affiliation(s)
- Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Ireneusz Nowak
- Faculty of Law and Administration, University of Lodz, Lodz, Poland
| |
Collapse
|
23
|
Castro V, Quintana JB, López-Vázquez J, Carro N, Cobas J, Bilbao D, Cela R, Rodil R. Development and application of an in-house library and workflow for gas chromatography-electron ionization-accurate-mass/high-resolution mass spectrometry screening of environmental samples. Anal Bioanal Chem 2021; 414:6327-6340. [PMID: 34865195 PMCID: PMC9372009 DOI: 10.1007/s00216-021-03810-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/07/2021] [Accepted: 11/26/2021] [Indexed: 11/24/2022]
Abstract
This work presents an optimized gas chromatography–electron ionization–high-resolution mass spectrometry (GC-EI-HRMS) screening method. Different method parameters affecting data processing with the Agilent Unknowns Analysis SureMass deconvolution software were optimized in order to achieve the best compromise between false positives and false negatives. To this end, an accurate-mass library of 26 model compounds was created. Then, five replicates of mussel extracts were spiked with a mixture of these 26 compounds at two concentration levels (10 and 100 ng/g dry weight in mussel, 50 and 500 ng/mL in extract) and injected in the GC-EI-HRMS system. The results of these experiments showed that accurate mass tolerance and pure weight factor (combination of reverse-forward library search) are the most critical factors. The validation of the developed method afforded screening detection limits in the 2.5–5 ng range for passive sampler extracts and 1–2 ng/g for mussel sample extracts, and limits of quantification in the 0.6–3.2 ng and 0.1–1.8 ng/g range, for the same type of samples, respectively, for 17 model analytes. Once the method was optimized, an accurate-mass HRMS library, containing retention indexes, with ca. 355 spectra of derivatized and non-derivatized compounds was generated. This library (freely available at https://doi.org/10.5281/zenodo.5647960), together with a modified Agilent Pesticides Library of over 800 compounds, was applied to the screening of passive samplers, both of polydimethylsiloxane and polar chemical integrative samplers (POCIS), and mussel samples collected in Galicia (NW Spain), where a total of 75 chemicals could be identified.
Collapse
Affiliation(s)
- Verónica Castro
- Department of Analytical Chemistry, Institute of Research On Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Institute of Research On Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Javier López-Vázquez
- Department of Analytical Chemistry, Institute of Research On Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Nieves Carro
- INTECMAR - Technological Institute for the Monitoring of the Marine Environment of Galicia, Peirao de Vilaxoán S/N, 36611, Vilagarcía de Arousa, Spain
| | - Julio Cobas
- INTECMAR - Technological Institute for the Monitoring of the Marine Environment of Galicia, Peirao de Vilaxoán S/N, 36611, Vilagarcía de Arousa, Spain
| | - Denis Bilbao
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain.,Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (PiE-UPV/EHU), 48620, Plentzia, Spain
| | - Rafael Cela
- Department of Analytical Chemistry, Institute of Research On Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Institute of Research On Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
24
|
Muz M, Rojo-Nieto E, Jahnke A. Removing Disturbing Matrix Constituents from Biota Extracts from Total Extraction and Silicone-Based Passive Sampling. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2693-2704. [PMID: 34255885 DOI: 10.1002/etc.5153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/31/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Contaminant analysis in biota extracts can be hampered by matrix interferences caused by, for example, co-extracted lipids that compromise the quality of the analytical data and require frequent maintenance of the analytical instruments. In the present study, using gas chromatography coupled to high resolution mass spectrometry (GC-HRMS), we aimed to develop and validate a straightforward, robust, and reproducible cleanup method with acceptable recoveries for diverse compound classes with a wide range of physicochemical properties representative of pollutant screening in biota extracts. We compared Oasis PRiME HLB cartridges, Agilent Captiva EMR-Lipid cartridges, and "Freeze-Out" with salmon lipids spiked with 113 target chemicals. The EMR-Lipid cartridges provided extracts with low matrix effects at reproducible recoveries of the multi-class target analytes (93 ± 9% and 95 ± 7% for low and high lipid amounts, respectively). The EMR-Lipid cartridges were further tested with spiked pork lipids submitted to total extraction or silicone-based passive sampling. Reproducible recoveries were achieved and matrix residuals were largely removed as demonstrated gravimetrically for both types of extracts. Ion suppression of halogenated compounds was not as efficiently removed by the cleanup of total and silicone-based extracts of pork lipids as for the salmon lipids. However, the samples with clean up provided better instrument robustness than those without cleanup. Hence, EMR-Lipid cartridges were shown to be efficient as a cleanup method in multi-class monitoring of biota samples and open up new possibilities as a suitable cleanup method for silicone extracts in biota passive sampling studies using GC-HRMS analysis. Environ Toxicol Chem 2021;40:2693-2704. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Melis Muz
- Department of Effect-Directed Analysis, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Elisa Rojo-Nieto
- Department of Ecological Chemistry, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Annika Jahnke
- Department of Ecological Chemistry, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
25
|
Liu Y, Tong L, Si N, Xing J, Zhang Q, Ma Q, Lv Q. Non-targeted identification of unknown chemical hazardous substances in infant teether toys by gas chromatography-Orbitrap high resolution mass spectrometry. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112676. [PMID: 34419644 DOI: 10.1016/j.ecoenv.2021.112676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Chemical hazardous substances in teethers may migrate into infant's body through oral exposure, resulting in a potential health risk. In recent years, researchers have performed a series of studies for detecting target chemicals in teethers and other toys, but the presence of unknown chemicals has not been systematically investigated yet. This paper reports the non-targeted identification of unknown chemical hazards that may have migrated from teethers to infants based on gas chromatography-Orbitrap high resolution mass spectrometry. In view of the difficulties that may be encountered in the qualitative analysis of substances, several typical cases and the corresponding reliable solutions are given from the perspective of comprehensive score and retention index, isotope-aided qualitative analysis, chemical ionization identification formula, and fragment ion detail comparison for distinguishing isomers. Finally, 28 substances are identified in 10 teether samples. Among them, phenol, N-methylaniline, 1,6-dioxacyclododecane-7,12-dione and cyclohexanone have higher detection rates. This study not only has valuable reference for the identification of unknown substances, but also has positive guiding role in monitoring potential chemical hazards in toys and promoting the safety of products.
Collapse
Affiliation(s)
- Yahui Liu
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Lili Tong
- Tianjin Product Quality Inspection Technology Research Institute, Tianjin 300384, China
| | - Nianpeng Si
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | | | - Qing Zhang
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qiang Ma
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qing Lv
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
26
|
Gratzer K, Brodschneider R. How and why beekeepers participate in the INSIGNIA citizen science honey bee environmental monitoring project. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37995-38006. [PMID: 33728609 PMCID: PMC8302492 DOI: 10.1007/s11356-021-13379-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/08/2021] [Indexed: 05/19/2023]
Abstract
In the "contributory" citizen science project INSIGNIA, beekeepers carried out non-invasive sampling of their own honey bee colonies for an environmental investigation of pesticide residues and pollen plant origin. We surveyed several traits and attitudes of 69 of the volunteering beekeepers from ten countries. We found that their motivation was similar to that found in previous studies of environmental volunteer motivation, with helping the environment and contributing to scientific knowledge being strong motivators. Our results suggest that receiving laboratory analysis results of the samples from their colonies is the most meaningful way of appreciation for beekeepers, but is not their primary reason for participation. A citizen scientist beekeeper in this study spent on average 10.4 working hours on the project during a sampling season. Our study indicates that most of our volunteers would participate in similar future investigations, or would recommend participation to other beekeepers, underlining the potential of beekeepers as citizen scientists in honey bee research.
Collapse
Affiliation(s)
- Kristina Gratzer
- Institute of Biology, University of Graz, Universitätsplatz 2, Graz, 8010 Austria
| | - Robert Brodschneider
- Institute of Biology, University of Graz, Universitätsplatz 2, Graz, 8010 Austria
| |
Collapse
|
27
|
Misra BB. Advances in high resolution GC-MS technology: a focus on the application of GC-Orbitrap-MS in metabolomics and exposomics for FAIR practices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2265-2282. [PMID: 33987631 DOI: 10.1039/d1ay00173f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gas chromatography-mass spectrometry (GC-MS) provides a complementary analytical platform for capturing volatiles, non-polar and (derivatized) polar metabolites and exposures from a diverse array of matrixes. High resolution (HR) GC-MS as a data generation platform can capture data on analytes that are usually not detectable/quantifiable in liquid chromatography mass-spectrometry-based solutions. With the rise of high-resolution accurate mass (HRAM) GC-MS systems such as GC-Orbitrap-MS in the last decade after the time-of-flight (ToF) renaissance, numerous applications have been found in the fields of metabolomics and exposomics. In a short span of time, a multitude of studies have used GC-Orbitrap-MS to generate exciting new high throughput data spanning from diverse basic to applied research areas. The GC-Orbitrap-MS has found application in both targeted and untargeted efforts for capturing metabolomes and exposomes across diverse studies. In this review, I capture and summarize all the reported studies to date, and provide a snapshot of the milieu of commercial and open-source software solutions, spectral libraries, and informatics solutions available to a GC-Orbitrap-MS system instrument user or a data analyst dealing with these datasets. Lastly, but importantly, I provide an account on data sharing and meta-data capturing solutions that are available to make HRAM GC-MS based metabolomics and exposomics studies findable, accessible, interoperable, and reproducible (FAIR). These FAIR practices would allow data generators and users of GC-HRMS instruments to help the community of GC-MS researchers to collaborate and co-develop exciting tools and algorithms in the future.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Independent Researcher, Pine-211, Raintree Park Dwaraka Krishna, Namburu, AP-522508, India.
| |
Collapse
|
28
|
Sapozhnikova Y, Nuñez A, Johnston J. Screening of chemicals migrating from plastic food contact materials for oven and microwave applications by liquid and gas chromatography - Orbitrap mass spectrometry. J Chromatogr A 2021; 1651:462261. [PMID: 34126375 DOI: 10.1016/j.chroma.2021.462261] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Contamination of food with chemicals migrating from food contact materials (FCMs) is an important area of food safety. This study was aimed to investigate migration of chemicals from plastic FCMs used for microwave and conventional oven heating. Migration tests were conducted for samples of microwave trays, microwave oven bags, and oven bags. GC- and LC-Orbitrap mass spectrometry (MS) was used for non-targeted screening and identification of chemicals with mass error <5 ppm. A non-targeted identification approach was validated with isotopically labeled chemicals to establish acceptable criteria for identification of migrated compounds. A total of 74 migrated compounds were tentatively identified: 24 chemicals by GC-Orbitrap MS with electron ionization (EI), plus 35 and 19 by LC-Orbitrap MS electrospray ionization (ESI) with positive and negative polarities, respectively. Four migrated chemicals were identified by more than one instrumental analysis. Both intentionally added substances (IAS), i.e. additives used in the production of polymeric materials and plastics, and non-intentionally added substances (NIAS), i.e. derivatives and degradation/oxidation products of IAS, were identified among the migrated chemicals. The levels of 25 migrated chemicals were significantly different (p < 0.05) between microwave treatments and conventional oven treatments, where 20 migrants had higher levels for microwave compared with 5 for conventional oven treatments. For several identified chemicals, no previous reports on their migration from FCMs were found.
Collapse
Affiliation(s)
- Yelena Sapozhnikova
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA.
| | - Alberto Nuñez
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - John Johnston
- USDA Food Safety and Inspection Service, 2150 Centre Avenue, Fort Collins, CO, 80526, USA
| |
Collapse
|
29
|
Sapozhnikova Y. Non-targeted screening of chemicals migrating from paper-based food packaging by GC-Orbitrap mass spectrometry. Talanta 2021; 226:122120. [DOI: 10.1016/j.talanta.2021.122120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
|
30
|
Travis SC, Kordas K, Aga DS. Optimized workflow for unknown screening using gas chromatography high-resolution mass spectrometry expands identification of contaminants in silicone personal passive samplers. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9048. [PMID: 33444483 DOI: 10.1002/rcm.9048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Silicone wristbands have emerged as valuable passive samplers for monitoring of personal exposure to environmental contaminants in the rapidly developing field of exposomics. Once deployed, silicone wristbands collect and hold a wealth of chemical information that can be interrogated using high-resolution mass spectrometry (HRMS) to provide a broad coverage of chemical mixtures. METHODS Gas chromatography coupled to Orbitrap™ mass spectrometry (GC/Orbitrap™ MS) was used to simultaneously perform suspect screening (using in-house database) and unknown screening (using vendor databases) of extracts from wristbands worn by volunteers. The goal of this study was to optimize a workflow that allows detection of low levels of priority pollutants, with high reliability. In this regard, a data processing workflow for GC/Orbitrap™ MS was developed using a mixture of 123 environmentally relevant standards consisting of pesticides, flame retardants, organophosphate esters, and polycyclic aromatic hydrocarbons as test compounds. RESULTS The optimized unknown screening workflow using a search index threshold of 750 resulted in positive identification of 70 analytes in validation samples, and a reduction in the number of false positives by over 50%. An average of 26 compounds with high confidence identification, 7 level 1 compounds and 19 level 2 compounds, were observed in worn wristbands. The data were further analyzed via suspect screening and retrospective suspect screening to identify an additional 36 compounds. CONCLUSIONS This study provides three important findings: (1) a clear evidence of the importance of sample cleanup in addressing complex sample matrices for unknown analysis, (2) a valuable workflow for the identification of unknown contaminants in silicone wristband samplers using electron ionization HRMS data, and (3) a novel application of GC/Orbitrap™ MS for the unknown analysis of organic contaminants that can be used in exposomics studies.
Collapse
Affiliation(s)
- Steven C Travis
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, 14260, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, 14214, USA
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, 14260, USA
| |
Collapse
|
31
|
Belarbi S, Vivier M, Zaghouani W, Sloovere AD, Agasse-Peulon V, Cardinael P. Comparison of new approach of GC-HRMS (Q-Orbitrap) to GC-MS/MS (triple-quadrupole) in analyzing the pesticide residues and contaminants in complex food matrices. Food Chem 2021; 359:129932. [PMID: 33945988 DOI: 10.1016/j.foodchem.2021.129932] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/25/2022]
Abstract
Performances of multiresidue analysis of one hundred of pesticides and contaminants, using GC-Q-Orbitrap method in full scan mode were compared to those obtained with GC-triple-quadrupole method in multiple reaction monitoring mode. In terms of sensitivity, 86% of molecules exhibited lower limit of detection values using GC-Q-Orbitrap than using GC-triple-quadrupole. For the GC-Q-Orbitrap method, more than 85% of the pesticides and contaminants showed good recovery [70-120%] in wheat samples, with relative standard deviation values < 20%. GC-Q-Orbitrap method appeared the most sensitive for most pesticides studied in wheat with limit of quantification values ranged between 0.1 µg/kg and 4 µg/kg. Moreover, the matrix effect was acceptable in wheat extracts for 84 molecules but strong suppression of the chromatographic signal was observed for 16 molecules for the GC-Q-Orbitrap method. The injection of unpurified wheat extracts spiked at 10 µg/kg proved the potential of the GC-Q-Orbitrap method for use in performing high-throughput pesticide screening.
Collapse
Affiliation(s)
- Saida Belarbi
- Normandie Univ, Laboratoire SMS-EA3233, UNIROUEN, FR3038, Place Emile Blondel, F-76821, Mont-Saint-Aignan Cedex, France; SGS France laboratoire de Rouen, Technopôle du Madrillet, 65 Avenue Ettore Bugatti, Saint Etienne du Rouvray F-76801 Cedex, France
| | - Martin Vivier
- SGS France laboratoire de Rouen, Technopôle du Madrillet, 65 Avenue Ettore Bugatti, Saint Etienne du Rouvray F-76801 Cedex, France
| | - Wafa Zaghouani
- SGS France laboratoire de Rouen, Technopôle du Madrillet, 65 Avenue Ettore Bugatti, Saint Etienne du Rouvray F-76801 Cedex, France
| | - Aude De Sloovere
- SGS France laboratoire de Rouen, Technopôle du Madrillet, 65 Avenue Ettore Bugatti, Saint Etienne du Rouvray F-76801 Cedex, France
| | - Valérie Agasse-Peulon
- Normandie Univ, Laboratoire SMS-EA3233, UNIROUEN, FR3038, Place Emile Blondel, F-76821, Mont-Saint-Aignan Cedex, France
| | - Pascal Cardinael
- Normandie Univ, Laboratoire SMS-EA3233, UNIROUEN, FR3038, Place Emile Blondel, F-76821, Mont-Saint-Aignan Cedex, France.
| |
Collapse
|
32
|
Höjer Holmgren K, Mörén L, Ahlinder L, Larsson A, Wiktelius D, Norlin R, Åstot C. Route Determination of Sulfur Mustard Using Nontargeted Chemical Attribution Signature Screening. Anal Chem 2021; 93:4850-4858. [PMID: 33709707 PMCID: PMC8041246 DOI: 10.1021/acs.analchem.0c04555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Route determination
of sulfur mustard was accomplished through
comprehensive nontargeted screening of chemical attribution signatures.
Sulfur mustard samples prepared via 11 different synthetic routes
were analyzed using gas chromatography/high-resolution mass spectrometry.
A large number of compounds were detected, and multivariate data analysis
of the mass spectrometric results enabled the discovery of route-specific
signature profiles. The performance of two supervised machine learning
algorithms for retrospective synthetic route attribution, orthogonal
partial least squares discriminant analysis (OPLS-DA) and random forest
(RF), were compared using external test sets. Complete classification
accuracy was achieved for test set samples (2/2 and 9/9) by using
classification models to resolve the one-step routes starting from
ethylene and the thiodiglycol chlorination methods used in the two-step
routes. Retrospective determination of initial thiodiglycol synthesis
methods in sulfur mustard samples, following chlorination, was more
difficult. Nevertheless, the large number of markers detected using
the nontargeted methodology enabled correct assignment of 5/9 test
set samples using OPLS-DA and 8/9 using RF. RF was also used to construct
an 11-class model with a total classification accuracy of 10/11. The
developed methods were further evaluated by classifying sulfur mustard
spiked into soil and textile matrix samples. Due to matrix effects
and the low spiking level (0.05% w/w), route determination was more
challenging in these cases. Nevertheless, acceptable classification
performance was achieved during external test set validation: chlorination
methods were correctly classified for 12/18 and 11/15 in spiked soil
and textile samples, respectively.
Collapse
Affiliation(s)
- Karin Höjer Holmgren
- Department of CBRN Defence & Security, The Swedish Defence Research Agency (FOI), Cementvägen 20, Umeå SE-901 82, Sweden
| | - Lina Mörén
- Department of CBRN Defence & Security, The Swedish Defence Research Agency (FOI), Cementvägen 20, Umeå SE-901 82, Sweden
| | - Linnea Ahlinder
- Department of CBRN Defence & Security, The Swedish Defence Research Agency (FOI), Cementvägen 20, Umeå SE-901 82, Sweden
| | - Andreas Larsson
- Department of CBRN Defence & Security, The Swedish Defence Research Agency (FOI), Cementvägen 20, Umeå SE-901 82, Sweden
| | - Daniel Wiktelius
- Department of CBRN Defence & Security, The Swedish Defence Research Agency (FOI), Cementvägen 20, Umeå SE-901 82, Sweden
| | - Rikard Norlin
- Department of CBRN Defence & Security, The Swedish Defence Research Agency (FOI), Cementvägen 20, Umeå SE-901 82, Sweden
| | - Crister Åstot
- Department of CBRN Defence & Security, The Swedish Defence Research Agency (FOI), Cementvägen 20, Umeå SE-901 82, Sweden
| |
Collapse
|
33
|
Mazur DM, Detenchuk EA, Sosnova AA, Artaev VB, Lebedev AT. GC-HRMS with Complementary Ionization Techniques for Target and Non-target Screening for Chemical Exposure: Expanding the Insights of the Air Pollution Markers in Moscow Snow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:144506. [PMID: 33360203 DOI: 10.1016/j.scitotenv.2020.144506] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Environmental exposure assessment is an important step in establishing a list of local priority pollutants and finding the sources of the threats for proposing appropriate protection measures. Exposome targeted and non-targeted analysis as well as suspect screening may be applied to reveal these pollutants. The non-targeted screening is a challenging task and requires the application of the most powerful analytical tools available, assuring wide analytical coverage, sensitivity, identification reliability, and quantitation. Moscow, Russia, is the largest and most rapidly growing European city. That rapid growth is causing changes in the environment which require periodic clarification of the real environmental situation regarding the presence of the classic pollutants and possible new contaminants. Gas chromatography - high resolution time-of-flight mass spectrometry (GC-HR-TOFMS) with electron ionization (EI), positive chemical ionization (PCI), and electron capture negative ionization (ECNI) ion sources were used for the analysis of Moscow snow samples collected in the early spring of 2018 in nine different locations. Collection of snow samples represents an efficient approach for the estimation of long-term air pollution, due to accumulation and preservation of environmental contaminants by snow during winter period. The high separation power of GC, complementary ionization methods, high mass accuracy, and wide mass range of TOFMS allowed for the identification of several hundred organic compounds belonging to the various classes of pollutants, exposure to which could represent a danger to the health of the population. Although quantitative analysis was not a primary aim of the study, targeted analysis revealed that some priority pollutants exceeded the established safe levels. Thus, dibutylphthalate concentration was over 10-fold higher than its safe level (0.001 mg/L), while benz[a]pyrene concentration exceeded Russian maximal permissible concentration value of 5 ng/L in three samples. The large amount of information generated during the combination of targeted and non-targeted analysis and screening samples for suspects makes it feasible to apply the big data analysis to observe the trends and tendencies in the pollution exposome across the city.
Collapse
Affiliation(s)
- D M Mazur
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow 119991, Russia
| | - E A Detenchuk
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow 119991, Russia
| | - A A Sosnova
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow 119991, Russia
| | - V B Artaev
- LECO Corporation, 3000 Lakeview Avenue, St. Joseph, MI, USA.
| | - A T Lebedev
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow 119991, Russia.
| |
Collapse
|
34
|
Pleil JD, Lowe CN, Wallace MAG, Williams AJ. Using the US EPA CompTox Chemicals Dashboard to interpret targeted and non-targeted GC-MS analyses from human breath and other biological media. J Breath Res 2021; 15:025001. [PMID: 33734097 DOI: 10.1088/1752-7163/abdb03] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The U.S. EPA CompTox Chemicals Dashboard is a freely available web-based application providing access to chemistry, toxicity, and exposure data for ∼900 000 chemicals. Data, search functionality, and prediction models within the Dashboard can help identify chemicals found in environmental analyses and human biomonitoring. It was designed to deliver data generated to support computational toxicology to reduce chemical testing on animals and provide access to new approach methodologies including prediction models. The inclusion of mass and formula-based searches, together with relevant ranking approaches, allows for the identification and prioritization of exogenous (environmental) chemicals from high resolution mass spectrometry in need of further evaluation. The Dashboard includes chemicals that can be detected by liquid chromatography, gas chromatography-mass spectrometry (GC-MS) and direct-MS analyses, and chemical lists have been added that highlight breath-borne volatile and semi-volatile organic compounds. The Dashboard can be searched using various chemical identifiers (e.g. chemical synonyms, CASRN and InChIKeys), chemical formula, MS-ready formulae monoisotopic mass, consumer product categories and assays/genes associated with high-throughput screening data. An integrated search at a chemical level performs searches against PubMed to identify relevant published literature. This article describes specific procedures using the Dashboard as a first-stop tool for exploring both targeted and non-targeted results from GC-MS analyses of chemicals found in breath, exhaled breath condensate, and associated aerosols.
Collapse
Affiliation(s)
- Joachim D Pleil
- Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, United States of America
| | | | | | | |
Collapse
|
35
|
Li R, Liu Y, Wang Z, Zhang Q, Bai H, Lv Q. High resolution GC–Orbitrap MS for nitrosamines analysis: Method performance, exploration of solid phase extraction regularity, and screening of children’s products. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Arpna Kumari, Rajinder Kaur. Chromatographic Methods for the Determination of Phthalic Acid Esters in Different Samples. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821010056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Flores JM, Gámiz V, Jiménez-Marín Á, Flores-Cortés A, Gil-Lebrero S, Garrido JJ, Hernando MD. Impact of Varroa destructor and associated pathologies on the colony collapse disorder affecting honey bees. Res Vet Sci 2021; 135:85-95. [PMID: 33454582 DOI: 10.1016/j.rvsc.2021.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/29/2020] [Accepted: 01/03/2021] [Indexed: 11/19/2022]
Abstract
Varroa mite is the major threat to the western honey bee, Apis mellifera, and the cause of significant economic losses in the apiculture industry. Varroa destructor feeds on brood and adult bees being responsible for vectoring virus infections and other diseases. This study analyses the role of Varroa and other associated pathogens, such as viruses or the fungus Nosema ceranae, and their relationships regarding the viability of the bee colony. It has been carried out during one beekeeping season, with the subspecies A. m. iberiensis, commonly used in the apiculture industry of Spain. Our study shows a significant relationship between the presence of Varroa destructor and viral infection by deformed wing virus and acute bee paralysis virus. Nosema ceranae behaved as an opportunistic pathogen. In addition, this study explored a potential naturally occurring subset of peptides, responsible for the humoral immunity of the bees. The expression of the antimicrobial peptides abaecin and melittin showed a significant relationship with the levels of Varroa mite and the deformed wing virus.
Collapse
Affiliation(s)
- José M Flores
- Department of Zoology, Faculty of Veterinary, University of Córdoba, Campus of Rabanales, 14071 Córdoba, Spain.
| | - Victoria Gámiz
- Department of Zoology, Faculty of Veterinary, University of Córdoba, Campus of Rabanales, 14071 Córdoba, Spain
| | - Ángeles Jiménez-Marín
- Department of Genetic, Faculty of Veterinary, Grupo de Genómica y Mejora Animal, University of Córdoba, Campus of Rabanales, 14071 Córdoba, Spain
| | - Alicia Flores-Cortés
- Department of Genetic, Faculty of Veterinary, Grupo de Genómica y Mejora Animal, University of Córdoba, Campus of Rabanales, 14071 Córdoba, Spain
| | - Sergio Gil-Lebrero
- Department of Zoology, Faculty of Veterinary, University of Córdoba, Campus of Rabanales, 14071 Córdoba, Spain
| | - Juan J Garrido
- Department of Genetic, Faculty of Veterinary, Grupo de Genómica y Mejora Animal, University of Córdoba, Campus of Rabanales, 14071 Córdoba, Spain
| | - María Dolores Hernando
- National Institute for Agricultural and Food Research and Technology (INIA), 28040 Madrid, Spain
| |
Collapse
|
38
|
Ahad JME, Macdonald RW, Parrott JL, Yang Z, Zhang Y, Siddique T, Kuznetsova A, Rauert C, Galarneau E, Studabaker WB, Evans M, McMaster ME, Shang D. Polycyclic aromatic compounds (PACs) in the Canadian environment: A review of sampling techniques, strategies and instrumentation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:114988. [PMID: 32679437 DOI: 10.1016/j.envpol.2020.114988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
A wide variety of sampling techniques and strategies are needed to analyze polycyclic aromatic compounds (PACs) and interpret their distributions in various environmental media (i.e., air, water, snow, soils, sediments, peat and biological material). In this review, we provide a summary of commonly employed sampling methods and strategies, as well as a discussion of routine and innovative approaches used to quantify and characterize PACs in frequently targeted environmental samples, with specific examples and applications in Canadian investigations. The pros and cons of different analytical techniques, including gas chromatography - flame ionization detection (GC-FID), GC low-resolution mass spectrometry (GC-LRMS), high performance liquid chromatography (HPLC) with ultraviolet, fluorescence or MS detection, GC high-resolution MS (GC-HRMS) and compound-specific stable (δ13C, δ2H) and radiocarbon (Δ14C) isotope analysis are considered. Using as an example research carried out in Canada's Athabasca oil sands region (AOSR), where alkylated polycyclic aromatic hydrocarbons and sulfur-containing dibenzothiophenes are frequently targeted, the need to move beyond the standard list of sixteen EPA priority PAHs and for adoption of an AOSR bitumen PAC reference standard are highlighted.
Collapse
Affiliation(s)
- Jason M E Ahad
- Geological Survey of Canada, Natural Resources Canada, Québec, QC, G1K 9A9, Canada.
| | - Robie W Macdonald
- Institute of Ocean Sciences, Department of Fisheries and Oceans, Sidney, BC, V8L 4B2, Canada
| | - Joanne L Parrott
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | - Zeyu Yang
- Emergencies Science and Technology Section, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - Yifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Tariq Siddique
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2G7, Canada
| | - Alsu Kuznetsova
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2G7, Canada
| | - Cassandra Rauert
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | - Elisabeth Galarneau
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | | | - Marlene Evans
- Water Science and Technology Directorate, Environment and Climate Change Canada, Saskatoon, SK, S7N 3H5, Canada
| | - Mark E McMaster
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | - Dayue Shang
- Pacific Environmental Science Centre, Environment and Climate Change Canada, North Vancouver, BC, V7H 1B1, Canada
| |
Collapse
|
39
|
Estimation of Dietary Exposure to Contaminants Transferred from the Packaging in Fatty Dry Foods Based on Cereals. Foods 2020; 9:foods9081038. [PMID: 32752291 PMCID: PMC7466214 DOI: 10.3390/foods9081038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022] Open
Abstract
Food packaging has received special attention from the food safety standpoint since it could be a potential source of contamination through the migration of chemical substances from the packaging material into food. The assessment of the exposure through the diet to these contaminants from food packaging is necessary. In this work, an estimation of dietary exposure of the young Spanish population (1–17 years) to target chemicals from packaging for fatty dried foods based on cereals was assessed. For this purpose, a gas chromatography coupled to mass spectrometry (GC–MS) method was developed for screening of volatile and semivolatile compounds, potential migrants from the packaging. Then, this technique was used to quantify 8 target analytes, which were previously identified in the packaging (including phthalates, acetyl tributyl citrate (ATBC), butylated hydroxytoluene (BHT) and octocrylene), in composite food samples of fatty cereals prepared according to the consumption data for different age groups. Among the phthalates, exposure to diethyl phthalate (DEP) was the highest for the three groups considered (0.0761–0.545 µg/kg body weight/day), followed by bis(2-ethylhxyl)phathalate (DEHP), while the lowest mean intake was found for di-n-octyl phathalate (DNOP; 0.00463–0.0209 µg/kg body weight/day). The estimated dietary exposures did not exceed for any of the analytes the corresponding established tolerable daily intakes.
Collapse
|
40
|
Cobo-Golpe M, Ramil M, Cela R, Rodríguez I. Portable dehumidifiers condensed water: A novel matrix for the screening of semi-volatile compounds in indoor air. CHEMOSPHERE 2020; 251:126346. [PMID: 32135372 DOI: 10.1016/j.chemosphere.2020.126346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
The comprehensive identification of organic species existing in indoor environments is a key issue to understand their impact in human health. This study proposes the analysis of condensed water samples, collected with portable dehumidifiers, to characterize semi-volatile compounds in the gas phase of confined areas. Water samples are concentrated by solid-phase extraction (SPE). The obtained extracts are analysed by gas chromatography (GC) time-of-flight mass spectrometry (TOF-MS), following a non-target screening data mining approach. In first term, spectra of deconvoluted compounds are compared with those in NIST low resolution library; thereafter, tentative identifications are verified using an in-house database of accurate electron ionization (EI) MS spectra. Chromatographic (retention index) and spectral data are combined for unambiguous species identification. The potential of condensed water samples to reflect changes in the composition of indoor atmospheres, the match between data obtained using different dehumidifiers, and the relative concentration efficiency of condensed water compared to that attained by active sampling of moderate air volumes are discussed. A total of 141 semi-volatile compounds were identified (98 confirmed against authentic standards) in a set of 21 samples obtained from different homes and working places. This list contains more than 40 fragrances (including several potential allergens), solvents and intermediates in the production of polymeric materials, plasticizers and flame retardants.
Collapse
Affiliation(s)
- M Cobo-Golpe
- Department of Analytical Chemistry, Nutrition and Food Sciences, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - M Ramil
- Department of Analytical Chemistry, Nutrition and Food Sciences, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - R Cela
- Department of Analytical Chemistry, Nutrition and Food Sciences, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - I Rodríguez
- Department of Analytical Chemistry, Nutrition and Food Sciences, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
41
|
Vargas-Pérez M, Domínguez I, González FJE, Frenich AG. Application of full scan gas chromatography high resolution mass spectrometry data to quantify targeted-pesticide residues and to screen for additional substances of concern in fresh-food commodities. J Chromatogr A 2020; 1622:461118. [DOI: 10.1016/j.chroma.2020.461118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 11/30/2022]
|
42
|
Determination of polychlorinated biphenyls in tea using gas chromatography–tandem mass spectrometry combined with dispersive solid phase extraction. Food Chem 2020; 316:126290. [DOI: 10.1016/j.foodchem.2020.126290] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/16/2019] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
|
43
|
Pico Y, Alfarhan AH, Barcelo D. How recent innovations in gas chromatography-mass spectrometry have improved pesticide residue determination: An alternative technique to be in your radar. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115720] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|