1
|
Kenney JC, White-Kiely D, van de Merwe JP, Limpus CJ, Finlayson KA. Investigating chemical risk in green and loggerhead turtles foraging in Moreton Bay using species-specific cell-based bioassays. MARINE POLLUTION BULLETIN 2025; 212:117589. [PMID: 39855065 DOI: 10.1016/j.marpolbul.2025.117589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Differences in trophic level may result in differences in chemical exposure between species of sea turtles, as pollutants may bioaccumulate differentially in diet items. It is, therefore, crucial to understand species-specific differences in exposure and effect to accurately assess chemical risk to individual species. This study used blood collected from green and loggerhead turtles foraging in Moreton Bay, Queensland, Australia, to assess differences in chemical exposure and effect of two species foraging in the same area at different trophic levels. Organic contaminants were extracted from green and loggerhead turtle blood samples and assessed for cytotoxicity in species-specific cell cultures. The results indicated that chemical exposure to organic contaminants was similar between the two species, despite differences in trophic level. Overall, chemical risk was relatively low in both species, but temporal changes in toxicity observed in other similar studies illustrate the importance of ongoing toxicological assessments of sea turtle populations.
Collapse
Affiliation(s)
- Janelle C Kenney
- School of Environment and Science, Griffith University, Gold Coast, Australia; Australian Rivers Institute, Griffith University, Australia
| | - Dylan White-Kiely
- School of Biological Sciences, University of Western Australia, Australia
| | - Jason P van de Merwe
- School of Environment and Science, Griffith University, Gold Coast, Australia; Australian Rivers Institute, Griffith University, Australia
| | - Colin J Limpus
- Department of Environment and Science, Queensland, Australia
| | | |
Collapse
|
2
|
Smith CE, Finlayson K, Barraza A, Young EJ, Gilby BL, van de Merwe JP, Townsend KA. Distinct population-wide differences in contaminants and blood parameters in foraging green sea turtles. MARINE POLLUTION BULLETIN 2025; 212:117541. [PMID: 39813878 DOI: 10.1016/j.marpolbul.2025.117541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
The rising diversity and concentration of contaminants have surpassed ecological thresholds, threatening marine ecosystems. The effects of pollutants on marine animals, particularly sea turtles, are receiving increased attention due to their role as indicators of human impacts. This study examined the health implications of contaminant exposure in three green turtle (Chelonia mydas) foraging sites in the southern Great Barrier Reef, Australia. Assessments were performed on 45 immature turtles from offshore (Heron, Lady Elliot Island) and inshore (Hervey Bay) foraging sites, hypothesising greater anthropogenic exposure inshore. A cytotoxicity assay tested blood toxicity, while trace element concentrations were compared with baseline reference intervals. Interestingly, this analysis revealed elevated cobalt and manganese levels in Hervey Bay turtles, and offshore turtles showed higher cytotoxicity despite appearing healthier, contrasting with low cytotoxicity and low body condition in Hervey Bay. These findings highlight the complexities of ecotoxicology and the need for comprehensive data on contaminant impacts.
Collapse
Affiliation(s)
- Caitlin E Smith
- School of Science, Technology and Engineering, University of the Sunshine Coast, Hervey Bay, Queensland 4655, Australia; Centre for Tropical Water and Aquatic Ecosystems Research, James Cook University, Cairns, QLD, Australia.
| | - Kimberly Finlayson
- Griffith University, Australian Rivers Institute, Southport, QLD, Australia
| | - Arthur Barraza
- Griffith University, Australian Rivers Institute, Southport, QLD, Australia
| | - Erina J Young
- Centre for Tropical Water and Aquatic Ecosystems Research, James Cook University, Cairns, QLD, Australia; EnviroVet Consultancy, Sunshine Coast, QLD, Australia
| | - Ben L Gilby
- School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, Queensland 4502, Australia
| | | | - Kathy A Townsend
- School of Science, Technology and Engineering, University of the Sunshine Coast, Hervey Bay, Queensland 4655, Australia
| |
Collapse
|
3
|
Dias VHV, Mattos JJ, Serafini PP, Lüchmann KH, Bainy ACD. A systematic review of the impact of chemical pollution on sea turtles: Insights from biomarkers of aquatic contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135813. [PMID: 39298959 DOI: 10.1016/j.jhazmat.2024.135813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Chemical anthropogenic contaminants in the marine environment pose a substantial threat to sea turtles. The current systematic review quantified the published literature on biomarkers of aquatic contamination in sea turtles. It examined the exposure and potential impacts of pollution at biochemical, molecular, and cellular levels, as indicated by these biomarkers. Eighty-seven primary peer-reviewed papers were included, most of which were published from 2013 onwards. Most studies focused on the species Chelonia mydas (n = 43 papers) and Caretta caretta (n = 36) and used blood samples for biomarker (n = 54) and chemical (n = 38) analyses. Chemical analyses were assessed alongside biomarker analyses in most studies (n = 71). Some studies indicated possible damage to the DNA, cells, oxidative balance, and reproduction of sea turtles associated with chemical contaminants as metals, emerging, and mixtures of organic pollutants. Research gaps and recommendations for future studies were addressed to help understand the toxicity of chemical pollutants in sea turtles. The purpose of this review is to contribute for supporting actions to mitigate the threats posed by pollution to these protected species, as well as to plan new studies in this research field for both conservation and biomonitoring purposes.
Collapse
Affiliation(s)
- Vera Helena Vidal Dias
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Federal University of Santa Catarina, CEP:88037000, Brazil
| | - Jacó Joaquim Mattos
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Federal University of Santa Catarina, CEP:88037000, Brazil
| | - Patricia Pereira Serafini
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Federal University of Santa Catarina, CEP:88037000, Brazil
| | - Karim Hahn Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, CEP: 88035001, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Federal University of Santa Catarina, CEP:88037000, Brazil.
| |
Collapse
|
4
|
White-Kiely D, Finlayson KA, Limpus CJ, Johnson M, van de Merwe JP. Species-specific bioassays reveal spatial variation in chemical contamination of green sea turtles. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106657. [PMID: 39074438 DOI: 10.1016/j.marenvres.2024.106657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
The rapid increase of anthropogenic activity at shipping ports and surrounding coastal areas has been correlated with higher chemical contamination entering the surrounding marine environment. Chemical contaminants in marine environments can lead to significant health problems for green turtles (Chelonia mydas), especially when these contaminants accumulate in their foraging grounds. This study examined the exposure and toxicological effects of chemical contaminants on green turtle cells using a species-specific cell viability assay. Using the QuEChERs extraction, organic contaminants were extracted from 60 blood samples collected from green turtles in three foraging locations: Port Curtis, and two reefs (Heron Reef and Hoskyn-Fairfax Reefs) within the Capricorn Bunker Group of the outer Great Barrier Reef. Blood extracts were tested for cytotoxicity against primary green turtle fibroblast cells using an in vitro resazurin bioassay to assess cell viability. Extracts from Gladstone and Heron Reef indicated significant chemical contamination, at levels high enough to cause adverse health effects of green turtles. Very low toxicity values at the Hoskyn-Fairfax Reefs location indicate its potential to be established as a reference site for the southern Great Barrier Reef.
Collapse
Affiliation(s)
- Dylan White-Kiely
- Australian Rivers Institute, Griffith University, Gold Coast, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia.
| | | | - Colin J Limpus
- Department of Environment and Science, Queensland, Australia
| | - Matthew Johnson
- Australian Rivers Institute, Griffith University, Gold Coast, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University, Gold Coast, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
5
|
Lin S, Xiao Y, Lin J, Yuan Y, Shi H, Hong M, Ding L. Chromium Affects Mitochondrial Function, Leading to Apoptosis and Autophagy in Turtle Primary Hepatocytes. Animals (Basel) 2024; 14:2403. [PMID: 39199937 PMCID: PMC11350686 DOI: 10.3390/ani14162403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Hexavalent chromium (Cr(VI)), a pervasive industrial contaminant, is highly toxic to both humans and animals. However, its effects on turtles are largely unexplored. Our study aimed to investigate the toxic effects of Cr(VI) on the Reeves' turtles (Mauremys reevesii) primary hepatocytes. We exposed hepatocytes to two concentrations (25 μM and 50 μM) of Cr(VI) for 24 h. The results showed that compared to controls, Cr(VI)-treated cells showed elevated antioxidant enzyme activity (catalase (CAT) and superoxide dismutase (SOD)) and increased reactive oxygen species (ROS) levels. Adenosine triphosphatae (ATP) levels decreased, indicating mitochondrial dysfunction. Additionally, we found significant changes in mitochondrial dynamics related genes, with downregulation of mitofusin 2 (Mfn2) and silent information regulator 1 (SIRT1) and a decrease in sirtuin 3 (SIRT3) and tumor protein 53 (p53) mRNA levels. Annexin V-FITC fluorescence staining-positive cells increased with higher Cr(VI) concentrations, marked by elevated bcl-2-associated X protein (Bax) and cysteinyl aspartate specific proteinase (Caspase3) mRNA levels and reduced B-cell lymphoma-2 (Bcl2) expression. Autophagy-related genes were also affected, with increased microtubule-associated protein 1 light chain 3 (LC3-I), microtubule-associated protein light chain 3II (LC3-II), unc-51-like autophagy-activating kinase 1 (ULK1), and sequestosome 1 (p62/SQSTM1) mRNA levels and decreased mammalian target of rapamycin (mTOR) and Beclin1 expression. Taken together, Cr(VI) promotes cell apoptosis and autophagy in turtle hepatocytes by inducing oxidative stress and disrupting mitochondrial function. These findings highlight the serious health risks posed by Cr(VI) pollution and emphasize the need for protecting wild turtle populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
6
|
Wilkinson A, Ariel E, van de Merwe J, Brodie J. Green Turtle (Chelonia mydas) Blood and Scute Trace Element Concentrations in the Northern Great Barrier Reef. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2375-2388. [PMID: 37477460 DOI: 10.1002/etc.5718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Marine turtles face numerous anthropogenic threats, including that of chemical contaminant exposure. The ecotoxicological impact of toxic metals is a global issue facing Chelonia mydas in coastal sites. Local investigation of C. mydas short-term blood metal profiles is an emerging field, while little research has been conducted on scute metal loads as potential indicators of long-term exposure. The aim of the present study was to investigate and describe C. mydas blood and scute metal profiles in coastal and offshore populations of the Great Barrier Reef. This was achieved by analyzing blood and scute material sampled from local C. mydas populations in five field sites, for a suite of ecologically relevant metals. By applying principal component analysis and comparing coastal sample data with those of reference intervals derived from the control site, insight was gleaned on local metal profiles of each population. Blood metal concentrations in turtles from coastal sites were typically elevated when compared with levels recorded in the offshore control population (Howick Island Group). Scute metal profiles were similar in Cockle Bay, Upstart Bay, and Edgecumbe Bay, all of which were distinct from that of Toolakea. Some elements were reported at similar concentrations in blood and scutes, but most were higher in scute samples, indicative of temporal accumulation. Coastal C. mydas populations may be at risk of toxic effects from metals such as Co, which was consistently found to be at concentrations magnitudes above region-specific reference intervals. Environ Toxicol Chem 2023;42:2375-2388. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Adam Wilkinson
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Ellen Ariel
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Jason van de Merwe
- Australian Rivers Institute and School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| | - Jon Brodie
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
7
|
Schaap I, Buedenbender L, Johann S, Hollert H, Dogruer G. Impact of chemical pollution on threatened marine mammals: A systematic review. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132203. [PMID: 37567134 DOI: 10.1016/j.jhazmat.2023.132203] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Marine mammals, due to their long life span, key position in the food web, and large lipid deposits, often face significant health risks from accumulating contaminants. This systematic review examines published literature on pollutant-induced adverse health effects in the International Union for Conservation of Nature (IUCN) red-listed marine mammal species. Thereby, identifying gaps in literature across different extinction risk categories, spatial distribution and climatic zones of studied habitats, commonly used methodologies, researched pollutants, and mechanisms from cellular to population levels. Our findings reveal a lower availability of exposure-effect data for higher extinction risk species (critically endangered 16%, endangered 15%, vulnerable 66%), highlighting the need for more research. For many threatened species in the Southern Hemisphere pollutant-effect relationships are not established. Non-destructively sampled tissues, like blood or skin, are commonly measured for exposure assessment. The most studied pollutants are POPs (31%), metals (30%), and pesticides (17%). Research on mixture toxicity is scarce while pollution-effect studies primarily focus on molecular and cellular levels. Bridging the gap between molecular data and higher-level effects is crucial, with computational approaches offering a high potential through in vitro to in vivo extrapolation using (toxico-)kinetic modelling. This could aid in population-level risk assessment for threatened marine mammals.
Collapse
Affiliation(s)
- Iris Schaap
- Farm Technology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, the Netherlands.
| | - Larissa Buedenbender
- Centro Interdisciplinar de Química e Bioloxía (CICA), Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Sarah Johann
- Department Evolutionary Ecology & Environmental Toxicology, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Henner Hollert
- Department Evolutionary Ecology & Environmental Toxicology, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Gulsah Dogruer
- Wageningen Marine Research, Wageningen Research, 1976CP IJmuiden, the Netherlands
| |
Collapse
|
8
|
Chaousis S, Leusch FDL, Nouwens A, Melvin SD, van de Merwe JP. Influence of chemical dose and exposure duration on protein synthesis in green sea turtle primary cells. J Proteomics 2023; 285:104942. [PMID: 37285907 DOI: 10.1016/j.jprot.2023.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Understanding the impacts of chemical exposure in marine wildlife is challenging, due to practical and ethical constraints that preclude traditional toxicology research on these animals. This study addressed some of these limitations by presenting an ethical and high throughput cell-based approach to elucidate molecular-level effects of contaminants on sea turtles. The experimental design addressed basic questions of cell-based toxicology, including chemical dose and exposure time. Primary green turtle skin cells were exposed to polychlorinated biphenyl (PCB) 153 and perfluorononanoic acid (PFNA) for 24 and 48 h, at three sub-lethal, environmentally relevant concentrations (1, 10 and 100 μg/L). Sequential window acquisition of all theoretical mass spectra (SWATH-MS) identified over 1000 differentially abundant proteins within the 1% false discovery rate (FDR) threshold. The 24 h exposure resulted in a greater number of differentially abundant proteins, compared to 48 h exposure, for both contaminants. However, there were no statistically significant dose-response relationships for the number of differentially synthesised proteins, nor differences in the proportion of increased vs decreased proteins between or within exposure times. Known in vivo markers of contaminant exposure, superoxide dismutase and glutathione S-transferase, were differentially abundant following exposure to PCB153 and PFNA. SIGNIFICANCE: Cell-based (in vitro) proteomics provides an ethical and high throughput approach to understanding the impacts of chemical contamination on sea turtles. Through investigating effects of chemical dose and exposure duration on unique protein abundance in vitro, this study provides an optimised framework for conducting cell-based studies in wildlife proteomics, and highlights that proteins detected in vitro could act as biomarkers of chemical exposure and effect in vivo.
Collapse
Affiliation(s)
- Stephanie Chaousis
- Griffith School of Science and Environment and the Australian Rivers Institute, Griffith Univeristy, Building 51, Gold Coast Campus, QLD 4222, Australia
| | - Frederic D L Leusch
- Griffith School of Science and Environment and the Australian Rivers Institute, Griffith Univeristy, Building 51, Gold Coast Campus, QLD 4222, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biology, The University of Queensland, Building 76, QLD 4067, Australia
| | - Steven D Melvin
- Griffith School of Science and Environment and the Australian Rivers Institute, Griffith Univeristy, Building 51, Gold Coast Campus, QLD 4222, Australia
| | - Jason P van de Merwe
- Griffith School of Science and Environment and the Australian Rivers Institute, Griffith Univeristy, Building 51, Gold Coast Campus, QLD 4222, Australia.
| |
Collapse
|
9
|
Bailey D, Finlayson KA, Dogruer G, Bennett WW, van de Merwe JP. Dose metric evaluation of a cell-based bioassay for assessing the toxicity of metals to Dugong dugon: Effect of metal-media interactions on exposure concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 255:106394. [PMID: 36603369 DOI: 10.1016/j.aquatox.2023.106394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/21/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Cell-based toxicity testing has emerged as a useful tool in (eco)toxicological research, allowing the ethical assessment of the effects of contaminants such as trace metals on marine megafauna. However, metal interactions with various dissolved ligands in the microplate environment may influence the effective exposure concentrations. Hence, the cells are not exposed to the nominal concentrations within the test system. This study aimed to establish and evaluate the effectiveness of cell-based bioassays for investigating the toxicity of selected metals in dugongs through the following objectives: (1) measure the cytotoxic potential of cadmium (Cd2+), and chromium (Cr6+) to dugong skin cell cultures, (2) investigate the interactions between media constituents and selected trace metals in cell-based bioassays, and (3) evaluate the risk to a free-ranging population of dugong based on effect values. Chromium was the most toxic of the metals tested (EC50 = 1.14 µM), followed by Cd (EC50 = 6.35 µM). Assessment of ultrafiltered (< 3 kDa) exposure media showed that 1% and 92.5% of Cr and Cd were associated with larger organic components of the media. Further, the binding of Cd to media constituents was calculated to underestimate Cd toxicity in cell-based assays by an order of magnitude. This understanding of metal partitioning in cell-based bioassays provides a more accurate method for assessing toxicity in cell-based bioassays. In addition, this study illustrated that dugong cells are more sensitive to Cr and Cd than other marine wildlife species. The chemical risk assessment found the dugong population in Moreton Bay to be at high risk from Cd exposure.
Collapse
Affiliation(s)
- David Bailey
- Coastal and Marine Research Centre, Griffith University, Gold Coast, Queensland, Australia; Australian Rivers Institute, Griffith University, Queensland, Australia
| | - Kimberly A Finlayson
- Coastal and Marine Research Centre, Griffith University, Gold Coast, Queensland, Australia; Australian Rivers Institute, Griffith University, Queensland, Australia.
| | - Gulsah Dogruer
- Australian Rivers Institute, Griffith University, Queensland, Australia; Wageningen Marine Research, Wageningen University and Research, Netherlands
| | - William W Bennett
- Coastal and Marine Research Centre, Griffith University, Gold Coast, Queensland, Australia
| | - Jason P van de Merwe
- Coastal and Marine Research Centre, Griffith University, Gold Coast, Queensland, Australia; Australian Rivers Institute, Griffith University, Queensland, Australia
| |
Collapse
|
10
|
Finlayson KA, Leusch FDL, van de Merwe JP. Review of ecologically relevant in vitro bioassays to supplement current in vivo tests for whole effluent toxicity testing - Part 1: Apical endpoints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157817. [PMID: 35970462 DOI: 10.1016/j.scitotenv.2022.157817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/12/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Whole effluent toxicity (WET) testing is commonly used to ensure that wastewater discharges do not pose an unacceptable risk to receiving environments. Traditional WET testing involves exposing animals to (waste)water samples to assess four major ecologically relevant apical endpoints: mortality, growth, development, and reproduction. Recently, with the widespread implementation of the 3Rs to replace, reduce and refine the use of animals in research and testing, there has been a global shift away from in vivo testing towards in vitro alternatives. However, prior to the inclusion of in vitro bioassays in regulatory frameworks, it is critical to establish their ecological relevance and technical suitability. This is part 1 of a two-part review that aims to identify in vitro bioassays that can be used in WET testing and relate them to ecologically relevant endpoints through toxicity pathways, providing the reader with a high-level overview of current capabilities. Part 1 of this review focuses on four apical endpoints currently included in WET testing: mortality, growth, development, and reproduction. For each endpoint, the link between responses at the molecular or cellular level, that can be measured in vitro, and the adverse outcome at the organism level were established through simplified toxicity pathways. Additionally, literature from 2015 to 2020 on the use of in vitro bioassays for water quality assessments was reviewed to identify a list of suitable bioassays for each endpoint. This review will enable the prioritization of relevant endpoints and bioassays for incorporation into WET testing.
Collapse
Affiliation(s)
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
11
|
Perkins GE, Finlayson KA, van de Merwe JP. Pelagic and coastal green turtles (Chelonia mydas) experience differences in chemical exposure and effect. MARINE POLLUTION BULLETIN 2022; 183:114027. [PMID: 35985101 DOI: 10.1016/j.marpolbul.2022.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Green turtles foraging in coastal areas are exposed to land-based chemical pollutants that accumulate in the habitats to which they show high site fidelity. However, prior to coastal recruitment, they may be exposed to a different range of chemical threats. The recent development of species-specific in vitro bioassays for marine turtles allows for an effect-based assessment of toxicological endpoints. Blood was collected from green turtles of two life-stages, 'recent recruits' and 'coastal residents', in Hervey Bay and Moreton Bay. Organic contaminants were extracted from blood using the QuEChERS method, and cytotoxicity of the extracts measured in green turtle skin cells. Although not statistically significant, extracts from 'coastal residents' exhibited greater mean toxicity compared to 'recent recruits', possibly indicative of increased chemical accumulation from coastal habitat exposure. The bioassay results also indicated that turtles foraging in Hervey Bay are at greater risk of chemical exposure than those foraging in Moreton Bay.
Collapse
Affiliation(s)
- Grace E Perkins
- School of Environment and Science, Griffith University, Gold Coast, Australia.
| | | | - Jason P van de Merwe
- School of Environment and Science, Griffith University, Gold Coast, Australia; Australian Rivers Institute, Griffith University, Australia
| |
Collapse
|
12
|
Johnson M, Finlayson K, Shelper T, van de Merwe JP, Leusch FDL. Optimisation of an automated high-throughput micronucleus (HiTMiN) assay to measure genotoxicity of environmental contaminants. CHEMOSPHERE 2022; 298:134349. [PMID: 35306058 DOI: 10.1016/j.chemosphere.2022.134349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Anthropogenic contaminants can have a variety of adverse effects on exposed organisms, including genotoxicity in the form of DNA damage. One of the most commonly used methods to evaluate genotoxicity in exposed organisms is the micronucleus (MN) assay. It provides an efficient assessment of chromosomal impairment due to either chromosomal rupture or mis-segregation during mitosis. However, evaluating chromosomal damage in the MN assay through manual microscopy is a highly time-consuming and somewhat subjective process. High-throughput evaluation with automated image analysis could reduce subjectivity and increase accuracy and throughput. In this study, we optimised and streamlined the HiTMiN assay, adapting the MN assay to a miniaturised, 96-well plate format with reduced steps, and applied it to both primary cells from green turtle fibroblasts (GT12s-p) and a freshwater fish hepatoma cell line (PLHC-1). Image analysis using both commercial (Columbus) and freely available (CellProfiler) software automated the scoring of MN, with improved precision and drastically reduced time compared to manual scoring and other available protocols. The assay was validated through exposure to two inorganic (chromium and cobalt) and one organic (the herbicide metolachlor) compounds, which are genotoxicants of concern in the marine environment. All compounds tested induced MN formation below cytotoxic concentrations. The HiTMiN assay presented here greatly increases the suitability of the MN assay as a quick, affordable, sensitive and accurate assay to measure genotoxicity of environmental samples in different cell lines.
Collapse
Affiliation(s)
- Matthew Johnson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia.
| | - Kimberly Finlayson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia
| | - Todd Shelper
- Menzies Institute of Health Queensland, Griffith University, Southport, Qld, 4222, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia
| |
Collapse
|
13
|
Wilkinson A, Ariel E, van de Merwe J, Brodie J. Trace element concentrations in forage seagrass species of Chelonia mydas along the Great Barrier Reef. PLoS One 2022; 17:e0269806. [PMID: 35704620 PMCID: PMC9200345 DOI: 10.1371/journal.pone.0269806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 05/31/2022] [Indexed: 12/05/2022] Open
Abstract
Toxic metal exposure is a threat to green sea turtles (Chelonia mydas) inhabiting and foraging in coastal seagrass meadows and are of particular concern in local bays of the Great Barrier Reef (GBR), as numerous sources of metal contaminants are located within the region. Seagrass species tend to bioaccumulate metals at concentrations greater than that detected in the surrounding environment. Little is known regarding ecotoxicological impacts of environmental metal loads on seagrass or Chelonia mydas (C. mydas), and thus this study aimed to investigate and describe seagrass metal loads in three central GBR coastal sites and one offshore site located in the northern GBR. Primary seagrass forage of C. mydas was identified, and samples collected from foraging sites before and after the 2018/2019 wet season, and multivariate differences in metal profiles investigated between sites and sampling events. Most metals investigated were higher at one or more coastal sites, relative to data obtained from the offshore site, and cadmium (Cd), cobalt (Co), iron (Fe) and manganese (Mn) were found to be higher at all coastal sites. Principle Component Analysis (PCA) found that metal profiles in the coastal sites were similar, but all were distinctly different from that of the offshore data. Coastal foraging sites are influenced by land-based contaminants that can enter the coastal zone via river discharge during periods of heavy rainfall, and impact sites closest to sources. Bioavailability of metal elements are determined by complex interactions and processes that are largely unknown, but association between elevated metal loads and turtle disease warrants further investigation to better understand the impact of environmental contaminants on ecologically important seagrass and associated macrograzers.
Collapse
Affiliation(s)
- Adam Wilkinson
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Ellen Ariel
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Jason van de Merwe
- Australian Rivers Institute and School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| | - Jon Brodie
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
14
|
Finlayson KA, Limpus CJ, van de Merwe JP. Temporal changes in chemical contamination of green turtles (Chelonia mydas) foraging in a heavily industrialised seaport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152848. [PMID: 35007578 DOI: 10.1016/j.scitotenv.2021.152848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Port Curtis, a major shipping port, has undergone significant expansion in the last decade, with plans for further development into the future. These activities may result in an increase of contaminant concentrations, threatening local wildlife including sea turtles. This study used a species-specific in vitro bioassay to examine spatial and temporal differences in exposure to, and effects of, organic contaminants in green sea turtles foraging in Port Curtis. Blood was collected from 134 green sea turtles (Chelonia mydas) from five locations in the port over four years. Organic contaminants were extracted from blood, and the cytotoxicity of the extracts to primary green sea turtle cells was assessed. Results indicated spatially similar chemical contamination throughout Port Curtis, at levels significant to sea turtle health, and with signs that chemical contamination may be increasing over time. These results can provide valuable information on the health of green turtles as further development occurs.
Collapse
Affiliation(s)
| | - Colin J Limpus
- Department of Environment and Science, Queensland, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
15
|
Bianchi L, Casini S, Vantaggiato L, Di Noi A, Carleo A, Shaba E, Armini A, Bellucci F, Furii G, Bini L, Caliani I. A Novel Ex Vivo Approach Based on Proteomics and Biomarkers to Evaluate the Effects of Chrysene, MEHP, and PBDE-47 on Loggerhead Sea Turtles ( Caretta caretta). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074369. [PMID: 35410049 PMCID: PMC8998652 DOI: 10.3390/ijerph19074369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/18/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023]
Abstract
The principal aim of the present study was to develop and apply novel ex vivo tests as an alternative to cell cultures able to evaluate the possible effects of emerging and legacy contaminants in Caretta caretta. To this end, we performed ex vivo experiments on non-invasively collected whole-blood and skin-biopsy slices treated with chrysene, MEHP, or PBDE-47. Blood samples were tested by oxidative stress (TAS), immune system (respiratory burst, lysozyme, and complement system), and genotoxicity (ENA assay) biomarkers, and genotoxic and immune system effects were observed. Skin slices were analyzed by applying a 2D-PAGE/MS proteomic approach, and specific contaminant signatures were delineated on the skin proteomic profile. These reflect biochemical effects induced by each treatment and allowed to identify glutathione S-transferase P, peptidyl-prolyl cis-trans isomerase A, mimecan, and protein S100-A6 as potential biomarkers of the health-threatening impact the texted toxicants have on C. caretta. Obtained results confirm the suitability of the ex vivo system and indicate the potential risk the loggerhead sea turtle is undergoing in the natural environment. In conclusion, this work proved the relevance that the applied ex vivo models may have in testing the toxicity of other compounds and mixtures and in biomarker discovery.
Collapse
Affiliation(s)
- Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (L.B.); (L.V.); (E.S.); (L.B.)
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy; (F.B.); (I.C.)
- Correspondence:
| | - Lorenza Vantaggiato
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (L.B.); (L.V.); (E.S.); (L.B.)
| | - Agata Di Noi
- Department of Life Sciences, University of Siena, Via P. Mattioli, 4, 53100 Siena, Italy;
| | - Alfonso Carleo
- Department of Pulmonology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany;
| | - Enxhi Shaba
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (L.B.); (L.V.); (E.S.); (L.B.)
| | - Alessandro Armini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100 Siena, Italy;
| | - Francesco Bellucci
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy; (F.B.); (I.C.)
| | - Giovanni Furii
- Centro Recupero Tartarughe Marine Legambiente, Molo di Ponente, 71043 Manfredonia, Italy;
| | - Luca Bini
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (L.B.); (L.V.); (E.S.); (L.B.)
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy; (F.B.); (I.C.)
| |
Collapse
|
16
|
Dogruer G, Kramer NI, Schaap IL, Hollert H, Gaus C, van de Merwe JP. An integrative approach to define chemical exposure threshold limits for endangered sea turtles. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126512. [PMID: 34284283 DOI: 10.1016/j.jhazmat.2021.126512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/04/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Environmental contaminants pose serious health threats to marine megafauna species, yet methods defining exposure threshold limits are lacking. Here, a three-pillar chemical risk assessment framework is presented based on (1) species- and chemical-specific lifetime bioaccumulation modelling, (2) non-destructive in vitro and in vivo toxicity threshold assessment, and (3) chemical risk quantification. We used the effects of cadmium (Cd) in green sea turtles (Chelonia mydas) as a proof of concept to evaluate the quantitative mechanistic modelling approach. A physiologically-based kinetic (PBK) model simulated Cd tissue concentrations (liver, kidney, muscle, fat, brain, scute, and 'rest of the body') in C.mydas. The validated PBK model then translated species-specific in vitro results to in vivo effects. The results showed that the resilience of C.mydas towards Cd kidney toxicity is age-dependent and differs with changing physiology and feeding ecology. Using the model in reverse mode, a steady-state exposure threshold of 0.1 µg/g dry weight Cd in forage was derived and compared to real-world exposure scenarios. Three out of the four globally distinct C.mydas populations assessed are exposed to Cd levels above this threshold limit. This approach can be adapted to other marine species and chemicals to prioritize measures for managing potentially harmful chemical exposures.
Collapse
Affiliation(s)
- Gulsah Dogruer
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Australia; Institute for Risk Assessment Sciences, The School of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.
| | - Nynke I Kramer
- Institute for Risk Assessment Sciences, The School of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Iris L Schaap
- Institute for Risk Assessment Sciences, The School of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Henner Hollert
- Department Evolutionary Ecology & Environmental Toxicology, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt, Germany
| | - Caroline Gaus
- Queensland Alliance for Environmental Health Science, The University of Queensland, Brisbane, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
17
|
Finlayson KA, van de Merwe JP. Differences in marine megafauna in vitro sensitivity highlights the need for species-specific chemical risk assessments. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105939. [PMID: 34455206 DOI: 10.1016/j.aquatox.2021.105939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/07/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Sea turtles, dolphins and dugongs can be exposed to large mixtures of contaminants due to the proximity of foraging locations to anthropogenic inputs. Differences in accumulation and effect result in differences of chemical risk to these species. However, little is known about the effect of contaminants in marine wildlife. Cell-based, or in vitro, exposure experiments offer an ethical alternative to investigate the effect of contaminants in wildlife. Data from in vitro studies can then be placed in an environmental context, by using screening risk assessments, comparing effect data with accumulation data from the literature, to identify risk to populations of marine wildlife. Cytotoxicity of Cr6+, Cd2+, Hg2+, 4,4'-DDE, and PFNA were investigated in primary skin fibroblasts of green turtles, loggerhead turtles, hawksbill turtles, dugongs, Burrunan dolphins, and common bottlenose dolphins. The general order of toxicity for all species was Hg2+> Cr6+ > Cd2+> 4,4'-DDE > PFNA, and significant differences in cytotoxicity were found between species for Cr6+, Cd2+ and PFNA. For Cd2+, in particular, cells from turtle species were less sensitive than mammalian species, and dugong cells were by far the most sensitive. The results from the cytotoxicity assay were then used in combination with published data on tissue contaminant concentrations to calculate risk quotients for identifying populations of each species most at risk from these chemicals. Cr, Cd and Hg were identified as posing risk in all six species. Dugongs were particularly at risk from Cd accumulation and dolphin species were particularly at risk from Hg accumulation. These results demonstrate the importance of using species-specific effect and accumulation data for developing chemical risk assessments and can be used to inform managers of priority contaminants, species, or populations. Development of additional in vitro endpoints, and improving links between in vitro and in vivo effects, would further improve this approach to understanding chemical risk in marine megafauna.
Collapse
Affiliation(s)
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
18
|
Guimarães ATB, Malafaia G. Multiple toxicity endpoints induced by carbon nanofibers in Amazon turtle juveniles: Outspreading warns about toxicological risks to reptiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146514. [PMID: 34030253 DOI: 10.1016/j.scitotenv.2021.146514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
The toxicity of carbon-based nanomaterials (CNs) has been observed in different organisms; however, little is known about the impact of water polluted with carbon nanofibers (CNFs) on reptiles. Thus, the aim of the current study was to assess the chronic effects (7.5 months) of 1 and 10 mg/L of CNF on Podocnemis expansa (Amazon turtle) juveniles (4 months old) based on different biomarkers. Increased total organic carbon (TOC) concentrations observed in the liver and brain (which suggests CNF uptake) were closely correlated to changes in REDOX systems of turtles exposed to CNFs, mainly to higher nitrite, hydrogen peroxide and lipid peroxidation levels. Increased levels of antioxidants such as total glutathione, catalase and superoxide dismutase in the exposed animals were also observed. The uptake of CNFs and the observed biochemical changes were associated with higher frequency of erythrocyte nuclear abnormalities (assessed through micronucleus assays), as well as with both damage in erythrocyte DNA (assessed through comet assays) and higher apoptosis and necrosis rates in erythrocytes of exposed turtles. Cerebral and hepatic acetylcholinesterase (AChE) increased in turtles exposed to CNFs, and this finding suggested the neurotoxic effect of these nanomaterials. Data in the current study reinforced the toxic potential of CNFs and evidenced the biochemical, mutagenic, genotoxic, cytotoxic, and neurotoxic effects of CNFs on P. expansa.
Collapse
Affiliation(s)
- Abraão Tiago Batista Guimarães
- Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institute and Federal University of Goiás, GO, Brazil; Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urataí Campus, GO, Brazil
| | - Guilherme Malafaia
- Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institute and Federal University of Goiás, GO, Brazil; Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urataí Campus, GO, Brazil; Post-Graduate Program in Ecology and Conservation of Natural Resources, Federal University of Uberlândia, MG, Brazil.
| |
Collapse
|
19
|
Weltmeyer A, Dogruer G, Hollert H, Ouellet JD, Townsend K, Covaci A, Weijs L. Distribution and toxicity of persistent organic pollutants and methoxylated polybrominated diphenylethers in different tissues of the green turtle Chelonia mydas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116795. [PMID: 33640813 DOI: 10.1016/j.envpol.2021.116795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Investigating environmental pollution is important to understand its impact on endangered species such as green turtles (Chelonia mydas). In this study, we investigated the accumulation and potential toxicity of selected persistent organic pollutants (POPs) and naturally occurring MeO-PBDEs in liver, fat, kidney and muscle of turtles (n = 30) of different gender, size, year of death, location and health status. Overall, POP concentrations were low and accumulation was highest in liver and lowest in fat which is likely due to the poor health of several animals, causing a remobilization of lipids and associated compounds. PCBs and p,p'-DDE dominated the POP profiles, and relatively high MeO-PBDE concentrations (2'-MeO-BDE 68 up to 192 ng/g lw, 6-MeO-BDE 47 up to 79 ng/g lw) were detected in all tissues. Only few influences of factors such as age, gender and location were found. While concentrations were low compared to other marine wildlife, biological toxicity equivalences obtained by screening the tissue extracts using the micro-EROD assay ranged from 2.8 to 356 pg/g and the highest values were observed in muscle, followed by kidney and liver. This emphazises that pollutant mixtures found in the turtles have the potential to cause dioxin-like effects in these animals and that dioxin-like compounds should not be overlooked in future studies.
Collapse
Affiliation(s)
- Antonia Weltmeyer
- RWTH Aachen University, Institute for Environmental Research, Aachen, Germany; School of Environment and Science, Australian Rivers Institute, Griffith University, Gold Coast, Australia
| | - Gülsah Dogruer
- School of Environment and Science, Australian Rivers Institute, Griffith University, Gold Coast, Australia; Wageningen Marine Research, Wageningen University and Research, Ijmuiden, the Netherlands
| | - Henner Hollert
- RWTH Aachen University, Institute for Environmental Research, Aachen, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - Jacob D Ouellet
- RWTH Aachen University, Institute for Environmental Research, Aachen, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - Kathy Townsend
- Faculty of Science and Engineering, University of the Sunshine Coast, Hervey Bay, Australia
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Belgium
| | - Liesbeth Weijs
- School of Environment and Science, Australian Rivers Institute, Griffith University, Gold Coast, Australia.
| |
Collapse
|
20
|
Hernández-Fernández J, Pinzón-Velasco A, López EA, Rodríguez-Becerra P, Mariño-Ramírez L. Transcriptional Analyses of Acute Exposure to Methylmercury on Erythrocytes of Loggerhead Sea Turtle. TOXICS 2021; 9:70. [PMID: 33805397 PMCID: PMC8066450 DOI: 10.3390/toxics9040070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023]
Abstract
To understand changes in enzyme activity and gene expression as biomarkers of exposure to methylmercury, we exposed loggerhead turtle erythrocytes (RBCs) to concentrations of 0, 1, and 5 mg L-1 of MeHg and de novo transcriptome were assembled using RNA-seq. The analysis of differentially expressed genes (DEGs) indicated that 79 unique genes were dysregulated (39 upregulated and 44 downregulated genes). The results showed that MeHg altered gene expression patterns as a response to the cellular stress produced, reflected in cell cycle regulation, lysosomal activity, autophagy, calcium regulation, mitochondrial regulation, apoptosis, and regulation of transcription and translation. The analysis of DEGs showed a low response of the antioxidant machinery to MeHg, evidenced by the fact that genes of early response to oxidative stress were not dysregulated. The RBCs maintained a constitutive expression of proteins that represented a good part of the defense against reactive oxygen species (ROS) induced by MeHg.
Collapse
Affiliation(s)
- Javier Hernández-Fernández
- Department of Natural and Environmental Science, Marine Biology Program, Faculty of Science and Engineering, Genetics, Molecular Biology and Bioinformatic Research Group–GENBIMOL, Jorge Tadeo Lozano University, Cra. 4 No 22-61, Bogotá 110311, Colombia;
- Faculty of Sciences, Department of Biology, Pontificia Universidad Javeriana, Calle 45, Cra. 7, Bogotá 110231, Colombia
| | - Andrés Pinzón-Velasco
- Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Calle 45, Cra. 30, Bogotá 111321, Colombia;
| | - Ellie Anne López
- IDEASA Research Group-Environment and Sustainability, Institute of Environmental Studies and Services, Sergio Arboleda University, Bogotá 111711, Colombia;
| | - Pilar Rodríguez-Becerra
- Department of Natural and Environmental Science, Marine Biology Program, Faculty of Science and Engineering, Genetics, Molecular Biology and Bioinformatic Research Group–GENBIMOL, Jorge Tadeo Lozano University, Cra. 4 No 22-61, Bogotá 110311, Colombia;
| | - Leonardo Mariño-Ramírez
- NCBI, NLM, NIH Computational Biology Branch, Building 38A, Room 6S614M 8600 Rockville Pike, MSC 6075, Bethesda, MD 20894-6075, USA;
| |
Collapse
|
21
|
Leusch FDL, Hollert H, Holmes G. Editorial - Virtual special issue (VSI) green turtles as silent sentinels of pollution in the Great Barrier Reef - Rivers to Reef to Turtles project. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:144188. [PMID: 33316512 DOI: 10.1016/j.scitotenv.2020.144188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This special issue of STOTEN is dedicated to presenting the results of the WWF-Australia "Rivers to Reef to Turtles" project, which focused on investigating pollutants in the environment, food and bodies of green turtles (Chelonia mydas) on the Great Barrier Reef (GBR). The project brought together organic and inorganic trace chemical analysis, bioanalytical tools and individual health monitoring to investigate potential causes of an unusual mortality event in 2012. Together, the ten studies in this special issue highlight the shortcomings of current chemical monitoring and impact assessment programmes, which are focused on a limited number of prioritised chemicals and fail to account for the incredible diversity of toxicants released by human activities. It is essential that future management efforts consider the impact of these contaminants on the GBR, already under threat from global warming and sediment and nutrient runoff. Understanding the impact that chemical contaminants have on turtles not only informs green turtle conservation but can also, as they are sensitive and long-lived bioindicators of environmental health, guide efforts to protect, conserve and restore marine ecosystems such as the GBR.
Collapse
Affiliation(s)
- Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld 4222, Australia.
| | - Henner Hollert
- Department Evolutionary Ecology & Environmental Toxicology (E3T), Faculty Biological Sciences (FB15), Goethe University Frankfurt, Germany.
| | - Glen Holmes
- WWF Australia, Brisbane, Qld 4000, Australia.
| |
Collapse
|
22
|
Chaousis S, Leusch FDL, Nouwens A, Melvin SD, van de Merwe JP. Changes in global protein expression in sea turtle cells exposed to common contaminants indicates new biomarkers of chemical exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141680. [PMID: 32890801 DOI: 10.1016/j.scitotenv.2020.141680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 05/14/2023]
Abstract
Non-targeted protein expression at the cellular level can provide insights into mechanistic effects of contaminants in wildlife, and hence new and potentially more accurate biomarkers of exposure and effect. However, this technique has been relatively unexplored in the realm of in vitro biomarker discovery in threatened wildlife, despite the vulnerability of this group of animals to adverse sublethal effects of contaminant exposure. Here we examined the usefulness of non-targeted protein expression for biomarker discovery in green sea turtles (Chelonia mydas) by investigating differences in the response of primary cells from five different tissue types that were exposed to three contaminants known to accumulate in this species. Cells derived from C. mydas skin, liver, kidney, ovary and small intestine were exposed to 100 μg/L of either polychlorinated biphenyl 153 (PCB153), perfluorononanoic acid (PFNA) or phenanthrene for 24 h. The global protein expression was then quantitatively evaluated using sequential window acquisition of all theoretical mass spectra (SWATH-MS). Comparison of the global protein profiles revealed that, while a majority of proteins were mutually expressed in controls of all tissue types (~90%), the response to exposure in terms of protein expression strength was significantly different between tissue types. Furthermore, a comparison to known markers of chemical exposure in sea turtles from the literature indicated that in vitro response can reflect known in vivo responses. In particular, markers such as heat shock protein (HSP) 60, glutathione S-transferases (GSTs) and superoxide dismutases (SODs), cytochrome P450 and catalase were dysregulated in response to exposure. Furthermore, potential new markers of exposure were discovered such as annexin, an important protein in cell signalling processes. While this methodology proved promising further studies are required to confirm the accuracy of in vitro protein expression as a tool for biomarker discovery in wildlife.
Collapse
Affiliation(s)
- Stephanie Chaousis
- Griffith School of Science and Environment, Building 51, Griffith University, Gold Coast Campus, QLD 4222, Australia; The Australian Rivers Institute, Building 51, Griffith University, Gold Coast Campus, QLD 4222, Australia.
| | - Frederic D L Leusch
- Griffith School of Science and Environment, Building 51, Griffith University, Gold Coast Campus, QLD 4222, Australia; The Australian Rivers Institute, Building 51, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biology, Building 76, The University of Queensland, QLD 4067, Australia
| | - Steven D Melvin
- Griffith School of Science and Environment, Building 51, Griffith University, Gold Coast Campus, QLD 4222, Australia; The Australian Rivers Institute, Building 51, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - Jason P van de Merwe
- Griffith School of Science and Environment, Building 51, Griffith University, Gold Coast Campus, QLD 4222, Australia; The Australian Rivers Institute, Building 51, Griffith University, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
23
|
Finlayson KA, Madden Hof CA, van de Merwe JP. Development and application of species-specific cell-based bioassays to assess toxicity in green sea turtles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:142095. [PMID: 33076209 DOI: 10.1016/j.scitotenv.2020.142095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Despite the detection of a wide range of contaminants in the blood of green turtle populations foraging in three locations of northern Queensland - Upstart Bay, Cleveland Bay and the Howick Group of Reefs, little is known about the effects of these contaminants on turtle health. Newly developed cell-based bioassays using green turtle primary cell cultures provide an ethical, reproducible, and high-throughput method for assessing the risk of chemical exposure sea turtles. In this project, the toxicity of six priority metals (Mn, Co, Mo, As, Sb, Cu) and blood extracts from foraging turtles were tested in two bioassays adapted to green turtle primary skin and liver cells. Cytotoxicity of metals and blood extracts was measured in primary skin fibroblast cells using a resazurin assay. Glutathione-S-transferase (GST) activity was measured in primary skin fibroblasts and primary liver epithelial cells following exposure to metals and blood extracts. Arsenic, molybdenum, cobalt and copper were found to be cytotoxic to green turtle skin cells. Only manganese, cobalt and copper were found to alter GST activity, predominantly in skin cells, indicating a higher sensitivity of green turtle skin cells compared to liver cells. Effect concentrations of metals in both bioassays were above concentrations found in turtle blood. Turtle blood extracts from the three foraging grounds showed differences in cytotoxicity and GST activity. In both assays, blood extracts of turtles from Upstart Bay were the most toxic, followed by those from Cleveland Bay, then the Howick Reefs, suggesting turtles from Upstart Bay and Cleveland Bay may be at risk from current concentrations of organic contaminants. This study demonstrates that species-specific cell-based bioassays can be used effectively to assess chemical risk in sea turtles and their foraging grounds, and could be applied to assess chemical risk in other marine wildlife.
Collapse
|
24
|
Oxidative Stress Biomarkers in Erythrocytes of Captive Pre-Juvenile Loggerhead Turtles Following Acute Exposure to Methylmercury. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study describes the use of erythrocytes (RBCs) of loggerhead turtles as in vitro models for evaluating their toxicity to methylmercury. Blood samples of loggerhead turtles that were born in the Colombian Caribbean were used. The LC50 of RBCs to methylmercury was determined at 96 h using methylmercury concentrations of 0.5–100 mg L−1. Next, the viability of the RBCs and the activity of the enzymes superoxide dismutase (SOD), glutathione S-transferase (GST), and lipid peroxidation by malondialdehyde (MDA) at 6 and 12 h of exposure to acute concentrations of 0, 1, and 5 mg L−1 were evaluated. The LC50 for loggerhead turtle RBCs was 8.32 mg L−1. The cell viability bioassay of RBCs exposed for 12 h only showed 100% cell viability. Increasing in vitro MeHg concentrations caused a corresponding increase in MDA concentration as well as decreases in the activities of SOD and GST. The RBCs represent an excellent model for ecotoxicological studies and SOD, GST, and MDA are biomarkers of environmental pollution and oxidative stress in loggerhead turtles. This was the first study conducted on loggerhead turtle where the response of RBCs to MeHg-induced oxidative stress is evaluated.
Collapse
|
25
|
Gómez-Ramírez P, Espín S, Navas I, Martínez-López E, Jiménez P, María-Mojica P, Peñalver J, García-Fernández AJ. Mercury and Organochlorine Pesticides in Tissues of Loggerhead Sea Turtles (Caretta caretta) Stranded Along the Southwestern Mediterranean Coastline (Andalusia, Spain). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:559-567. [PMID: 32185428 DOI: 10.1007/s00128-020-02822-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/04/2020] [Indexed: 05/14/2023]
Abstract
Nineteen loggerhead sea turtles (Caretta caretta) stranded along the southwestern Mediterranean coastline (Andalusia) were used in this study. A total of 68 samples of fat (n = 18), liver (n = 15), kidney (n = 13), pectoral muscle (n = 19), and brain (n = 3) were analysed for total mercury (Hg) and organochlorine pesticides [OC: ∑Dichlorodiphenyltrichloroethanes (∑DDT), ∑Hexachlorocyclohexane (∑HCH), ∑Heptachlor, ∑Drins and ∑Endosulfan]. These loggerhead sea turtles showed tissue Hg and OC concentrations similar to or lower than those reported in other studies. Few growth-related variations in Hg or OC levels in relation to straight carapace length were found, probably because the specimens were mostly juveniles. This study will help to fill the gap on spatio-temporal exposure data and ascertain the real world-wide picture of the contamination levels in loggerhead sea turtles.
Collapse
Affiliation(s)
- Pilar Gómez-Ramírez
- Toxicology and Risk Assessment Research Group, IMIB-Arrixaca, Faculty of Veterinary, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Silvia Espín
- Toxicology and Risk Assessment Research Group, IMIB-Arrixaca, Faculty of Veterinary, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain.
| | - Isabel Navas
- Toxicology and Risk Assessment Research Group, IMIB-Arrixaca, Faculty of Veterinary, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Emma Martínez-López
- Toxicology and Risk Assessment Research Group, IMIB-Arrixaca, Faculty of Veterinary, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Pedro Jiménez
- Toxicology and Risk Assessment Research Group, IMIB-Arrixaca, Faculty of Veterinary, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Pedro María-Mojica
- Toxicology and Risk Assessment Research Group, IMIB-Arrixaca, Faculty of Veterinary, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - José Peñalver
- Toxicology and Risk Assessment Research Group, IMIB-Arrixaca, Faculty of Veterinary, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Antonio J García-Fernández
- Toxicology and Risk Assessment Research Group, IMIB-Arrixaca, Faculty of Veterinary, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain.
| |
Collapse
|
26
|
Barraza AD, Komoroske LM, Allen CD, Eguchi T, Gossett R, Holland E, Lawson DD, LeRoux RA, Lorenzi V, Seminoff JA, Lowe CG. Persistent organic pollutants in green sea turtles (Chelonia mydas) inhabiting two urbanized Southern California habitats. MARINE POLLUTION BULLETIN 2020; 153:110979. [PMID: 32275536 PMCID: PMC7174570 DOI: 10.1016/j.marpolbul.2020.110979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 05/24/2023]
Abstract
Within Southern California, east Pacific green sea turtles (Chelonia mydas) forage year-round, taking advantage of diverse food resources, including seagrass, marine algae, and invertebrates. Assessing persistent organic pollutants (POP) in green turtle aggregations in the Seal Beach National Wildlife Refuge (SBNWR, n = 17) and San Diego Bay (SDB, n = 25) can help quantify contamination risks for these populations. Blood plasma was analyzed for polychlorinated biphenyls (PCBs), organochlorinated pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs). PCBs and body size explained much of the separation of turtles by foraging aggregation in a principal component analysis. Turtles from SDB had significantly (p < 0.001) higher total PCBs than SBNWR turtles. Most PCBs detected in turtles were non-dioxin-like PCB congeners (153, 138, 99) that are associated with neurotoxicity. Recaptured turtles' POP levels changed significantly over time indicating significant variation in POP levels through time and space, even among adjacent foraging locations.
Collapse
Affiliation(s)
- Arthur D Barraza
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA.
| | - Lisa M Komoroske
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA; Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
| | - Camryn D Allen
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA; The Joint Institute for Marine and Atmospheric Research, Protected Species Division, Pacific Islands Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
| | - Tomoharu Eguchi
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| | - Rich Gossett
- Institute for Integrated Research on Materials, Environment, and Society, California State University Long Beach, Long Beach, CA, USA
| | - Erika Holland
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Daniel D Lawson
- Long Beach Regional Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Long Beach, CA, USA
| | - Robin A LeRoux
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| | - Varenka Lorenzi
- Institute for Integrated Research on Materials, Environment, and Society, California State University Long Beach, Long Beach, CA, USA
| | - Jeffrey A Seminoff
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| | - Christopher G Lowe
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| |
Collapse
|
27
|
Guzman HM, Kaiser S, van Hinsberg VJ. Accumulation of trace elements in leatherback turtle (Dermochelys coriacea) eggs from the south-western Caribbean indicates potential health risks to consumers. CHEMOSPHERE 2020; 243:125424. [PMID: 31995877 DOI: 10.1016/j.chemosphere.2019.125424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Trace metal and metalloid levels were measured in eggs of the NW Atlantic leatherback turtle (Dermochelys coriacea) from nesting grounds in the Bocas del Toro province, Panama, to infer exposure and associated risks to local communities. Samples were analyzed for a set of 26 essential and non-essential elements using inductively coupled plasma techniques. Median concentrations of Fe, Zn, As, Se and Sr in D. coriacea eggs were higher than previously reported for this species, which likely reflects differential contamination levels of specimens during foraging. The evaluation of non-carcinogenic human health risks from ingesting leatherback eggs has revealed potential deleterious effects due to high concentrations of As, Se and Sr for all examined age and gender groups, while Hg and Zn levels were above international standards for children. Hazard index (HI) values exceeded unity in all cases indicating serious health impacts related to possible additive effects of multiple metals co-occurring in the eggs. Our findings suggest that exposure to high (inorganic) As and Cr(VI) levels is associated with an increased carcinogenic risk, significantly exceeding the acceptable lifetime risk of 10-6 for both adults and children. Despite some limitations, such as unclear As and Cr speciation, our results demonstrated that the ingestion of D. coriacea eggs poses considerable health risks to local communities, and their consumption should not exceed 3.4 × 10-4 g (5.0 × 10-6 eggs) kg BW d-1. Resource managers and conservationists should focus their attention to human health effects as an alternative tool to address egg poaching and consumption.
Collapse
Affiliation(s)
- Hector M Guzman
- Smithsonian Tropical Research Institute, P O. Box 2072, Balboa, Panama
| | - Stefanie Kaiser
- Center of Natural History, Universität Hamburg, Martin-Luther-King Platz 3, 20146, Hamburg, Germany.
| | - Vincent J van Hinsberg
- Department of Earth and Planetary Sciences, McGill University, 3450 University St., Montreal, Quebec, H3A 0E8, Canada
| |
Collapse
|