1
|
Madheshiya P, Sen Gupta G, Tiwari S. Role of nitrogen amendments on carbon fixation efficiency of ozone exposed lemongrass: Interrelationship between secondary metabolite production and yield. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137016. [PMID: 39752830 DOI: 10.1016/j.jhazmat.2024.137016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 03/12/2025]
Abstract
The phytotoxic nature of Ozone (O3) has been well documented in a number of scientific literatures during the last few decades. Although there are sufficient studies related to O3 impact assessment studies on crop plants and tree species, studies pertaining to O3 effects on medicinal plants are comparatively sparse. During the recent years, the mitigation strategies for management of O3 stress in plants have also assumed paramount significance. The present study sought to explore the combined impact of soil nitrogen (N) amendments and O3 doses on morphological and physiological responses, and metabolite profile of lemongrass, an aromatic medicinal plant. The experiment utilised three levels of inorganic soil N amendments within Open Top Chambers, subjected to ambient (A) and two elevated O3 doses. For each O3 treatment, control was also maintained, wherein no N amendments were done. The objective of the study was to study the pattern of allocation of carbon pool towards biomass accumulation and secondary metabolite production under N amendments and O3 exposure conditions in lemongrass. The results of the physiological traits clearly suggest the resurgence of the photosynthetic machinery of O3 exposed lemongrass. The improved response of the carbon fixation processes upon N amendments resulted in supplemented carbon pool, diverting it towards increased biomass accumulation and yield of lemongrass, which was depreciated under O3 stress. This study demonstrates that N amendments in O3 stressed lemongrass enhance bioactive compound production, and sustain yield. Further researches are required to establish optimal N doses under varying O3 conditions, potentially advancing pharmaceutical applications of O3 exposed medicinal plants.
Collapse
Affiliation(s)
- Parvati Madheshiya
- Laboratory of Ecotoxicology, Centre of Advanced Studies, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gereraj Sen Gupta
- Laboratory of Ecotoxicology, Centre of Advanced Studies, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Supriya Tiwari
- Laboratory of Ecotoxicology, Centre of Advanced Studies, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Madheshiya P, Gupta GS, Tiwari S. Cross-talk between antioxidant production and secondary metabolite biosynthesis under combined effects of ozone stress and nitrogen amendments: A case study of lemongrass. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108876. [PMID: 38945097 DOI: 10.1016/j.plaphy.2024.108876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The present experiment was done to study the interactive effects of soil nitrogen (N) amendments and elevated ozone (O3) (N-O3) on a medicinal plant, lemongrass [Cymbopogon flexuosus (Steud.) (Wats.)]. The experiment used two doses of inorganic soil nitrogen (N1, recommended and N2, 1.5-times recommended dose) in open-top chambers under ambient and elevated (ambient + 15 ppb and ambient + 30 ppb) O3 conditions. To analyze various characteristics, samples were collected at 45 and 90 days after transplantation (DAT). Additionally, at 110 days after transplantation (DAT), the metabolite contents of the leaves and essential oils were analyzed. The present study aims to investigate the mechanistic approach involving the crosstalk between antioxidant production and secondary metabolite biosynthesis in lemongrass upon N-O3 interactions. The present experiment showed that N amendments can be an efficient measure to manage O3 injury in plants, along with ensuring a balance between primary and secondary metabolic pathways, thus sustaining the plant defense and production of bioactive compounds, simultaneously. Under N-O3, not only the Halliwell asada pathway was stimulated resulting in the increased activities and concentrations of antioxidant pools; the shikimate, phenylpropanoid and mevalonic acid pathways were also invigorated, producing more number and contents of secondary metabolites (SMs), compared with plants that were not treated with N doses. This study suggests that soil nitrogen amendments will improve the therapeutic qualities of lemongrass, along with the strengthening of its antioxidant machinery, upon exposure to O3 stress.
Collapse
Affiliation(s)
- Parvati Madheshiya
- Lab of Ecotoxicology, Centre of Advanced Studies, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Gereraj Sen Gupta
- Lab of Ecotoxicology, Centre of Advanced Studies, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Supriya Tiwari
- Lab of Ecotoxicology, Centre of Advanced Studies, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
3
|
Zhao Y, Guo B, Liu Z, Wang X, Xiao G, Bol R. A meta-analysis of elevated O3 effects on herbaceous plants antioxidant oxidase activity. PLoS One 2024; 19:e0305688. [PMID: 38917096 PMCID: PMC11198797 DOI: 10.1371/journal.pone.0305688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Increases in near-surface ozone (O3) concentrations is a global environmental problem. High-concentration O3 induces stress in plants, which can lead to visible damage to plants, reduced photosynthesis, accelerated aging, inhibited growth, and can even plant death. However, its impact has not been comprehensively evaluated because of the response differences between individual plant species, environmental O3 concentration, and duration of O3 stress in plants. We used a meta-analysis approach based on 31 studies 343 observations) to examine the effects of elevated O3 on malondialdehyde (MDA), superoxide dismutase (SOD), and peroxidase (POD) activities in herbaceous plants. Globally, important as they constitute the majority of the world's food crops. We partitioned the variation in effect size found in the meta-analysis according to the presence of plant species (ornamental herb, rice, and wheat), O3 concentration, and duration of O3 stress in plants. Our results showed that the effects of elevated O3 on plant membrane lipid peroxidation depending on plant species, O3 concentration, and duration of O3 stress in plants. The wheat SOD and POD activity was significantly lower compared to the herbs and rice (P<0.01). The SOD activity of all herbaceous plants increased by 34.6%, 10.5%, and 26.3% for exposure times to elevated O3 environments of 1-12, 13-30, and 31-60 days, respectively. When the exposure time was more than 60 days, SOD activity did not increase but significantly decreased by 12.1%. However, the POD activity of herbaceous plants increased by 30.4%, 57.3%, 21.9% and 5.81%, respectively, when exposure time of herbaceous plants in elevated O3 environment was 1-12, 13-30, 31-60 and more than 60 days. Our meta-analysis revealed that (1) rice is more resistant to elevated O3 than wheat and ornamental herbs likely because of the higher activity of antioxidant components (e.g., POD) in the symplasts, (2) exposure to elevated O3 concentrations for >60 days, may result in antioxidant SOD lose its regulatory ability, and the antioxidant component POD in the symplast is mainly used to resist O3 damage, and (3) the important factors affected the activity of SOD and POD in plants were not consistent: the duration of O3 stress in plants was more important than plant species and O3 concentration for SOD activity. However, for POD activity, plant species was the most important factor.
Collapse
Affiliation(s)
- Yi Zhao
- School of Chemistry and Environmental Engineering, Liaoning University of Technology, Jinzhou, Liaoning, China
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Bing Guo
- School of Chemistry and Environmental Engineering, Liaoning University of Technology, Jinzhou, Liaoning, China
| | - Zhouli Liu
- College of Life Science and Engineering, Shenyang University, Shenyang, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang, China
| | - Xiaohan Wang
- School of Chemistry and Environmental Engineering, Liaoning University of Technology, Jinzhou, Liaoning, China
| | - Guangmin Xiao
- Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sci-ence/Hebei Fertilizer Technology Innovation Center, Shijiazhuang, China
| | - Roland Bol
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
- School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor, United Kingdom
| |
Collapse
|
4
|
Paoletti E, Pagano M, Zhang L, Badea O, Hoshika Y. Allocation of Nutrients and Leaf Turnover Rate in Poplar under Ambient and Enriched Ozone Exposure and Soil Nutrient Manipulation. BIOLOGY 2024; 13:232. [PMID: 38666844 PMCID: PMC11048010 DOI: 10.3390/biology13040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
An excess of ozone (O3) is currently stressing plant ecosystems and may negatively affect the nutrient use of plants. Plants may modify leaf turnover rates and nutrient allocation at the organ level to counteract O3 damage. We investigated leaf turnover rate and allocation of primary (C, N, P, K) and secondary macronutrients (Ca, S, Mg) under various O3 treatments (ambient concentration, AA, with a daily hourly average of 35 ppb; 1.5 × AA; 2.0 × AA) and fertilization levels (N: 0 and 80 kg N ha-1 y-1; P: 0 and 80 kg N ha-1 y-1) in an O3-sensitive poplar clone (Oxford: Populus maximowiczii Henry × P. berolinensis Dippel) in a Free-Air Controlled Exposure (FACE) experiment. The results indicated that both fertilization and O3 had a significant impact on the nutrient content. Specifically, fertilization and O3 increased foliar C and N contents (+5.8% and +34.2%, respectively) and root Ca and Mg contents (+46.3% and +70.2%, respectively). Plants are known to increase the content of certain elements to mitigate the damage caused by high levels of O3. The leaf turnover rate was accelerated as a result of increased O3 exposure, indicating that O3 plays a main role in influencing this physiological parameter. A PCA result showed that O3 fumigation affected the overall allocation of primary and secondary elements depending on the organ (leaves, stems, roots). As a conclusion, such different patterns of element allocation in plant leaves in response to elevated O3 levels can have significant ecological implications.
Collapse
Affiliation(s)
- Elena Paoletti
- IRET-CNR, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Florence, Italy; (E.P.); (Y.H.)
| | - Mario Pagano
- IRET-CNR, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Florence, Italy; (E.P.); (Y.H.)
| | - Lu Zhang
- College of Landscape and Architecture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China;
| | - Ovidiu Badea
- National Institute for Research and Development in Forestry ‘Marin Drăcea’, 128, Eroilor Bvd., 077190 Voluntari, Romania;
- Faculty of Silviculture and Forest Engineering, Transilvania University, 1, Ludwig van Beethoven Street, 500123 Brasov, Romania
| | - Yasutomo Hoshika
- IRET-CNR, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Florence, Italy; (E.P.); (Y.H.)
| |
Collapse
|
5
|
Nowroz F, Hasanuzzaman M, Siddika A, Parvin K, Caparros PG, Nahar K, Prasad PV. Elevated tropospheric ozone and crop production: potential negative effects and plant defense mechanisms. FRONTIERS IN PLANT SCIENCE 2024; 14:1244515. [PMID: 38264020 PMCID: PMC10803661 DOI: 10.3389/fpls.2023.1244515] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024]
Abstract
Ozone (O3) levels on Earth are increasing because of anthropogenic activities and natural processes. Ozone enters plants through the leaves, leading to the overgeneration of reactive oxygen species (ROS) in the mesophyll and guard cell walls. ROS can damage chloroplast ultrastructure and block photosynthetic electron transport. Ozone can lead to stomatal closure and alter stomatal conductance, thereby hindering carbon dioxide (CO2) fixation. Ozone-induced leaf chlorosis is common. All of these factors lead to a reduction in photosynthesis under O3 stress. Long-term exposure to high concentrations of O3 disrupts plant physiological processes, including water and nutrient uptake, respiration, and translocation of assimilates and metabolites. As a result, plant growth and reproductive performance are negatively affected. Thus, reduction in crop yield and deterioration of crop quality are the greatest effects of O3 stress on plants. Increased rates of hydrogen peroxide accumulation, lipid peroxidation, and ion leakage are the common indicators of oxidative damage in plants exposed to O3 stress. Ozone disrupts the antioxidant defense system of plants by disturbing enzymatic activity and non-enzymatic antioxidant content. Improving photosynthetic pathways, various physiological processes, antioxidant defense, and phytohormone regulation, which can be achieved through various approaches, have been reported as vital strategies for improving O3 stress tolerance in plants. In plants, O3 stress can be mitigated in several ways. However, improvements in crop management practices, CO2 fertilization, using chemical elicitors, nutrient management, and the selection of tolerant crop varieties have been documented to mitigate O3 stress in different plant species. In this review, the responses of O3-exposed plants are summarized, and different mitigation strategies to decrease O3 stress-induced damage and crop losses are discussed. Further research should be conducted to determine methods to mitigate crop loss, enhance plant antioxidant defenses, modify physiological characteristics, and apply protectants.
Collapse
Affiliation(s)
- Farzana Nowroz
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Ayesha Siddika
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Khursheda Parvin
- Department of Horticulture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Pedro Garcia Caparros
- Agronomy Department of Superior School Engineering, University of Almería, Almería, Spain
| | - Kamrun Nahar
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - P.V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
6
|
Gupta GS, Madheshiya P, Tiwari S. Using soil nitrogen amendments in mitigating ozone stress in agricultural crops: a case study of cluster beans. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:13. [PMID: 38052762 DOI: 10.1007/s10661-023-12146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
The climate change scenario in the coming years is liable to have serious negative consequences on agricultural productivity. Increasing tropospheric ozone concentration is an important aspect of climate change, which, due to its oxidative nature, is injurious to the plants. Due to the multifarious nature and continuously increasing concentration of tropospheric ozone, it is prerequisite to develop strategies to manage ozone stress in plants. Present study not only evaluates the potential of soil nitrogen amendments in ameliorating ozone stress in plants, but also focuses upon the mechanistic approaches adopted by the different plant cultivars to combat ozone stress. Three doses of nitrogen amendments, recommended (N1), 1.5× recommended (N2) and 2× recommended (N3), were given to two cultivars (S-151 and PUSA-N) of Cymopsis tetragonoloba exposed to ambient ozone stress. Control plants were also maintained in which no nitrogen treatment was given. Nitrogen supplementation reduced the root nodulation frequency and leghaemoglobin content, which subsequently increased the cellular nitrogen metabolism as evident through increase in the activities of nitrate reductase and nitrite reductase in both the test cultivars. The positive effects of nitrogen amendments are clearly evident in the 1D protein profile studies which showed a greater accumulation of larger sub-units of RuBisCO in nitrogen amended plants. The results clearly indicate that N2 treatment effectively enhanced the yield of both the cultivars (84.8% and 76.37%, in S-151 and PUSA-N, respectively); however, the mechanistic approach adopted by the two cultivars was different. Whereas the yield quantity showed higher increments in S-151, the yield quality parameters (carbohydrates and nitrogen contents) responded more positively in PUSA-N.
Collapse
Affiliation(s)
- Gereraj Sen Gupta
- Department of Botany, Institute of Science, Centre of Advanced Studies, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Parvati Madheshiya
- Department of Botany, Institute of Science, Centre of Advanced Studies, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Supriya Tiwari
- Department of Botany, Institute of Science, Centre of Advanced Studies, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
7
|
Yamaguchi M, Matsumoto M, Miyaguchi K, Li J, Aoki T, Ariura R, Fuse T, Zhang Y, Kinose Y, Watanabe M, Izuta T. Reduced ascorbate pool and its maintenance are important determinants of O 3 damage to net photosynthetic rate in Fagus crenata under elevated CO 2 and soil N supply. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 907:168102. [PMID: 39491189 DOI: 10.1016/j.scitotenv.2023.168102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
Many studies have reported modification in the degree of O3 damage to photosynthesis by elevated CO2 and soil N supply. However, the mechanism underlying the modification is unclear. To clarify the important determinants in the degree of O3 damage to net photosynthetic rate (A) in the leaves of Fagus crenata (Siebold's beech) under elevated CO2 and with different soil N supply, F. crenata seedlings were grown for two growing seasons under combinations of two O3 levels (low concentration at approximately 4 nmol mol-1 and two times the ambient concentration), two CO2 levels (ambient and 700 μmol mol-1), and three levels of soil N supply (0, 50 and 100 kg N ha-1 year-1). During the second growing season, we determined A, stomatal conductance for calculating phytotoxic O3 dose (POD), antioxidant concentrations, and antioxidative enzyme activities in the leaves for evaluating O3 detoxification capacity. We calculated the O3-induced reduction in mean A (ΔAmean) during the second growing season using the data reported in our previous study and plotted it against mean daily POD without flux threshold (POD0). There was no significant linear nor non-linear relationship, suggesting that not only POD0 but also O3 detoxification capacity are important determinants of ΔAmean under elevated CO2 and N supply. We found significant negative linear relationships of ΔAmean per unit POD0 (ΔAmean/POD0) with reduced ascorbate concentration in the low O3 treatment, and with percentage of O3-induced change in activity of monodehydroascorbate reductase (MDAR). In addition, the ΔAmean/POD0 was positively and significantly correlated with the activity ratio of ascorbate peroxidase to MDAR. These results suggest that reduced ascorbate pool and its maintenance through the action of MDAR could be important determinants in the degree of O3 damage to net photosynthesis under elevated CO2 and soil N supply.
Collapse
Affiliation(s)
- Masahiro Yamaguchi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Nagasaki 852-8521, Japan
| | - Misako Matsumoto
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kota Miyaguchi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Nagasaki 852-8521, Japan
| | - Jing Li
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Takuro Aoki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Ryo Ariura
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tsuyoshi Fuse
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yazhuo Zhang
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yoshiyuki Kinose
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan
| | - Makoto Watanabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Takeshi Izuta
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
8
|
Hoshika Y, Cotrozzi L, Gavrichkova O, Nali C, Pellegrini E, Scartazza A, Paoletti E. Functional responses of two Mediterranean pine species in an ozone Free-Air Controlled Exposure (FACE) experiment. TREE PHYSIOLOGY 2023; 43:1548-1561. [PMID: 37209141 DOI: 10.1093/treephys/tpad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/18/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Effects of the phytotoxic and widespread ozone (O3) pollution may be species specific, but knowledge on Mediterranean conifer responses to long-term realistic exposure is still limited. We examined responses regarding to photosynthesis, needle biochemical stress markers and carbon and nitrogen (N) isotopes of two Mediterranean pine species (Pinus halepensis Mill. and Pinus pinea L.). Seedlings were grown in a Free-Air Controlled Exposure experiment with three levels of O3 (ambient air, AA [38.7 p.p.b. as daily average]; 1.5 × AA and 2.0 × AA) during the growing season (May-October 2019). In P. halepensis, O3 caused a significant decrease in the photosynthetic rate, which was mainly due to a reduction of both stomatal and mesophyll diffusion conductance to CO2. Isotopic analyses indicated a cumulative or memory effect of O3 exposure on this species, as the negative effects were highlighted only in the late growing season in association with a reduced biochemical defense capacity. On the other hand, there was no clear effect of O3 on photosynthesis in P. pinea. However, this species showed enhanced N allocation to leaves to compensate for reduced photosynthetic N- use efficiency. We conclude that functional responses to O3 are different between the two species determining that P. halepensis with thin needles was relatively sensitive to O3, while P. pinea with thicker needles was more resistant due to a potentially low O3 load per unit mass of mesophyll cells, which may affect species-specific resilience in O3-polluted Mediterranean pine forests.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Firenze Unit, Via Madonna del Piano, Sesto Fiorentino I-50019, Italy
- Italian Integrated Environmental Research Infrastructures System (ITINERIS), Tito Scalo, Potenza 85050, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa I-56124, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Olga Gavrichkova
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Headquarters Porano, Via G. Marconi 2, Porano 05010, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa I-56124, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa I-56124, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Andrea Scartazza
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Pisa Unit, Via Moruzzi 1, Pisa 56124, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Firenze Unit, Via Madonna del Piano, Sesto Fiorentino I-50019, Italy
- Italian Integrated Environmental Research Infrastructures System (ITINERIS), Tito Scalo, Potenza 85050, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
9
|
Sahoo A, Madheshiya P, Mishra AK, Tiwari S. Combating ozone stress through N fertilization: A case study of Indian bean ( Dolichos lablab L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1125529. [PMID: 36909422 PMCID: PMC9992209 DOI: 10.3389/fpls.2023.1125529] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/07/2023] [Indexed: 05/31/2023]
Abstract
The present study investigates the efficiency of nitrogen (N) amendments in the management of ozone (O3) stress in two varieties (Kashi Sheetal and Kashi Harittima) of Indian bean (Dolichos lablab L.). Two O3 concentrations, ambient (44.9 ppb) and elevated (74.64 ppb) were used, and each O3 concentration has 3 nitrogen (N) dose treatments viz recommended (N1), 1.5 times recommended (N2), 2 times recommended (N3) and no nitrogen, which served as control (C). The experiment concluded Kashi Sheetal as O3 tolerant, as compared to Kashi Harittima. N amendments were effective in the partial amelioration of O3 stress, with N2 being the most effective nitrogen dose, at both ambient and elevated O3 concentrations. Kashi Sheetal has been determined to be O3 tolerant due to greater endogenous levels of H2O2 accumulation and enzymatic antioxidant contents with O3 exposure. The O3-sensitive variety, Kashi Harittima, responded more positively to N treatments, at both O3 concentrations. The positive effect of N amendments is attributed to the stimulated antioxidative enzyme activity, rather than the biophysical processes like stomatal conductance. Strengthened defense upon N amendments was attributed to the enhanced activities of APX and GR in Kashi Sheetal, while in Kashi Harittima, the two enzymes (APX and GR) were coupled by SOD and CAT as well, during the reproductive phase. Yield (weight of seeds plant-1) increments upon N (N2) amendments were higher in Kashi Harittima (O3 sensitive), as compared to Kashi Sheetal (O3 tolerant) at both ambient and elevated O3 concentration, due to higher antioxidant enzymatic response and greater rate of photosynthesis in the former.
Collapse
|
10
|
Responses of Growth, Oxidative Injury and Chloroplast Ultrastructure in Leaves of Lolium perenne and Festuca arundinacea to Elevated O 3 Concentrations. Int J Mol Sci 2022; 23:ijms23095153. [PMID: 35563542 PMCID: PMC9104282 DOI: 10.3390/ijms23095153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 11/26/2022] Open
Abstract
The effects of increasing atmospheric ozone (O3) concentrations on cool-season plant species have been well studied, but little is known about the physiological responses of cool-season turfgrass species such as Lolium perenne and Festuca arundinacea exposed to short-term acute pollution with elevated O3 concentrations (80 ppb and 160 ppb, 9 h d−1) for 14 days, which are widely planted in urban areas of Northern China. The current study aimed to investigate and compare O3 sensitivity and differential changes in growth, oxidative injury, antioxidative enzyme activities, and chloroplast ultrastructure between the two turf-type plant species. The results showed that O3 decreased significantly biomass regardless of plant species. Under 160 ppb O3, total biomass of L. perenne and F. arundinacea significantly decreased by 55.3% and 47.8% (p < 0.05), respectively. No significant changes were found in visible injury and photosynthetic pigment contents in leaves of the two grass species exposed to 80 ppb O3, except for 160 ppb O3. However, both 80 ppb and 160 ppb O3 exposure induced heavily oxidative stress by high accumulation of malondialdehyde and reactive oxygen species in leaves and damage in chloroplast ultrastructure regardless of plant species. Elevated O3 concentration (80 ppb) increased significantly the activities of superoxide dismutase, catalase and peroxidaseby 77.8%, 1.14-foil and 34.3% in L. perenne leaves, and 19.2%, 78.4% and 1.72-fold in F. arundinacea leaves, respectively. These results showed that F. arundinacea showed higher O3 tolerance than L. perenne. The damage extent by elevated O3 concentrations could be underestimated only by evaluating foliar injury or chlorophyll content without considering the internal physiological changes, especially in chloroplast ultrastructure and ROS accumulation.
Collapse
|
11
|
Boublin F, Cabassa-Hourton C, Leymarie J, Leitao L. Potential involvement of proline and flavonols in plant responses to ozone. ENVIRONMENTAL RESEARCH 2022; 207:112214. [PMID: 34662576 DOI: 10.1016/j.envres.2021.112214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Ozone is considered to be a major phytotoxic pollutant. It is an oxidizing molecule with harmful effects that can affect human health and vegetation. Due to its phytotoxicity, it constitutes a threat to food security in a context of climate change. Proline accumulation is induced in response to numerous stresses and is assumed to be involved in plant antioxidant defense. We therefore addressed the question of the putative involvement of proline in plant ozone responses by analyzing the responses of two Arabidopsis mutants (obtained in the Col-0 genetic background) altered in proline metabolism and different ecotypes with various degrees of ozone sensitivity, to controlled ozone treatments. Among the mutants, the p5cs1 mutant plants accumulated less proline than the double prodh1xprodh2 (p1p2) mutants. Ozone treatments did not induce accumulation of proline in Col-0 nor in the mutant plants. However, the variation of the photosynthetic parameter Fv/Fm in the p1p2 mutant suggests a positive effect of proline. Proline accumulation induced by ozone was only observed in the most ozone-sensitive ecotypes, Cvi-0 and Ler. Contrary to our expectations, proline accumulation could not be correlated with variations in protein oxidation (carbonylation). On the other hand, flavonols content, measured here, using non-destructive methods, reflected exactly the genotypes ranking according to ozone sensitivity.
Collapse
Affiliation(s)
- Fanny Boublin
- Univ Paris Est Creteil, CNRS, INRAE, IRD, Sorbonne Université, Université de Paris, Institut d'Ecologie et des Sciences de L'Environnement de Paris, IEES-Paris, F-94010, Creteil, France
| | - Cécile Cabassa-Hourton
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d'Ecologie et des Sciences de L'Environnement de Paris, IEES, Paris, F-75005, Paris, France
| | - Juliette Leymarie
- Univ Paris Est Creteil, CNRS, INRAE, IRD, Sorbonne Université, Université de Paris, Institut d'Ecologie et des Sciences de L'Environnement de Paris, IEES-Paris, F-94010, Creteil, France.
| | - Luis Leitao
- Univ Paris Est Creteil, CNRS, INRAE, IRD, Sorbonne Université, Université de Paris, Institut d'Ecologie et des Sciences de L'Environnement de Paris, IEES-Paris, F-94010, Creteil, France
| |
Collapse
|
12
|
Arab L, Hoshika Y, Müller H, Cotrozzi L, Nali C, Tonelli M, Ache P, Paoletti E, Alfarraj S, Albasher G, Hedrich R, Rennenberg H. Chronic ozone exposure preferentially modifies root rather than foliar metabolism of date palm (Phoenix dactylifera) saplings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150563. [PMID: 34601178 DOI: 10.1016/j.scitotenv.2021.150563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
In their natural environment, date palms are exposed to chronic atmospheric ozone (O3) concentrations from local and remote sources. In order to elucidate the consequences of this exposure, date palm saplings were treated with ambient, 1.5 and 2.0 times ambient O3 for three months in a free-air controlled exposure facility. Chronic O3 exposure reduced carbohydrate contents in leaves and roots, but this effect was much stronger in roots. Still, sucrose contents of both organs were maintained at elevated O3, though at different steady states. Reduced availability of carbohydrate for the Tricarboxylic acid cycle (TCA cycle) may be responsible for the observed reduced foliar contents of several amino acids, whereas malic acid accumulation in the roots indicates a reduced use of TCA cycle intermediates. Carbohydrate deficiency in roots, but not in leaves caused oxidative stress upon chronic O3 exposure, as indicated by enhanced malonedialdehyde, H2O2 and oxidized glutathione contents despite elevated glutathione reductase activity. Reduced levels of phenolics and flavonoids in the roots resulted from decreased production and, therefore, do not indicate oxidative stress compensation by secondary compounds. These results show that roots of date palms are highly susceptible to chronic O3 exposure as a consequence of carbohydrate deficiency.
Collapse
Affiliation(s)
- L Arab
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany.
| | - Y Hoshika
- IRET-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - H Müller
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - L Cotrozzi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - C Nali
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - M Tonelli
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - P Ache
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - E Paoletti
- IRET-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - S Alfarraj
- King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - G Albasher
- King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - R Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - H Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany; Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China
| |
Collapse
|
13
|
Kittipornkul P, Krobthong S, Yingchutrakul Y, Thiravetyan P. Mechanisms of ozone responses in sensitive and tolerant mungbean cultivars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149550. [PMID: 34426356 DOI: 10.1016/j.scitotenv.2021.149550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Ozone (O 3) is one of the major air pollutants, with negative impacts on human health, vegetation and agricultural production. It affects plants by reducing green leaf area and leading to necrosis, lesions and chlorosis, resulting in yield loss. Four mungbean cultivars were used to study O 3 sensitivity under elevated O 3 concentrations in the range of 70-100 ppb in an O 3 open-top chamber during the growing season. Based on O 3 response mechanisms, we classified mungbean cultivars into two groups: (1) O 3 -sensitive cultivars (Chainat 3 and 4) and (2) O 3 -tolerant cultivars (Chainat 84-1-1 and Kampangsan 2). The most O 3 -sensitive cultivars (Chainat 4) had the highest visible injury symptoms and the lowest in plant biomass. This evidence was due to Chainat 4 had lower ascorbic acid, indole acetic biosynthesis protein, defence related protein related to antioxidant systems, attribute to higher H 2 O 2 accumulation and an increase in salicylic acid contents. In contrast to the most O 3 -tolerant cultivars (Chainat 84-1-1) which had higher ascorbic acid levels, an upregulation of defence related protein, especially ascorbic acid biosynthesis and regenerate, indole acetic acid and jasmonic acid biosynthesis protein resulting in balanced H 2 O 2 levels, lower salicylic acid accumulation and little visible injury under elevated O 3 concentrations. Therefore, we conclude that the increased abundance of indole acetic acid, antioxidant related proteins facilitating stomata physiology in O 3 -tolerant under O 3 stress. This is the first report of the responses of mungbean cultivars in Thailand to elevated O 3 concentrations, facilitating the selection of suitable cultivars and the biomonitoring of O 3 levels.
Collapse
Affiliation(s)
- Piyatida Kittipornkul
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Sucheewin Krobthong
- Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Yodying Yingchutrakul
- Proteomics Research Team, National Omics Center, NSTDA, Pathum Thani 12120, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| |
Collapse
|
14
|
Xu Y, Feng Z, Kobayashi K. Performances of a system for free-air ozone concentration elevation with poplar plantation under increased nitrogen deposition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58298-58309. [PMID: 34115305 DOI: 10.1007/s11356-021-14639-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
The increasing emission of nitrogen oxides exerts large impacts on vegetation by raising surface ozone (O3) concentrations and enhancing atmospheric nitrogen (N) deposition. We established a free-air O3 concentration elevation and enhanced N deposition system (O3-N-FACE) in Beijing, China, to investigate long-term effects of elevated O3 and N deposition on poplar plantation. Eight square plots with a side length of 16 m were randomly allocated to elevated O3 (E-O3) and ambient air (AA) treatments. Ozone generated by electric discharge in pure oxygen is mixed with clean and dry air, and released from small holes on the tubes installed above the plant canopy at a rate controlled to keep O3 concentration in E-O3 plots by 50% higher than that in AA plots. Each O3 treatment plot consisted of four subplots with a factorial combination of 2 lines of poplar clones and 2 levels of N deposition rate. In enhanced N deposition subplots, we sprayed urea solution on the plantation floor at a rate of 60 kg ha-1 year-1. We hereby present the system performances during the growing seasons of 2018 and 2019: the first 2 years of experiment. The mean daytime O3 concentrations of E-O3 plots were 38% and 31% higher than AA plots in 2018 and 2019, respectively. And, in 2019, the accumulated O3 exposure over 40 ppb (AOT40) in E-O3 plots was 70% higher than that in AA plots. The hourly mean O3 concentrations in E-O3 plots were within 20% of the target for 83% of time on average across the four E-O3 plots. Within the E-O3 plots, spatial distribution of the hourly O3 concentration exhibited the maximum deviation at 24% in 2019. We concluded that performance of this system is better than other similar facilities for trees and suitable for a long-term experiment of enhanced O3 and N.
Collapse
Affiliation(s)
- Yansen Xu
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhaozhong Feng
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Kazuhiko Kobayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Pellegrini E, Cotrozzi L, Neri L, Baraldi R, Carrari E, Nali C, Lorenzini G, Paoletti E, Hoshika Y. Stress markers and physiochemical responses of the Mediterranean shrub Phillyrea angustifolia under current and future drought and ozone scenarios. ENVIRONMENTAL RESEARCH 2021; 201:111615. [PMID: 34216612 DOI: 10.1016/j.envres.2021.111615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Mediterranean plants are particularly threatened by the exacerbation of prolonged periods of summer drought and increasing concentrations of ground-level ozone (O3). The aims of the present study were to (i) test if selected markers (i.e., reactive oxygen species, ROS; malondialdehyde, MDA; photosynthetic pigments) are able to discriminate the oxidative pressure due to single and combined stress conditions, and (ii) elucidate the physiochemical adjustments adopted by Phillyrea angustifolia (evergreen woody species representative of the maquis, also known as narrow-leaved mock privet) to perceive and counter to drought and/or O3. Plants were grown from May to October under the combination of two levels of water irrigation [i.e., well-watered (WW) and water-stressed (WS)] and three levels of O3 [i.e., 1.0, 1.5 and 2.0 times the ambient air concentrations, i.e. AA (current O3 scenario), 1.5 × AA and 2.0 × AA (future O3 scenarios), respectively], using a new-generation O3 Free Air Controlled Exposure (FACE) system. Overall, this species appeared relatively sensitive to drought (e.g., net CO2 assimilation rate and stomatal conductance significantly decreased, as well as total chlorophyll and carotenoid contents), and tolerant to O3 (e.g., as confirmed by the absence of visible foliar injury, the unchanged values of total carotenoids, and the detrimental effects on stomatal conductance, total chlorophylls and terpene emission only under elevated O3 concentrations). The combination of both stressors led to harsher oxidative stress. Only when evaluated together (i.e., combining the information provided by the analysis of each stress marker), ROS, MDA and photosynthetic pigments, were suitable stress markers to discriminate the differential oxidative stress induced by drought and increasing O3 concentrations applied singly or in combination: (i) all these stress markers were affected under drought per se; (ii) hydrogen peroxide (H2O2) and MDA increased under O3per se, following the gradient of O3 concentrations (H2O2: about 2- and 4-fold higher; MDA: +22 and + 91%; in 1.5 × AA_WW and 2.0 × AA_WW, respectively); (iii) joining together the ROS it was possible to report harsher effects under 2.0 × AA_WS and 1.5 × AA_WS (both anion superoxide and H2O2 increased) than under 2.0 × AA_WW (only H2O2 increased); and (iv) MDA showed harsher effects under 2.0 × AA_WS than under 1.5 × AA_WS (increased by 49 and 18%, respectively). Plants activated physiological and biochemical adjustments in order to partially avoid (e.g., stomatal closure) and tolerate (e.g., increased terpene emission) the effects of drought when combined with increasing O3 concentrations, suggesting that the water use strategy (isohydric) and the sclerophyllous habit can further increase the plant tolerance to environmental constraints in the Mediterranean area.
Collapse
Affiliation(s)
- Elisa Pellegrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| | - Lorenzo Cotrozzi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Luisa Neri
- Institute of BioEconomy, IBE-CNR, Via Piero Gobetti, 101, 40129, Bologna, Italy
| | - Rita Baraldi
- Institute of BioEconomy, IBE-CNR, Via Piero Gobetti, 101, 40129, Bologna, Italy
| | - Elisa Carrari
- Institute of Research on Terrestrial Ecosystems, IRET-CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| | - Cristina Nali
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| | - Giacomo Lorenzini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems, IRET-CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| | - Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems, IRET-CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
16
|
Ghosh A, Agrawal M, Agrawal SB. Examining the effectiveness of biomass-derived biochar for the amelioration of tropospheric ozone-induced phytotoxicity in the Indian wheat cultivar HD 2967. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124968. [PMID: 33418522 DOI: 10.1016/j.jhazmat.2020.124968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
A pot study was performed to evaluate the influence of O3 stress with different biochar treatments on a wheat cultivar (HD 2967). Plants were subjected to ambient and elevated (ambient+20 ppb) O3 along with three doses of biochar (0%, 2.5%, and 5%). Elevated ozone alone reduced most of the growth parameters, negatively affecting the test cultivar's physiology. Although enzymatic antioxidants were up-regulated by elevated O3, damage to the membrane integrity was evident by higher MDA content in the wheat leaves. Besides, the uptake of nutrients was observed to be reduced under elevated O3 due to the reduced phyto-availability of the soil's nutrients and cation exchange capacity. Such limitation of assimilates and nutrients marked a trade-off between growth and defence, translating to grain yield loss. However, applying biochar as a soil conditioner ameliorated the detrimental effects of O3 with respect to the economic yield of wheat. Biochar alone improved soil properties and nutrient phyto-availability, which translated to better plant growth, stronger physiological capacity, and higher crop productivity. Thus, the study inferred that altered nutrient phyto-availablity and its uptake, likely associated with biochar-induced improved soil properties, relayed stronger plant physiology and antioxidative defence system to combat O3 induced oxidative stress.
Collapse
Affiliation(s)
- Annesha Ghosh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
17
|
Paoletti E, Hoshika Y, Arab L, Martini S, Cotrozzi L, Weber D, Ache P, Neri L, Baraldi R, Pellegrini E, Müller HM, Hedrich R, Alfarraj S, Rennenberg H. Date palm responses to a chronic, realistic ozone exposure in a FACE experiment. ENVIRONMENTAL RESEARCH 2021; 195:110868. [PMID: 33581095 DOI: 10.1016/j.envres.2021.110868] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Date palms are highly economically important species in hot arid regions, which may suffer ozone (O3) pollution equivalently to heat and water stress. However, little is known about date palm sensitivity to O3. Therefore, to identify their resistance mechanisms against elevated O3, physiological parameters (leaf gas exchange, chlorophyll fluorescence and leaf pigments) and biomass growth responses to realistic O3 exposure were tested in an isoprene-emitting date palm (Phoenix dactylifera L. cv. Nabut Saif) by a Free-Air Controlled Exposure (FACE) facility with three levels of O3 (ambient [AA, 45 ppb as 24-h average], 1.5 x AA and 2 x AA). We found a reduction of photosynthesis only at 2 x AA although some foliar traits known as early indicators of O3 stress responded already at 1.5 x AA, such as increased dark respiration, reduced leaf pigment content, reduced maximum quantum yield of PSII, inactivation of the oxygen evolving complex of PSII and reduced performance index PITOT. As a result, O3 did not affect most of the growth parameters although significant declines of root biomass occurred only at 2 x AA. The major mechanism in date palm for reducing the severity of O3 impacts was a restriction of stomatal O3 uptake due to low stomatal conductance and O3-induced stomatal closure. In addition, an increased respiration in elevated O3 may indicate an enhanced capacity of catabolizing metabolites for detoxification and repair. Interestingly, date palm produced low amounts of monoterpenes, whose emission was stimulated in 2 x AA, although isoprene emission declined at both 1.5 and 2 x AA. Our results warrant more research on a biological significance of terpenoids in plant resistance against O3 stress.
Collapse
Affiliation(s)
- Elena Paoletti
- IRET-CNR, Via Madonna Del Piano 10, 50019, Sesto Fiorentino Firenze, Italy
| | - Yasutomo Hoshika
- IRET-CNR, Via Madonna Del Piano 10, 50019, Sesto Fiorentino Firenze, Italy.
| | - Leila Arab
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110, Freiburg, Germany
| | - Sofia Martini
- IRET-CNR, Via Madonna Del Piano 10, 50019, Sesto Fiorentino Firenze, Italy
| | - Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, 56124, Pisa, Italy
| | - Daniel Weber
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110, Freiburg, Germany; Phytoprove Pflanzenanalytik, Georg-Voigt-Str. 14-16, 60325, Frankfurt Am Main, Germany
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082, Würzburg, Germany
| | - Luisa Neri
- IBE-CNR, Via Piero Gobetti 101, 40129, Bologna, Italy
| | - Rita Baraldi
- IBE-CNR, Via Piero Gobetti 101, 40129, Bologna, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, 56124, Pisa, Italy
| | - Heike M Müller
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082, Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082, Würzburg, Germany; King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Alfarraj
- King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110, Freiburg, Germany; Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China
| |
Collapse
|
18
|
Sen Gupta G, Tiwari S. Role of antioxidant pool in management of ozone stress through soil nitrogen amendments in two cultivars of a tropical legume. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:371-385. [PMID: 33256894 DOI: 10.1071/fp20159] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
The present experiment was done on two different cultivars of a tropical legume, Cymopsis tetragonoloba L. Taub. (cluster bean) cvv. Pusa-Naubahar (PUSA-N) and Selection-151 (S-151). The experiment was conducted under ambient ozone (O3) conditions with inputs of three different doses of inorganic nitrogen (N1, recommended; N2, 1.5-times recommended and N3, 2-times recommended) as well as control plants. The objective of this study was to evaluate the effectiveness of soil nitrogen amendments in management of ambient ozone stress in the two cultivars of C. tetragonoloba. Our experiment showed that nitrogen amendments can be an efficient measure to manage O3 injury in plants. Stimulation of antioxidant enzyme activities under nitrogen amendments is an important feature of plants that help plants cope with ambient O3 stress. Nitrogen amendments strengthened the antioxidant machinery in a more effective way in the tolerant cultivar PUSA-N, while in the sensitive cultivar S-151, avoidance strategy marked by more reduction in stomatal conductance was more prominent. Enzymes of the Halliwell-Asada pathway, especially ascorbate peroxidase and glutathione reductase, were more responsive and synchronised in PUSA-N than S-151, under similar nitrogen amendment regimes and were responsible for the differential sensitivities of the two cultivars of C. tetragonoloba. The present study shows that 1.5-times recommended dose of soil nitrogen amendments was sufficient in partial mitigation of O3 injury and the higher nitrogen dose (2-times recommended, in our case), did not provide any extra advantage to the plant's metabolism compared with plants treated with the lower nitrogen dose (1.5-times recommended).
Collapse
Affiliation(s)
- Gereraj Sen Gupta
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Supriya Tiwari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India; and Corresponding author.
| |
Collapse
|
19
|
Cotrozzi L. The effects of tropospheric ozone on oaks: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143795. [PMID: 33302079 DOI: 10.1016/j.scitotenv.2020.143795] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 05/14/2023]
Abstract
Tropospheric ozone (O3) levels are still elevated in many regions of the world including Northern Hemisphere forests areas, and are predicted to increase further due to anthropogenic activities and climate change. Oaks are major woody angiosperms in the Northern Hemisphere in terms of biodiversity, ecological dominance, and economic values. This meta-analysis shows overwhelming evidence of the O3 effects on 51 growth, anatomical, biomass, physiological and biochemical parameters of 14 deciduous or evergreen oak species distributed all around the Northern Hemisphere. Although no large impacts were observed on biomass, suggesting an O3 tolerance by oaks, some impairments were found at physiological level that might negatively affect carbon sequestration and water vapour transfer to the atmosphere. This outcome suggests the need to incorporate this phenomenon into future projection studies dealing with how atmospheric change and forest biomes will interact in effecting climatic change. Among the antioxidants used by oaks to respond to O3, phenols seem to have a crucial role. Deciduous species resulted more affected by O3 than evergreen ones, as well as oaks native to Eurasia, in comparison with those from North-America. Experiments performed in less controlled environments showed more O3 deleterious effects, especially under higher AOT40 levels, but negative impacts were also reported for acute O3 exposures. Most of the reviewed studies with additional treatments to O3 exposure investigated the interaction(s) between O3 and drought, but the negative effects induced by drought seemed not to be exacerbated by the pollutant. However, more combined experiments on the impact of O3 and co-occurring stressors on woody species are necessary. Another major issue is the lack of experiments on adult trees. To better understand O3 impacts, and to reinforce the strength of O3 impact predictions, O3 controlled experiments on young individuals should be combined with long-term experiments on mature trees grown in open-air conditions.
Collapse
Affiliation(s)
- Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
20
|
Xu S, Wang Y, Zhang W, Li B, Du Z, He X, Chen W, Zhang Y, Li Y, Li M, Schaub M. Experimental warming alleviates the adverse effects from tropospheric ozone on two urban tree species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115289. [PMID: 33190075 DOI: 10.1016/j.envpol.2020.115289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/18/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric warming and increasing tropospheric ozone (O3) concentrations often co-occur in many cities of the world including China, adversely affecting the health status of urban trees. However, little information is known about the combined and interactive effects from increased air temperature (IT) and elevated O3 (EO) exposures on urban tree species. Here, Ginkgo biloba and Populus alba 'Berolinensis' seedlings were subjected to IT (+2 °C of ambient air temperature) and/or EO (+2-fold ambient air O3 concentrations) for one growing season by using open-top chambers. IT alone had no significant effect on physiological metabolisms at the early growing stage, but significantly increased photosynthetic parameters, antioxidative enzyme activities (P < 0.05). EO alone decreased physiological parameters except for increased oxidative stress. Compared to EO exposure alone, plants grown under IT and EO combined showed higher antioxidative and photosynthetic activity. There was a significant interactive effect between IT and EO on net photosynthetic rate, stomatal conductance, water use efficiency, the maximum quantum efficiency of PSII photochemistry, the actual quantum efficiency of PSII, enzyme activities, aboveground biomass and root/shoot ratio (P < 0.05), respectively. These results suggested that during one growing season, IT mitigated the adverse effect of EO on the tested plants. In addition, we found that G. biloba was more sensitive than P. alba 'Berolinensis' to both IT and EO, suggesting that G. biloba may be a good indicator species for climate warming and air pollution, particularly under environmental conditions as they co-occur in urban areas.
Collapse
Affiliation(s)
- Sheng Xu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Stable Isotope Techniques and Applications, Liaoning Province, Shenyang, 110016, China
| | - Yijing Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiwei Zhang
- College of Environment, Shenyang University, 110044, China
| | - Bo Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Liaoning Province, Shenyang, 110016, China
| | - Zhong Du
- School of Land and Resources, China West Normal University, Nanchong, 637009, China; Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Xingyuan He
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Wei Chen
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yue Zhang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yan Li
- University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Maihe Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland; SwissForestLab, Birmensdorf, 8903, Switzerland; Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
| | - Marcus Schaub
- Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland; SwissForestLab, Birmensdorf, 8903, Switzerland
| |
Collapse
|
21
|
Hoshika Y, Brilli F, Baraldi R, Fares S, Carrari E, Zhang L, Badea O, Paoletti E. Ozone impairs the response of isoprene emission to foliar nitrogen and phosphorus in poplar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115679. [PMID: 33254661 DOI: 10.1016/j.envpol.2020.115679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Tropospheric ozone (O3) impairs physiological processes of plants while nitrogen (N) deposition may cause imbalances in soil N and other nutrients such as phosphorus (P) suggesting an increase of P demand for plants. However, the combined effect of O3, soil N and P on isoprene emission from leaves has never been tested. We therefore examined isoprene emission in leaves of Oxford poplar clone exposed to O3 (ambient, AA [35.0 nmol mol-1 as daily mean]; 1.5 × AA; 2.0 × AA), soil N (0 and 80 kg N ha-1) and soil P (0, 40 and 80 kg P ha-1) in July and September in a Free-Air Controlled Exposure (FACE) facility. We also investigated the response of isoprene emission to foliar N, P and abscisic acid (ABA) contents in September because the 2-C-methylerythritol-5-phosphate (MEP) pathway of isoprenoid biosynthesis produces ABA. We found that O3 increased isoprene emission in July, which was associated to increased dark respiration, suggesting an activation of metabolism against O3 stress as an initial response. However, O3 decreased isoprene emission in September which was associated to reduced net photosynthesis. In September, isoprene emission was positively correlated with leaf N content and negatively correlated with leaf P content in AA. However, no response of isoprene emission to foliar N and P was found in elevated O3, suggesting that the isoprene responses to foliar N and P depended on the O3 exposure levels. Isoprene emission rate in 1.5 × AA and 2.0 × AA increased with increasing leaf ABA content, indicating accelerated senescence of injured leaves to favor new leaf growth when high O3 and nutritional availability in the soil were combined. Even though foliar N and P usually act as a proxy for isoprene emission rate, the impact of recent abiotic factors such as O3 should be always considered for modeling isoprene emission under climate change.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy.
| | - Federico Brilli
- Institute for Sustainable Plant Protection (IPSP), National Research Council (CNR), Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Rita Baraldi
- Institute of Bioeconomy (IBE), National Research Council (CNR), Via P. Gobetti 101, I-40129, Bologna, Italy
| | - Silvano Fares
- Institute of Bioeconomy (IBE), National Research Council (CNR), Via dei Taurini 19, 00100, Rome, Italy
| | - Elisa Carrari
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road 600, 150030, Harbin, China
| | - Ovidiu Badea
- INCDS, 13 Septembrie, Sector 5, 050711, Bucharest, Romania
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| |
Collapse
|
22
|
Pérez-Rodriguez MM, Piccoli P, Anzuay MS, Baraldi R, Neri L, Taurian T, Lobato Ureche MA, Segura DM, Cohen AC. Native bacteria isolated from roots and rhizosphere of Solanum lycopersicum L. increase tomato seedling growth under a reduced fertilization regime. Sci Rep 2020; 10:15642. [PMID: 32973225 PMCID: PMC7515909 DOI: 10.1038/s41598-020-72507-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/27/2020] [Indexed: 11/09/2022] Open
Abstract
In semiarid regions is important to use native strains best adapted to these environments to optimize plant-PGPR interaction. We aimed to isolate and characterize PGPR from roots and rhizosphere of a tomato crop, as well as studying the effect of its inoculation on tomato seedlings growth. We selected four strains considering their effectiveness of fixing nitrogen, solubilizing phosphate, producing siderophores and indole acetic acid. They belong to the genera Enterobacter, Pseudomonas, Cellulosimicrobium, and Ochrobactrum. In addition, we also analyzed the ability to solubilize Ca3(PO4)2, FePO4 and AlPO4 and the presence of one of the genes encoding the cofactor PQQ in their genome. Enterobacter 64S1 and Pseudomonas 42P4 showed the highest phosphorus solubilizing activity and presence of pqqE gene. Furthermore, in a tomato-based bioassay in speed-bed demonstrated that a sole inoculation at seedling stage with the strains increased dry weight of roots (49-88%) and shoots (39-55%), stem height (8-13%) and diameter (5-8%) and leaf area (22-31%) and were equal or even higher than fertilization treatment. Leaf nitrogen and chlorophyll levels were also increased (50-80% and 26-33%) compared to control. These results suggest that Enterobacter 64S1 and Pseudomonas 42P4 can be used as bio-inoculant in order to realize a nutrient integrated management.
Collapse
Affiliation(s)
- María Micaela Pérez-Rodriguez
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, 5507, Chacras de Coria, Mendoza, Argentina
| | - Patricia Piccoli
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, 5507, Chacras de Coria, Mendoza, Argentina
| | - María Soledad Anzuay
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal 3, 5800, Río Cuarto, Córdoba, Argentina
| | - Rita Baraldi
- National Research Council of Italy, Institute of BioEconomy (CNR-IBE), via P. Gobetti 101, 40129, Bologna, Italy
| | - Luisa Neri
- National Research Council of Italy, Institute of BioEconomy (CNR-IBE), via P. Gobetti 101, 40129, Bologna, Italy
| | - Tania Taurian
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal 3, 5800, Río Cuarto, Córdoba, Argentina
| | - Miguel Andrés Lobato Ureche
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, 5507, Chacras de Coria, Mendoza, Argentina
| | - Diana María Segura
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, 5507, Chacras de Coria, Mendoza, Argentina
| | - Ana Carmen Cohen
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, 5507, Chacras de Coria, Mendoza, Argentina.
| |
Collapse
|
23
|
Xu Y, Shang B, Feng Z, Tarvainen L. Effect of elevated ozone, nitrogen availability and mesophyll conductance on the temperature responses of leaf photosynthetic parameters in poplar. TREE PHYSIOLOGY 2020; 40:484-497. [PMID: 32031641 DOI: 10.1093/treephys/tpaa007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/09/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Although ozone (O3) concentration and nitrogen (N) availability are well known to affect plant physiology, their impacts on the photosynthetic temperature response are poorly understood. We addressed this knowledge gap by exposing seedlings of hybrid poplar clone '107' (Populous euramericana cv. '74/76') to elevated O3 (E-O3) and N availability variation in a factorial experiment. E-O3 decreased light-saturated net photosynthesis (Asat), mesophyll conductance (gm) and apparent maximum rate of carboxylation (Vcmax, based on intercellular CO2 concentration) but not actual Vcmax (based on chloroplast CO2 concentration) and increased respiration in light (Rd) at 25 °C. Nitrogen fertilization increased Asat, gm, Vcmax and the maximum rate of electron transport (Jmax) and reduced Rd at 25 °C and the activation energy of actual Vcmax. No E-O3 or E-O3 x N interaction effects on the temperature response parameters were detected, simplifying the inclusion of O3 impacts on photosynthesis in vegetation models. gm peaked at 30 °C, apparent Vcmax and Jmax at 32-33 °C, while the optimum temperatures of actual Vcmax and Jmax exceeded the measured temperature range (15-35 °C). Ignoring gm would, thus, have resulted in mistakenly attributing the decrease in Asat at high temperatures to reduced biochemical capacity rather than to greater diffusion limitation.
Collapse
Affiliation(s)
- Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaozhong Feng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Lasse Tarvainen
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
24
|
Paoletti E, Feng Z, De Marco A, Hoshika Y, Harmens H, Agathokleous E, Domingos M, Mills G, Sicard P, Zhang L, Carrari E. Challenges, gaps and opportunities in investigating the interactions of ozone pollution and plant ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136188. [PMID: 31887502 DOI: 10.1016/j.scitotenv.2019.136188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
| | - Zhaozhong Feng
- Nanjing University of Information Science and Technology, China
| | - Alessandra De Marco
- National Agency for New Technologies, Energy and Sustainable Economic Development, Italy
| | | | | | | | | | | | | | - Lu Zhang
- Northeast Agricultural University, China
| | | |
Collapse
|
25
|
Xu S, He XY, Du Z, Chen W, Li B, Li Y, Li MH, Schaub M. Tropospheric ozone and cadmium do not have interactive effects on growth, photosynthesis and mineral nutrients of Catalpa ovata seedlings in the urban areas of Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135307. [PMID: 31812382 DOI: 10.1016/j.scitotenv.2019.135307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/14/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Heavy metal contamination and tropospheric ozone (O3) pollution often co-occur in heavy industrial urban areas, adversely affecting urban plant health. Little is known about the characteristics of growth, physiological metabolism, bioaccumulation of cadmium (Cd) and mineral nutrients in urban trees under the combination of soil Cd contamination and elevated O3 exposure. In this study, one-year-old street tree Catalpa ovata G. Don seedlings were exposed to Cd contaminated soil (0, 100, 500 mg/kg soil) with 40 µg/m3 O3 (ambient air) and 120 µg/m3 O3 (elevated O3 exposure) for 4 weeks. The results revealed that 500 mg/kg soil Cd addition alone decreased net photosynthetic rate, stomatal conductance, peroxidase activity and increased abscisic acid content and oxidative injury in the leaves of C. ovata. Furthermore, Cd soil contamination decreased leaf, stem, root and total biomass and affected Cd, Mg, Fe, and Zn contents in leaves (P < 0.01), but it did not affect Mg, Fe and Zn contents in roots. O3 exposure did not affect growth, net photosynthetic rate, Cd accumulation and mineral nutrient contents of C. ovata. No interactive effect between Cd and O3 was found on growth, oxidative injury, photosynthetic rate, and the contents of Cd, Mg, Fe and Zn in plant tissues (P > 0.05). Our findings suggest that C. ovata is an appropriate tree species for urban greening and afforestation in heavy industrial urban areas with high O3 pollution in Northeast China. To ensure successful afforestation in heavy industrial areas, the long-term and large scale studies are needed to advance our understanding of the combined effects from extreme climate conditions and multi-pollutant exposure on the metabolism of mature urban trees.
Collapse
Affiliation(s)
- Sheng Xu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xing-Yuan He
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
| | - Zhong Du
- College of Land and Resources, China West Normal University, Nanchong 637009, People's Republic of China.
| | - Wei Chen
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| | - Bo Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, People's Republic of China
| | - Yan Li
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| | - Mai-He Li
- Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland; SwissForestLab, Birmensdorf 8903, Switzerland
| | - Marcus Schaub
- Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland; SwissForestLab, Birmensdorf 8903, Switzerland
| |
Collapse
|
26
|
Hoshika Y, De Carlo A, Baraldi R, Neri L, Carrari E, Agathokleous E, Zhang L, Fares S, Paoletti E. Ozone-induced impairment of night-time stomatal closure in O 3-sensitive poplar clone is affected by nitrogen but not by phosphorus enrichment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:713-722. [PMID: 31539979 DOI: 10.1016/j.scitotenv.2019.07.288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Nocturnal transpiration may be a key factor influencing water use in plants. Tropospheric ozone (O3) and availability of nutrients such as nitrogen (N) and phosphorus (P) in the soil can affect daytime water use through stomata, but the combined effects of O3, N and P on night-time stomatal conductance (gs) are not known. We investigated the effects of O3 and soil availability of N and P on nocturnal gs and the dynamics of stomatal response after leaf severing in an O3-sensitive poplar clone (Oxford) subjected to combined treatments over a growing season in an O3 free air controlled exposure (FACE) facility. The treatments were two soil N levels (0 and 80 kg N ha-1; N0 and N80), three soil P levels (0, 40 and 80 kg P ha-1; P0, P40 and P80) and three O3 levels (ambient concentration, AA [35.0 ppb as hourly mean]; 1.5 × AA; 2.0 × AA). The analysis of stomatal dynamics after leaf severing suggested that O3 impaired stomatal closure execution. As a result, nocturnal gs was increased by 2.0 × AA O3 in August (+39%) and September (+108%). Night-time gs was correlated with POD0 (phytotoxic O3 dose) and increased exponentially after 40 mmol m-2 POD0. Such increase of nocturnal gs was attributed to the emission of ethylene due to 2.0 × AA O3 exposure, while foliar abscisic acid (ABA) or indole-3-acetic acid (IAA) did not affect gs at night. Interestingly, the O3-induced stomatal opening at night was limited by N treatments in August, but not limited in September. Phosphorus decreased nocturnal gs, although P did not modify the O3-induced stomatal dysfunction. The results suggest that the increased nocturnal gs may be associated with a need to improve N acquisition to cope with O3 stress.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), National Research Council (CNR), Via Madonna del Piano, I-50019 Sesto Fiorentino, Italy.
| | - Anna De Carlo
- Istituto di Bioeconomia (IBE), National Research Council (CNR), via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Rita Baraldi
- Istituto di Bioeconomia (IBE), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Luisa Neri
- Istituto di Bioeconomia (IBE), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Elisa Carrari
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), National Research Council (CNR), Via Madonna del Piano, I-50019 Sesto Fiorentino, Italy
| | - Evgenios Agathokleous
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Nanjing, Jiangsu 210044, China
| | - Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road 600, 150030 Harbin, China
| | - Silvano Fares
- Research Centre for Forestry and Wood, Council for Agricultural Research and Economics, Roma, Italy
| | - Elena Paoletti
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), National Research Council (CNR), Via Madonna del Piano, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
27
|
Li P, Zhou H, Xu Y, Shang B, Feng Z. The effects of elevated ozone on the accumulation and allocation of poplar biomass depend strongly on water and nitrogen availability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:929-936. [PMID: 30893752 DOI: 10.1016/j.scitotenv.2019.02.182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/09/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Ozone (O3) pollution can alter carbon allocation and reduce tree growth - both above and below ground, but the extent of these effects depends on the variation in soil water and nutrient availability. Here we present the accumulation and allocation of biomass in poplar clone 546 (Populus deltoides cv. '55/56' × P. deltoides cv. 'Imperial') for one growing season at two O3 concentrations (charcoal-filtered air [CF] and non-filtered air + 40 ppb of O3 [E-O3]), two watering regimes (well-watered [WW] and reduced watering at 40% of WW irrigation [RW]) and two soil nitrogen addition treatments (no addition [N0] and the addition of 50 kg N ha-1 year-1 [N50]). We found that the deleterious effects of E-O3 depended on the supply of water and nitrogen. Specifically, when the supplies of water and/or N (WW and/or N50) were abundant, E-O3 significantly reduced whole plant biomass by >15% but had no significant effect on biomass when these supplies were limited (RW and N0). A significant reduction of biomass by E-O3 occurred earlier in fine roots than in other plant organs, indicating greater sensitivity of fine root to E-O3. These results suggest that rising O3 concentrations may not ubiquitously lead to a large reduction in plant biomass since plant growth is often jointly constrained by water and nutrients.
Collapse
Affiliation(s)
- Pin Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaozhong Feng
- Institute of Ecology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
28
|
Zhang X, Liu L, Chen B, Qin Z, Xiao Y, Zhang Y, Yao R, Liu H, Yang H. Progress in Understanding the Physiological and Molecular Responses of Populus to Salt Stress. Int J Mol Sci 2019; 20:ijms20061312. [PMID: 30875897 PMCID: PMC6471404 DOI: 10.3390/ijms20061312] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 11/25/2022] Open
Abstract
Salt stress (SS) has become an important factor limiting afforestation programs. Because of their salt tolerance and fully sequenced genomes, poplars (Populus spp.) are used as model species to study SS mechanisms in trees. Here, we review recent insights into the physiological and molecular responses of Populus to SS, including ion homeostasis and signaling pathways, such as the salt overly sensitive (SOS) and reactive oxygen species (ROS) pathways. We summarize the genes that can be targeted for the genetic improvement of salt tolerance and propose future research areas.
Collapse
Affiliation(s)
- Xiaoning Zhang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China.
| | - Lijun Liu
- Key Laboratory of State Forestry Administration for Silviculture of the lower Yellow River, College of Forestry, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Bowen Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China.
| | - Zihai Qin
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China.
| | - Yufei Xiao
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China.
| | - Ye Zhang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China.
| | - Ruiling Yao
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China.
| | - Hailong Liu
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China.
| | - Hong Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China.
| |
Collapse
|