1
|
Simarro-Gimeno C, Pitarch E, Albarrán F, Rico A, Hernández F. Ten years of monitoring pharmaceuticals and pesticides in the aquatic environment nearby a solid-waste treatment plant: Historical data, trends and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125496. [PMID: 39647768 DOI: 10.1016/j.envpol.2024.125496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
The emission of contaminants of emerging concern (CECs) from wastewater treatment plants has been extensively studied; however, less attention has been paid to municipal solid waste treatment plants (MSWTPs), which can also be a potential source for CECs into surface water (SW) and groundwater (GW) ecosystems. In this work, the environmental impact of a MSWTP located in the province of Castelló, Spain, was studied along a period of ten years (from 2012 to 2022). A total of 173 water samples (including SW and GW) collected from the surrounding of this plant were monitored for 93 compounds (pharmaceuticals and pesticides) by using liquid chromatography coupled to tandem mass spectrometry with triple quadrupole. This study reveals the presence of several pharmaceuticals (e.g. primidone, gabapentin, azithromycin, clarithromycin, tramadol), particularly in GW samples collected near areas related to composting and storage of biostabilized material. The presence of antibiotic residues in GW raises concerns about the potential development of antimicrobial resistance. In addition, agricultural activities in the study area emerge as potential contributor to GW pollution by pesticides, as the MSWTP is located in an important agricultural area where citrus is the predominant crop. Some compounds that are currently prohibited for agricultural use (e.g. atrazine, simazine, chlorpyrifos) were also found, which highlights the importance of continuing their monitoring to assess their long-term environmental impacts. Several pesticide and pharmaceutical compounds exceeded the threshold values established by the EU groundwater directive. Therefore, a hazard assessment for GW ecosystems and for humans drinking contaminated GW resources was conducted. Our data indicated that some organophosphate insecticides (i.e., chlorpyrifos, carbofuran, pyridaphention) may pose high risks for groundwater crustaceans, while the risks for the human population were considered to be very low.
Collapse
Affiliation(s)
- Claudia Simarro-Gimeno
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | - Elena Pitarch
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | | | - Andreu Rico
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46980, Paterna, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain.
| |
Collapse
|
2
|
Di Cicco M, Tabilio Di Camillo A, Di Marzio W, Sáenz ME, Galassi DMP, Pieraccini G, Galante A, Di Censo D, Di Lorenzo T. Subchronic Effects of Tetrachloroethylene on Two Freshwater Copepod Species: Implications for Groundwater Risk Assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2515-2527. [PMID: 39185674 PMCID: PMC11619749 DOI: 10.1002/etc.5977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024]
Abstract
Aliphatic chlorinated hydrocarbons, notably tetrachloroethylene (also known as perchloroethylene [PCE]), are persistent, mobile, and toxic (PMT) and/or very persistent, mobile, and toxic (vPMT) groundwater pollutants, often exceeding safe drinking water thresholds. The present study delves into the groundwater risk assessment of PCE with a novel focus on the sensitivity of stygobitic species-organisms uniquely adapted to groundwater environments. Through a comparative analysis of the subchronic effects of PCE on the locomotion behavior of two copepod species, the stygobitic Moraria sp. and the nonstygobitic Bryocamptus zschokkei, we highlighted the inadequacy of the current European predicted-no-effect concentration of PCE for groundwater ecosystems. Our findings indicate significant behavioral impairments in both species at a concentration (32 ng/L PCE) well below the threshold deemed safe, suggesting that the current European guidelines for groundwater risk assessment may not adequately protect the unique biodiversity of groundwater habitats. Importantly, B. zschokkei demonstrated sensitivity to PCE comparable to or greater than that of the target stygobitic species, suggesting its utility as a substitute species in groundwater risk assessment. The present study adds to the limited research on the ecotoxicological sensitivity of groundwater species to PMT/vPMT chemicals and highlights the need for refined groundwater risk-assessment methodologies that consider the susceptibilities of stygobitic species. Environ Toxicol Chem 2024;43:2515-2527. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Mattia Di Cicco
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | - Agostina Tabilio Di Camillo
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
- National Research Council–Research Institute on Terrestrial Ecosystems (CNR‐IRET)FlorenceItaly
| | - Walter Di Marzio
- Department of Basic Sciences, Program Research in EcotoxicologyNational University of Luján, National Scientific and Technical Research Council (PRIET‐UNLU‐CONICET)LujánArgentina
| | - Maria Elena Sáenz
- Department of Basic Sciences, Program Research in EcotoxicologyNational University of Luján, National Scientific and Technical Research Council (PRIET‐UNLU‐CONICET)LujánArgentina
| | | | | | - Angelo Galante
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
- Gran Sasso National Laboratory, INFNL'AquilaItaly
- CNR‐SPIN, c/o Department of Physical and Chemical ScienceUniversity of L'AquilaL'AquilaItaly
| | - Davide Di Censo
- Department of Neuroscience, Imaging, and Clinical Sciences“G. D'Annunzio” University of Chieti‐PescaraChietiItaly
- Institute for Advanced Biomedical Technologies“G. D'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Tiziana Di Lorenzo
- National Research Council–Research Institute on Terrestrial Ecosystems (CNR‐IRET)FlorenceItaly
- National Biodiversity Future CenterPalermoItaly
- “Emil Racovita” Institute of SpeleologyCluj‐NapocaRomania
- Centre for Ecology, Evolution and Environmental Changes & CHANGE–Global Change and Sustainability Institute, and Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
| |
Collapse
|
3
|
Adams MS, McKnight KS, Spadaro DM, Binet MT, Hose GC, Fenton S, Simpson SL. Dissolved Barium Causes Toxicity to Groundwater Cyclopoida. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2501-2514. [PMID: 39136622 PMCID: PMC11619739 DOI: 10.1002/etc.5956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/03/2024] [Accepted: 06/25/2024] [Indexed: 12/06/2024]
Abstract
Barium (Ba) dissolution and mobilization in groundwater are predominantly controlled by sulfate because of the low solubility of barium sulfate (BaSO4) minerals. Naturally present at low concentrations in groundwater, elevated concentrations of Ba can occur as a result of anthropogenic activities, including use of barite in drill operations, and geogenic sources such as leaching from geological formations. No toxicity data exist for Ba with groundwater organisms (stygofauna) to assess the risk of elevated Ba concentrations. The present study measured Ba toxicity to two stygobiont Cyclopoida species: one collected from Wellington and the other from Somersby, New South Wales, Australia. Toxicity was measured as cyclopoid survival over 2, 4, 7, 14, 21, and 28 days in waters of varying sulfate concentration (<1-100 mg SO4/L). When sulfate was present, dissolved Ba concentrations decreased rapidly in toxicity test solutions forming a BaSO4 precipitate until dissolved sulfate was depleted. Barium in excess of sulfate remained in the dissolved form. The toxicity of Ba to cyclopoids was clearly attributed to dissolved Ba. Precipitated Ba was not toxic to the Wellington cyclopoid species. Toxicity values for dissolved Ba for the Wellington and Somersby cyclopoid species included a (21-day) no-effect concentration of 3.3 mg/L and an effective concentration to cause 5% mortality of 4.8 mg/L (at 21 days). Elevated dissolved Ba concentrations due to anthropogenic and/or biogeochemical processes may pose a risk to groundwater organisms. Further toxicity testing with other stygobiont species is recommended to increase the data available to derive a guideline value for Ba that can be used in contaminant risk assessments for groundwaters. Environ Toxicol Chem 2024;43:2501-2514. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Kitty S. McKnight
- CSIRO EnvironmentLucas HeightsNew South WalesAustralia
- School of Natural SciencesMacquarie UniversityMacquarie ParkNew South WalesAustralia
| | | | | | - Grant C. Hose
- School of Natural SciencesMacquarie UniversityMacquarie ParkNew South WalesAustralia
| | | | - Stuart L. Simpson
- CSIRO EnvironmentLucas HeightsNew South WalesAustralia
- CSIRO EnvironmentDutton ParkQueenslandAustralia
| |
Collapse
|
4
|
Di Marzio WD, Hose GC. Groundwater Ecotoxicology and Chemistry. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2473-2477. [PMID: 39318268 DOI: 10.1002/etc.5996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Affiliation(s)
- Walter D Di Marzio
- PRIET Basic Sciences Department, National University of Luján, National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Grant C Hose
- School of Natural Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
5
|
Groote‐Woortmann W, Korbel K, Hose GC. STYGOTOX: A Quality-Assessed Database of (Eco)Toxicological Data on Stygofauna and Other Aquatic Subterranean Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2492-2500. [PMID: 38551211 PMCID: PMC11619742 DOI: 10.1002/etc.5856] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 12/06/2024]
Abstract
We have compiled the toxicity data on stygofauna and other aquatic subterranean organisms in one (eco)toxicological database. A total of 46 studies were found, containing 472 toxic endpoints covering 43 different stressors. These compounds were tested on subterranean organisms from four phyla, 12 orders, 24 genera, and 55 species. The studies included were published between 1976 and December 2023 using fauna collected in 13 different countries. The suitability of the studies was assessed to indicate the completeness of reporting and their suitability for use in hazard and risk assessment. This compilation provides a valuable source of data for future development of toxicity testing protocols for groundwater organisms, and to support decision-making, ecological risk assessments and the derivation of water quality criteria for the protection of groundwater ecosystems. Environ Toxicol Chem 2024;43:2492-2500. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Wietse Groote‐Woortmann
- Department of Environmental SciencesWageningen University & ResearchWageningenThe Netherlands
| | - Kathryn Korbel
- School of Natural SciencesMacquarie UniversitySydneyAustralia
| | - Grant C. Hose
- School of Natural SciencesMacquarie UniversitySydneyAustralia
| |
Collapse
|
6
|
Duarte C, Di Lorenzo T, Reboleira ASPS. Environmental risk of diclofenac in European groundwaters and implications for environmental quality standards. Sci Rep 2024; 14:20689. [PMID: 39237757 PMCID: PMC11377587 DOI: 10.1038/s41598-024-71747-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
Groundwater harbours unique species adapted to perpetual darkness. Groundwater fauna plays a crucial role in global ecosystem services, but contamination poses a threat to this keystone ecosystem. Diclofenac is a common non-steroidal anti-inflammatory drug of particular concern, due to its presence in both surface and groundwater. We assess the environmental risk of diclofenac in European groundwaters using different scenarios, analyzing Measured Environmental Concentrations (MECs) of diclofenac and estimating the Predicted No Effect Concentration (PNECs) through two approaches: considering the sensitivity of the groundwater crustacean Proasellus lusitanicus (Isopoda: Asellidae), and using surface water species as proxies. Our results show that scenarios based on surrogate species predict that groundwater ecosystems are at risk due to diclofenac contamination. On the other hand, the MECs of diclofenac were consistently lower than the PNEC of P. lusitanicus, suggesting that the current MECs do not pose a significant threat to this groundwater-adapted species. However, risk scenarios differ considering the sensitivity of other groundwater species, emphasizing the importance of considering multiple species' sensitivities in risk assessment. Therefore, we recommend establishing an environmental quality standard for diclofenac in groundwater at 5 ng/L, a value that accounts the need for precautionary measures to safeguard groundwater ecosystems, essential for preserving their unique biota and services.
Collapse
Affiliation(s)
- Cláudia Duarte
- Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, and Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Campo Grande, Lisbon, Portugal
| | - Tiziana Di Lorenzo
- Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, and Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Campo Grande, Lisbon, Portugal
- Research Institute on Terrestrial Ecosystems of the National Research Council of Italy (IRET-CNR), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
- NBFC (National Biodiversity Future Center), 90133, Palermo, Italy
- Department of Cluj-Napoca, "Emil Racoviţă" Institute of Speleology, Str. Clinicilor 5, 400006, Cluj-Napoca, Romania
| | - Ana Sofia P S Reboleira
- Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, and Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Campo Grande, Lisbon, Portugal.
- National Museum of Natural History and Science, University of Lisbon, Rua da Escola Politécnica 56, 1250-102, Lisboa, Portugal.
| |
Collapse
|
7
|
Lukić M, Jovović L, Bedek J, Grgić M, Kuharić N, Rožman T, Čupić I, Weck B, Fong D, Bilandžija H. A practical guide for the husbandry of cave and surface invertebrates as the first step in establishing new model organisms. PLoS One 2024; 19:e0300962. [PMID: 38573919 PMCID: PMC10994295 DOI: 10.1371/journal.pone.0300962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
While extensive research on traditional model species has significantly advanced the biological sciences, the ongoing search for new model organisms is essential to tackle contemporary challenges such as human diseases or climate change, and fundamental phenomena including adaptation or speciation. Recent methodological advances such as next-generation sequencing, gene editing, and imaging are widely applicable and have simplified the selection of species with specific traits from the wild. However, a critical milestone in this endeavor remains the successful cultivation of selected species. A historically overlooked but increasingly recognized group of non-model organisms are cave dwellers. These unique animals offer invaluable insights into the genetic basis of human diseases like eye degeneration, metabolic and neurological disorders, and basic evolutionary principles and the origin of adaptive phenotypes. However, to take advantage of the beneficial traits of cave-dwelling animals, laboratory cultures must be established-a practice that remains extremely rare except for the cavefish Astyanax mexicanus. For most cave-dwelling organisms, there are no published culturing protocols. In this study, we present the results of our multi-year effort to establish laboratory cultures for a variety of invertebrate groups. We have developed comprehensive protocols for housing, feeding, and husbandry of cave dwellers and their surface relatives. Our recommendations are versatile and can be applied to a wide range of species. Hopefully our efforts will facilitate the establishment of new laboratory animal facilities for cave-dwelling organisms and encourage their greater use in experimental biology.
Collapse
Affiliation(s)
- Marko Lukić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Croatian Natural History Museum, Zagreb, Croatia
| | - Lada Jovović
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jana Bedek
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Croatian Biospeleological Society, Zagreb, Croatia
| | - Magdalena Grgić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Tin Rožman
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Croatian Biospeleological Society, Zagreb, Croatia
| | - Iva Čupić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Croatian Biospeleological Society, Zagreb, Croatia
| | - Bob Weck
- Department of Biology, Southwestern Illinois College, Belleville, Illinois, United States of America
| | - Daniel Fong
- Department of Biology, American University, Washington, DC, United States of America
| | - Helena Bilandžija
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Croatian Biospeleological Society, Zagreb, Croatia
| |
Collapse
|
8
|
Selak A, Reberski JL, Klobučar G. Assessing the persistence, mobility and toxicity of emerging organic contaminants in Croatian karst springs used for drinking water supply. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166240. [PMID: 37572907 DOI: 10.1016/j.scitotenv.2023.166240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Emerging organic contaminants (EOCs) are a vast group of often (very)persistent, (very)mobile and toxic (PMT/vPvM) substances that are continuously released worldwide, posing environmental and human health risks. Research on occurrence and behavior of EOCs in karst is in its infancy, thus policy measures and legislative control of these compounds in groundwater are still lacking. The Dinaric karst aquifers are an essential source of drinking water for almost half of Croatia's territory. Intense karstification, complex heterogeneous characteristics, and high fracture-cavernous porosity result in rapid, far-reaching groundwater flow and large karst springs, but also high intrinsic vulnerability due to low contaminant attenuation. To prioritize future monitoring and establish appropriate thresholds for EOCs detected in Croatian karst drinking water resources, in silico tools based on quantitative structure-activity relationships were used in PBT (persistence, bioaccumulation, and toxicity) and PMT/vPvM analyzes, while toxicological assessment helped identify potential threats to human health. In 33 samples collected during two sampling campaigns in 2019 at 16 karst springs and one lake used for water supply, we detected 65 compounds (EOCs and some legacy chemicals), of which 7 were classified as potentially PBT or vPvB compounds (PFOS, PFHxS, PFHpA, PFOA, PFNA, boscalid, and azoxystrobin), while only 2 compounds were assessed as not PMT/vPvM. This finding underlines that most of detected EOCs potentially endanger karst (ground)water ecosystems and important drinking water sources in Croatia. Comparison of maximum concentrations with existing or derived drinking water guideline values revealed how 2 of 65 detected compounds represent a potential risk to human health at lifelong exposure (sulfadiazine and hydrochlorothiazide), while 5 chemicals warrant additional human health impacts studies and groundwater monitoring. Although most compounds do not individually pose a significant risk to human health at current environmental levels, their potential synergistic and long-term effects remain unknown.
Collapse
Affiliation(s)
- Ana Selak
- HGI-CGS - Croatian Geological Survey, Department of Hydrogeology and Engineering Geology, Sachsova 2, 10 000 Zagreb, Croatia
| | - Jasmina Lukač Reberski
- HGI-CGS - Croatian Geological Survey, Department of Hydrogeology and Engineering Geology, Sachsova 2, 10 000 Zagreb, Croatia.
| | - Göran Klobučar
- PMF - Faculty of Science, Department of Biology, Division of Zoology, Rooseveltov trg 6, 10 000 Zagreb, Croatia
| |
Collapse
|
9
|
Di Cicco M, Di Lorenzo T, Fiasca B, Galmarini E, Vaccarelli I, Cerasoli F, Tabilio Di Camillo A, Galassi DMP. Some like it hot: Thermal preference of the groundwater amphipod Niphargus longicaudatus (Costa, 1851) and climate change implications. J Therm Biol 2023; 116:103654. [PMID: 37478581 DOI: 10.1016/j.jtherbio.2023.103654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/23/2023]
Abstract
Groundwater is a crucial resource for humans and the environment, but its global human demand currently exceeds available volumes by 3.5 times. Climate change is expected to exacerbate this situation by increasing the frequency of droughts along with human impacts on groundwater ecosystems. Despite prior research on the quantitative effects of climate change on groundwater, the direct impacts on groundwater biodiversity, especially obligate groundwater species, remain largely unexplored. Therefore, investigating the potential impacts of climate change, including groundwater temperature changes, is crucial for the survival of obligate groundwater species. This study aimed to determine the thermal niche breadth of the crustacean amphipod species Niphargus longicaudatus by using the chronic method. We found that N. longicaudatus has a wide thermal niche with a natural performance range of 7-9 °C, which corresponds to the thermal regime this species experiences within its distribution range in Italy. The observed range of preferred temperature (PT) was different from the mean annual temperature of the sites from which the species has been collected, challenging the idea that groundwater species are only adapted to narrow temperature ranges. Considering the significant threats of climate change to groundwater ecosystems, these findings provide crucial information for the conservation of obligate groundwater species, suggesting that some of them may be more resilient to temperature changes than previously thought. Understanding the fundamental thermal niche of these species can inform conservation efforts and management strategies to protect groundwater ecosystems and their communities.
Collapse
Affiliation(s)
- Mattia Di Cicco
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| | - Tiziana Di Lorenzo
- National Biodiversity Future Center, Palermo, Italy; IRET-CNR, Istituto di Ricerca Sugli Ecosistemi Terrestri Del CNR, Florence, Italy; Racovitza Institute of Speleology, Romanian Academy, Clinicilor 400006 Cluj Napoca, Romania; Departamento de Biologia Animal, Faculdade de Ciências, Centre for, Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal. 4 Natural History Museum of Denmark
| | - Barbara Fiasca
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Emma Galmarini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Ilaria Vaccarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy; University Institute of Higher Studies in Pavia, Pavia, Italy
| | - Francesco Cerasoli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Agostina Tabilio Di Camillo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy; IRET-CNR, Istituto di Ricerca Sugli Ecosistemi Terrestri Del CNR, Florence, Italy
| | - Diana Maria Paola Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| |
Collapse
|
10
|
Duarte C, Gravato C, Di Lorenzo T, Reboleira ASPS. Acetaminophen induced antioxidant and detoxification responses in a stygobitic crustacean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121749. [PMID: 37127234 DOI: 10.1016/j.envpol.2023.121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
A variety of veterinary and human medicinal products (VHMPs) are found in groundwater, an often-neglected habitat inhabited by species with unique traits, stygobitic species. It is crucial to understand the effect of VHMPs on stygobitic species because they may respond differently to stressors than surface species. Our hypothesis is that groundwater species may be more susceptible to environmental contaminants due to less plasticity in their detoxification response and acquisition of energy because subterranean habitats are more stable and isolated from anthropogenic activities. We performed a battery of biomarkers associated with important physiological functions on the stygobitic asellid crustacean Proasellus lusitanicus, after a 14-day exposure to acetaminophen, a commonly used pharmaceutical and pollutant of groundwaters. Our results show an decrease in total glutathione levels and an increase in glutathione S-transferase activity, suggesting a successful detoxification response. This helps explaining why acetaminophen did not cause oxidative damage, as well as had no effect cholinesterase activity nor in aerobic production of energy. This study shows the remarkable capacity of P. lusitanicus to tolerate sublethal concentrations of VHMP acetaminophen. Most ecotoxicological studies on stygobitic species focused on the lethal effects of these compound. The present study focus on consequences at sublethal concentrations. Future studies should assess the stress levels induced to better predict and estimate the impacts of contaminants on groundwater ecosystems.
Collapse
Affiliation(s)
- Cláudia Duarte
- Departamento de Biologia Animal, and Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Carlos Gravato
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Tiziana Di Lorenzo
- Departamento de Biologia Animal, and Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal; Research Institute on Terrestrial Ecosystems of the National Research Council of Italy (IRET-CNR), Via Madonna Del Piano 10, 50019 Sesto Fiorentino, Florence, Italy; National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Ana Sofia P S Reboleira
- Departamento de Biologia Animal, and Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal; Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| |
Collapse
|
11
|
de Souza TTC, Castro GB, Bernegossi AC, Felipe MC, Pinheiro FR, Colombo-Corbi V, Girolli DA, Gorni GR, Corbi JJ. Pristina longiseta reproduction test: chronic exposure to environmental contaminants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23578-23588. [PMID: 36327072 DOI: 10.1007/s11356-022-23861-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Aquatic worms are considered a suitable group to evaluate the effects of contaminants on the environment, although one of the main challenges is to use the species of local occurrence. Recently, Pristina longiseta was suggested to be used in acute bioassays. In this context, this study aimed to establish a chronic exposure for ecotoxicological bioassays using the cosmopolitan species of occurrence in Brazilian freshwater P. longiseta. Firstly, we tested three exposure times (4, 7, and 10 days) under the presence or absence of aeration for reproduction outputs. After determining the best configuration (7 days without aeration), we assessed the effects of the chronic exposures using the standardized reference substance potassium chloride (KCl), the antibiotic sulfamethoxazole (SMX), the flame retardant tetrabromobisphenol A (TBBPA), and the sugarcane vinasse. Our results showed suitability for applying the chronic exposure using P. longiseta and indicated the sensitivity of the offspring to KCl (EC50-7d = 0.51 g/L). Sulfamethoxazole and TBBPA caused a significant decrease in the offspring of P. longiseta (EC50-7d = 59.9 µg/L and < 62.5 µg/L, respectively). Sugarcane vinasse showed high toxicity for the species, and 4.26% of vinasse was calculated as EC50-7d. Therefore, the described protocol was successfully applied as an ecotoxicological bioassay to evaluate the effects of environmental contaminants on the reproduction rate of the freshwater worm P. longiseta.
Collapse
Affiliation(s)
- Tallyson Tavares Cunha de Souza
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil.
| | - Gleyson Borges Castro
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Aline Christine Bernegossi
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Mayara Caroline Felipe
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Fernanda Rodrigues Pinheiro
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | | | | | | | - Juliano José Corbi
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
12
|
Pop MM, Di Lorenzo T, Iepure S. Living on the edge – An overview of invertebrates from groundwater habitats prone to extreme environmental conditions. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1054841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Groundwater ecosystems from cold polar and circumpolar regions, hot springs, as well as those developed in salt, gypsum or in volcanic rocks are one of the environments considered to exhibit extreme environmental conditions such as low (below 0°C) or high (over 45°C) temperatures, hypersaline waters, or with elevated content of toxic gases like hydrogen sulfide or methane. They represent the “unseen ecosystem beneath our feet” and are inhabited by a large diversity of organisms, persisting and flourishing under severe environmental conditions that are usually hostile to the majority of organisms. These types of groundwater ecosystems are remarkable “evolutionary hotspots” that witnessed the adaptive radiation of morphologically and ecologically diverse species, whereas the organisms living here are good models to understand the evolutionary processes and historical factors involved in speciation and adaptation to severe environmental conditions. Here, we provide an overview of the groundwater invertebrates living in continental groundwater habitats prone to extreme environmental conditions in one or more physico-chemical parameters. Invertebrates are represented by a wide variety of taxonomic groups, however dominated by crustaceans that show specific adaptations mostly metabolic, physiologic, and behavioral. Symbiotic associations among bacteria and invertebrates are also discussed enlightening this biological interaction as a potential adaptation of different groundwater invertebrates to cope with severe environmental conditions. Given the high pressures that anthropogenic activities pose on groundwater habitats worldwide, we predict that several of these highly specialized organisms will be prone to extinction in the near future. Finally, we highlight the knowledge gaps and future research approaches in these particular groundwater ecosystems by using integrative-omic studies besides the molecular approach to shed light on genetic variation and phenotypic plasticity at species and populational levels.GRAPHICAL ABSTRACT
Collapse
|
13
|
Di Lorenzo T, Reboleira ASPS. Thermal acclimation and metabolic scaling of a groundwater asellid in the climate change scenario. Sci Rep 2022; 12:17938. [PMID: 36289260 PMCID: PMC9605946 DOI: 10.1038/s41598-022-20891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/20/2022] [Indexed: 01/24/2023] Open
Abstract
Metabolic rate has long been used in animal adaptation and performance studies, and individual oxygen consumption is used as proxy of metabolic rate. Stygofauna are organisms adapted to groundwater with presumably lower metabolic rates than their surface relatives. How stygofauna will cope with global temperature increase remains unpredictable. We studied the thermal acclimation and metabolic scaling with body mass of a stygobitic crustacean, Proasellus lusitanicus, in the climate change scenario. We measured oxygen consumption rates in a thermal ramp-up experiment over four assay temperatures and tested two hypotheses: (i) P. lusitanicus exhibits narrow thermal plasticity, inadequate for coping with a fast-increasing thermal regime; and (ii) oxygen consumption rates scale with the body mass by a factor close to 0.75, as commonly observed in other animals. Our results show that P. lusitanicus has low thermal plasticity in a fast-increasing thermal regime. Our data also suggest that oxygen consumption rates of this species do not follow mass-dependent scaling, potentially representing a new trait of metabolic optimization in groundwater habitats, which are often limited in food and oxygen. Species with limited dispersal capacities and rigid metabolic guilds face extinction risk due to climate change and omitting groundwater ecosystems from climate change agendas emphasizes the unprotected status of stygofauna.
Collapse
Affiliation(s)
- Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems of the National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze Italy ,grid.418333.e0000 0004 1937 1389Emil Racovita Institute of Speleology, Romanian Academy, Clinicilor 5, 400006 Cluj Napoca, Romania ,grid.9983.b0000 0001 2181 4263Departamento de Biologia Animal, Faculdade de Ciências, Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE – Global Change and Sustainability Institute, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Ana Sofia P. S. Reboleira
- grid.9983.b0000 0001 2181 4263Departamento de Biologia Animal, Faculdade de Ciências, Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE – Global Change and Sustainability Institute, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal ,grid.5254.60000 0001 0674 042XNatural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
14
|
Huang A, Roessink I, van den Brink NW, van den Brink PJ. Size- and sex-related sensitivity differences of aquatic crustaceans to imidacloprid. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113917. [PMID: 35908530 DOI: 10.1016/j.ecoenv.2022.113917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Field collected aquatic invertebrates are often used as test organisms in the refinement of the standard Tier 1 risk assessment of various pollutants. This approach can provide insights into the effects of pollutants on the natural environment. However, researchers often pragmatically select test organisms of a specific sex and/or size, which may not represent the sensitivity of the whole population. To investigate such intraspecies sensitivity differences, we performed standard acute toxicity and toxicokinetic tests with different size classes and sex of Gammarus pulex and Asellus aquaticus. Furthermore, toxicokinetics and toxicodynamics models were used to understand the mechanism of the intraspecies sensitivity differences. We used neonates, juveniles and male and female adults in separate dedicated experiments, in which we exposed the animals to imidacloprid and its bioactive metabolite, imidacloprid-olefin. For both species, we found that neonates were the most sensitive group. For G. pulex, the sensitivity decreased linearly with size, which can be explained by the size-related uptake rate constant in the toxicokinetic process and size-related threshold value in the toxicodynamic process. For A. aquaticus, female adults were least sensitive to imidacloprid, which could be explained by a low internal biotransformation of imidacloprid to imidacloprid-olefin. Besides, imidacloprid-olefin was more toxic than imidacloprid to A. aquaticus, with differences being 8.4 times for females and 2.7 times for males. In conclusion, we established size-related sensitivity differences for G. pulex and sex-related sensitivity for A. aquaticus, and intraspecies differences can be explained by both toxicokinetic and toxicodynamic processes. Our findings suggest that to protect populations in the field, we should consider the size and sex of focal organisms and that a pragmatic selection of test organisms of equal size and/or sex can underestimate the sensitivities of populations in the field.
Collapse
Affiliation(s)
- Anna Huang
- Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, the Netherlands.
| | - Ivo Roessink
- Wageningen Environmental Research, Wageningen, the Netherlands
| | - Nico W van den Brink
- Sub-department of Toxicology, Wageningen University, Wageningen, the Netherlands
| | - Paul J van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen, the Netherlands
| |
Collapse
|
15
|
Mammola S, Meierhofer MB, Borges PA, Colado R, Culver DC, Deharveng L, Delić T, Di Lorenzo T, Dražina T, Ferreira RL, Fiasca B, Fišer C, Galassi DMP, Garzoli L, Gerovasileiou V, Griebler C, Halse S, Howarth FG, Isaia M, Johnson JS, Komerički A, Martínez A, Milano F, Moldovan OT, Nanni V, Nicolosi G, Niemiller ML, Pallarés S, Pavlek M, Piano E, Pipan T, Sanchez‐Fernandez D, Santangeli A, Schmidt SI, Wynne JJ, Zagmajster M, Zakšek V, Cardoso P. Towards evidence-based conservation of subterranean ecosystems. Biol Rev Camb Philos Soc 2022; 97:1476-1510. [PMID: 35315207 PMCID: PMC9545027 DOI: 10.1111/brv.12851] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022]
Abstract
Subterranean ecosystems are among the most widespread environments on Earth, yet we still have poor knowledge of their biodiversity. To raise awareness of subterranean ecosystems, the essential services they provide, and their unique conservation challenges, 2021 and 2022 were designated International Years of Caves and Karst. As these ecosystems have traditionally been overlooked in global conservation agendas and multilateral agreements, a quantitative assessment of solution-based approaches to safeguard subterranean biota and associated habitats is timely. This assessment allows researchers and practitioners to understand the progress made and research needs in subterranean ecology and management. We conducted a systematic review of peer-reviewed and grey literature focused on subterranean ecosystems globally (terrestrial, freshwater, and saltwater systems), to quantify the available evidence-base for the effectiveness of conservation interventions. We selected 708 publications from the years 1964 to 2021 that discussed, recommended, or implemented 1,954 conservation interventions in subterranean ecosystems. We noted a steep increase in the number of studies from the 2000s while, surprisingly, the proportion of studies quantifying the impact of conservation interventions has steadily and significantly decreased in recent years. The effectiveness of 31% of conservation interventions has been tested statistically. We further highlight that 64% of the reported research occurred in the Palearctic and Nearctic biogeographic regions. Assessments of the effectiveness of conservation interventions were heavily biased towards indirect measures (monitoring and risk assessment), a limited sample of organisms (mostly arthropods and bats), and more accessible systems (terrestrial caves). Our results indicate that most conservation science in the field of subterranean biology does not apply a rigorous quantitative approach, resulting in sparse evidence for the effectiveness of interventions. This raises the important question of how to make conservation efforts more feasible to implement, cost-effective, and long-lasting. Although there is no single remedy, we propose a suite of potential solutions to focus our efforts better towards increasing statistical testing and stress the importance of standardising study reporting to facilitate meta-analytical exercises. We also provide a database summarising the available literature, which will help to build quantitative knowledge about interventions likely to yield the greatest impacts depending upon the subterranean species and habitats of interest. We view this as a starting point to shift away from the widespread tendency of recommending conservation interventions based on anecdotal and expert-based information rather than scientific evidence, without quantitatively testing their effectiveness.
Collapse
Affiliation(s)
- Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS), University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Melissa B. Meierhofer
- BatLab Finland, Finnish Museum of Natural History Luomus (LUOMUS)University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
| | - Paulo A.V. Borges
- cE3c—Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group / CHANGE – Global Change and Sustainability InstituteUniversity of Azores, Faculty of Agrarian Sciences and Environment (FCAA), Rua Capitão João d'ÀvilaPico da Urze, 9700‐042 Angra do HeroísmoAzoresPortugal
| | - Raquel Colado
- Departament of Ecology and HidrologyUniversity of MurciaMurcia30100Spain
| | - David C. Culver
- Department of Environmental ScienceAmerican University4400 Massachusetts Avenue, N.WWashingtonDC20016U.S.A.
| | - Louis Deharveng
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS UMR 7205, MNHN, UPMC, EPHEMuseum National d'Histoire Naturelle, Sorbonne UniversitéParisFrance
| | - Teo Delić
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems (IRET‐CNR), National Research CouncilVia Madonna del Piano 10, 50019 Sesto FiorentinoFlorenceItaly
| | - Tvrtko Dražina
- Division of Zoology, Department of BiologyFaculty of Science, University of ZagrebRooseveltov Trg 6Zagreb10000Croatia
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
| | - Rodrigo L. Ferreira
- Center of Studies in Subterranean Biology, Biology Department, Federal University of LavrasCampus universitário s/n, Aquenta SolLavrasMG37200‐900Brazil
| | - Barbara Fiasca
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaVia Vetoio 1, CoppitoL'Aquila67100Italy
| | - Cene Fišer
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Diana M. P. Galassi
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaVia Vetoio 1, CoppitoL'Aquila67100Italy
| | - Laura Garzoli
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Vasilis Gerovasileiou
- Department of Environment, Faculty of EnvironmentIonian University, M. Minotou‐Giannopoulou strPanagoulaZakynthos29100Greece
- Hellenic Centre for Marine Research (HCMR), Institute of Marine BiologyBiotechnology and Aquaculture (IMBBC)Thalassocosmos, GournesCrete71500Greece
| | - Christian Griebler
- Department of Functional and Evolutionary Ecology, Division of LimnologyUniversity of ViennaDjerassiplatz 1Vienna1030Austria
| | - Stuart Halse
- Bennelongia Environmental Consultants5 Bishop StreetJolimontWA6014Australia
| | | | - Marco Isaia
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Joseph S. Johnson
- Department of Biological SciencesOhio University57 Oxbow TrailAthensOH45701U.S.A.
| | - Ana Komerički
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
| | - Alejandro Martínez
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Filippo Milano
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Oana T. Moldovan
- Emil Racovita Institute of SpeleologyClinicilor 5Cluj‐Napoca400006Romania
- Romanian Institute of Science and TechnologySaturn 24‐26Cluj‐Napoca400504Romania
| | - Veronica Nanni
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Giuseppe Nicolosi
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Matthew L. Niemiller
- Department of Biological SciencesThe University of Alabama in Huntsville301 Sparkman Drive NWHuntsvilleAL35899U.S.A.
| | - Susana Pallarés
- Departamento de Biogeografía y Cambio GlobalMuseo Nacional de Ciencias Naturales, CSICCalle de José Gutiérrez Abascal 2Madrid28006Spain
| | - Martina Pavlek
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
- Ruđer Bošković InstituteBijenička cesta 54Zagreb10000Croatia
| | - Elena Piano
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Tanja Pipan
- ZRC SAZUKarst Research InstituteNovi trg 2Ljubljana1000Slovenia
- UNESCO Chair on Karst EducationUniversity of Nova GoricaGlavni trg 8Vipava5271Slovenia
| | | | - Andrea Santangeli
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiViikinkaari 1Helsinki00014Finland
| | - Susanne I. Schmidt
- Institute of Hydrobiology, Biology Centre CASNa Sádkách 702/7České Budějovice370 05Czech Republic
- Department of Lake ResearchHelmholtz Centre for Environmental ResearchBrückstraße 3aMagdeburg39114Germany
| | - J. Judson Wynne
- Department of Biological SciencesCenter for Adaptable Western Landscapes, Box 5640, Northern Arizona UniversityFlagstaffAZ86011U.S.A.
| | - Maja Zagmajster
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Valerija Zakšek
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS), University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
- cE3c—Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group / CHANGE – Global Change and Sustainability InstituteUniversity of Azores, Faculty of Agrarian Sciences and Environment (FCAA), Rua Capitão João d'ÀvilaPico da Urze, 9700‐042 Angra do HeroísmoAzoresPortugal
| |
Collapse
|
16
|
Hose GC, Chariton A, Daam MA, Di Lorenzo T, Galassi DMP, Halse SA, Reboleira ASPS, Robertson AL, Schmidt SI, Korbel KL. Invertebrate traits, diversity and the vulnerability of groundwater ecosystems. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- G. C. Hose
- Department of Biological Sciences Macquarie University NSW 2109 Australia
| | - A. Chariton
- Department of Biological Sciences Macquarie University NSW 2109 Australia
| | - M. A. Daam
- CENSE ‐ Center for Environmental and Sustainability Research NOVA School of Science and Technology NOVA University Lisbon, 2829‐516 Caparica Portugal
| | - T. Di Lorenzo
- Research Institute on Terrestrial Ecosystems of the National Research Council Via Madonna del Piano 10, 50019, Sesto Fiorentino Firenze Italy
- Emil Racovita Institute of Speleology Romanian Academy, Clinicilor 5, Cluj Napoca 400006 Romania
| | - D. M. P. Galassi
- Department of Life, Health and Environmental Sciences University of L'Aquila Via Vetoio, Coppito, 67100 L'Aquila Italy
| | - S. A. Halse
- Bennelongia Environmental Consultants, Jolimont WA 6014 Australia
| | - A. S. P. S. Reboleira
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa Lisbon Portugal
- Natural History Museum of Life and Health Sciences Denmark and University of Copenhagen Universitetsparken 15, 2100 Copenhagen Denmark
| | - A. L. Robertson
- School of Life and Health Sciences University of Roehampton, Holybourne Avenue, London SW15 4JD UK
| | - S. I. Schmidt
- Biology Centre of the Czech Academy of Sciences Institute of Hydrobiology Na Sádkách 7, 37005 České Budějovice Czech Republic
- Present address: Department of Lake Research, Helmholtz Centre for Environmental Research Magdeburg Germany
| | - K. L. Korbel
- Department of Biological Sciences Macquarie University NSW 2109 Australia
| |
Collapse
|
17
|
Becher J, Englisch C, Griebler C, Bayer P. Groundwater fauna downtown - Drivers, impacts and implications for subsurface ecosystems in urban areas. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 248:104021. [PMID: 35605354 DOI: 10.1016/j.jconhyd.2022.104021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/07/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Groundwater fauna (stygofauna) comprises organisms that have adapted to the dark subterranean environment over a course of thousands and millions of years, typically having slow metabolisms and long life cycles. They are crucial players in the groundwater of oxygenic aquifers, and contribute to various ecosystem services. Today's knowledge of their sensitivity to anthropogenic impacts is incomplete and a critical analysis of the general relevance of local findings is lacking. In this review, we focus on those areas with the highest interference between humans and stygofauna: cities. Here is where local pollution by various contaminants and heat strongly stresses the unique groundwater ecosystems. It is demonstrated that it is difficult to discern the influence of individual factors from the findings reported in field studies, and to extrapolate laboratory results to field conditions. The effects of temperature increase and chemical pollution vary strongly between tested species and test conditions. In general, previous findings indicate that heating, especially in the long-term, will increase mortality, and less adapted species are at risk of vanishing from their habitats. The same may be true for salinity caused by road de-icing in cold urban areas. Furthermore, high sensitivities were shown for ammonium, which will probably be even more pronounced with rising temperatures resulting in altered biodiversity patterns. Toxicity of heavy metals, for a variety of invertebrates, increases with time and chronic exposure. Our current knowledge reveals diverse potential impacts on groundwater fauna by urban pollution, but our insights gained so far can only be validated by standardized and long-term test concepts.
Collapse
Affiliation(s)
- Julia Becher
- Martin Luther University Halle-Wittenberg, Institute of Geosciences and Geography, Department of Applied Geology, Von-Seckendorff-Platz 3, 06120 Halle, Germany.
| | - Constanze Englisch
- University of Vienna, Department of Functional and Evolutionary Ecology, Division of Limnology, Djerassiplatz 1, 1030 Vienna, Austria
| | - Christian Griebler
- University of Vienna, Department of Functional and Evolutionary Ecology, Division of Limnology, Djerassiplatz 1, 1030 Vienna, Austria
| | - Peter Bayer
- Martin Luther University Halle-Wittenberg, Institute of Geosciences and Geography, Department of Applied Geology, Von-Seckendorff-Platz 3, 06120 Halle, Germany
| |
Collapse
|
18
|
Jemec Kokalj A, Fišer Ž, Dolar A, Novak S, Drobne D, Bračko G, Fišer C. Screening of NaCl salinity sensitivity across eight species of subterranean amphipod genus Niphargus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113456. [PMID: 35395599 DOI: 10.1016/j.ecoenv.2022.113456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Secondary salinization of freshwater is becoming a growing environmental problem. Currently, there is few data available on the effects of salinisation on subterranean crustaceans that are vital for the maintenance of groundwater ecosystem functioning. In this study, the sensitivity of subterranean Niphargus amphipods to NaCl was investigated. We expected that cave-dwelling species would be more sensitive as surface-subterranean boundary species. Eight ecologically different Niphargus species were tested: four live at the boundary between the surface and subterranean ecosystems (N. timavi, N. krameri, N. sphagnicolus, N. spinulifemur), three live in cave streams (N. stygius, N. scopicauda, N. podpecanus), and one species (N. hebereri) lives in anchialine caves and wells. The organisms were exposed to five concentrations of NaCl for 96 h and afterwards the immobility, mortality, and electron transfer system (ETS) activity (a measure for metabolic rate of animals) were evaluated. As expected, the most tolerant species was N. hebereri dwelling in naturally high-salinity habitat. However, contrary to our expectations, the species collected at the surface-subterranean boundary were more sensitive as cave stream species when their immobility and mortality were assessed. Interestingly, the majority of Niphargus tested were more NaCl tolerant as can be deduced from currently available data for subterranean and surface crustaceans. We could not observe a clear trend in ETS activity changes between groups of surface-subterranean boundary and cave streams species after exposure to NaCl stress, but it appears that osmotic stress-induced metabolic rate changes are species-specific. This study shows that amphipods Niphargus can be a valuable subterranean environmental research model and further ecotoxicity research is of interest.
Collapse
Affiliation(s)
- Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - Žiga Fišer
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Andraž Dolar
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Sara Novak
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Gregor Bračko
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Cene Fišer
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
19
|
van den Berg-Stein S, Hahn HJ, Thielsch A, Schwenk K. Diversity and dispersal of aquatic invertebrate species from surface and groundwater: Development and application of microsatellite markers for the detection of hydrological exchange processes. WATER RESEARCH 2022; 210:117956. [PMID: 35032894 DOI: 10.1016/j.watres.2021.117956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Groundwater is one of our most important resources, however groundwater ecosystems are among the most understudied habitats of the planet earth. Studies on groundwater organisms are hampered by the difficult accessibility of species, the lack of morphological differentiation and the limitation for laboratory cultures. One important approach to overcome these shortcomings is to provide sensitive genetic methods to unravel patterns of biodiversity, population structure and gene flow in natural populations. In this study we present five sets of microsatellite markers developed for the isopods Asellus aquaticus and Proasellus slavus, the cyclopoides Paracyclops fimbriatus and Acanthocyclops sensitivus and the harpacticoide Bryocamptus echinatus (Crustacea). Two of these species were subjected to detailed population genetic analyses: We studied 501 specimens of Asellus aquaticus from four different regions in Northern Germany using nine microsatellite markers and 70 specimens of Bryocamptus echinatus using nine microsatellite markers from three different sampling sites in South-Western Germany. Our results show that genetic diversity is high (A. aquaticus: 10 to 20 and B. echinatus: 4 to 18 alleles per locus) among populations of aquatic invertebrates, populations are highly differentiated (FST > 0.2) and genetic differentiation was associated with geographic patterns. Applications of molecular genetic methods and their use for the detection of hydrological exchange processes relevant for drinking water suppliers are demonstrated and discussed.
Collapse
Affiliation(s)
- Susanne van den Berg-Stein
- Molecular Ecology, Institute for Environmental Sciences (iES), University of Koblenz-Landau, Campus Landau, Fortstraße 7, Landau/Pfalz 76829, Germany; Institute for Groundwater Ecology IGÖ GmbH, University of Koblenz-Landau, Campus Landau, Fortstraße 7, Landau/Pfalz 76829, Germany.
| | - Hans Jürgen Hahn
- Molecular Ecology, Institute for Environmental Sciences (iES), University of Koblenz-Landau, Campus Landau, Fortstraße 7, Landau/Pfalz 76829, Germany; Institute for Groundwater Ecology IGÖ GmbH, University of Koblenz-Landau, Campus Landau, Fortstraße 7, Landau/Pfalz 76829, Germany
| | - Anne Thielsch
- Molecular Ecology, Institute for Environmental Sciences (iES), University of Koblenz-Landau, Campus Landau, Fortstraße 7, Landau/Pfalz 76829, Germany
| | - Klaus Schwenk
- Molecular Ecology, Institute for Environmental Sciences (iES), University of Koblenz-Landau, Campus Landau, Fortstraße 7, Landau/Pfalz 76829, Germany
| |
Collapse
|
20
|
Di Cicco M, Di Lorenzo T, Fiasca B, Ruggieri F, Cimini A, Panella G, Benedetti E, Galassi DMP. Effects of diclofenac on the swimming behavior and antioxidant enzyme activities of the freshwater interstitial crustacean Bryocamptus pygmaeus (Crustacea, Harpacticoida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149461. [PMID: 34426329 DOI: 10.1016/j.scitotenv.2021.149461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Diclofenac (DCF) is one of the most widespread pharmaceutical compounds found in freshwaters as a pseudo-persistent pollutant due to its continuous release from point and diffuse sources, being its removal in Wastewater Treatment Plants incomplete. Moreover, DCF is particularly persistent in interstitial habitats and potentially toxic for the species that spend their whole life cycle among the same sediment grains. This study is aimed at offering a first contribution to the assessment of DCF effects on freshwater invertebrate species living in the interstitial habitats of springs, rivers, lakes and groundwaters. The Crustacea Copepoda are one of the main components of the freshwater interstitial communities, with the primacy taken by the worm-like and small-sized harpacticoids. A sub-lethal concentration of 50 μg L-1 DCF significantly affected six out of the eight behavior parameters of the burrower/interstitial crustacean harpacticoid Bryocamptus pygmaeus recorded by video tracking analysis. DCF exposure reduced swimming speed, swimming activity, exploration ability and thigmotaxis, and increased swimming path tortuosity. The biochemical approach revealed a reduced level of the mitochondrial superoxide dismutase 2 in individuals exposed to DCF. It could be explained by a decline in mitochondrial performance or by a reduced number of functional mitochondria. Since mitochondrial dysfunction may determine ATP reduction, it comes that less energy is produced for maintaining the cell functions of the DCF-exposed individuals. In addition, the increasing energy demand for the detoxification process further contributes to decrease the total energetic budget allocated for other physiological activities. These observations can explain the changes we have observed in the swimming behavior of the copepod B. pygmaeus.
Collapse
Affiliation(s)
- Mattia Di Cicco
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems of the National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy; "Emil Racovita" Institute of Speleology, Romanian Academy, Clinicilor 5, Cluj Napoca 400006, Romania
| | - Barbara Fiasca
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Fabrizio Ruggieri
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Gloria Panella
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Diana M P Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| |
Collapse
|
21
|
Oberprieler S, Rees G, Nielsen D, Shackleton M, Watson G, Chandler L, Davis J. Connectivity, not short-range endemism, characterises the groundwater biota of a northern Australian karst system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148955. [PMID: 34328872 DOI: 10.1016/j.scitotenv.2021.148955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/19/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Groundwater ecosystems have a diverse and unique fauna, often dominated by Crustacea and generally characterised by short range endemics confined to single aquifers. Much of this knowledge has come from studies conducted either in fractured rock aquifers or alluvial aquifers. Karstic subterranean environments are present in the Cambrian Limestone Aquifer (CLA) in the Northern Territory, Australia, a freshwater aquifer which spans an area of ~28,000 km2. The presence of underground caverns and channels potentially allows extensive connectivity within this groundwater system. The emerging shale gas industry in the Beetaloo region, which underlies the CLA, provided the impetus to undertake the first survey of the potential existence of a stygofaunal community. Twenty-six groundwater wells (bores) and two springs were sampled in August and October 2019, across a distance of ~500 km, from the sub-tropical Mataranka region in the north to the semi-arid Barkly Tablelands in the south. Plankton nets and motorised pumps were used to collect water samples and conventional microscope-based morphological examinations in conjunction with environmental DNA (eDNA) were used to determine the presence of stygofauna. COI barcoding and 16S rRNA regions were also used for phylogenetic analysis. All stygofaunal communities were dominated by crustaceans, namely shrimps, amphipods, ostracods, copepods and syncarids. This fauna showed little affinity with the stygofauna recorded from more extensively sampled aquifers in north-western Australia, with new genera and species present in the CLA. eDNA analysis showed the presence of diverse biota at sites where direct water sampling for intact animals was difficult. COI and 16S analysis confirmed that a species of blind shrimp, Parisia unguis, occurred extensively throughout the aquifer, over a distance of at least ~300 km. The presence of Pa. unguis at widely separated sites across the CLA is consistent with substantial connectivity within the aquifer. This connectivity indicates that the risk of groundwater contamination from fracking chemicals needs to be adequately mitigated to prevent widespread effects.
Collapse
Affiliation(s)
- Stefanie Oberprieler
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia.
| | - Gavin Rees
- CSIRO Land and Water, Albury, NSW 2640, Australia; Institute of Land Water and Society, Charles Sturt University, Thurgoona, NSW 2640, Australia.
| | - Daryl Nielsen
- CSIRO Land and Water, Albury, NSW 2640, Australia; Institute of Land Water and Society, Charles Sturt University, Thurgoona, NSW 2640, Australia.
| | - Michael Shackleton
- Centre for Freshwater Ecosystems, La Trobe University, Wodonga, Victoria 3689, Australia.
| | - Garth Watson
- CSIRO Land and Water, Albury, NSW 2640, Australia; Institute of Land Water and Society, Charles Sturt University, Thurgoona, NSW 2640, Australia.
| | - Lisa Chandler
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia; Supervising Scientist Branch, Department of Agriculture, Water and the Environment, Darwin, NT 0820, Australia.
| | - Jenny Davis
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia.
| |
Collapse
|
22
|
Di Lorenzo T, Cifoni M, Baratti M, Pieraccini G, Di Marzio WD, Galassi DMP. Four scenarios of environmental risk of diclofenac in European groundwater ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117315. [PMID: 34000671 DOI: 10.1016/j.envpol.2021.117315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Groundwater is the largest source of liquid freshwater on Earth. Groundwater ecosystems harbor a rich biodiversity, mainly consisting of microbes and invertebrates that provide substantial ecological services. Despite its importance, groundwater is affected by several anthropic pressures, including pollution from pharmaceutical compounds. Diclofenac is the non-steroidal drug most widely detected in freshwaters, both in surface waters (e.g., rivers, streams, lakes etc.) and groundwaters. Unlike surface waters, the environmental risk of diclofenac in European groundwaters has not yet been assessed by the competent Authorities. The environmental risk assessment refers to the analysis of the potential risk that a chemical compound poses to a given environment by comparing its measured environmental concentrations to its predicted no-effect concentration. In this study, we explored four environmental risk scenarios in European groundwaters using different methodologies. We obtained diverse risk expectations, some indicative of a moderately diffuse environmental risk for concentrations of diclofenac ≥42 ng/L and others indicative of a widespread environmental risk for concentrations ≥5 ng/L. The difference among the four scenarios mainly related to the methods of calculating the predicted no-effect concentration of diclofenac. We discussed the four scenarios in order to identify the most realistic risk expectations posed by diclofenac to European groundwater ecosystems.
Collapse
Affiliation(s)
- T Di Lorenzo
- Research Institute on Terrestrial Ecosystems of the National Research Council of Italy (IRET-CNR), Via Madonna Del Piano 10, 50019, Sesto Fiorentino, Florence, Italy; "Emil Racovita" Institute of Speleology, Romanian Academy, Clinicilor 5, Cluj Napoca, 400006, Romania.
| | - M Cifoni
- Research Institute on Terrestrial Ecosystems of the National Research Council of Italy (IRET-CNR), Via Madonna Del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - M Baratti
- Institute of Biosciences and Bioresources of the National Research Council of Italy (IBBR-CNR), Via Madonna Del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - G Pieraccini
- Mass Spectrometry Center, University of Florence, Via U. Schiff 6, 50019, Sesto Fiorentino, Italy
| | - W D Di Marzio
- Programa de Investigación en Ecotoxicología, Departamento de Ciencias Básicas, Universidad Nacional de Luján - Comisión Nacional de Investigaciones Científicas y Técnicas CONICET, Ruta 5 y Avenida Constitución, 6700, Luján, Buenos Aires, Argentina
| | - D M P Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, L'Aquila, Italy
| |
Collapse
|
23
|
Castaño-Sánchez A, Pereira JL, Gonçalves FJM, Reboleira ASPS. Sensitivity of a widespread groundwater copepod to different contaminants. CHEMOSPHERE 2021; 274:129911. [PMID: 33979935 DOI: 10.1016/j.chemosphere.2021.129911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/11/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Groundwater is an indispensable resource for humankind and sustainable biomes functioning. Anthropogenic disturbance threatens groundwater ecosystems globally, but to which extent groundwater organisms respond to stressors remains poorly understood. Groundwater animals are rare, with small populations, difficult to find and to breed in the lab, which poses a main challenge to the assessment of their responses to pollutants. Despite the difficulties, assessing the toxicity of a large spectrum of stressors to groundwater organisms is a priority to inform towards appropriate environmental protection of these ecosystems. We tested the sensitivity to CuSO4, diclofenac, and NaCl of a groundwater population of the copepod Diacyclops crassicaudis crassicaudis and compared its sensitivity with the model organism Daphnia magna. We ranked its sensitivity using a species sensitivity distribution (SSD) approach using the feasible data available for groundwater and surface crustaceans. Our results show that the most toxic compound was CuSO4 for which higher amount of data was recorded and wider variability in response was observed. It was followed by diclofenac, largely lacking data for groundwater-adapted organisms, and the least toxic compound was NaCl. The differential sensitivity between D. crassicaudis and D. magna was contaminant-dependent. As a general trend D. crassicaudis was always distributed in the upper part of the SSD curves together with other groundwater-adapted organisms. Our results highlight that the widespread groundwater populations of the D. crassicaudis species complex, which can be successfully breed in the lab, may provide a reasonable approach to assess the ecological effects of anthropogenic stressors in groundwater ecosystems.
Collapse
Affiliation(s)
| | | | | | - Ana Sofia P S Reboleira
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark; Centre for Ecology, Evolution and Environmental Changes (cE3c), and Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
24
|
Mammola S, Lunghi E, Bilandžija H, Cardoso P, Grimm V, Schmidt SI, Hesselberg T, Martínez A. Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them. Ecol Evol 2021; 11:5911-5926. [PMID: 34141192 PMCID: PMC8207145 DOI: 10.1002/ece3.7556] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
Caves and other subterranean habitats fulfill the requirements of experimental model systems to address general questions in ecology and evolution. Yet, the harsh working conditions of these environments and the uniqueness of the subterranean organisms have challenged most attempts to pursuit standardized research.Two main obstacles have synergistically hampered previous attempts. First, there is a habitat impediment related to the objective difficulties of exploring subterranean habitats and our inability to access the network of fissures that represents the elective habitat for the so-called "cave species." Second, there is a biological impediment illustrated by the rarity of most subterranean species and their low physiological tolerance, often limiting sample size and complicating laboratory experiments.We explore the advantages and disadvantages of four general experimental setups (in situ, quasi in situ, ex situ, and in silico) in the light of habitat and biological impediments. We also discuss the potential of indirect approaches to research. Furthermore, using bibliometric data, we provide a quantitative overview of the model organisms that scientists have exploited in the study of subterranean life.Our over-arching goal is to promote caves as model systems where one can perform standardized scientific research. This is important not only to achieve an in-depth understanding of the functioning of subterranean ecosystems but also to fully exploit their long-discussed potential in addressing general scientific questions with implications beyond the boundaries of this discipline.
Collapse
Affiliation(s)
- Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS)University of HelsinkiHelsinkiFinland
- Dark‐MEG: Molecular Ecology GroupWater Research Institute (IRSA)National Research Council (CNR)VerbaniaItaly
| | - Enrico Lunghi
- Key Laboratory of the Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Museo di Storia Naturale dell'Università degli Studi di Firenze“La Specola”FirenzeItaly
| | - Helena Bilandžija
- Department of Molecular BiologyRudjer Boskovic InstituteZagrebCroatia
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS)University of HelsinkiHelsinkiFinland
| | - Volker Grimm
- Department of Ecological ModellingHelmholtz Centre for Environmental Research – UFZLeipzigGermany
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Susanne I. Schmidt
- Institute of HydrobiologyBiology Centre CASČeské BudějoviceCzech Republic
| | | | - Alejandro Martínez
- Dark‐MEG: Molecular Ecology GroupWater Research Institute (IRSA)National Research Council (CNR)VerbaniaItaly
| |
Collapse
|
25
|
Novel Protocol for Acute In Situ Ecotoxicity Test Using Native Crustaceans Applied to Groundwater Ecosystems. WATER 2021. [DOI: 10.3390/w13081132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Current standardized laboratory test protocols use model species that have limitations to accurately assess native species responses to stressors. We developed and tested a novel acute in situ protocol for testing field-collected organisms. We used Asellus aquaticus and NaCl as a reference toxicant to test for the effects of location (laboratory vs. in situ), medium (synthetic vs. field water), substrate (presence vs. absence), and protocol replicability. We further tested the protocol using groundwater-adapted isopods: Proasellus assaforensis for the effect of location, P. cavaticus of medium and P.lusitanicus of substrate. Our results showed that A.aquaticus’ lethality obtained with the novel acute in situ protocol did not significantly differ from those from laboratory testing. However, laboratory tested P.assaforensis showed a higher sensitivity, suggesting that its acclimation to laboratory conditions might have pernicious effects. A. aquaticus and P. cavaticus showed a higher mortality using synthetic medium in situ and under laboratory conditions, which overestimated the stressor’s effect. Besides, substrate use had no significant effect. The novel acute in situ protocol allows the use of native species under realistic scenarios. It is particularly well adapted for assessing the risk of groundwater ecosystems but it can be applied to a wide range of ecosystems.
Collapse
|
26
|
Castaño-Sánchez A, Hose GC, Reboleira ASPS. Salinity and temperature increase impact groundwater crustaceans. Sci Rep 2020; 10:12328. [PMID: 32704064 PMCID: PMC7378218 DOI: 10.1038/s41598-020-69050-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/02/2020] [Indexed: 11/09/2022] Open
Abstract
Anthropogenic impacts in groundwater ecosystems remain poorly known. Climate change is omnipresent, while groundwater salinization poses serious long-term environmental problems in arid and semi-arid regions, and is exacerbated by global warming. Both are present threats to the conservation of groundwater ecosystems, which harbour highly specialized species, with peculiar traits and limited geographic distributions. We tested the temperature and salinity tolerance of groundwater-adapted invertebrates to understand the effect of global warming and salinization in groundwater ecosystems. We used species representative of groundwater-adapted crustaceans: two copepods (harpacticoid and cyclopoid) and one syncarid, endemic to Australia. Our results show that 50% of the populations died at salt concentrations between 2.84 to 7.35 g NaCl/L after 96 h, and at 6.9 °C above the ambient aquifer temperature for copepods and more than 10 °C for syncarids. Both copepods were more sensitive to temperature and NaCl than the syncarid. We calculated a salinity risk quotient of 9.7 and predicted the risk of loss of 10% of syncarid and 20% of copepod population abundances under a worst-case scenario of global warming predictions for 2070. These results highlight that both salinity and temperature increases pose a risk to the ecological integrity of groundwater ecosystems.
Collapse
Affiliation(s)
- Andrea Castaño-Sánchez
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Grant C Hose
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ana Sofia P S Reboleira
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| |
Collapse
|
27
|
Assessment of Different Contaminants in Freshwater: Origin, Fate and Ecological Impact. WATER 2020. [DOI: 10.3390/w12061810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Freshwater ecosystems cover over 15% of the world’s surface and provide ecosystem services that are pivotal in sustaining human society. However, fast-growing anthropogenic activities have deleterious impacts on these ecosystems. In this Special Issue, we collect ten studies encompassing five different factors of freshwater contamination: landfill leaks, nutrients, heavy metals, emerging organic contaminants and marble slurry. Using different approaches, the studies detailed the direct and indirect effects that these contaminants have on a range of freshwater organisms, from bacteria to vertebrates. Although the papers covered here focused on specific case studies, they exemplify common issues that are expanding in groundwaters, hyporheic zones, streams, lakes and ponds around the world. All the aspects of these issues are in dire need of being continuously discussed among scientists, end-users and policy-makers. To this end, the Special Issue presents a new free software suite for the analysis of the ecological risk and conservation priority of freshwater ecosystems. The software can support local authorities in the preparation of management plans for freshwater basins pursuant to the Water Directives in Europe.
Collapse
|
28
|
Castaño-Sánchez A, Hose GC, Reboleira ASPS. Ecotoxicological effects of anthropogenic stressors in subterranean organisms: A review. CHEMOSPHERE 2020; 244:125422. [PMID: 31805461 DOI: 10.1016/j.chemosphere.2019.125422] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
How anthropogenic stressors affect biodiversity is a central question in a changing world. Subterranean ecosystems and their biodiversity are particularly vulnerable to change, yet, these species are frequently neglected in analyses of global biodiversity and assessments of ecological status and risk. Are these hidden species affected by anthropogenic stressors? Do they survive outside of the current thermal limits of their ecosystems? These and other important questions can be addressed with ecotoxicological testing, relating contaminants and temperature resistance of species with measured environmental concentrations and climatic data. Ecotoxicological knowledge specific to subterranean ecosystems is crucial for establishing thresholds for their protection, but such data are both scarce and scattered. Here, we review the existing ecotoxicological studies of these impacts to subterranean-adapted species. An effort that includes 167 measured endpoints and presents a database containing experimentally derived species' tolerance data for 28 contaminants and temperature, for 46 terrestrial and groundwater species, including fungi and animals. The lack of standard data among the studies is currently the major impediment to evaluate how stressors affect subterranean-adapted species and how differently they respond from their relatives at surface. Improving understanding of ecotoxicological effects on subterranean-adapted species will require extensive analysis of physiological responses to a wide range of untested stressors, standardization of testing protocols and evaluation of exposures under realistic scenarios.
Collapse
Affiliation(s)
- Andrea Castaño-Sánchez
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Grant C Hose
- Department of Biological Sciences, Macquarie University, NSW, 2109, Sydney, Australia
| | - Ana Sofia P S Reboleira
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| |
Collapse
|
29
|
AQUALIFE Software: A New Tool for a Standardized Ecological Assessment of Groundwater Dependent Ecosystems. WATER 2019. [DOI: 10.3390/w11122574] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We introduce a suite of software tools aimed at investigating multiple bio-ecological facets of aquatic Groundwater Dependent Ecosystems (GDEs). The suite focuses on: (1) threats posed by pollutants to GDE invertebrates (Ecological Risk, ER); (2) threats posed by hydrological and hydromorphological alterations on the subsurface zone of lotic systems and groundwater-fed springs (Hydrological-Hydromorphological Risk, HHR); and (3) the conservation priority of GDE communities (Groundwater Biodiversity Concern index, GBC). The ER is assessed by comparing tolerance limits of invertebrate species to specific pollutants with the maximum observed concentration of the same pollutants at the target site(s). Comparison is based on an original, comprehensive dataset including the most updated information on tolerance to 116 pollutants for 474 freshwater invertebrate species. The HHR is assessed by accounting for the main direct and indirect effects on both the hyporheic zone of lotic systems and groundwater-fed springs, and by scoring each impact according to the potential effect on subsurface invertebrates. Finally, the GBC index is computed on the basis of the taxonomical composition of a target community, and allows the evaluation of its conservation priority in comparison to others.
Collapse
|
30
|
Potential of A Trait-Based Approach in the Characterization of An N-Contaminated Alluvial Aquifer. WATER 2019. [DOI: 10.3390/w11122553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Groundwater communities residing in contaminated aquifers have been investigated mainly through taxonomy-based approaches (i.e., analyzing taxonomic richness and abundances) while ecological traits have been rarely considered. The aim of this study was to assess whether a trait analysis adds value to the traditional taxonomy-based biomonitoring in N-contaminated aquifers. To this end, we monitored 40 bores in the Vomano alluvial aquifer (VO_GWB, Italy) for two years. The aquifer is a nitrate vulnerable zone according to the Water Framework Directive. The traditional taxonomy-based approach revealed an unexpectedly high biodiversity (38 taxa and 5725 individuals), dominated by crustaceans, comparable to that of other unpolluted alluvial aquifers worldwide. This result is in contrast with previous studies and calls into question the sensitivity of stygobiotic species to N-compounds. The trait analysis provided an added value to the study, unveiling signs of impairments of the groundwater community such as low juveniles-to-adults and males-to-females ratios and a crossover of biomasses and abundances curves suggestive of an intermediate alteration of the copepod assemblages.
Collapse
|
31
|
Di Lorenzo T, Di Cicco M, Di Censo D, Galante A, Boscaro F, Messana G, Paola Galassi DM. Environmental risk assessment of propranolol in the groundwater bodies of Europe. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113189. [PMID: 31542673 DOI: 10.1016/j.envpol.2019.113189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
A growing concern for contamination due to pharmaceutical compounds in groundwater is expanding globally. The β-blocker propranolol is a β-adrenoceptors antagonist commonly detected in European groundwater bodies. The effect of propranolol on stygobiotic species (obligate groundwater dweller species) is compelling in the framework of environmental risk assessment (ERA) of groundwater ecosystems. In fact, in Europe, ERA procedures for pharmaceuticals in groundwater are based on data obtained with surrogate surface water species. The use of surrogates has aroused some concern in the scientific arena since the first ERA guideline for groundwater was issued. We performed an ecotoxicological and a behavioural experiment with the stygobiotic crustacean species Diacyclops belgicus (Copepopda) to estimate a realistic value of the Predicted No Effect Concentration (PNEC) of propranolol for groundwater ecosystems and we compared this value with the PNEC estimated based on EU ERA procedures. The results of this study showed that i) presently, propranolol does not pose a risk to groundwater bodies in Europe at the concentrations shown in this study and ii) the PNEC of propranolol estimated through the EU ERA procedures is very conservative and allows to adequately protect these delicate ecosystems and their dwelling fauna. The methodological approach and the results of this study represent a first contribution to the improvement of ERA of groundwater ecosystems.
Collapse
Affiliation(s)
- Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy.
| | - Mattia Di Cicco
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, 10 L'Aquila, Italy
| | - Davide Di Censo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, 10 L'Aquila, Italy
| | - Angelo Galante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, 10 L'Aquila, Italy; Institute for superconductors, oxides and other innovative materials and devices, National Research Council (CNR-SPIN), Via Vetoio 1, 67100 L'Aquila, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali del Gran Sasso, Assergi, 67100, L'Aquila, Italy
| | - Francesca Boscaro
- Mass Spectrometry Center, University of Florence, Via U. Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Giuseppe Messana
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Diana Maria Paola Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, 10 L'Aquila, Italy
| |
Collapse
|
32
|
The Toxicity and Uptake of As, Cr and Zn in a Stygobitic Syncarid (Syncarida: Bathynellidae). WATER 2019. [DOI: 10.3390/w11122508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ecotoxicological data for obligate groundwater species are increasingly required to inform environmental protection for groundwater ecosystems. Bathynellid syncarids are one of several crustacean taxa found only in subsurface habitats. The aim of this paper is to assess the sensitivity of an undescribed syncarid (Malacostraca: Syncarida: Bathynellidae) to common groundwater contaminants, arsenic (III), chromium (VI) and zinc, and examine the bioaccumulation of As and Zn in these animals after 14-day exposure. Arsenic was the most toxic to the syncarid (14-day LC50 0.25 mg As/L), followed closely by chromium (14-day LC50 0.51 mg Cr/L) and zinc (14-day LC50 1.77 mg Zn/L). The accumulation of Zn was regulated at exposure concentrations below 1 mg Zn/L above which body concentrations increased, leading to increased mortality. Arsenic was not regulated and was accumulated by the syncarids at all concentrations above the control. These are the first published toxicity data for syncarids and show them to be among the most sensitive of stygobitic crustaceans so far tested, partly due to the low hardness of the groundwater from the aquifer they inhabit and in which they were tested. The ecological significance of the toxicant accumulation and mortality may be significant given the consequent population effects and low capacity for stygobitic populations to recover.
Collapse
|
33
|
Vystavna Y, Schmidt SI, Diadin D, Rossi PM, Vergeles Y, Erostate M, Yermakovych I, Yakovlev V, Knöller K, Vadillo I. Multi-tracing of recharge seasonality and contamination in groundwater: A tool for urban water resource management. WATER RESEARCH 2019; 161:413-422. [PMID: 31226539 DOI: 10.1016/j.watres.2019.06.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
In this study, sources of recharge and contamination in urban groundwater and in groundwater underneath a forest in the same aquifer were determined and compared. Data on hydro-chemical parameters and stable isotopes of water were collected in urban and forest springs in the Kharkiv region, Ukraine, over a period of 12 months. Groundwater transit time and precipitation contribution were calculated using hydrogeological data and stable isotopes of water to delineate groundwater recharge conditions. Hydro-chemical data, stable isotopes and emerging contaminants were used to trace anthropogenic groundwater recharge and approximate sewage and tap water contributions to the aquifer. The results indicated that each spring had unique isotopic signatures that could be explained by recharge conditions, groundwater residence time, and specific mixing patterns with sewage and water leaks. Elevated nitrate content, stable isotopes of nitrate, and the presence of emerging pollutants (mainly illicit drugs) in most of the urban springs confirmed mixing of urban groundwater with sewage leaks. These leaks amounted to up to 25% of total recharge and exhibited seasonal variations in some springs. Overall, the results show that urban groundwater receives variable seasonal contributions of anthropogenic components that increase the risk to the environment and human health, and reduce its usability for drinking water production. The multi-tracing approach presented can be useful for other cities worldwide that have similar problems of poor water management and inadequate sewage and water supply infrastructure.
Collapse
Affiliation(s)
- Y Vystavna
- Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 37005, České Budějovice, Czech Republic; Department of Environmental Engineering and Management, O.M. Beketov National University of Urban Economy in Kharkiv, vul. Marshala Bazhanova 17, 61002, Kharkiv, Ukraine.
| | - S I Schmidt
- Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 37005, České Budějovice, Czech Republic
| | - D Diadin
- Department of Environmental Engineering and Management, O.M. Beketov National University of Urban Economy in Kharkiv, vul. Marshala Bazhanova 17, 61002, Kharkiv, Ukraine
| | - P M Rossi
- Water, Energy and Environmental Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014, Oulu, Finland
| | - Y Vergeles
- Department of Environmental Engineering and Management, O.M. Beketov National University of Urban Economy in Kharkiv, vul. Marshala Bazhanova 17, 61002, Kharkiv, Ukraine
| | - M Erostate
- Université de Corse Pascal Paoli, Faculté des Sciences et Techniques, Département d'Hydrogéologie, Campus Grimaldi, BP 52, F-20250, Corte, France; CNRS, UMR 6134, SPE, F-20250, Corte, France
| | - I Yermakovych
- Department of Environmental Engineering and Management, O.M. Beketov National University of Urban Economy in Kharkiv, vul. Marshala Bazhanova 17, 61002, Kharkiv, Ukraine
| | - V Yakovlev
- Department of Environmental Engineering and Management, O.M. Beketov National University of Urban Economy in Kharkiv, vul. Marshala Bazhanova 17, 61002, Kharkiv, Ukraine; Water Quality Laboratory "PLAYA", vul. Hanna 10, 61001, Kharkiv, Ukraine
| | - K Knöller
- Helmholtz Centre for Environmental Research - UFZ, Department of Catchment Hydrology, Theodor-Lieser-Str. 4, 06120, Halle, Germany
| | - I Vadillo
- Group of Hydrogeology, Faculty of Science, University of Malaga, 29071, Malaga, Spain
| |
Collapse
|