1
|
Osman KA, Mohamed HHE, Salama MS. Marketing of Freshwater and Marine Fish Species in Alexandria City, Egypt: Human Health Risk of Specific Metals. Biol Trace Elem Res 2025:10.1007/s12011-025-04596-z. [PMID: 40240669 DOI: 10.1007/s12011-025-04596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
Fish intake may constitute a significant route by which humans are exposed to metals, especially people who depend on fish as a source of protein as Alexandrians. Therefore, this study aimed to investigate the metal contents in muscles in eight commonly consumed freshwater (Tilapia, Catfish, and Common Carp) and marine fish species (Emperors, Groupers, Mackerels, Silver Pomfret, and Roving Groupers) collected from the local markets located in Alexandria City for a 1-year calendar year, 2022. Seasonal variations in the levels of the tested metals in the fish species, with significant differences between the species, were recorded. Also, the levels of Cu, Zn, Fe, Co, and Cd in all the tested fish species collected during the experiment did not exceed the guideline limits, while Ni, Cr, and Pb in fish collected during October-May, June-September, and February-May 2022, respectively, exceeded the permissible limits settled by FAO and WHO. Additionally, Mackerels and Roving Groupers had high-level contents of Mn that exceeded the permissible limits settled by European Commission. The accumulation of these metals in muscles of different fish species had relative variation in the accumulation, and Cu was the most predominant element in Tilapia, Zn in Catfish, Roving Groupers, and Mackerels, Fe in Common Carp, Groupers, Emperors, and Silver Pomfret, and Co in Tilapia. Consumption of fish with a high Metal Pollution Index (MPI) value may pose a potential public health risk. On the meantime, the calculated values of estimated daily intakes (EDI), hazard index (HI), and target health quotient (THQ) indicated no potential health risk for Alexandrians via the consumption of these fish species because they did not exceed the World Health Organization's acceptable daily intake.
Collapse
Affiliation(s)
- Khaled A Osman
- Pesticide Chemistry and Technology Department, Faculty of Agriculture, EL-Shatby, Alexandria University, Aflaton St., EL-Shatby, 21545, Alexandria, Egypt.
| | | | - Maher S Salama
- Pesticide Chemistry and Technology Department, Faculty of Agriculture, EL-Shatby, Alexandria University, Aflaton St., EL-Shatby, 21545, Alexandria, Egypt
| |
Collapse
|
2
|
Yang D, An N, Yang X, Zheng J, Yan L, Yu L. Health risks of potentially toxic elements in Cyprinus carpio in the karst plateau lake, China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3139-3145. [PMID: 39530279 DOI: 10.1002/jsfa.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Elevated potentially toxic elements (PTEs) in aquatic products could threaten the health of ordinary consumers. Levels of chromium (Cr), arsenic (As), lead (Pb), and mercury (Hg) in Cyprinus carpio in karst plateau freshwater Lake, Caohai Lake, China were quantified using inductively coupled plasma mass spectrometry (ICP-MS) and evaluated using a risk method with Monte Carlo simulation. RESULT Levels of Cr, As, Pb, and Hg in muscle tissue were substantially lower than those in viscera. The maximum concentration of muscle-bound Cr, As, Pb, and Hg were less than the standard references set by Chinese Food Codex (GB 2762-2022). The levels of Cr, As, Pb, and Hg in muscle tissue were independent of fish weight and length. The hazard index of all investigated elements in muscle tissue were less than one for adults and children, whereas the target hazard quotients of muscle-bound PTEs for children were higher than those for adults. Results indicated that exposure duration was the largest contributor to the hazard quotient of Cr, As, and Hg, whereas the concentration of Pb in muscle was the most sensitive factor affecting the variation in hazard quotient of Pb. CONCLUSION There is no risk related to the normal intake of muscle-bound Cr, Pb, As and Hg with the consumption of Cyprinus carpio. A better definition of the probability distribution for exposure duration and PTEs concentration could result in a more accurate hazard quotient. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dan Yang
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, China
- National Positioning Observation and Research Station of Caohai Wetland Ecosystem, Guizhou Academy of Forestry, Weining, China
| | - Na An
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, China
| | - Xin Yang
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, China
| | - Jiao Zheng
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, China
| | - Lingbin Yan
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, China
| | - Lifei Yu
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Hao Y, Wei X, Zhao X, Zhang X, Cai J, Song Z, Liao X, Chen X, Miao X. Bioaccumulation, contamination and health risks of trace elements in wild fish in Chongqing City, China: a consumer guidance regarding fish size. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:467. [PMID: 39382699 DOI: 10.1007/s10653-024-02219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
Trace elements generally contaminate wild fish, particularly in megacities, necessitating guided consumption practices. This study investigated the bioaccumulation of trace elements in wild fish from Chongqing City in June 2021. We evaluated their contamination and associated health risks to establish consumption guidance based on fish size. Our results indicate that the concentrations of Zn, Pb, Cr, and As were relatively high, with some fish exceeding the maximum residue limits. Herbivorous and pelagic fish generally exhibited lower bioaccumulation of most trace elements, except for Cr and As, which were higher in pelagic species. The contamination indices (Pi) for Cr, Pb and As were consistently above 0.2, indicating widespread contamination. The most contaminated fish typically measured around 19 cm in length and weighed approximately 90 g. Only the maximum target hazard quotients (THQ) for As, Cr, and Hg exceeded 1, with a notably high ratio of THQ(As) > 1, highlighting concerns over arsenic contamination. The THQ(As) remained below 1 for adults across all fish species, whereas for children, species such as Onychostoma sima, Pseudohemiculter dispar, and Parabramis pekinensis exceeded this threshold. Fish safe for adult consumption generally measured 13 cm in length and weighed 20 g, and for children, 16 cm and 25 g. Consequently, selecting larger fish is likely to reduce the consumption of contaminated fish, thereby decreasing health risks to the public. The centralization of contaminated fish with high risk in specific size range confirmed fish size could be used to gauge the contamination and health risk of fish.
Collapse
Affiliation(s)
- Yupei Hao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
- Department of Modern Engineering, Anshun Technical College, Anshun, 561000, China
| | - Xueqing Wei
- School of Geography and Environmental Science & School of Karst Science, Guizhou Normal University, Guiyang, 550001, China
| | - Xiqian Zhao
- School of Geography and Environmental Science & School of Karst Science, Guizhou Normal University, Guiyang, 550001, China
| | - Xiaodi Zhang
- School of Geography and Environmental Science & School of Karst Science, Guizhou Normal University, Guiyang, 550001, China
| | - Jiawei Cai
- Institute of Environmental Risk and Damages Assessment, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Ziqi Song
- School of Geography and Environmental Science & School of Karst Science, Guizhou Normal University, Guiyang, 550001, China
| | - Xiangen Liao
- Department of Modern Engineering, Anshun Technical College, Anshun, 561000, China
| | - Xingyou Chen
- Department of Modern Engineering, Anshun Technical College, Anshun, 561000, China
| | - Xiongyi Miao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
- School of Geography and Environmental Science & School of Karst Science, Guizhou Normal University, Guiyang, 550001, China.
- Yunan Provincial Bureau of Geology and Mineral Exploration and Development Center Laboratory, Kunming and Ministry of Natural and Resources Kunming Mineral Resource Supervision Inspecting Center, Kunming, 650217, China.
| |
Collapse
|
4
|
He Y, Fang H, Pan X, Zhu B, Chen J, Wang J, Zhang R, Chen L, Qi X, Zhang H. Cadmium Exposure in Aquatic Products and Health Risk Classification Assessment in Residents of Zhejiang, China. Foods 2023; 12:3094. [PMID: 37628093 PMCID: PMC10453627 DOI: 10.3390/foods12163094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Cadmium (Cd) pollution of food safety is a prominent food safety concern worldwide. The concentration of Cd in six aquatic food categories collected from 2018 to 2022 was analyzed using inductively coupled plasma mass spectrometry, and the Cd exposure levels were calculated by combining the Cd concentration and food consumption data of 18913 urban and rural residents in Zhejiang Province in 2015-2016. The mean Cd concentration was 0.699 mg/kg and the mean Cd exposure of aquatic foods was 0.00951 mg/kg BW/month for the general population. Marine crustaceans were the largest Cd contributor, corresponding to 82.7%. The regional distribution results showed that the average Cd exposure levels of 11 cities did not exceed the provisional tolerable monthly intake (PTMI). According to the subgroups, the Cd mean exposure level of 2-3-year-old children was significantly higher than that of the other age groups but did not exceed the PTMI. Health risk classification assessment demonstrated that the final risk score was six, and the health risk level of Cd exposure in aquatic products in the Zhejiang population was medium. These results demonstrated that the risk of Cd exposure in certain food types or age groups should be given more concern.
Collapse
Affiliation(s)
- Yue He
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Hangyan Fang
- Hangzhou Linping District Center for Disease Control and Prevention, Hangzhou 311100, China;
| | - Xiaodong Pan
- Department of Physical-Chemistry, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China;
| | - Bing Zhu
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Jiang Chen
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Jikai Wang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Ronghua Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Lili Chen
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Xiaojuan Qi
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Hexiang Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| |
Collapse
|
5
|
Chen Y, Chen J, Qu J, Li T, Sun S. Health risk assessment of dietary cadmium intake in children aged 2-17 years in East China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5311-5322. [PMID: 37138142 DOI: 10.1007/s10653-023-01562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 03/29/2023] [Indexed: 05/05/2023]
Abstract
Food is the main way for people to be exposed to heavy metal cadmium (Cd), and Cd pollution will affect human health. In this paper, exposure and health risk assessment of dietary Cd intake were conducted in children aged 2, 3, 4, 5, 6-8, 9-11, 12-14 and 15-17 years in East China. The results showed that the total exposure of dietary Cd intake in children exceeded the standard limits. The total exposure of all age groups were 1.11 × 10-3, 1.15 × 10-3, 9.67 × 10-4, 8.75 × 10-4, 9.18 × 10-4, 7.75 × 10-4, 8.24 × 10-4, 7.11 × 10-4 mg kg-1 d-1, respectively, and the highest was the children aged 3 years. The hazard quotients of children aged 2 and 3 years were 1.11 and 1.15, respectively, at an unacceptable health risk level. The hazard quotients of dietary Cd intake in children of other ages were less than 1, at an acceptable health risk level. Staple foods were the most significant contributor to the dietary Cd intake in children, and the contribution ratio of non-carcinogenic risk of dietary Cd intake in all age groups were more than 35%, the proportion of non-carcinogenic risk in children aged 6-8 and 9-11 years were as high as 50%. This study provides scientific basis for the health of children in East China.
Collapse
Affiliation(s)
- Yuefang Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Jinxiu Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jinyan Qu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tong Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shanwei Sun
- Chinese Research Academy of Environmental Sciences, Beijing, 100083, China
| |
Collapse
|
6
|
Arik N, Elcin E, Tezcaner A, Oktem HA. Optimization of whole-cell bacterial bioreporter immobilization on electrospun cellulose acetate (CA) and polycaprolactone (PCL) fibers for arsenic detection. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:666. [PMID: 37178337 DOI: 10.1007/s10661-023-11227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/06/2023] [Indexed: 05/15/2023]
Abstract
Arsenic contamination is a critical global problem, and its widespread environmental detection is becoming a prominent issue. Herein, electrospun fibers of cellulose acetate (CA) and polycaprolactone (PCL) were successfully fabricated and used as the support material for immobilization of arsenic-sensing bacterial bioreporter for the first time. To date, no attempt has been made to immobilize fluorescent whole-cell bioreporter cells on electrospun fibers for arsenic detection. CA and PCL electrospun fibers were fabricated via traditional electrospinning technique and characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and contact angle meter. Following immobilization of the bacterial bioreporter cells, the immobilized bacteria were also characterized by viability assay using AlamarBlue. The effects of growth phase and cell concentration on the fluorescence response of fiber-immobilized arsenic bioreporters to arsenic were also investigated. After immobilization of arsenic bioreporters on 10 wt% PCL fiber, 91% of bacterial cells remained viable, while this value was 55.4% for cells immobilized on 12.5 wt% CA fiber. Bioreporter cells in the exponential growth phase were shown to be more sensitive to arsenic compared to aged cells. While both the electropsun PCL- and CA-immobilized bioreporters successfully detected 50 and 100 µg/L of arsenite (As (III)) concentrations, the PCL-immobilized bioreporter showed better fluorescence performance which should be investigated in future studies. This study helps to fill some gaps in the literature and demonstrates the potential for using electrospun fiber-immobilized arsenic whole-cell bioreporter for arsenic detection in water.
Collapse
Affiliation(s)
- Nehir Arik
- Department of Molecular Biology and Genetics, Middle East Technical University, 06800, Ankara, Turkey
| | - Evrim Elcin
- Department of Agricultural Biotechnology, Aydın Adnan Menderes University, 09970, Aydın, Turkey
| | - Aysen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Hüseyin Avni Oktem
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|
7
|
Sun S, Zhang H, Luo Y, Guo C, Ma X, Fan J, Chen J, Geng N. Occurrence, accumulation, and health risks of heavy metals in Chinese market baskets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154597. [PMID: 35307434 DOI: 10.1016/j.scitotenv.2022.154597] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Residual levels and accumulation characteristics of six hazardous heavy metal elements (As, Cd, Hg, Tl, Pb, and U) and seven essential heavy metal elements (Cr, Mn, Fe, Ni, Cu, Zn, and Se) were investigated in 17 kinds of frequently consumed foodstuffs collected from 33 cities distributed in five regions of China. The concentrations of the detected metals were lower than the maximum limits promulgated by the Chinese government except Pb and inorganic As (iAs). Foods of aquatic origin and terrestrial plant origin exhibited high potentials to accumulate heavy metals, especially algae and shellfish. The calculated hazard index (HI) of heavy metal exposure via consumption of foodstuffs were 2.93-5.01 for adults in the five surveyed region, implying the co-exposure of heavy metals via food consumption would lead to potential non-carcinogenic risks. iAs was the predominant contributor to HI values with the average contribution of 40.5% in all five regions. Consumption of terrestrial plant origin foods contributed 76.9% of HI values induced by heavy metal exposure. The calculated target cancer risks of iAs in the five regions were 5 × 10-4-1 × 10-3, all exceeding the acceptable level of 10-4, indicating it is necessary and urgent to reduce the contamination of iAs in foodstuffs on the Chinese markets.
Collapse
Affiliation(s)
- Shuai Sun
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yun Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuicui Guo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xindong Ma
- State Oceanic Administration Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Jingfeng Fan
- State Oceanic Administration Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
8
|
Wu G, Zheng H, Xing Y, Wang C, Yuan X, Zhu X. A sensitive electrochemical sensor for environmental toxicity monitoring based on tungsten disulfide nanosheets/hydroxylated carbon nanotubes nanocomposite. CHEMOSPHERE 2022; 286:131602. [PMID: 34298299 DOI: 10.1016/j.chemosphere.2021.131602] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
There has been growing concern about the toxic effects of pollutants in the aquatic environment. In this study, a novel cell-based electrochemical sensor was developed to detect the toxicity of contaminants in water samples. A screen-printed carbon electrode, which was low-cost, energy-efficient, and disposable, was modified with tungsten disulfide nanosheets/hydroxylated multi-walled carbon nanotubes (WS2/MWCNTs-OH) to improve electrocatalytic performance and sensitivity. The surface morphology, structure, and electrochemical property of WS2/MWCNTs-OH composite film were characterized by emission scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Raman spectroscopy, and electrochemical impedance spectroscopy. Grass carp kidney cell line was utilized as the sensor biorecognition element to determine the electrochemical signals and evaluate cell viability. The sensor was used to detect the toxicity of one typical contaminant (2,4,6-trichlorophenol) and two emerging contaminants (bisphenol AF and polystyrene nanoplastics). The 48 h half inhibitory concentration (IC50) values were 169.96 μM, 21.88 μM, and 123.01 μg mL-1, respectively, which were lower than those of conventional MTT assay, indicating the higher sensitivity of the proposed sensor. Furthermore, the practical application of the sensor was evaluated in chemical wastewater samples. This study provides an up-and-coming tool for environmental toxicity monitoring.
Collapse
Affiliation(s)
- Guanlan Wu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Huizi Zheng
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Yi Xing
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Chengzhi Wang
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Xing Yuan
- School of Environment, Northeast Normal University, Changchun, 130117, PR China.
| | - Xiaolin Zhu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China.
| |
Collapse
|
9
|
Ahmad H, Koo BH, Khan RA. Magnetite β-lactoglobulin@Fe3O4 nanocomposite for the extraction and preconcentration of As(III) species. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Forero-Rodríguez LJ, Josephs-Spaulding J, Flor S, Pinzón A, Kaleta C. Parkinson's Disease and the Metal-Microbiome-Gut-Brain Axis: A Systems Toxicology Approach. Antioxidants (Basel) 2021; 11:71. [PMID: 35052575 PMCID: PMC8773335 DOI: 10.3390/antiox11010071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's Disease (PD) is a neurodegenerative disease, leading to motor and non-motor complications. Autonomic alterations, including gastrointestinal symptoms, precede motor defects and act as early warning signs. Chronic exposure to dietary, environmental heavy metals impacts the gastrointestinal system and host-associated microbiome, eventually affecting the central nervous system. The correlation between dysbiosis and PD suggests a functional and bidirectional communication between the gut and the brain. The bioaccumulation of metals promotes stress mechanisms by increasing reactive oxygen species, likely altering the bidirectional gut-brain link. To better understand the differing molecular mechanisms underlying PD, integrative modeling approaches are necessary to connect multifactorial perturbations in this heterogeneous disorder. By exploring the effects of gut microbiota modulation on dietary heavy metal exposure in relation to PD onset, the modification of the host-associated microbiome to mitigate neurological stress may be a future treatment option against neurodegeneration through bioremediation. The progressive movement towards a systems toxicology framework for precision medicine can uncover molecular mechanisms underlying PD onset such as metal regulation and microbial community interactions by developing predictive models to better understand PD etiology to identify options for novel treatments and beyond. Several methodologies recently addressed the complexity of this interaction from different perspectives; however, to date, a comprehensive review of these approaches is still lacking. Therefore, our main aim through this manuscript is to fill this gap in the scientific literature by reviewing recently published papers to address the surrounding questions regarding the underlying molecular mechanisms between metals, microbiota, and the gut-brain-axis, as well as the regulation of this system to prevent neurodegeneration.
Collapse
Affiliation(s)
- Lady Johanna Forero-Rodríguez
- Research Group Bioinformatics and Systems Biology, Instituto de Genetica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (L.J.F.-R.); (A.P.)
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Jonathan Josephs-Spaulding
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Stefano Flor
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Andrés Pinzón
- Research Group Bioinformatics and Systems Biology, Instituto de Genetica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (L.J.F.-R.); (A.P.)
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| |
Collapse
|
11
|
Chen Y, Wang Y, Zheng R, Wen J, Li JY, Wang Q, Yin J. Stabilization of heavy metals in sediments: A bioavailability-based assessment of carbon adsorbent efficacy using diffusive gradients in thin films. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Cristiano W, Giacoma C, Carere M, Mancini L. Chemical pollution as a driver of biodiversity loss and potential deterioration of ecosystem services in Eastern Africa: A critical review. S AFR J SCI 2021. [DOI: 10.17159/sajs.2021/9541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Chemical pollution, i.e. the release of anthropogenic chemical substances into the environment, is a driver of biodiversity loss. Although this issue has been widely investigated in high-income countries of temperate regions, there is a lack of data for tropical areas of middle- or low-income countries, such as those in Eastern Africa. Some of the world’s richest biomes that are affected by multiple pressures, including chemical pollution, are hosted in this macro-region. However, few studies have addressed the impact of the release of anthropogenic chemical pollutants on the biodiversity, and the related potential implications for the deterioration of ecosystem goods and services in this area. A contribution in systemising the scientific literature related to this topic is, therefore, urgently needed. We reviewed studies published from 2001 to 2021, focusing on the chemical pollution impact on Eastern African wildlife. Despite an extensive literature search, we found only 43 papers according to our survey methods. We focused on wildlife inhabiting terrestrial ecosystems and inland waters. According to our search, Kenya and Uganda are the most represented countries accounting for about half of the total number of reviewed articles. Moreover, 67.4% of the studies focus on inland waters. The spread of anthropogenic chemicals into tropical areas, e.g. Eastern Africa, and their effects on living organisms deserve greater attention in research and politics. We report a weak increasing trend in publishing studies addressing this topic that might bode well. The combined effort of science and governments is crucial in improving the management of chemical pollutants in the environment for achieving the goals of biodiversity conservation.
Collapse
Affiliation(s)
- Walter Cristiano
- Unit of Ecosystems and Health, Department of Environment and Health, Italian National Institute of Health, Rome, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Cristina Giacoma
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Mario Carere
- Unit of Ecosystems and Health, Department of Environment and Health, Italian National Institute of Health, Rome, Italy
| | - Laura Mancini
- Unit of Ecosystems and Health, Department of Environment and Health, Italian National Institute of Health, Rome, Italy
| |
Collapse
|
13
|
Shaaban NA, El-Rayis OA, Aboeleneen MS. Possible human health risk of some heavy metals from consumption of tilapia fish from Lake Mariut, Egypt. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19742-19754. [PMID: 33405138 DOI: 10.1007/s11356-020-12121-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Lake Mariut Main Basin (MB) is not only one of the three basins composing Lake Mariut (LM) but is also the main source of the popular tilapia fish to Alexandrian people. Unfortunately, this basin was consistently for about 50 successive years receiving a continuous discharge of agricultural, sewage, and industrial effluents. This has led to contamination of the flesh of its tilapia fish living there particularly with some toxic heavy metals like Cd and Pb. Lately, in 2010, a rehabilitation program was adopted and carried out to save this vital MB from such intensive pollution. This had been achieved by diverting all those polluting sources. The present work is made after elapsing about 7 years from the diversion process date, to assess and evaluate the levels of those two metals (in addition to the other four one's Fe, Cu, Cr, and Zn) in the edible flesh part besides the liver and gills of this fish (Nile tilapia spec., Oreochromis niloticus), and in ambient water of this restored basin to measure the efficiency of the rehabilitation program on quality of endogenous fish. A simultaneous parallel sampling program was also commenced for the other two basins of LM. The obtained results revealed that the concentration level of the studied metals in each of the muscles of the fish and the ambient water of the restored MB becomes now not only almost alike the metal levels of the corresponding compartments of the other two basins of LM, but also they became at concentration levels lay below those of their counterpart permissible limits in fish and water recommended by national and international standards. Health risk assessment indices: bioaccumulation factor (BAF), metal pollution index (MPI), estimated daily intake (EDI), hazardous index (HI), and relative risk (RR) for the present case were estimated, assessed, and subsequently evaluated. All are referring to a fact that MB is currently in good environmental condition and producing safe fish for human consumption.
Collapse
Affiliation(s)
- Nashwa A Shaaban
- Oceanography Department, Faculty of Science, Alexandria University, Moharm Bey, P.O. Box 21511, Alexandria, Egypt.
| | - Osman A El-Rayis
- Oceanography Department, Faculty of Science, Alexandria University, Moharm Bey, P.O. Box 21511, Alexandria, Egypt
| | - Marwa S Aboeleneen
- Oceanography Department, Faculty of Science, Alexandria University, Moharm Bey, P.O. Box 21511, Alexandria, Egypt
| |
Collapse
|
14
|
Ray SS, Iroegbu AO. Nanocellulosics: Benign, Sustainable, and Ubiquitous Biomaterials for Water Remediation. ACS OMEGA 2021; 6:4511-4526. [PMID: 33644559 PMCID: PMC7905826 DOI: 10.1021/acsomega.0c06070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/27/2021] [Indexed: 05/06/2023]
Abstract
Water is critical for all lives to thrive. Access to potable and safe water has been argued to rank top among the prerequisites for defining the standard of living of a nation. However, there is a global decline in water quality due to human activities and other factors that severely impact freshwater resources such as saltwater intrusion and natural disasters. It has been pointed out that the millions of liters of industrial and domestic wastewater generated globally have the potential to help mitigate water scarcity if it is appropriately captured and remediated. Among the many initiatives to increase access to clean water, the scientific community has focused on wastewater remediation through the utilization of bioderived materials, such as nanocellulosics. Nanocellulosics, derived from cellulose, have the advantages of being ubiquitous, nontoxic, and excellent adsorbents. Furthermore, the surface properties of nanocellulosic materials can easily be modified. These advantages make them promising materials for water remediation applications. This perspective highlights the most important new developments in the application of nanocellulosics in water treatment technologies, such as membrane, adsorption, sensors, and flocculants/coagulants. We also identify where further work is urgently required for the widespread industrial application of nanocellulosics in wastewater treatment.
Collapse
Affiliation(s)
- Suprakas Sinha Ray
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, CSIR, Pretoria 0001, South Africa
- Department
of Chemical Sciences, University of Johannesburg,
Doornfontein, Johannesburg 2028, South Africa
| | | |
Collapse
|
15
|
Choudri BS, Al-Nasiri N, Charabi Y, Al-Awadhi T. Ecological and human health risk assessment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1440-1446. [PMID: 32568420 DOI: 10.1002/wer.1382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The literature review presented in this paper includes the ecological and human health risk assessment in the form of receptors in the environment. The main objective of this review to highlight a summary of the many studies undertaken in the year 2019. The first part of the review covers the papers published on the health risk assessment related to human and ecological health. This article focuses on methods and tools utilized for the analysis of scientific studies and the data. The review provides main issues such as interpretation of data, uncertainty, and policies related to the management of risks. The ecological and human health risk assessment is divided into two main sections. Each of these sections presents in broad the risk assessment process namely pollution studies, remediation, and tools required for the management of natural resources and the environment.
Collapse
Affiliation(s)
- B S Choudri
- Center for Environmental Studies and Research, Sultan Qaboos University, Muscat, Oman
| | - Noura Al-Nasiri
- Center for Environmental Studies and Research, Sultan Qaboos University, Muscat, Oman
- Department of Geography, Sultan Qaboos University, Muscat, Oman
| | - Yassine Charabi
- Center for Environmental Studies and Research, Sultan Qaboos University, Muscat, Oman
| | - Talal Al-Awadhi
- Department of Geography, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
16
|
Albuquerque FEA, Minervino AHH, Miranda M, Herrero-Latorre C, Barrêto Júnior RA, Oliveira FLC, Sucupira MCA, Ortolani EL, López-Alonso M. Toxic and essential trace element concentrations in fish species in the Lower Amazon, Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:138983. [PMID: 32417551 DOI: 10.1016/j.scitotenv.2020.138983] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
The Lower Amazon region (Western Pará, northern Brazil) is greatly affected by mining exploitations (particularly artisanal gold mines) and other industrial and intensive agricultural activities with potentially strong impacts on aquatic ecosystems. Although such impacts include contamination with various toxic elements, to date only the effects of Hg have been considered. In this study, toxic and trace element concentrations were determined in the flesh of 351 fish specimens, including detritivores (Acarí, Pterygoplichthys pardalis), omnivores (Piranha, Pygocentrus nattereri; Pirarucu, Arapaima sp.) and carnivores (Caparari, Pseudoplatystoma fasciatum; Tucunaré, Cichla ocellaris), during the dry and wet seasons in 2015 and 2016. The range of concentrations of toxic element residues were 2-238 μg/kg fresh weight for As, 1-77 μg/kg for Cd, 4-1922 μg/kg for Hg and 1-30 μg/kg for Pb. Only the maximum concentrations of Hg established in the Brazilian legislation for fish destined for human consumption (0.5 mg/kg) were exceeded (in 16% of carnivorous species). The large between-species and seasonal differences observed for all these toxic elements are probably related to the seasonal behaviour and dietary habits of the different fish species. By contrast, essential trace element concentrations were low and not related to seasonal or dietary factors, and the observed differences may be at least partly related to the metabolism of each species. The associations between Hg and the essential trace elements Se, Fe, Co and Mn deserve special attention, as these trace elements may play a role in Hg cycling and methylation and merit further evaluation with the aim of reducing Hg toxicity in aquatic environments.
Collapse
Affiliation(s)
- Fabio Edir Amaral Albuquerque
- Laboratory of Animal Health (LARSANA), Federal University of Western Pará (UFOPA), Rua Vera Paz, s/n, Salé, CEP 68040-255 Santarém, PA, Brazil; Department of Animal Pathology, Veterinary Faculty, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Antonio Humberto Hamad Minervino
- Laboratory of Animal Health (LARSANA), Federal University of Western Pará (UFOPA), Rua Vera Paz, s/n, Salé, CEP 68040-255 Santarém, PA, Brazil.
| | - Marta Miranda
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Veterinary Faculty, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Herrero-Latorre
- Instituto de Investigación e Análises Alimentarias (IIAA), Departamento de Química Analítica, Nutrición e Bromatoloxía, Facultade de Ciencias, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Raimundo Alves Barrêto Júnior
- Department of Animal Science, Federal Rural University of the Semiarid Region (UFERSA), Av. Francisco Mota, s/n° - Bairro Pres. Costa e Silva, CEP 59625-900 Mossoró, RN, Brazil
| | - Francisco Leonardo Costa Oliveira
- Department of Clinical Science, College of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ/USP). Av. Prof. Orlando Marques de Paiva, 87, Cidade Universitária, CEP, 05508-270, São Paulo, SP, Brazil
| | - Maria Claudia Araripe Sucupira
- Department of Clinical Science, College of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ/USP). Av. Prof. Orlando Marques de Paiva, 87, Cidade Universitária, CEP, 05508-270, São Paulo, SP, Brazil
| | - Enrico Lippi Ortolani
- Department of Clinical Science, College of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ/USP). Av. Prof. Orlando Marques de Paiva, 87, Cidade Universitária, CEP, 05508-270, São Paulo, SP, Brazil
| | - Marta López-Alonso
- Department of Animal Pathology, Veterinary Faculty, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
17
|
Wang XN, Gu YG, Wang ZH. Fingerprint characteristics and health risks of trace metals in market fish species from a large aquaculture producer in a typical arid province in Northwestern China. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2020; 19:100987. [PMID: 32550257 PMCID: PMC7291982 DOI: 10.1016/j.eti.2020.100987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/17/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Concentrations of nine metals were measured in eight common cultured fish species obtained from forty-three aquatic product markets across three cities in Xinjiang province, to establish fingerprint characteristics and assess potential human health risks due to the consumption of fish. Metal levels ( μ g/kg, wet weight) in fish muscles were: 1204.88-5113.19 Al, 2.09-12.44 V, 6.10-31.86 Cr, 2368.80-8949.52 Fe, 2.01-10.26 Co, 4082.72-12785.68 Zn, 174.89-763.83 Cu, 0.33-2.24 Cd, and 5.74-9.90 Pb. Fingerprint analysis revealed that the studied fish species from the three cities exhibited a similar pattern of distribution. From the viewpoint of human health, the assessment of non-carcinogenic risk indicated no significant adverse health effects due to consumption of the assessed fish species.
Collapse
Affiliation(s)
- Xu-Nuo Wang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, No. 213, Huadu Avenue East, Guangzhou 510800, China
| | - Yang-Guang Gu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Fishery Ecology and Environment, Guangdong Province, Guangzhou 510300, China
- Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Zeng-Huan Wang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, No. 213, Huadu Avenue East, Guangzhou 510800, China
| |
Collapse
|
18
|
Yin J, Wang L, Liu Q, Li S, Li J, Zhang X. Metal concentrations in fish from nine lakes of Anhui Province and the health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20117-20124. [PMID: 32239410 DOI: 10.1007/s11356-020-08368-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
In the present study, to comprehensively investigate the metal contamination in the fish of Anhui Province, four fish species, Ctenopharyngodon idella, Cyprinus carpio, Hypophthalmichthys molitrix, and Hypophthalmichthys nobilis, were collected from nine lakes, and the levels of Zn, Pb, Cr, Cu, Ni, As, Hg, and Cd in the fish muscle were determined. The results showed that the highest concentrations of Zn (7.791 mg/kg), Pb (0.522 mg/kg), Cr (0.030 mg/kg), and Cu (0.767 mg/kg) were found in Tiangang Lake, Xifei Lake, Tiangang Lake and Baidang Lake, respectively. However, metals Ni, As, Hg, and Cd were not detected in all fish samples. In the fish species, the metal bioaccumulation ability was decreased with the following order: C. idellus > H. molitrix > H. nobilis > C. carpio. Furthermore, the target hazard quotient (THQ) was used to assess the health risk via fish consumption. The results indicated for co-exposure; C. idellus would pose a health risk to children at high exposure level (95th) as THQ value was higher than 1. It should be pointed out that Pb contributes most to the total THQs (the ratio was 88%); thus, the contamination of Pb should be paid more attention. This field investigation combined with health risk assessment would provide useful information on the heavy metal pollution in Anhui Province.
Collapse
Affiliation(s)
- Jiaojiao Yin
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, 430070, Wuhan, People's Republic of China
| | - Li Wang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, 430070, Wuhan, People's Republic of China
| | - Qi Liu
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, 430070, Wuhan, People's Republic of China
| | - Sai Li
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, 430070, Wuhan, People's Republic of China
| | - Jian Li
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, 430070, Wuhan, People's Republic of China
| | - Xuezhen Zhang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, 430070, Wuhan, People's Republic of China.
| |
Collapse
|
19
|
Qian Y, Cheng C, Feng H, Hong Z, Zhu Q, Kolenčík M, Chang X. Assessment of metal mobility in sediment, commercial fish accumulation and impact on human health risk in a large shallow plateau lake in southwest of China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110346. [PMID: 32120176 DOI: 10.1016/j.ecoenv.2020.110346] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Sediment heavy metal pollution in the Dianchi Lake has been a long-term environmental problem of concern. This study investigated the lake sediment heavy metal contamination level, mobility, commercial fish metal accumulation and its impact on human health. The results show high As, Hg and Cd concentration in the sediment, while Pb and Cr contamination are insignificant. Sediment sequential extraction analysis shows that Hg in sediment has the highest portion of mobile fraction, followed by As, while the portion of mobile fractions of Cd, Pb and Cr in sediment is very low. The high concentrations of Hg and As in surface water and porewater were consistent with the chemical fraction composition of the two elements in sediment. Three major commercial fish species, Culterichthys erythropterus, Carassius auratus and Hypophthalmichthys molitrix, were collected for analysis of metal concentrations in their muscles. Among the same size of fish, C. auratus has the highest As concentration due to its bottom habitat and omnivorous feeding habits. On the other hand, C. erythropterus has the highest Hg concentration due to its relatively high trophic level position. The average THQ value of metals in fish tissue decrease in the order of As > Hg > Pb > Cd > Cr and the total THQ of average metal concentration in fish species decreased in the order of C. auratus > C. erythropterus > H. molitrix. Both THQ and total THQ is below 1, suggested no non-carcinogenic human health risk of fish consumption. However, TR of As in C. auratus was above 1.00E-04 threshold value, indicated potential carcinogenic human health risk. The results from this study indicate that although moderately to heavily contamination of Hg, As, and Cd occurred in Dianchi Lake sediment, only Hg and As tend to transport to surface water and accumulate in commercial fish due to their higher mobility in sediment.
Collapse
Affiliation(s)
- Yu Qian
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Changlei Cheng
- Analysis and Measurements Center of Yunnan Provincial Non-ferrous Geology Bureau, Kunming, Yunnan, 650051, China
| | - Huan Feng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, USA
| | - Zijin Hong
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Qingzhi Zhu
- School of Marine and Atmospheric Science, State University of New York, Stony Brook, NY, 11794, USA
| | - Marek Kolenčík
- Department of Soil Science and Geology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, 94976, Slovak Republic
| | - Xuexiu Chang
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650091, China.
| |
Collapse
|
20
|
Li J, Miao X, Hao Y, Xie Z, Zou S, Zhou C. Health Risk Assessment of Metals (Cu, Pb, Zn, Cr, Cd, As, Hg, Se) in Angling Fish with Different Lengths Collected from Liuzhou, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072192. [PMID: 32218283 PMCID: PMC7177457 DOI: 10.3390/ijerph17072192] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 01/17/2023]
Abstract
Wild fish caught by anglers (WFAs) were confirmed to be usually contaminated with metals, and the contamination status is radically affected by the growth and length of the fish. To determine the contamination levels of metals and health risks in WFAs with different length ranges of fish, this study ascertained the concentration of eight metals, including Cu, Pb, Zn, Cr, Cd, As, Hg and Se, in 171 wild fishes collected from the watershed of Liujiang River. The assessment of metal pollution and health risks from the consumption of these fishes with seven length ranges were accomplished. The obtained results implied a relatively high concentration of Zn, Cr, and Cd up to 109.294 mg/kg, 4.226 mg/kg, and 0.196 mg/kg (wet weight), respectively, which exceed the corresponding Maximum Residue Limit (MRL). The negative correlation between Cu, Zn, Cr, and Cd was observed to be significant with fish length, signifying a possible occurrence of biological dilution on these metals. The WFAs were mostly contaminated with Cr and Cd irrespective of the length ranges of fish, which were denoted by the average pollution index (Pi) of Cr and Cd and were commonly found to be beyond 0.2. Based on the results of health risk assessment analysis, most of the target hazard quotient (THQ) values of Cr were below 1, implying that the consumption of wild fish for adults has insignificant health risk. For children, the total target hazard quotient (TTHQ) values of beyond 1 were found in fishes with the length range of <25 cm, particularly a TTHQ value 1.627 in the range of 10–15 cm, indicating that children are being prone to serious health risks owing to the consumption of WFAs. The weekly recommended consumption of WFAs with the length range of 10–15 cm for adults and children was 0.298 kg/week and 0.149 kg/week, respectively. These are substantially lower than the current rate of fish consumption (0.42 kg/week), and therefore, the wild fish with the length range of 10–15 cm should be avoided for consumption.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin 541004, China; (J.L.); (S.Z.); (C.Z.)
- Department of Municipal and Environmental Engineering, Hebei University of Architecture, Zhangjiakou 075000, China
| | - Xiongyi Miao
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin 541004, China; (J.L.); (S.Z.); (C.Z.)
- Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China;
- Correspondence: (X.M.); (Y.H.)
| | - Yupei Hao
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin 541004, China; (J.L.); (S.Z.); (C.Z.)
- Correspondence: (X.M.); (Y.H.)
| | - Zhouqing Xie
- Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China;
| | - Shengzheng Zou
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin 541004, China; (J.L.); (S.Z.); (C.Z.)
| | - Changsong Zhou
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin 541004, China; (J.L.); (S.Z.); (C.Z.)
| |
Collapse
|
21
|
Genotoxic and Anatomical Deteriorations Associated with Potentially Toxic Elements Accumulation in Water Hyacinth Grown in Drainage Water Resources. SUSTAINABILITY 2020. [DOI: 10.3390/su12052147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Potentially toxic elements (PTEs)-induced genotoxicity on aquatic plants is still an open question. Herein, a single clone from a population of water hyacinth covering a large distribution area of Nile River (freshwater) was transplanted in two drainage water resources to explore the hazardous effect of PTEs on molecular, biochemical and anatomical characters of plants compared to those grown in freshwater. Inductivity Coupled Plasma (ICP) analysis indicated that PTEs concentrations in water resources were relatively low in most cases. However, the high tendency of water hyacinth to bio-accumulate and bio-magnify PTEs maximized their concentrations in plant samples (roots in particular). A Random Amplified Polymorphic DNA (RAPD) assay showed the genotoxic effects of PTEs on plants grown in drainage water. PTEs accumulation caused substantial alterations in DNA profiles including the presence or absence of certain bands and even the appearance of new bands. Plants grown in drainage water exhibited several mutations on the electrophoretic profiles and banding pattern of total protein, especially proteins isolated from roots. Several anatomical deteriorations were observed on PTEs-stressed plants including reductions in the thickness of epidermis, cortex and endodermis as well as vascular cylinder diameter. The research findings of this investigation may provide some new insights regarding molecular, biochemical and anatomical responses of water hyacinth grown in drainage water resources.
Collapse
|
22
|
Wei J, Cen K. Content and dietary exposure of cadmium among residents in Northeast China: a case study based on the 5th China Total Diet Study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8224-8230. [PMID: 31897992 DOI: 10.1007/s11356-019-07016-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd), one of the harmful heavy metals, and its accumulation or pollution might cause itai-itai disease. In this study, we investigated the dietary exposure of Cd among residents in Northeast China (including Heilongjiang, Jilin, and Liaoning provinces) and also compared the health risks in adult males in terms of dietary intake. Cd contents in 12 categories of foods were derived from original data from the 5th China Total Diet Study (TDS). The following results were obtained in this study: (i) dietary exposure levels of Cd at the margin of safety (MOS) were 4.55, 1.82, and 2.85 in Heilongjiang, Jilin, and Liaoning provinces, respectively; (ii) the primary dietary sources of Cd included cereals, legumes, potatoes, meat, aquatic products, and vegetables; (iii) Cd contents in the same food category from different regions were not significantly different from the limit of China's National Standards (LCNSs); (iv) dietary exposure of Cd would not have a detrimental effect on the health of residents in Northeast China; (v) we recommend the government to take precedence of the supervision and spot-checking of cereals, legume-nuts, potatoes, meat, aquatic products, vegetables, and alcoholic beverages because of the higher dietary consumption than others; (vi) 99.99% of the Cd content in cereals, legumes, vegetables, meat, and aquatic products sold in Northeast China was less than the LCNSs at the present situation; and (vii) the harmful effects of Cd to human beings are associated with the Cd content in foods and the consumption of such foods.
Collapse
Affiliation(s)
- Junxiao Wei
- School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Kuang Cen
- School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing, 100083, China.
| |
Collapse
|
23
|
Miao X, Hao Y, Tang X, Xie Z, Liu L, Luo S, Huang Q, Zou S, Zhang C, Li J. Analysis and health risk assessment of toxic and essential elements of the wild fish caught by anglers in Liuzhou as a large industrial city of China. CHEMOSPHERE 2020; 243:125337. [PMID: 31739255 DOI: 10.1016/j.chemosphere.2019.125337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Most wild fish caught by anglers (WFAs) are likely to be contaminated by toxic metals, particularly the fish collected from the waterways in urban and suburban areas; hence, the determination of health risk caused by WFAs consumption associated with toxic metals is vital. Therefore, Liuzhou, one of the largest industrial cities in China, was considered as an example city in this study. Eight toxic elements were analysed to uncover the pollution status and consumption safety of WFAs. Moreover, the suitable angling waterways were identified in the urban and suburban areas. The obtained results suggested relatively high concentrations of Zn, Cr and Cd, which were also found to be beyond corresponding Maximum Residue Limit. Among all analysed elements, only the mean pollution indices of Cr and Cd were observed to be beyond 0.2, revealing that the observed WFAs were generally contaminated by these metals. However, the potential health risk of WFAs can be predominately attributed to Cr, confirmed by the significantly higher Target hazard quotients (THQ). For adults, all the THQ values were below 1, indicating no significant health risk being associated with WFAs consumption in the case of adults. On the contrary, all the THQ values for Children were beyond 1, suggesting children being susceptible to great health risks due to WFAs consumption. Furthermore, the weekly recommended consumption of WFAs in urban area is remarkably lower than the current rate of fish consumption observed among urban residents; therefore, the waterways in urban areas can be evaded for fish angling.
Collapse
Affiliation(s)
- Xiongyi Miao
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Krast Geology, CAGS, Guilin, 541004, China; Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China.
| | - Yupei Hao
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Krast Geology, CAGS, Guilin, 541004, China.
| | - Xing Tang
- Hunan Geological Testing Institute, Changsha, 410007, China
| | - Zhouqing Xie
- Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Liping Liu
- Hunan Geological Testing Institute, Changsha, 410007, China
| | - Shuwen Luo
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Krast Geology, CAGS, Guilin, 541004, China
| | - Qibo Huang
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Krast Geology, CAGS, Guilin, 541004, China
| | - Shengzhang Zou
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Krast Geology, CAGS, Guilin, 541004, China
| | - Chunlai Zhang
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Krast Geology, CAGS, Guilin, 541004, China
| | - Jun Li
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Krast Geology, CAGS, Guilin, 541004, China
| |
Collapse
|
24
|
Pang Y, Ren X, Li J, Liang F, Rao X, Gao Y, Wu W, Li D, Wang J, Zhao J, Hong X, Jiang F, Wang W, Zhou H, Lyu J, Tan G. Development of a Sensitive Escherichia coli Bioreporter Without Antibiotic Markers for Detecting Bioavailable Copper in Water Environments. Front Microbiol 2020; 10:3031. [PMID: 32038525 PMCID: PMC6993034 DOI: 10.3389/fmicb.2019.03031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
The whole-cell bioreporters based on the cop-operon sensing elements have been proven specifically useful in the assessment of bioavailable copper ions in water environments. In this study, a series of experiments was conducted to further improve the sensitivity and robustness of bioreporters. First, an Escherichia coli △copA△cueO△cusA mutant with three copper transport genes knocked out was constructed. Then, the copAp::gfpmut2 sensing element was inserted into the chromosome of E. coli △copA△cueO△cusA by gene knock-in method to obtain the bioreporter strain E. coli WMC-007. In optimized assay conditions, the linear detection range of Cu2+ was 0.025–5 mg/L (0.39–78.68 μM) after incubating E. coli WMC-007 in Luria–Bertani medium for 5 h. The limit of detection of Cu2+ was 0.0157 mg/L (0.25 μM). Moreover, fluorescence spectrometry and flow cytometry experiments showed more environmental robustness and lower background fluorescence signal than those of the sensor element based on plasmids. In addition, we found that the expression of GFPmut2 in E. coli WMC-007 was induced by free copper ions, rather than complex-bound copper, in a dose-dependent manner. Particularly, the addition of 40 mM 3-(N-Morpholino)propanesulfonic acid buffer to E. coli WMC-007 culture enabled accurate quantification of bioavailable copper content in aqueous solution samples within a pH range from 0.87 to 12.84. The copper recovery rate was about 95.88–113.40%. These results demonstrate potential applications of E. coli WMC-007 as a bioreporter to monitor copper contamination in acidic mine drainage, industrial wastewater, and drinking water. Since whole-cell bioreporters are relatively inexpensive and easy to operate, the combination of this method with other physicochemical techniques will in turn provide more specific information on the degree of toxicity in water environments.
Collapse
Affiliation(s)
- Yilin Pang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xiaojun Ren
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianghui Li
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Feng Liang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyu Rao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yang Gao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenhe Wu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dong Li
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Juanjuan Wang
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianguo Zhao
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xufen Hong
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fengying Jiang
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wu Wang
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huaibin Zhou
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianxin Lyu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Guoqiang Tan
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|