1
|
Zeng X, Li C, Li Z, Tao Z, Li M. Review of research advances in microbial sterilization technologies and applications in the built environment. J Environ Sci (China) 2025; 154:314-348. [PMID: 40049877 DOI: 10.1016/j.jes.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 05/13/2025]
Abstract
As globalization accelerates, microbial contamination in the built environment poses a major public health challenge. Especially since Corona Virus Disease 2019 (COVID-19), microbial sterilization technology has become a crucial research area for indoor air pollution control in order to create a hygienic and safe built environment. Based on this, the study reviews sterilization technologies in the built environment, focusing on the principles, efficiency and applicability, revealing advantages and limitations, and summarizing current research advances. Despite the efficacy of single sterilization technologies in specific environments, the corresponding side effects still exist. Thus, this review highlights the efficiency of hybrid sterilization technologies, providing an in-depth understanding of the practical application in the built environment. Also, it presents an outlook on the future direction of sterilization technology, including the development of new methods that are more efficient, energy-saving, and targeted to better address microbial contamination in the complex and changing built environment. Overall, this study provides a clear guide for selecting technologies to handle microbial contamination in different building environments in the future, as well as a scientific basis for developing more effective air quality control strategies.
Collapse
Affiliation(s)
- Xinran Zeng
- School of Mechanical Engineering Department, Tongji University, Shanghai 201804, China
| | - Chunhui Li
- School of Mechanical Engineering Department, Tongji University, Shanghai 201804, China.
| | - Zhenhai Li
- School of Mechanical Engineering Department, Tongji University, Shanghai 201804, China.
| | - Zhizheng Tao
- SWJTU-Leeds Joint School, Southwest Jiaotong University, Chengdu 610097, China
| | - Mingtong Li
- School of Biology and Food Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| |
Collapse
|
2
|
Gao Q, Gan J, Wang P, Huang Y, Zhang D, Yu W. Bio-inspired hierarchical bamboo-based air filters for efficient removal of particulate matter and toxic gases. EXPLORATION (BEIJING, CHINA) 2025; 5:20240012. [PMID: 40040832 PMCID: PMC11875449 DOI: 10.1002/exp.20240012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/14/2024] [Accepted: 04/24/2024] [Indexed: 03/06/2025]
Abstract
Air pollution is caused by the perilous accumulation of particulate matter (PM) and harmful gas molecules of different sizes. There is an urgent need to develop highly efficient air filtration systems capable of removing particles with a wide size distribution. However, the efficiency of current air filters is compromised by controlling their hierarchical pore size. Inspired by the graded filtration mechanisms in the human respiratory system, microporous ZIF-67 is in situ synthesized on a 3D interconnected network of bamboo cellulose fibers (BCFs) to fabricate a multiscale porous filter with a comprehensive pore size distribution. The macropores between the BCFs, mesopores formed by the BCF microfibers, and micropores within the ZIF-67 synergistically facilitate the removal of particulates of different sizes. The filtration capabilities of PM2.5 and PM0.3 could reach 99.3% and 98.6%, respectively, whereas the adsorption of formaldehyde is 88.7% within 30 min. In addition, the filter exhibits excellent antibacterial properties (99.9%), biodegradability (80.1% degradation after 14 days), thermal stability, and skin-friendly properties (0 irritation). This study may inspire the research of using natural features of renewable resources to design high-performance air-filtration materials for various applications.
Collapse
Affiliation(s)
- Qi Gao
- Research Institute of Wood IndustryChinese Academy of ForestryBeijingChina
| | - Jian Gan
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesNanjing Forestry UniversityNanjingChina
| | - Pixiang Wang
- Center for Materials and Manufacturing SciencesDepartment of Chemistry and PhysicsTroy UniversityTroyUSA
| | - Yuxiang Huang
- Research Institute of Wood IndustryChinese Academy of ForestryBeijingChina
| | - Daihui Zhang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesNanjing Forestry UniversityNanjingChina
- Institute of Chemical Industry of Forest ProductsChinese Academy of ForestryNanjingChina
| | - Wenji Yu
- Research Institute of Wood IndustryChinese Academy of ForestryBeijingChina
| |
Collapse
|
3
|
Alipour MB, Davoudi M, Farsiani H, Sarkhosh M, Gharib S, Miri HH. The effect of medical face masks on inhalation risk of bacterial bioaerosols in hospital waste decontamination station. Sci Rep 2024; 14:26259. [PMID: 39482346 PMCID: PMC11527977 DOI: 10.1038/s41598-024-69088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/31/2024] [Indexed: 11/03/2024] Open
Abstract
There is insufficient research on bioaerosols in hospital waste decontamination stations. This study aimed to investigate the effect of three-layer and N95 masks in reducing the inhalation risk of bacterial bioaerosols in a waste decontamination station at a teaching hospital. Active sampling was conducted on five different days at three locations: the yard, resting room, and autoclave room in three different modes: without a mask, with a three-layer mask, and with an N95 mask. Bacterial bioaerosols passing through the masks were identified using biochemical tests and polymerase chain reaction (PCR). The median concentration and interquartile range (IQR) of bacterial bioaerosols was 217.093 (230.174) colony-forming units per cubic meter (CFU/m3), which is higher than the recommended amount by Pan American Health Organization (PAHO). The resting room had high contamination levels, with a median (IQR) of 321.9 (793.529) CFU/m3 of bacterial bioaerosols. The maximum concentration of bioaerosols was also recorded in the same room (2443.282 CFU/m3). The concentration of bacterial bioaerosols differed significantly between using a three-layer or N95 mask and not using a mask (p-value < 0.001). The non-carcinogenic risk level was acceptable in all cases, except in the resting room without a mask (Hazard Quotient (HQ) = 2.07). The predominant bacteria were Gram-positive cocci (33.98%). Micrococci (three-layer mask = 51.28%, N95 mask = 50%) and Coagulase-negative Staphylococci (three-layer mask = 30.77%, N95 mask = 31.82%) were the most abundant bioaerosols passing through the masks. The results obtained are useful for managerial decisions in hospital waste decontamination stations to reduce exposure to bioaerosols and develop useful guidelines.
Collapse
Affiliation(s)
- Morvarid Boroumand Alipour
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Davoudi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hadi Farsiani
- Mashhad University of Medical Sciences, Antimicrobial Resistance Research Center, Mashhad, Iran
| | - Maryam Sarkhosh
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyfollah Gharib
- Department of Occupational Health and Safety Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Heidarian Miri
- Infant Research Center, School of Food and Nutritional Science, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Zhu J, Hu Q, He X, Wang L, Xu H, Benjamin Oduro N. 8-hour performance of loose-fitting powered air-purifying respirators in simulated hospital and coal mine environments. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2023; 20:598-609. [PMID: 37682703 DOI: 10.1080/15459624.2023.2256809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Loose-fitting powered air-purifying respirators (LF-PAPRs) are increasingly used in hospitals and coal mines because of their high comfort and protection level, but the utilization faces the challenges of 8-hr continuous high protection requirements in the hospital environment and the coupling effects of high temperature, high humidity, high dust concentration in coal mines. Based on the self-developed powered air-purifying respirator simulation test system, this study explores the 8-hr changes of supplied airflow, the relative air pressure inside the inlet covering (ΔP), and total inward leakage (TIL) of four models of LF-PAPRs in simulated hospital and coal mine environments. Results show that: (1) In a simulated hospital environment, all four LF-PAPRs showed filter cartridge blockage within 5 ∼ 6 hr of continuous operation; while in the simulated coal mine, three models of LF-PAPRs showed filter cartridge blockage within 3 hr. (2) In both the hospital and coal mine environments, there are cases where the supplied airflow of LF-PAPRs dropped below 170 L/min within 3 hr. (3) In a simulated hospital environment, the ΔP of all LF-PAPRs maintained positive within 5-6 hr; while in the simulated coal mine, the ΔP of two LF-PAPRs, respectively, appeared negative after 1 hr and 1.6 hr operation. (4) The maximum TIL of the tested LF-PAPRs, respectively ranged from 0.5-0.9% and 1.4-3% in simulated hospital and coal mine environments. (5) In both hospital and coal mine environments, the supplied airflow and ΔP of each LF-PAPR showed a decreasing trend with increasing test duration, while the TIL significantly increased with testing time. (6) The supplied airflow, ΔP, and TIL of each LF-PAPR in the simulated hospital environment performed better than those in the coal mine. This study evaluated the performance of PAPR under the most severe operating conditions, and respirator performance may differ under in-situ conditions.
Collapse
Affiliation(s)
- Jintuo Zhu
- Key Laboratory of Coal Methane and Fire Control, Ministry of Education, China University of Mining and Technology, Xuzhou, Jiangsu, China
- National Professional Laboratory for Fundamental Research of Mine Gas and Dust Control Technology, School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Qi Hu
- Key Laboratory of Coal Methane and Fire Control, Ministry of Education, China University of Mining and Technology, Xuzhou, Jiangsu, China
- National Professional Laboratory for Fundamental Research of Mine Gas and Dust Control Technology, School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Xinjian He
- Key Laboratory of Coal Methane and Fire Control, Ministry of Education, China University of Mining and Technology, Xuzhou, Jiangsu, China
- National Professional Laboratory for Fundamental Research of Mine Gas and Dust Control Technology, School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Liang Wang
- Key Laboratory of Coal Methane and Fire Control, Ministry of Education, China University of Mining and Technology, Xuzhou, Jiangsu, China
- National Professional Laboratory for Fundamental Research of Mine Gas and Dust Control Technology, School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Nkansah Benjamin Oduro
- Key Laboratory of Coal Methane and Fire Control, Ministry of Education, China University of Mining and Technology, Xuzhou, Jiangsu, China
- National Professional Laboratory for Fundamental Research of Mine Gas and Dust Control Technology, School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
| |
Collapse
|
5
|
Lou Z, Wang L, Yu K, Wei Q, Hussain T, Xia X, Zhou H. Electrospun PVB/AVE NMs as mask filter layer for win-win effects of filtration and antibacterial activity. J Memb Sci 2023; 672:121473. [PMID: 36785656 PMCID: PMC9908571 DOI: 10.1016/j.memsci.2023.121473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
The COVID-19 pandemic has caused serious social and public health problems. In the field of personal protection, the facial masks can prevent infectious respiratory diseases, safeguard human health, and promote public safety. Herein, we focused on preparing a core filter layer for masks using electrospun polyvinyl butyral/apocynum venetum extract nanofibrous membranes (PVB/AVE NMs), with durable interception efficiency and antibacterial properties. In the spinning solution, AVE acted as a salt to improve electrical conductivity, and achieve long-lasting interception efficiency with adjustable pore size. It also played the role of an antibacterial agent in PVB/AVE NMs to achieve win-win effects. The hydrophobicity of PVB-AVE-6% was 120.9° whereas its filterability reached 98.3% when the pressure drop resistance was 142 Pa. PVB-AVE-6% exhibited intriguing properties with great antibacterial rates of 99.38% and 98.96% against S. aureus and E. coli, respectively. After a prolonged usability test of 8 h, the filtration efficiency of the PVB/AVE masks remained stable at over 97.7%. Furthermore, the antibacterial rates of the PVB/AVE masks on S. aureus and E. coli were 96.87% and 96.20% respectively, after using for 2 d. These results indicate that PVB/AVE NMs improve the protective performance of ordinary disposable masks, which has certain application in air filtration.
Collapse
Key Words
- AVE, apocynum venetum extract
- Air filtration
- Antibacterial properties
- Apocynum venetum extract
- CNF, cellulose nanofibres
- PA, polyamide
- PAN, polyacrylonitrile
- PLA, poly(lactic acid)
- PVB, polyvinyl butyral
- PVB/AVE NMs, polyvinyl butyral/apocynum venetum extract nanofibrous membranes
- PVDF, polyvinylidene fluoride
- Protective masks
- QF, quality factor
- WCA, water contact angle
- Win-win effects
Collapse
Affiliation(s)
- Zhuyushuang Lou
- College of Textile and Clothing, Xinjiang University, Xinjiang, Urumchi, 830046, China
| | - Ling Wang
- College of Textile and Clothing, Xinjiang University, Xinjiang, Urumchi, 830046, China
| | - Kefei Yu
- College of Textile and Clothing, Xinjiang University, Xinjiang, Urumchi, 830046, China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tanveer Hussain
- Textile Processing Department, Faculty of Engineering & Technology, National Textile University, Sheikhupura Road, Faisalabad, 37610, Pakistan
| | - Xin Xia
- College of Textile and Clothing, Xinjiang University, Xinjiang, Urumchi, 830046, China,Corresponding author
| | - Huimin Zhou
- College of Textile and Clothing, Xinjiang University, Xinjiang, Urumchi, 830046, China,Corresponding author
| |
Collapse
|
6
|
He W, Yue Y, Guo Y, Zhao YB, Liu J, Wang J. A comparison study of the filtration behavior of air filtering materials of masks against inert and biological particles. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
7
|
Tan P, Jiang Y, Gong D, Shi Y, Shi X, Wu P, Tan L. Synthetic polyurethane nanofibrous membrane with sustained rechargeability for integrated air cleaning. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Shang M, Kong Y, Yang Z, Cheng R, Zheng X, Liu Y, Chen T. Removal of virus aerosols by the combination of filtration and UV-C irradiation. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2022; 17:27. [PMID: 36118139 PMCID: PMC9470504 DOI: 10.1007/s11783-023-1627-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The COVID-19 pandemic remains ever prevalent and afflicting-partially because one of its transmission pathways is aerosol. With the widely used central air conditioning systems worldwide, indoor virus aerosols can rapidly migrate, thus resulting in rapid infection transmission. It is therefore important to install microbial aerosol treatment units in the air conditioning systems, and we herein investigated the possibility of combining such filtration with UV irradiation to address virus aerosols. Results showed that the removal efficiency of filtration towards f2 and MS2 phages depended on the type of commercial filter material and the filtration speed, with an optimal velocity of 5 cm/s for virus removal. Additionally, it was found that UV irradiation had a significant effect on inactivating viruses enriched on the surfaces of filter materials; MS2 phages had greater resistance to UV-C irradiation than f2 phages. The optimal inactivation time for UV-C irradiation was 30 min, with higher irradiation times presenting no substantial increase in inactivation rate. Moreover, excessive virus enrichment on the filters decreased the inactivation effect. Timely inactivation is therefore recommended. In general, the combined system involving filtration with UV-C irradiation demonstrated a significant removal effect on virus aerosols. Moreover, the system is simple and economical, making it convenient for widespread implementation in air-conditioning systems.
Collapse
Affiliation(s)
- Min Shang
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872 China
- Sichuan Solid Waste and Chemicals Management Center, Chengdu, 610031 China
| | - Yadong Kong
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872 China
| | - Zhijuan Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
| | - Rong Cheng
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872 China
| | - Xiang Zheng
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872 China
| | - Yi Liu
- Sichuan Solid Waste and Chemicals Management Center, Chengdu, 610031 China
| | - Tongping Chen
- Sichuan Solid Waste and Chemicals Management Center, Chengdu, 610031 China
| |
Collapse
|
9
|
Jeong SB, Lee DU, Lee BJ, Heo KJ, Kim DW, Hwang GB, MacRobert AJ, Shin JH, Ko HS, Park SK, Oh YS, Kim SJ, Lee DY, Lee SB, Park I, Kim SB, Han B, Jung JH, Choi DY. Photobiocidal-triboelectric nanolayer coating of photosensitizer/silica-alumina for reusable and visible-light-driven antibacterial/antiviral air filters. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 440:135830. [PMID: 35313452 PMCID: PMC8926436 DOI: 10.1016/j.cej.2022.135830] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/25/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Outbreaks of airborne pathogens pose a major threat to public health. Here we present a single-step nanocoating process to endow commercial face mask filters with photobiocidal activity, triboelectric filtration capability, and washability. These functions were successfully achieved with a composite nanolayer of silica-alumina (Si-Al) sol-gel, crystal violet (CV) photosensitizer, and hydrophobic electronegative molecules of 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PFOTES). The transparent Si-Al matrix strongly immobilized the photosensitizer molecules while dispersing them spatially, thus suppressing self-quenching. During nanolayer formation, PFOTES was anisotropically rearranged on the Si-Al matrix, promoting moisture resistance and triboelectric charging of the Si-Al/PFOTES-CV (SAPC)-coated filter. The SAPC nanolayer stabilized the photoexcited state of the photosensitizer and promoted redox reaction. Compared to pure-photosensitizer-coated filters, the SAPC filter showed substantially higher photobiocidal efficiency (∼99.99 % for bacteria and a virus) and photodurability (∼83 % reduction in bactericidal efficiency for the pure-photosensitizer filter but ∼0.34 % for the SAPC filter after 72 h of light irradiation). Moreover, after five washes with detergent, the SAPC filter maintained its photobiocidal and filtration performance, proving its reusability potential. Therefore, this SAPC nanolayer coating provides a practical strategy for manufacturing an antimicrobial and reusable mask filter for use during the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Sang Bin Jeong
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Dong Uk Lee
- Department of Industrial Chemistry, Pukyong National University, Busan 48513, Republic of Korea
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea
| | - Byeong Jin Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea
- School of Mechanical Engineering, Andong National University, Andong 36729, Republic of Korea
| | - Ki Joon Heo
- Material Chemistry Research Centre, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Dong Won Kim
- Research Institute for Green Energy Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gi Byoung Hwang
- Material Chemistry Research Centre, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Alexander J MacRobert
- UCL Division of Surgery and Interventional Science, Royal Free Campus, London NW3 2PF, United Kingdom
| | - Jae Hak Shin
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Hyun Sik Ko
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Se Kye Park
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yong Suk Oh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - See Jo Kim
- School of Mechanical Engineering, Andong National University, Andong 36729, Republic of Korea
| | - Dong Yun Lee
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seung-Bok Lee
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Inyong Park
- Department of Environmental Machinery, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Sang Bok Kim
- Department of Environmental Machinery, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Bangwoo Han
- Department of Environmental Machinery, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Jae Hee Jung
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Dong Yun Choi
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea
| |
Collapse
|
10
|
Li GX, Duan YY, Wang Y, Bian LJ, Xiong MR, Song WP, Zhang X, Li B, Dai YL, Lu JW, Li M, Liu ZG, Liu SG, Zhang L, Yao HJ, Shao RG, Li L. Potential urinary biomarkers in young adults with short-term exposure to particulate matter and bioaerosols identified using an unbiased metabolomic approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119308. [PMID: 35443204 DOI: 10.1016/j.envpol.2022.119308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/29/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Numerous epidemiological studies have shown a close relationship between outdoor air pollution and increased risks for cancer, infection, and cardiopulmonary diseases. However, very few studies have investigated the potential health effects of coexposure to airborne particulate matter (PM) and bioaerosols through the transmission of infectious agents, particularly under the current circumstances of the coronavirus disease 2019 pandemic. In this study, we aimed to identify urinary metabolite biomarkers that might serve as clinically predictive or diagnostic standards for relevant diseases in a real-time manner. We performed an unbiased gas/liquid chromatography-mass spectroscopy (GC/LC-MS) approach to detect urinary metabolites in 92 samples from young healthy individuals collected at three different time points after exposure to clean air, polluted ambient, or purified air, as well as two additional time points after air repollution or repurification. Subsequently, we compared the metabolomic profiles between the two time points using an integrated analysis, along with Kyoto Encyclopedia of Genes and Genomes-enriched pathway and time-series analysis. We identified 33 and 155 differential metabolites (DMs) associated with PM and bioaerosol exposure using GC/LC-MS and follow-up analyses, respectively. Our findings suggest that 16-dehydroprogesterone and 4-hydroxyphenylethanol in urine samples may serve as potential biomarkers to predict or diagnose PM- or bioaerosol-related diseases, respectively. The results indicated apparent differences between PM- and bioaerosol-associated DMs at five different time points and revealed dynamic alterations in the urinary metabolic profiles of young healthy humans with cyclic exposure to clean and polluted air environments. Our findings will help in investigating the detrimental health effects of short-term coexposure to airborne PM and bioaerosols in a real-time manner and improve clinically predictive or diagnostic strategies for preventing air pollution-related diseases.
Collapse
Affiliation(s)
- Guang-Xi Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 BeiXianGe St, XiCheng District, Beijing, 100053, China.
| | - Yuan-Yuan Duan
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 BeiXianGe St, XiCheng District, Beijing, 100053, China.
| | - Yi Wang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 BeiXianGe St, XiCheng District, Beijing, 100053, China.
| | - Ling-Jie Bian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, No.116 Cuiping Street, Tongzhou District, Beijing, 100010, China.
| | - Meng-Ran Xiong
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 BeiXianGe St, XiCheng District, Beijing, 100053, China.
| | - Wen-Pin Song
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 Tiantan Xili, Beijing, 100050, China.
| | - Xia Zhang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 BeiXianGe St, XiCheng District, Beijing, 100053, China.
| | - Biao Li
- Shanghai Lu Ming Biological Technology Co. Ltd., Shanghai, 100037, China.
| | - Yu-Long Dai
- Shanghai Lu Ming Biological Technology Co. Ltd., Shanghai, 100037, China.
| | - Jia-Wei Lu
- Shanghai Lu Ming Biological Technology Co. Ltd., Shanghai, 100037, China.
| | - Meng Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 BeiXianGe St, XiCheng District, Beijing, 100053, China.
| | - Zhi-Guo Liu
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 BeiXianGe St, XiCheng District, Beijing, 100053, China.
| | - Shi-Gang Liu
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 BeiXianGe St, XiCheng District, Beijing, 100053, China.
| | - Li Zhang
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 Tiantan Xili, Beijing, 100050, China.
| | - Hong-Juan Yao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 Tiantan Xili, Beijing, 100050, China.
| | - Rong-Guang Shao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 Tiantan Xili, Beijing, 100050, China.
| | - Liang Li
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 Tiantan Xili, Beijing, 100050, China.
| |
Collapse
|
11
|
Mishra D, Yadav R, Pratap Singh R, Taneja A, Tiwari R, Khare P. The incorporation of lemongrass oil into chitosan-nanocellulose composite for bioaerosol reduction in indoor air. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117407. [PMID: 34049138 DOI: 10.1016/j.envpol.2021.117407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/30/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
The bioaerosols present in indoor air play a major role in the transmission of infectious diseases to humans, therefore concern about their exposure is increased recently. In this regard, the present investigation described the preparation of lemongrass essential oil (LGEO) loaded chitosan and cellulose nanofibers composites (CH/CNF) for controlling the indoor air bioaerosol. The evaluation of the inhibitory effect of the composite system on culturable bacteria of the indoor air was done at different sites (air volume from 30 m3 to 80 m3) and in different size fractions of aerosol (<0.25 μm-2.5 μm). The composite system had high encapsulation efficiency (88-91%) and citrals content. A significant reduction in culturable bacteria of aerosol (from 6.23 log CFUm-3 to 2.33 log CFUm-3) was observed in presence of cellulose nanofibers and chitosan composites. The bacterial strains such as Staphylococcus sp., Bacillus cereus, Bacillus pseudomycoides sp., Pseudomonas otitidis, and Pseudomonas sp. Cf0-3 in bioaerosols were inhibited dominantly due to the diffusion of aroma molecules in indoor air. The results indicate that the interaction of diffused aroma molecule from the composite system with bacterial strains enhanced the production of ROS, resulting in loss of membrane integrity of bacterial cells. Among different size fractions of aerosol, the composite system was more effective in finer size fractions (<0.25 μm) of aerosol due to the interaction of smaller aroma compounds with bacterial cells. The study revealed that LGEO loaded chitosan and cellulose nanofibers composites could be a good option for controlling the culturable bacteria even in small-sized respirable bioaerosol.
Collapse
Affiliation(s)
- Disha Mishra
- Division of Crop Production and Protection, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226 015, India
| | - Ranu Yadav
- Division of Crop Production and Protection, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226 015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Raghvendra Pratap Singh
- Division of Crop Production and Protection, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226 015, India
| | - Ajay Taneja
- Department of Chemistry, Dr B.R. Ambedkar University, Agra, 282002, India
| | - Rahul Tiwari
- Department of Chemistry, Dr B.R. Ambedkar University, Agra, 282002, India
| | - Puja Khare
- Division of Crop Production and Protection, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226 015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Performance Evaluation of Commercially Available Masks in Korea for Filtering Airborne Droplets Containing Bacteria. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157909. [PMID: 34360199 PMCID: PMC8345791 DOI: 10.3390/ijerph18157909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022]
Abstract
The coronavirus disease (COVID-19) pandemic is a global health threat and has posed a challenge for society and social care services as well as healthcare systems. Due to the risks involved in being exposed to the virus, public health actions such as wearing masks and physical distancing are necessary to reduce its spread. However, using non-validated masks is a serious issue as such masks may provide inadequate protection against airborne bioaerosol transmission, resulting in the spread of the virus. Therefore, it is necessary to evaluate the filtering performances of the masks against bioaerosols as well as particulate matter (PM). Here, we evaluated the filtering performances of sixteen different masks (four brands each of woven, antidroplet, KF80, and KF94 masks) commercially available in Korea with high market shares. As a simulation of being exposed to bioaerosols and to the yellow dust commonly found in Korea, the filtration efficiency levels of the masks were tested against airborne bacteria-containing droplets and against fine dusts of different ranges of particle sizes. Their filtration efficiency levels against the droplets showed strong positive correlations, specifically Pearson correlation coefficient r values of 0.917, 0.905, and 0.894, with their efficiency levels against PM1.0, PM2.5, and PM10, respectively. The results of this study should be useful for choosing appropriate masks, including those that meet filtering performance requirements.
Collapse
|
13
|
Jeong SB, Heo KJ, Ko HS, Ahn JP, Lee S, Jung JH. Evaluation of survival rates of airborne microorganisms on the filter layers of commercial face masks. INDOOR AIR 2021; 31:1134-1143. [PMID: 33682971 PMCID: PMC8251341 DOI: 10.1111/ina.12816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
After the WHO designated COVID-19 a global pandemic, face masks have become a precious commodity worldwide. However, uncertainty remains around several details regarding face masks, including the potential for transmission of bioaerosols depending on the type of mask and secondary spread by face masks. Thus, understanding the interplay between face mask structure and harmful bioaerosols is essential for protecting public health. Here, we evaluated the microbial survival rate at each layer of commercial of filtering facepiece respirators (FFRs) and surgical masks (SMs) using bacterial bioaerosols. The penetration efficiency of bacterial particles for FFRs was lower than that for SMs; however, the microbial survival rate for all tested masks was >13%, regardless of filtration performance. Most bacterial particles survived in the filter layer (44%-77%) (e.g., the core filtering layer); the outer layer also exhibited significant survival rates (18%-29%). Most notably, survival rates were determined for the inner layers (<1% for FFRs, 3%-16% for SMs), which are in contact with the respiratory tract. Our comparisons of the permeability and survival rate of bioaerosols in each layer will contribute to bioaerosol-face mask research, while also providing information to facilitate the establishment of a mask-reuse protocol.
Collapse
Affiliation(s)
- Sang Bin Jeong
- Center for Environment, Health, and Welfare ResearchKorea Institute of Science and Technology (KIST)SeoulKorea
- Energy Environment Policy and TechnologyGraduate School of Energy and EnvironmentKorea UniversitySeoulKorea
| | - Ki Joon Heo
- Department of Environmental MachineryKorea Institute of Machinery and Materials (KIMM)DaejeonKorea
| | - Hyun Sik Ko
- Department of Mechanical EngineeringSejong UniversitySeoulKorea
| | - Jae Pyoung Ahn
- Advanced Analysis CenterKorea Institute of Science and Technology (KIST)SeoulKorea
| | - Seung‐Bok Lee
- Center for Environment, Health, and Welfare ResearchKorea Institute of Science and Technology (KIST)SeoulKorea
- Energy Environment Policy and TechnologyGraduate School of Energy and EnvironmentKorea UniversitySeoulKorea
| | - Jae Hee Jung
- Department of Mechanical EngineeringSejong UniversitySeoulKorea
| |
Collapse
|
14
|
Ogbuoji EA, Zaky AM, Escobar IC. Advanced Research and Development of Face Masks and Respirators Pre and Post the Coronavirus Disease 2019 (COVID-19) Pandemic: A Critical Review. Polymers (Basel) 2021; 13:1998. [PMID: 34207184 PMCID: PMC8235328 DOI: 10.3390/polym13121998] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/05/2022] Open
Abstract
The outbreak of the COVID-19 pandemic, in 2020, has accelerated the need for personal protective equipment (PPE) masks as one of the methods to reduce and/or eliminate transmission of the coronavirus across communities. Despite the availability of different coronavirus vaccines, it is still recommended by the Center of Disease Control and Prevention (CDC), World Health Organization (WHO), and local authorities to apply public safety measures including maintaining social distancing and wearing face masks. This includes individuals who have been fully vaccinated. Remarkable increase in scientific studies, along with manufacturing-related research and development investigations, have been performed in an attempt to provide better PPE solutions during the pandemic. Recent literature has estimated the filtration efficiency (FE) of face masks and respirators shedding the light on specific targeted parameters that investigators can measure, detect, evaluate, and provide reliable data with consistent results. This review showed the variability in testing protocols and FE evaluation methods of different face mask materials and/or brands. In addition to the safety requirements needed to perform aerosol viral filtration tests, one of the main challenges researchers currently face is the inability to simulate or mimic true aerosol filtration scenarios via laboratory experiments, field tests, and in vitro/in vivo investigations. Moreover, the FE through the mask can be influenced by different filtration mechanisms, environmental parameters, filtration material properties, number of layers used, packing density, fiber charge density, fiber diameter, aerosol type and particle size, aerosol face velocity and concentration loadings, and infectious concentrations generated due to different human activities. These parameters are not fully understood and constrain the design, production, efficacy, and efficiency of face masks.
Collapse
Affiliation(s)
- Ebuka A. Ogbuoji
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA;
| | - Amr M. Zaky
- BioMicrobics Inc., 16002 West 110th Street, Lenexa, KS 66219, USA;
| | - Isabel C. Escobar
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA;
| |
Collapse
|
15
|
Heo KJ, Jeong SB, Shin J, Hwang GB, Ko HS, Kim Y, Choi DY, Jung JH. Water-Repellent TiO 2-Organic Dye-Based Air Filters for Efficient Visible-Light-Activated Photochemical Inactivation against Bioaerosols. NANO LETTERS 2021; 21:1576-1583. [PMID: 33275432 DOI: 10.1021/acs.nanolett.0c03173] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Recently, bioaerosols, including the 2019 novel coronavirus, pose a serious threat to global public health. Herein, we introduce a visible-light-activated (VLA) antimicrobial air filter functionalized with titanium dioxide (TiO2)-crystal violet (CV) nanocomposites facilitating abandoned visible light from sunlight or indoor lights. The TiO2-CV based VLA antimicrobial air filters exhibit a potent inactivation rate of ∼99.98% and filtration efficiency of ∼99.9% against various bioaerosols. Under visible-light, the CV is involved in overall inactivation by inducing reactive oxygen species production both directly (CV itself) and indirectly (in combination with TiO2). Moreover, the susceptibility of the CV to humidity was significantly improved by forming a hydrophobic molecular layer on the TiO2 surface, highlighting its potential applicability in real environments such as exhaled or humid air. We believe this work can open a new avenue for designing and realizing practical antimicrobial technology using ubiquitous visible-light energy against the threat of infectious bioaerosols.
Collapse
Affiliation(s)
- Ki Joon Heo
- Advanced Textile R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea
| | - Sang Bin Jeong
- Graduate School of Energy and Environment, Korea University, Seoul 02841, Republic of Korea
- Center for Environment, Health, and Welfare Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Juhun Shin
- Materials Chemistry Research Centre, Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - Gi Byoung Hwang
- Materials Chemistry Research Centre, Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - Hyun Sik Ko
- Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Yeonsang Kim
- Advanced Textile R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea
| | - Dong Yun Choi
- Biomedical Manufacturing Technology Center, KITECH, Yeongcheon, 38822, Republic of Korea
| | - Jae Hee Jung
- Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
16
|
Yan C, Wang RN, Zhao XY. Emission characteristics of bioaerosol and quantitative microbiological risk assessment for equipping individuals with various personal protective equipment in a WWTP. CHEMOSPHERE 2021; 265:129117. [PMID: 33272663 DOI: 10.1016/j.chemosphere.2020.129117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 05/15/2023]
Abstract
Wastewater treatment plants (WWTPs) are a nonnegligible source of bioaerosols that can pose health risks to workers and nearby residents. Thus, this study systematically investigated the emission characteristics of the size distribution and concentration of Staphylococcus aureus bioaerosol in a WWTP. Then, the research focused on the quantitative microbiological risk assessment (QMRA) of workers and nearby residents for equipping them with various grades personal protective equipment (PPE). Results showed that the peak proportion of the size distributions of bioaerosol particles in the three sources all obtained a size range between 3.3 and 4.7 μm. In the residential building, the peak proportion was larger (>7.0 μm). Referring to the three sources, the average bioaerosol concentrations were in the following sequence: inverted umbrella aerator tank > residual sludge storage yard > microporous aerator tank. The health risks of residents were generally 1-2 orders of magnitude higher than the other two exposure scenarios and were clearly beyond the benchmarks. Meanwhile, the health risks of the field engineer were usually lower than those of the staff at the residual sludge storage yard. In general, equipping workers and residents with PPE could at least decrease the health risks by one order of magnitude, and higher-grade PPE could appropriately promote the reduction of health risks. This research systematically delivered a series of novel data about the emission characteristics of Staphylococcus aureus bioaerosol in a WWTP. It advanced the understanding of the quantitative health risks of equipping individuals with various PPE.
Collapse
Affiliation(s)
- Cheng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China.
| | - Rui-Ning Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Xiao-Yan Zhao
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| |
Collapse
|
17
|
Shan X, Zhang H, Liu C, Yu L, Di Y, Zhang X, Dong L, Gan Z. Reusable Self-Sterilization Masks Based on Electrothermal Graphene Filters. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56579-56586. [PMID: 33259195 DOI: 10.1021/acsami.0c16754] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Surgical mask is recommended by the World Health Organization for personal protection against disease transmission. However, most of the surgical masks on the market are disposable that cannot be self-sterilized for reuse. Thus, when confronting the global public health crisis, a severe shortage of mask resource is inevitable. In this paper, a novel low-cost electrothermal mask with excellent self-sterilization performance and portability is reported to overcome this shortage. First, a flexible, ventilated, and conductive cloth tape is patterned and adhered to the surface of a filter layer made of melt-blown nonwoven fabrics (MNF), which functions as interdigital electrodes. Then, a graphene layer with premier electric and thermal conductivity is coated onto the MNF. Operating under a low voltage of 3 V, the graphene-modified MNF (mod-MNF) can quickly generate large amounts of heat to achieve a high temperature above 80 °C, which can kill the majority of known viruses attached to the filter layer and the mask surface. Finally, the optimized graphene-modified masks based on the mod-MNF filter retain a relatively high particulate matter (PM) removal efficiency and a low-pressure drop. Moreover, the electrothermal masks can maintain almost the same PM removal efficiency over 10 times of electrifying, suggesting its outstanding reusability.
Collapse
Affiliation(s)
- Xiaoli Shan
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Han Zhang
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, P. R. China
| | - Cihui Liu
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Liyan Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yunsong Di
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Xiaowei Zhang
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, P. R. China
| | - Lifeng Dong
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhixing Gan
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
18
|
Community Knowledge About the Use, Reuse, Disinfection and Disposal of Masks and Filtering Facepiece Respirators: Results of a Study Conducted in a Dermatology Clinic at the University of Naples in Italy. J Community Health 2020; 46:786-793. [PMID: 33258051 PMCID: PMC7704022 DOI: 10.1007/s10900-020-00952-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 12/19/2022]
Abstract
In Italy, as well as in almost all countries, the use of masks in public with several other measures has been an important health measure during the ongoing COVID-19 pandemic. The correct use of masks is essential, as a wrong use and disposal may increase the rate of contagious. Herein, we report a descriptive study evaluating the knowledge and use, reuse and disposal of masks in community settings. An anonymous questionnaire called MaSK (Mask uSe and Knowledge) questionnaire was developed and offered to patients referring at our dermatologic outpatient clinic. A total of 2562 full complete patients’ questionnaires were considered for the study. Our results showed that awareness and information campaigns aimed at the general population are urgently needed in order to implement a correct use of masks and limit as much as possible the infection rate.
Collapse
|
19
|
Garcia Godoy LR, Jones AE, Anderson TN, Fisher CL, Seeley KML, Beeson EA, Zane HK, Peterson JW, Sullivan PD. Facial protection for healthcare workers during pandemics: a scoping review. BMJ Glob Health 2020; 5:e002553. [PMID: 32371574 PMCID: PMC7228486 DOI: 10.1136/bmjgh-2020-002553] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic has led to personal protective equipment (PPE) shortages, requiring mask reuse or improvisation. We provide a review of medical-grade facial protection (surgical masks, N95 respirators and face shields) for healthcare workers, the safety and efficacy of decontamination methods, and the utility of alternative strategies in emergency shortages or resource-scarce settings. METHODS We conducted a scoping review of PubMed and grey literature related to facial protection and potential adaptation strategies in the setting of PPE shortages (January 2000 to March 2020). Limitations included few COVID-19-specific studies and exclusion of non-English language articles. We conducted a narrative synthesis of the evidence based on relevant healthcare settings to increase practical utility in decision-making. RESULTS We retrieved 5462 peer-reviewed articles and 41 grey literature records. In total, we included 67 records which met inclusion criteria. Compared with surgical masks, N95 respirators perform better in laboratory testing, may provide superior protection in inpatient settings and perform equivalently in outpatient settings. Surgical mask and N95 respirator conservation strategies include extended use, reuse or decontamination, but these strategies may result in inferior protection. Limited evidence suggests that reused and improvised masks should be used when medical-grade protection is unavailable. CONCLUSION The COVID-19 pandemic has led to critical shortages of medical-grade PPE. Alternative forms of facial protection offer inferior protection. More robust evidence is required on different types of medical-grade facial protection. As research on COVID-19 advances, investigators should continue to examine the impact on alternatives of medical-grade facial protection.
Collapse
Affiliation(s)
| | - Amy E Jones
- School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Taylor N Anderson
- School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Cameron L Fisher
- School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Kylie M L Seeley
- School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Erynn A Beeson
- School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Hannah K Zane
- School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Jaime W Peterson
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, Oregon, USA
| | - Peter D Sullivan
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, Oregon, USA
| |
Collapse
|
20
|
Antimicrobial Air Filters Using Natural Sea Salt Particles for Deactivating Airborne Bacterial Particles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:ijerph17010190. [PMID: 31892112 PMCID: PMC6981996 DOI: 10.3390/ijerph17010190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 11/17/2022]
Abstract
We developed an antimicrobial air filter using natural sea salt (NSS) particles. Airborne NSS particles were produced via an aerosol process and were continuously coated onto the surface of an air filter under various deposition times. The filtration efficiency and bactericidal performance of the NSS-coated filter against aerosolized bacterial particles (Staphylococcus epidermidis, Escherichia coli) were evaluated quantitatively. The filtration efficiency of the tested filter ranged from 95% to 99% depending on the deposition time, and the bactericidal performance demonstrated efficiencies of more than 98% against both tested bacterial bioaerosols when the NSS deposition ratio was more than 500 μg/cm2. The experimental results indicated that the NSS-coated filters have the potential to be used as effective antimicrobial air filters for decreasing environmental exposure to microbial contaminants.
Collapse
|