1
|
Zheng R, Zhu J, Liao P, Wang D, Wu P, Mao W, Zhang Y, Wang W. Environmental colloid behaviors of humic acid - Cadmium nanoparticles in aquatic environments. J Environ Sci (China) 2025; 149:663-675. [PMID: 39181676 DOI: 10.1016/j.jes.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 08/27/2024]
Abstract
Humic acid (HA), a principal constituent of natural organic matter (NOM), manifests ubiquitously across diverse ecosystems and can significantly influence the environmental behaviors of Cd(II) in aquatic systems. Previous studies on NOM-Cd(II) interactions have primarily focused on the immobilization of Cd(II) solids, but little is known about the colloidal stability of organically complexed Cd(II) particles in the environment. In this study, we investigated the formation of HA-Cd(II) colloids and quantified their aggregation, stability, and transport behaviors in a saturated porous media representative of typical subsurface conditions. Results from batch experiments indicated that the relative quantity of HA-Cd(II) colloids increased with increasing C/Cd molar ratio and that the carboxyl functional groups of HA dominated the stability of HA-Cd(II) colloids. The results of correlation analysis between particle size, critical aggregation concentration (CCC), and zeta potential indicated that both Derjaguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO interactions contributed to the enhanced colloidal stability of HA-Cd(II) colloids. Column results further confirmed that the stable HA-Cd(II) colloid can transport fast in a saturated media composed of clean sand. Together, this study provides new knowledge of the colloidal behaviors of NOM-Cd(II) nanoparticles, which is important for better understanding the ultimate cycling of Cd(II) in aquatic systems.
Collapse
Affiliation(s)
- Ruyi Zheng
- College of Resources and Environment Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Zhu
- College of Resources and Environment Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Peng Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China.
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Pan Wu
- College of Resources and Environment Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Wenjian Mao
- College of Resources and Environment Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yuqin Zhang
- College of Resources and Environment Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Weiwei Wang
- College of Resources and Environment Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Ding W, Bao S, Zhang Y, Chen B, Wang Z. Antimony(V) Adsorption and Partitioning by Humic Acid-Modified Ferrihydrite: Insights into Environmental Remediation and Transformation Processes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4172. [PMID: 39274562 PMCID: PMC11396405 DOI: 10.3390/ma17174172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 09/16/2024]
Abstract
Antimony (Sb) migration in soil and water systems is predominantly governed by its adsorption onto ferrihydrite (FH), a process strongly influenced by natural organic matter. This study investigates the adsorption behavior, stability, and mechanism of FH and FH-humic acid (FH-HA) complexes on Sb(V), along with the fate of adsorbed Sb(V) during FH aging. Batch adsorption experiments reveal that initial pH and concentration significantly influence Sb(V) sorption. Lower pH levels decrease adsorption, while higher concentrations enhance it. Sb(V) adsorption increases with prolonged contact time, with FH exhibiting a higher adsorption capacity than FH-HA complexes. Incorporating HA onto FH surfaces reduces reactive adsorption sites, decreasing Sb(V) adsorption. Adsorbed FH-HA complexes exhibit a higher specific surface area than co-precipitated FH-HA, demonstrating stronger Sb(V) adsorption capacity under various conditions. X-ray photoelectron spectroscopy (XPS) confirms that Sb(V) adsorption primarily occurs through ligand exchange, forming Fe-O-Sb complexes. HA inhibits the migration of Sb(V), thereby enhancing its retention within the FH and FH-HA complexes. During FH transformation, a portion of Sb(V) may replace Fe(III) within converted iron minerals. However, the combination of relatively high adsorption capacity and significantly lower desorption rates makes adsorbed FH-HA complexes promising candidates for sustained Sb adsorption over extended periods. These findings enhance our understanding of Sb(V) behavior and offer insights for effective remediation strategies in complex environmental systems.
Collapse
Affiliation(s)
- Wei Ding
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Shenxu Bao
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yimin Zhang
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Bo Chen
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhanhao Wang
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
3
|
Haider FU, Zulfiqar U, Ain NU, Mehmood T, Ali U, Ramos Aguila LC, Li Y, Siddique KHM, Farooq M. Managing antimony pollution: Insights into Soil-Plant system dynamics and remediation Strategies. CHEMOSPHERE 2024; 362:142694. [PMID: 38925521 DOI: 10.1016/j.chemosphere.2024.142694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/28/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Researchers are increasingly concerned about antimony (Sb) in ecosystems and the environment. Sb primarily enters the environment through anthropogenic (urbanization, industries, coal mining, cars, and biosolid wastes) and geological (natural and chemical weathering of parent material, leaching, and wet deposition) processes. Sb is a hazardous metal that can potentially harm human health. However, no comprehensive information is available on its sources, how it behaves in soil, and its bioaccumulation. Thus, this study reviews more than 160 peer-reviewed studies examining Sb's origins, geochemical distribution and speciation in soil, biogeochemical mechanisms regulating Sb mobilization, bioavailability, and plant phytotoxicity. In addition, Sb exposure effects plant physio-morphological and biochemical attributes were investigated. The toxicity of Sb has a pronounced impact on various aspects of plant life, including a reduction in seed germination and impeding plant growth and development, resulting from restricted essential nutrient uptake, oxidative damages, disruption of photosynthetic system, and amino acid and protein synthesis. Various widely employed methods for Sb remediation, such as organic manure and compost, coal fly ash, biochar, phytoremediation, microbial-based bioremediation, micronutrients, clay minerals, and nanoremediation, are reviewed with a critical assessment of their effectiveness, cost-efficiency, and suitability for use in agricultural soils. This review shows how plants deal with Sb stress, providing insights into lowering Sb levels in the environment and lessening risks to ecosystems and human health along the food chain. Examining different methods like bioaccumulation, bio-sorption, electrostatic attraction, and complexation actively works to reduce toxicity in contaminated agricultural soil caused by Sb. In the end, the exploration of recent advancements in genetics and molecular biology techniques are highlighted, which offers valuable insights into combating Sb toxicity. In conclusion, the findings of this comprehensive review should help develop innovative and useful strategies for minimizing Sb absorption and contamination and thus successfully managing Sb-polluted soil and plants to reduce environmental and public health risks.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Noor Ul Ain
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Tariq Mehmood
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Department Sensors and Modeling, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Umed Ali
- Department of Agriculture, Mir Chakar Khan Rind University, Sibi 82000, Balochistan, Pakistan
| | - Luis Carlos Ramos Aguila
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yuelin Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Muhammad Farooq
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia; Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman.
| |
Collapse
|
4
|
Jin X, Guo C, Huang Q, Tao X, Li X, Xie Y, Dang Z, Zhou J, Lu G. Arsenic redistribution associated with Fe(II)-induced jarosite transformation in the presence of polygalacturonic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173444. [PMID: 38788951 DOI: 10.1016/j.scitotenv.2024.173444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Jarosite exists widely in acid-sulfate soil and acid mine drainage polluted areas and acts as an important host mineral for As(V). As a metastable Fe(III)-oxyhydoxysulfate mineral, its dissolution and transformation have a significant impact on the biogeochemical cycle of As. Under reducing conditions, the trajectory and degree of abiotic Fe(II)-induced jarosite transformation may be greatly influenced by coexisting dissolved organic matter (DOM), and in turn influencing the fate of As. Here, we explored the impact of polygalacturonic acid (PGA) (0-200 mg·L-1) on As(V)-coprecipitated jarosite transformation in the presence of Fe(II) (1 mM) at pH 5.5, and investigated the repartitioning of As between aqueous and solid phase. The results demonstrated that in the system without both PGA and Fe(II), jarosite gradually dissolved, and lepidocrocite was the main transformation product by 30 d; in Fe(II)-only system, lepidocrocite appeared by 1 d and also was the mainly final product; in PGA-only systems, PGA retarded jarosite dissolution and transformation, jarosite might be directly converted into goethite; in Fe(II)-PGA systems, the presence of PGA retarded Fe(II)-induced jarosite dissolution and transformation but did not alter the pathway of mineral transformation, the final product mainly still was lepidocrocite. The retarding effect on jarosite dissolution enhanced with the increase of PGA content. The impact of PGA on Fe(II)-induced jarosite transformation mainly was related to the complexation of carboxyl groups of PGA with Fe(II). The dissolution and transformation of jarosite drove pre-incorporated As transferred into the phosphate-extractable phase, the presence of PGA retarded jarosite dissolution and maintained pre-incorporated As stable in jarosite. The released As promoted by PGA was retarded again and almost no As was released into the solution by the end of reactions in all systems. In systems with Fe(II), no As(III) was detected and As(V) was still the dominant redox species.
Collapse
Affiliation(s)
- Xiaohu Jin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| | - Qi Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, 528000 Foshan, China
| | - Yingying Xie
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Guangdong, Chaozhou 521041, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
5
|
Jin X, Guo C, Tao X, Li X, Xie Y, Dang Z, Lu G. Divergent redistribution behavior of divalent metal cations associated with Fe(II)-mediated jarosite phase transformation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124004. [PMID: 38641039 DOI: 10.1016/j.envpol.2024.124004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
The Fe(II)/Fe(III) cycle is an important driving force for dissolution and transformation of jarosite. Divalent heavy metals usually coexist with jarosite; however, their effects on Fe(II)-induced jarosite transformation and different repartitioning behavior during mineral dissolution-recrystallization are still unclear. Here, we investigated Fe(II)-induced (1 mM Fe(II)) jarosite conversion in the presence of Cd(II), Mn(II), Co(II), Ni(II) and Pb(II) (denoted as Me(II), 1 mM), respectively, under anaerobic condition at neutral pH. The results showed that all co-existing Me(II) retarded Fe(II)-induced jarosite dissolution. In the Fe(II)-only system, jarosite first rapidly transformed to lepidocrocite (an intermediate product) and then slowly to goethite; lepidocrocite was the main product. In Fe(II)-Cd(II), -Mn(II), and -Pb(II) systems, coexisting Cd(II), Mn(II) and Pb(II) retarded the above process and lepidocrocite was still the dominant conversion product. In Fe(II)-Co(II) system, coexisting Co(II) promoted lepidocrocite transformation into goethite. In Fe(II)-Ni(II) system, jarosite appeared to be directly converted into goethite, although small amounts of lepidocrocite were detected in the final product. In all treatments, the appearance or accumulation of lepidocrocite may be also related to the re-adsorption of released sulfate. By the end of reaction, 6.0 %, 4.0 %, 76.0 % 11.3 % and 19.2 % of total Cd(II), Mn(II), Pb(II) Co(II) and Ni(II) were adsorbed on the surface of solid products. Up to 49.6 %, 44.3 %, and 21.6 % of Co(II), Ni(II), and Pb(II) incorporated into solid product, with the reaction indicating that the dynamic process of Fe(II) interaction with goethite may promote the continuous incorporation of Co(II), Ni(II), and Pb(II).
Collapse
Affiliation(s)
- Xiaohu Jin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, 528000, Foshan, China
| | - Yingying Xie
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Guangdong, Chaozhou, 521041, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Qiu X, Chen M, Wu P, Li Y, Sun L, Shang Z, Wang T, Dang Z, Zhu N. Influence of dissolved organic matter with different molecular weight from chicken manure on ferrihydrite adsorption and re-release of antimony(V). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120883. [PMID: 38631167 DOI: 10.1016/j.jenvman.2024.120883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Applying organic fertilizer is the main way to enhance soil fertility through the interfacial reaction between mineral and dissolved organic matter (DOM). However, the interfacial reaction between minerals and DOM may influence antimony(V) (Sb(V)) mobility in agricultural soils around antimony mines. In our study the ferrihydrite (Fh) was chosen as a representative mineral, to reveal the effect of its interaction with chicken manure organic fertilizer (CM-DOM) with Fh on Sb(V) migration. In this study, we investigated different organic matter molecular weights and C/Fe molar ratios. Our findings indicated that the addition of CM-DOM decreased the adsorption of Sb(V) by Fh and promoted the re-release of Sb(V) adsorbed on Fh. This effect was enhanced by increasing the C/Fe molar ratio. Fh mainly affects its interaction with Sb(V) through electrostatic gravitational interaction and ligand exchange, but the presence of CM-DOM weakens the electrostatic interaction between Fh and Sb(V) as well as competes with Sb(V) for the hydroxyl reactive site on Fh surface. In addition, the smaller molecular weight fraction (<10 kDa) of CM-DOM has higher aromaticity and hydrophobicity, which potentially leads to more intense competition with Sb(V) for the reaction sites on Fh. Therefore, the application of organic fertilizer may promote Sb(V) migration, posing significant risks to soil ecosystems and human health, which should be a concern in field soil cultivation.
Collapse
Affiliation(s)
- Xiaoshan Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, PR China.
| | - Yihao Li
- South China Institute of Environmental Science, Ministry of Ecological Environment, Guangzhou, 510655, PR China
| | - Leiye Sun
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Zhongbo Shang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Tianming Wang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China
| |
Collapse
|
7
|
Hao C, Sun Q, Sun X, Li Q. Novel insights into antimony mobilization in different high- antimony aquifers from the molecular signatures of dissolved organic matter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116377. [PMID: 38657454 DOI: 10.1016/j.ecoenv.2024.116377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
The crucial role of the fluorescent components of dissolved organic matter (DOM) in controlling antimony (Sb) mobilization in groundwater has been confirmed. However, the molecular signatures contributing to Sb enrichment in DOM remain unknown. This study aims to investigate the origins and molecular compositions of DOM in different high-Sb aquifers (Sb-mining and no-Sb-mining aquifer), as well as compare different molecular signatures of DOM and mechanisms for Sb migration. The findings showed that Sb concentrations in Sb-mining aquifer exhibited a positive correlation with lignin- and tannin-like molecules characterized by high O/C and low H/C ratios, indicating an increased abundance of aromatic components with higher Humification Index and SUV-absorbance at 254 nm, compared to no-Sb-mining aquifer. Correspondingly, the complexation and competitive adsorption were considered as the predominate formation mechanisms on Sb enrichment in Sb-mining aquifer. In addition, high abundances of bioreactivity DOM may facilitated the migration of Sb via electron transfer and competitive adsorption in native no-Sb-mining aquifer. The outcomes of this investigation offer novel insights into the mechanism on Sb enrichment influenced by DOM at the molecule level.
Collapse
Affiliation(s)
- Chunming Hao
- Nantong Institute of Technology, Nantong, Jiangsu 226002, PR China; North China Institute of Science and Technology, Sanhe, Hebei 065201, PR China
| | - Qianqian Sun
- North China Institute of Science and Technology, Sanhe, Hebei 065201, PR China
| | - Ximeng Sun
- North China Institute of Science and Technology, Sanhe, Hebei 065201, PR China
| | - Qiong Li
- North China Institute of Science and Technology, Sanhe, Hebei 065201, PR China.
| |
Collapse
|
8
|
Lin W, Peng L, Li H, Xiao T, Wang J, Wang N, Zhang X, Zhang H. Antimony(V) behavior during the Fe(II)-induced transformation of Sb(V)-bearing natural multicomponent secondary iron mineral under acidic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169592. [PMID: 38154637 DOI: 10.1016/j.scitotenv.2023.169592] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Fe(II)-induced phase transformations of secondary iron minerals have attracted considerable attention due to their influence on antimony (Sb) mobility. However, Fe(II)-induced natural multicomponent secondary iron mineral (nmSIM) transformations and the corresponding repartitioning of Sb on nmSIM under acidic conditions upon Fe(II) exposure have not been systematically examined. Herein, we investigated the effect of Fe(II) on nmSIM mineralogy and Sb mobility in Sb(V)-bearing nmSIM at pH 3.8 and 5.6 at various Fe(II) concentrations over 15 d. The Sb(V)-bearing nmSIM phase transformation occurred under both strongly and weakly acidic conditions without Fe(II) exposure, while the presence of Fe(II) significantly intensified the transformation, and substantial amounts of intermediary minerals, including jarosite, ferrihydrite, lepidocrocite and fougerite, formed during the initial reaction stage, especially at pH 5.6. X-ray diffraction (XRD) analyses confirmed that goethite and hematite were the primary final-stage transformation products of Sb(V)-bearing nmSIM, regardless of Fe(II) exposure. Throughout the Sb(V)-bearing nmSIM transformation at pH 3.8, Sb release was inversely related to the Fe(II) concentration in the initial stage, and after maximum release was achieved, Sb was gradually repartitioned onto the nmSIM. No Sb repartitioning occurred in the absence of Fe(II) at pH 5.6, but the introduction of Fe(II) suppressed Sb release and improved Sb repartitioning on nmSIM. This transformation was conducive to Sb reimmobilization on Sb(V)-bearing nmSIM due to the structural incorporation of Sb into the highly crystalline goethite and hematite generated by the Sb(V)-bearing nmSIM transformation, and no reduction of Sb(V) occurred. These results imply that Fe(II) can trigger mineralogical changes in Sb(V)-bearing nmSIM and have important impacts on Sb partitioning under acidic conditions. These new insights are essential for assessing the mobility and availability of Sb in acid mine drainage areas.
Collapse
Affiliation(s)
- Wangjun Lin
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Linfeng Peng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hui Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Nana Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Xiangting Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hanmo Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
9
|
Luo J, Xie X, Shi J, Wang Y. Antimony Isotope Fractionation during Adsorption on Iron (Oxyhydr)oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:695-703. [PMID: 38141021 DOI: 10.1021/acs.est.3c05867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The fate of antimony (Sb) is strongly affected by adsorption, yet Sb isotope fractionation and the associated mechanism have not been widely reported. Here we experimentally investigated the process of Sb(V) adsorption on iron (oxyhydr)oxides and the associated isotope effects. Sb isotope fractionation occurs during adsorption (Δ123Sbsolution-mineral = 1.20 ± 0.02‰ for ferrihydrite and 2.35 ± 0.04‰ for goethite). Extended X-ray absorption fine structure (EXAFS) analysis shows that Sb(V) adsorption on iron (oxyhydr)oxides occurs via inner-sphere surface complexation, including mononuclear bidentate edge-sharing (2E) and binuclear bidentate corner-sharing (2C) complexes. A longer atom distance of Sb-Fe in ferrihydrite leads to less Sb isotope fractionation during Sb adsorption than in goethite. The Gibbs free energy and Mayer bond order were calculated based on density functional theory (DFT) and suggested that the strength of the bonding environment can be summarized as Sb(OH)6- > 2E > 2C. In turn, the bonding environment indicates the mechanism of Sb isotope fractionation during the process. This study reveals that Sb isotope fractionation occurs during Sb(V) adsorption onto iron (oxyhydr)oxides, providing a basis for the future study of Sb isotopes and further understanding of the fractionation mechanism.
Collapse
Affiliation(s)
- Jiabei Luo
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xianjun Xie
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jianbo Shi
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yanxin Wang
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
10
|
Jiao K, Deng B, Song P, Ding H, Liu H, Lian B. Difference Analysis of the Composition of Iron (Hydr)Oxides and Dissolved Organic Matter in Pit Mud of Different Pit Ages in Luzhou Laojiao and Its Implications for the Ripening Process of Pit Mud. Foods 2023; 12:3962. [PMID: 37959081 PMCID: PMC10648004 DOI: 10.3390/foods12213962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Long-term production practice proves that good liquor comes out of the old cellar, and the aged pit mud is very important to the quality of Luzhou-flavor liquor. X-ray diffraction, Fourier transform ion cyclotron resonance mass spectrometry, and infrared spectroscopy were used to investigate the composition characteristics of iron-bearing minerals and dissolved organic matter (DOM) in 2-year, 40-year, and 100-year pit mud and yellow soil (raw materials for making pit mud) of Luzhou Laojiao distillery. The results showed that the contents of total iron and crystalline iron minerals decreased significantly, while the ratio of Fe(II)/Fe(III) and the content of amorphous iron (hydr)oxides increased significantly with increasing cellar age. DOM richness, unsaturation, and aromaticity, as well as lignin/phenolics, polyphenols, and polycyclic aromatics ratios, were enhanced in pit mud. The results of the principal component analysis indicate that changes in the morphology and content of iron-bearing minerals in pit mud were significantly correlated with the changes in DOM molecular components, which is mainly attributed to the different affinities of amorphous iron (hydr)oxides and crystalline iron minerals for the DOM components. The study is important for understanding the evolution pattern of iron-bearing minerals and DOM and their interactions during the aging of pit mud and provides a new way to further understand the influence of aged pit mud on Luzhou-flavor liquor production.
Collapse
Affiliation(s)
- Kairui Jiao
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (K.J.); (H.L.)
| | - Bo Deng
- National Engineering Research Center of Solid State Brewing, Luzhou 646000, China; (B.D.); (H.D.)
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China;
| | - Hailong Ding
- National Engineering Research Center of Solid State Brewing, Luzhou 646000, China; (B.D.); (H.D.)
| | - Hailong Liu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (K.J.); (H.L.)
| | - Bin Lian
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
11
|
Peng L, Wang N, Xiao T, Wang J, Quan H, Fu C, Kong Q, Zhang X. A critical review on adsorptive removal of antimony from waters: Adsorbent species, interface behavior and interaction mechanism. CHEMOSPHERE 2023; 327:138529. [PMID: 36990360 DOI: 10.1016/j.chemosphere.2023.138529] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/11/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Antimony (Sb) has raised widespread concern because of its negative effects on ecology and human health. The extensive use of antimony-containing products and corresponding Sb mining activities have discharged considerable amounts of anthropogenic Sb into the environment, especially the water environment. Adsorption has been employed as the most effective strategy for Sb sequestration from water; thus, a comprehensive understanding of the adsorption performance, behavior and mechanisms of adsorbents benefits to develop the optimal adsorbent to remove Sb and even drive its practical application. This review presents a holistic analysis of adsorbent species with the ability to remove Sb from water, with a special emphasis on the Sb adsorption behavior of various adsorption materials and their Sb-adsorbent interaction mechanisms. Herein, we summarize research results based on the characteristic properties and Sb affinities of reported adsorbents. Various interactions, including electrostatic interactions, ion exchange, complexation and redox reactions, are fully reviewed. Relevant environmental factors and adsorption models are also discussed to clarify the relevant adsorption processes. Overall, iron-based adsorbents and corresponding composite adsorbents show relatively excellent Sb adsorption performance and have received widespread attention. Sb removal mainly depends on chemical properties of the adsorbent and Sb itself, and complexation is the main driving force for Sb removal, assisted by electrostatic attraction. The future directions of Sb removal by adsorption focus on the shortcomings of current adsorbents; more attention should be given to the practicability of adsorbents and their disposal after use. This review contributes to the development of effective adsorbents for removing Sb and provides an understanding of Sb interfacial processes during Sb transport and the fate of Sb in the water environment.
Collapse
Affiliation(s)
- Linfeng Peng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Nana Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Huabang Quan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Chuanbin Fu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qingnan Kong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiangting Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
12
|
Zhang C, Wu P, Yang Z, Liu F, Luo H, Luo J. Effect of iron cyclic transformation on the natural purification of antimony in contaminated reservoirs of mines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162510. [PMID: 36868284 DOI: 10.1016/j.scitotenv.2023.162510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
To further understand the purification mechanism of antimony (Sb) in reservoirs, samples of stratified water and bottom interface sediment were collected in this study. The cross-flow ultrafiltration technique was used to separate the truly dissolved (<1 kDa) and colloidal (1 kDa-0.45 μm) phases of water, and two modified sequential extraction techniques were used to determine the Sb and Fe mineral forms in sediment, respectively. The results showed that the total Sb concentration could decrease from 142.2 μg/L in surface water to 98.6 μg/L at 16 m; this was contributed to by the removal of truly dissolved Sb. In comparison to particulate Sb (>0.45 μm), the formation of colloidal Sb played a greater role in the purification process. There was a positive correlation between Sb and Fe in the colloidal phase (r = 0.45, P < 0.05). The generation of colloidal Fe could be promoted by higher temperatures, pH values, DO, and DOC in the upper layer (0-5 m). However, the complexation of DOC with colloidal Fe inhibited the adsorption of truly dissolved Sb. After entering the sediment, the secondary release of Sb could not increase the Sb concentration in the lower layer obviously, while the supplementation of Fe(III) could further enhance Sb natural purification.
Collapse
Affiliation(s)
- Chipeng Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Pan Wu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zeyan Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Fengzhu Liu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Huan Luo
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jianglan Luo
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
13
|
Wang N, Li W, Wang N, Li M, Wang H. Influence of Humic Acids on the Removal of Arsenic and Antimony by Potassium Ferrate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4317. [PMID: 36901331 PMCID: PMC10001810 DOI: 10.3390/ijerph20054317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Although the removal ability of potassium ferrate (K2FeO4) on aqueous heavy metals has been confirmed by many researchers, little information focuses on the difference between the individual and simultaneous treatment of elements from the same family of the periodic table. In this project, two heavy metals, arsenic (As) and antimony (Sb) were chosen as the target pollutants to investigate the removal ability of K2FeO4 and the influence of humic acid (HA) in simulated water and spiked lake water samples. The results showed that the removal efficiencies of both pollutants gradually increased along the Fe/As or Sb mass ratios. The maximum removal rate of As(III) reached 99.5% at a pH of 5.6 and a Fe/As mass ratio of 4.6 when the initial As(III) concentration was 0.5 mg/L; while the maximum was 99.61% for Sb(III) at a pH of 4.5 and Fe/Sb of 22.6 when the initial Sb(III) concentration was 0.5 mg/L. It was found that HA inhibited the removal of individual As or Sb slightly and the removal efficiency of Sb was significantly higher than that of As with or without the addition of K2FeO4. For the co-existence system of As and Sb, the removal of As was improved sharply after the addition of K2FeO4, higher than Sb; while the latter was slightly better than that of As without K2FeO4, probably due to the stronger complexing ability of HA and Sb. X-ray energy dispersive spectroscopy (EDS), X-ray diffractometer (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize the precipitated products to reveal the potential removal mechanisms based on the experimental results.
Collapse
Affiliation(s)
- Ning Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China
| | - Wenwen Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Nannan Wang
- Qingdao Municipal Engineering Design and Research Institute, Qingdao 266061, China
| | - Man Li
- Shandong Soil Pollution Prevention and Recalcination Center, Jinan 250033, China
| | - Hongbo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China
| |
Collapse
|
14
|
The potential of ferrihydrite-synthetic humic-like acid composite to remove metal ions from contaminated water: Performance and mechanism. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Philippe M, Le Pape P, Resongles E, Landrot G, Freydier R, Bordier L, Baptiste B, Delbes L, Baya C, Casiot C, Ayrault S. Fate of antimony contamination generated by road traffic - A focus on Sb geochemistry and speciation in stormwater ponds. CHEMOSPHERE 2023; 313:137368. [PMID: 36574574 DOI: 10.1016/j.chemosphere.2022.137368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Although antimony (Sb) contamination has been documented in urban areas, knowledge gaps remain concerning the contributions of the different sources to the Sb urban biogeochemical cycle, including non-exhaust road traffic emissions, urban materials leaching/erosion and waste incineration. Additionally, details are lacking about Sb chemical forms involved in urban soils, sediments and water bodies. Here, with the aim to document the fate of metallic contaminants emitted through non-exhaust traffic emissions in urban aquatic systems, we studied trace element contamination, with a particular focus on Sb geochemistry, in three highway stormwater pond systems, standing as models of surface environments receiving road-water runoff. In all systems, differentiated on the basis of lead isotopic signatures, Sb shows the higher enrichment factor with respect to the geochemical background, up to 130, compared to other traffic-related inorganic contaminants (Co, Cr, Ni, Cu, Zn, Cd, Pb). Measurements of Sb isotopic composition (δ123Sb) performed on solid samples, including air-exposed dusts and underwater sediments, show an average signature of 0.07 ± 0.05‰ (n = 25, all sites), close to the δ123Sb value measured previously in certified reference material of road dust (BCR 723, δ123Sb = 0.03 ± 0.05‰). Moreover, a fractionation of Sb isotopes is observed between solid and dissolved phases in one sample, which might result from Sb (bio)reduction and/or adsorption processes. SEM-EDXS investigations show the presence of discrete submicrometric particles concentrating Sb in all the systems, interpreted as friction residues of Sb-containing brake pads. Sb solid speciation determined by linear combination fitting of X-Ray Absorption Near Edge Structure (XANES) spectra at the Sb K-edge shows an important spatial variability in the ponds, with Sb chemical forms likely driven by local redox conditions: "dry" samples exposed to air exhibited contributions from Sb(V)-O (52% to 100%) and Sb(III)-O (<10% to 48%) species whereas only underwater samples, representative of suboxic/anoxic conditions, showed an additional contribution from Sb(III)-S (41% to 80%) species. Altogether, these results confirm the traffic emission as a specific source of Sb emission in surface environments. The spatial variations of Sb speciation observed along the road-to-pond continuum likely reflect a high geochemical reactivity, which could have important implications on Sb transfer properties in (sub)surface hydrosystems.
Collapse
Affiliation(s)
- M Philippe
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE-IPSL), UMR 8212 (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France; Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS - Sorbonne Université - IRD - MNHN, 4 place Jussieu, 75252 Paris, Cedex 5, France
| | - P Le Pape
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS - Sorbonne Université - IRD - MNHN, 4 place Jussieu, 75252 Paris, Cedex 5, France.
| | - E Resongles
- HydroSciences Montpellier (HSM), Université de Montpellier - CNRS - IRD, Montpellier, France
| | - G Landrot
- Synchrotron SOLEIL, F-91192 Gif-Sur-Yvette, France
| | - R Freydier
- HydroSciences Montpellier (HSM), Université de Montpellier - CNRS - IRD, Montpellier, France
| | - L Bordier
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE-IPSL), UMR 8212 (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France
| | - B Baptiste
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS - Sorbonne Université - IRD - MNHN, 4 place Jussieu, 75252 Paris, Cedex 5, France
| | - L Delbes
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS - Sorbonne Université - IRD - MNHN, 4 place Jussieu, 75252 Paris, Cedex 5, France
| | - C Baya
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS - Sorbonne Université - IRD - MNHN, 4 place Jussieu, 75252 Paris, Cedex 5, France
| | - C Casiot
- HydroSciences Montpellier (HSM), Université de Montpellier - CNRS - IRD, Montpellier, France
| | - S Ayrault
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE-IPSL), UMR 8212 (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Yang W, Huang C, Wan X, Zhao Y, Bao Z, Xiang W. Enhanced Adsorption of Cd on Iron-Organic Associations Formed by Laccase-Mediated Modification: Implications for the Immobilization of Cadmium in Paddy Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15650. [PMID: 36497725 PMCID: PMC9737542 DOI: 10.3390/ijerph192315650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The objectives of this study were to evaluate the cadmium adsorption capacity of iron-organic associations (Fe-OM) formed by laccase-mediated modification and assess the effect of Fe-OM on the immobilization of cadmium in paddy soil. Leaf organic matter (OM) was extracted from Changshan grapefruit leaves, and then dissolved organic matter (Lac-OM) and precipitated organic matter (Lac-P) were obtained by laccase catalytic modification. Different Fe-OM associations were obtained by co-precipitation of Fe with OM, Lac-OM, and Lac-P, respectively, and the adsorption kinetics, adsorption edge, and isothermal adsorption experiments of Cd on Fe-OM were carried out. Based on the in situ generation of Fe-OM, passivation experiments on Cd-contaminated soils with a high geological background were carried out. All types of Fe-OM have a better Cd adsorption capacity than ferrihydrite (FH). The theoretical maximum adsorption capacity of the OM-FH, Lac-OM-FH, and Lac-P-FH were 2.2, 2.53, and 2.98 times higher than that of FH, respectively. The adsorption of Cd on Fe-OM is mainly chemisorption, and the -OH moieties on the Fe-OM surface form an inner-sphere complex with the Cd ions. Lac-OM-FH showed a higher Cd adsorption capacity than OM-FH, which is related to the formation of more oxygen-containing groups in the organic matter modified by laccase. The immobilization effect of Lac-OM-FH on active Cd in soil was also higher than that of OM-FH. The Lac-OM-FH formed by laccase-mediated modification has better Cd adsorption performance, which can effectively inactivate the activity of Cd in paddy soil.
Collapse
Affiliation(s)
- Weilin Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Chunlei Huang
- Zhejiang Institute of Geological Survey, Hangzhou 312000, China
| | - Xiang Wan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Geological Survey, Wuhan 430034, China
| | - Yunyun Zhao
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Zhengyu Bao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wu Xiang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
17
|
Caplette JN, Gfeller L, Lei D, Liao J, Xia J, Zhang H, Feng X, Mestrot A. Antimony release and volatilization from rice paddy soils: Field and microcosm study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156631. [PMID: 35691353 DOI: 10.1016/j.scitotenv.2022.156631] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The fate of antimony (Sb) in submerged soils and the impact of common agricultural practices (e.g., manuring) on Sb release and volatilization is understudied. We investigated porewater Sb release and volatilization in the field and laboratory for three rice paddy soils. In the field study, the porewater Sb concentration (up to 107.1 μg L-1) was associated with iron (Fe) at two sites, and with pH, Fe, manganese (Mn), and sulfate (SO42-) at one site. The surface water Sb concentrations (up to 495.3 ± 113.7 μg L-1) were up to 99 times higher than the regulatory values indicating a potential risk to aquaculture and rice agriculture. For the first time, volatile Sb was detected in rice paddy fields using a validated quantitative method (18.1 ± 5.2 to 217.9 ± 160.7 mg ha-1 y-1). We also investigated the influence of two common rice agriculture practices (flooding and manuring) on Sb release and volatilization in a 56-day microcosm experiment using the same soils from the field campaign. Flooding induced an immediate, but temporary, Sb release into the porewater that declined with SO42-, indicating that SO42- reduction may reduce porewater Sb concentrations. A secondary Sb release, corresponding to Fe reduction in the porewater, was observed in some of the microcosms. Our results suggest flooding-induced Sb release into rice paddy porewaters is temporary but relevant. Manuring the soils did not impact the porewater Sb concentration but did enhance Sb volatilization. Volatile Sb (159.6 ± 108.4 to 2237.5 ± 679.7 ng kg-1 y-1) was detected in most of the treatments and was correlated with the surface water Sb concentration. Our study indicates that Sb volatilization could be occurring at the soil-water interface or directly in the surface water and highlights that future works should investigate this potentially relevant mechanism.
Collapse
Affiliation(s)
| | - L Gfeller
- Institute of Geography, University of Bern, Switzerland
| | - D Lei
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China
| | - J Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China
| | - J Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China
| | - H Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China
| | - X Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China.
| | - A Mestrot
- Institute of Geography, University of Bern, Switzerland.
| |
Collapse
|
18
|
Shen X, Zhu H, Wang P, Zheng L, Hu S, Liu C. Mechanistic and modeling insights into the immobilization of Cd and organic carbon during abiotic transformation of ferrihydrite induced by Fe(II). JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129216. [PMID: 35739738 DOI: 10.1016/j.jhazmat.2022.129216] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) oxides and fulvic acid (FA) are the key components affecting the fate of cadmium (Cd) in soil. The presence of FA influences Fe mineral transformation, and FA may complicate phase transformation and dynamic behavior of Cd. How varying Fe minerals and FA affect Cd immobilization during the ferrihydrite transformation induced by various Fe(II) concentrations, however, is still lack of quantitative understanding. In this study, we built a model for Cd species quantification during phase transformation based on mechanistic insights obtained from batch experiments. Spectroscopic analysis showed that Fe(II) concentrations affected secondary Fe minerals formation under the condition of co-existence of Cd and FA, and ultimately changed the distribution of Cd and FA. Microscopic analysis revealed that besides surface adsorption, part of Cd was sequestrated by magnetite, whereas FA was able to diffuse into lepidocrocite defects. The model revealed that adsorbed Cd was mainly controlled by FA and ferrihydrite, and direct complexation of Cd by FA had a strong impact on the continuous change in Cd at lower Fe(II) concentration. The results contribute to an in-depth understanding of the mobility of Cd in the environment and provide a method for quantifying the dynamic behavior of heavy metals in multi-reactant systems.
Collapse
Affiliation(s)
- Xinyue Shen
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Huiyan Zhu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Pei Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shiwen Hu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Chongxuan Liu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| |
Collapse
|
19
|
Zhang S, Zhang R, Wu P, Zhang Y, Fu Y, An L, Zhang Y. Study on the precipitation of iron and the synchronous removal mechanisms of antimony and arsenic in the AMD under the induction of carbonate rocks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55161-55173. [PMID: 35316491 DOI: 10.1007/s11356-022-19728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The ecological environment can be severely polluted and destroyed by the acid mine drainage (AMD) generated during the exploration and utilization of minerals. However, neutralized by carbonate rocks (a natural material in Karst regions), the AMD secondary iron flocs containing a large number of iron oxides or hydroxide can be precipitated in AMD. The metal ions, such as antimony (Sb) and arsenic (As), can be effectively removed by these neutralizing products. In this paper, the neutralization reaction of different acid solutions in an iron-antimony-arsenic system was induced by carbonate rocks to explore the removal effect of metals during this neutralization process. Meanwhile, taking the release amounts of iron (Fe), Sb, and As as well as the phase transformation of minerals at different pH levels as stability indexes, we quantitatively analyzed the chemical stability of AMD neutralizing products (secondary iron flocs) containing Sb and As under the typical acid-base environment (pH = 3.0 ~ 9.0) of AMD and other waters. Results showed that the neutralization reaction with carbonate rocks induced the co-precipitation of Fe with Sb and As. When the concentration ratio of Fe, Sb, and As was 30:1:1, the pH of AMD raised from 3.0 to 7.28 within 72 h, and the three elements were removed by 99%, 85%, and 90%, respectively. After soaking the AMD secondary iron flocs in an acid environment (pH = 3.0) for 30 days, the release amount of Fe reached its peak of 0.070 mg/g. Then, when the pH value increased to 4.0, the As and Sb showed their maximum release amounts of 14.90 µg/g and 19.19 µg/g, respectively. In addition, under acidic conditions, these AMD secondary iron flocs were easily transformed into the goethite with better crystallinity and higher structural stability. This study could help reveal the development of the secondary mineral during the treatment of AMD by carbonate rocks and understand the release characteristics of metals from AMD secondary products containing Sb and As, which sheds light on and provides theoretical foundations for the passive treatment of AMD containing these two elements in the future.
Collapse
Affiliation(s)
- Shihong Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Ruixue Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| | - Yahui Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yuran Fu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Li An
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yuhao Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
20
|
Wu T, Cui X, Ata-Ul-Karim ST, Cui P, Liu C, Fan T, Sun Q, Gong H, Zhou D, Wang Y. The impact of alternate wetting and drying and continuous flooding on antimony speciation and uptake in a soil-rice system. CHEMOSPHERE 2022; 297:134147. [PMID: 35240148 DOI: 10.1016/j.chemosphere.2022.134147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The accumulation of trace elements in rice, such as antimony (Sb), has drawn special attention owing to the potential increased risk to human health. However, the effects of two common irrigation methods, alternate wetting and drying and continuous flooding, on Sb behaviors and subsequent accumulation in rice is unclear. In this study a pot experiment with various Sb additions (0, 50, 200, 1000 mg Sb kg-1) was carried out with these two irrigation methods in two contrasting paddy soils (an Anthrosol and a Ferralic Cambisol). The dynamics of Sb in soil porewater indicated that continuous flooding generally immobilized more Sb than alternate wetting and drying, concomitant with a pronounced reduction of Sb(V) in porewater. However, a higher phytoavailable fraction of Sb was observed under continuous flooding. The content of Sb in the rice plant decreased in the order of root > shoot > husk > grain, and continuous flooding facilitated Sb accumulation in rice root and shoot as compared with alternate wetting and drying. The differences of Sb content in root, shoot, and husk between the two irrigation methods was smaller in aboveground parts, and almost no difference in Sb was observed in grain between the two methods. The findings of this study facilitates the understanding of Sb speciation and behavior in soils with these common yet different water management regimes.
Collapse
Affiliation(s)
- Tongliang Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaodan Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Geological Survey of Jiangsu Province, Nanjing, 210018, China
| | - Syed Tahir Ata-Ul-Karim
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Tingting Fan
- Nanjing Institute of Environmental Science, State Environmental Protection Administration, Nanjing 210042, China
| | - Qian Sun
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Hua Gong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Qu C, Chen J, Mortimer M, Wu Y, Cai P, Huang Q. Humic acids restrict the transformation and the stabilization of Cd by iron (hydr)oxides. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128365. [PMID: 35150996 DOI: 10.1016/j.jhazmat.2022.128365] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Iron (hydr)oxides and their association with organic matter significantly affect the mobility of heavy metals in natural soils and sediments. However, the behavior of cadmium (Cd) during crystalline iron (hydr)oxide formation in the presence of humic acid (HA) is still unknown. In this study, the speciation of Cd in iron (hydr)oxide-HA coprecipitates were studied by extraction, surface complexation model (SCM) calculation and characterization of the composites during the aging. The results showed that aging promoted the stabilization of ~30-50% of the added Cd ions with minerals in the binary iron (hydr)oxide systems. The reduction of Cd occurred earlier than hematite formation, indicating that the aggregation of amorphous iron (hydr)oxide led to the initial immobilization of Cd. The presence of HA restricted the crystallization of iron (hydr)oxide by the formation of tight mineral nanoparticle-HA aggregates, while there were negligible changes in the speciation of Cd and Fe during aging at high HA concentrations. Therefore, HA promoted the adsorption of Cd onto amorphous iron (hydr)oxide but limited the partition of Cd to mineral aggregates. The knowledge about the role of HA in iron (hydr)oxide transformation and Cd speciation is of great significance for the prediction of heavy metal behavior in soils and sediments.
Collapse
Affiliation(s)
- Chenchen Qu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinzhao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yichao Wu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
22
|
Gao B, Chen Q, Liu K, Li F, Fang L, Zhu Z, Tran MT, Peng J. Biogeochemical Fe(II) generators as a new strategy for limiting Cd uptake by rice and its implication for agricultural sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153306. [PMID: 35077783 DOI: 10.1016/j.scitotenv.2022.153306] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
This work has developed a new strategy of biogeochemical Fe(II) generators for activating microbial Fe(II) generation to immobilize Cd in soils through protons scavenging and coprecipitation. A new biochar modified magnetite (FeBC15) has been fabricated through a top-down method, with which microbial respiration can be stimulated in paddy soil. The FeBC15 exhibits a higher adsorption capacity for Cd than pristine magnetite (1.7 times). The results show that the available Cd can be reduced by 14.4% after adding FeBC15 compared to the control. More importantly, FeBC15 particles promote the conversion of MgCl2 - Cd to stable crystalline Fe/Al bound Cd under the incubation period. The enhanced pH and Fe(II) leads to a comparably lower Cd availability in soils than in pristine soils, which are supported by the enhanced relative abundance of Geobacter and Clostridium with the FeBC15 treatment (i.e. up to 7.44-7.68 × 109 copies/g soil). The Diffusive Gradients in Thin-films (DGT) study indicates that FeBC15 can lower the replenish capacity of soils (i.e. KdL values of 0.2-3.6 mL/g) to soil pore waters and limit root absorption. Pot experiments demonstrate that this strategy can alleviate the rice Cd content by 38.4% (< 0.2 mg/kg). This work paves a new pathway for reducing Cd uptake in rice, enabling sustainable remediation of paddy soil.
Collapse
Affiliation(s)
- Baolin Gao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China; Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Kai Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Liping Fang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| | - Zhenlong Zhu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Minh Tien Tran
- Soils and Fertilizers Research Institute (SFRI), Dong Ngac, Tu Liem, Hanoi, Viet Nam
| | - Jiming Peng
- China National Hybrid Rice R&D Center, Hunan Hybrid Rice Research Center, Changsha 410125, China
| |
Collapse
|
23
|
Sun G, Fu F, Tang B. Fate of metal-EDTA complexes during ferrihydrite aging: Interaction of metal-EDTA and iron oxides. CHEMOSPHERE 2022; 291:132791. [PMID: 34742754 DOI: 10.1016/j.chemosphere.2021.132791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/02/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The widespread presence of ferrihydrite in the environment makes many contaminants including metal-EDTA complexes being adsorbed on it. However, the fate of metal-EDTA complexes during the transformation of ferrihydrite was poorly understood. Understanding the migration and speciation changes of metal-EDTA adsorbed on ferrihydrite during the transformation was helpful to predict its fate in some natural and engineering environments. In this work, the interaction of the two metal-EDTA complexes (Ni(II)-EDTA and Ca(II)-EDTA) and ferrihydrite during the 9-day transformation of ferrihydrite at different pH values was studied. The results showed that part of EDTA complexing metals changed to non-complexed metals during the ferrihydrite transformation, which was due to the fact that metal in the metal-EDTA exchanged with Fe(III) on ferrihydrite. Besides, different speciation of metal ions migrated during the transformation of ferrihydrite. Meanwhile, Fe(III)-EDTA formed in this process, and the exchange of metal in Ca(II)-EDTA with Fe(III) in ferrihydrite was faster than that of Ni(II)-EDTA. Besides, the presence of metal-EDTA affected the transformation rate of ferrihydrite under neutral and alkaline condition, and metal-EDTA accelerated the dissolution of ferrihydrite to form goethite. Therefore, ferrihydrite and metal-EDTA influenced each other during the transformation of ferrihydrite. The results of this work revealed that the process of metal-EDTA dissolving ferrihydrite not only included the dissociation of metal-EDTA, but also involved the migration of metal ions and affected the transformation of ferrihydrite.
Collapse
Affiliation(s)
- Guangzhao Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
24
|
Zhang W, Li Q, Li R, Shen N, Li J, Shen J, Sun X, Han W. Enhanced sequestration of chelated Cr(III) from aqueous by Al-containing ferrihydrite: New expectation of overall removal of various heavy metal complexes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Du H, Nie N, Rao W, Lu L, Lei M, Tie B. Ferrihydrite-organo composites are a suitable analog for predicting Cd(II)-As(V) coexistence behaviors at the soil solid-liquid interfaces. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118040. [PMID: 34454194 DOI: 10.1016/j.envpol.2021.118040] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Organomineral assemblages are building units of soil micro-aggregates and exert their essential roles in immobilizing toxic elements. Currently, our knowledge of the adsorption and partitioning behaviors of coexisting Cd-As onto organomineral composites is limited. Herein, we carefully studied Cd-As cosorption onto ferrihydrite organomineral composites made with either living or non-living organics, i.e., bacteria (Delftia sp.) or humic acid (HA), using batch adsorption and various spectroscopies. Batch results show that As(V) only enhances Cd(II) sorption on pure Fh at pH < 6 but cannot promote Cd(II) sorption to Fh-organo composites. However, Cd(II) noticeably promotes As(V) sorption at pH>~5-6. Synchrotron micro X-ray fluorescence indicates that Cd(II) adsorbs predominately to the bacterial fraction (Cd versus P, r = 0.924), whereas As(V) binds mainly to the Fh fraction (As versus Fe, r = 0.844) of the Fh-bacteria composite. On Fh-HA composite, however, Cd(II) and As(V) are both primarily sorbed by the Fh fraction (Cd/As versus P, r > 0.8), based on the scanning transmission electron microscopy-energy disperse spectroscopy analyses. Elemental distribution characterization also manifests the co-localization of Cd(II) and As(V) within the organomineral composite, particular in Fh-HA composite (Cd versus As, r = 0.8), which is further identified as the Fh-As-Cd ternary complex based on the observations (higher frequencies at ~753-761 cm-1) of attenuated total reflection Fourier-transform infrared spectroscopy. Moreover, this ternary interaction is more pronounced in Fh-HA than in Fh-bacteria. In summary, our results suggest that Cd-As coadsorption behaviors on Fh-organo composites are different from those on pure minerals, and the presence of bacteria/HA can significantly affect metal (loid)s speciation, distribution, and ternary interaction. Therefore organomineral composites are a more suitable analog than pure mineral phases to predict the mobility and fate of Cd-As in natural environments.
Collapse
Affiliation(s)
- Huihui Du
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| | - Ning Nie
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Wenkai Rao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Lei Lu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Ming Lei
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Boqing Tie
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| |
Collapse
|
26
|
Zhu H, Huang Q, Fu S, Zhang X, Yang Z, Lu J, Liu B, Shi M, Zhang J, Wen X, Li J. Removal of Antimony(V) from Drinking Water Using nZVI/AC: Optimization of Batch and Fix Bed Conditions. TOXICS 2021; 9:266. [PMID: 34678962 PMCID: PMC8540850 DOI: 10.3390/toxics9100266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023]
Abstract
Antimony (Sb) traces in water pose a serious threat to human health due to their negative effects. In this work, nanoscale zero-valent iron (Fe0) supported on activated carbon (nZVI) was employed for eliminating Sb(V) from the drinking water. To better understand the overall process, the effects of several experimental variables, including pH, dissolved oxygen (DO), coexisting ions, and adsorption kinetics on the removal of Sb(V) from the SW were investigated by employing fixed-bed column runs or batch-adsorption methods. A pH of 4.5 and 72 h of equilibrium time were found to be the ideal conditions for drinking water. The presence of phosphate (PO43-), silicate (SiO42-), chromate (CrO42-) and arsenate (AsO43-) significantly decreased the rate of Sb(V) removal, while humic acid and other anions exhibited a negligible effect. The capacity for Sb(V) uptake decreased from 6.665 to 2.433 mg when the flow rate was increased from 5 to 10 mL·min-1. The dynamic adsorption penetration curves of Sb(V) were 116.4% and 144.1% with the weak magnetic field (WMF) in fixed-bed column runs. Considering the removal rate of Sb(V), reusability, operability, no release of Sb(V) after being incorporated into the iron (hydr)oxides structure, it can be concluded that WMF coupled with ZVI would be an effective Sb(V) immobilization technology for drinking water.
Collapse
Affiliation(s)
- Huijie Zhu
- Henan International Joint Laboratory of New Civil Engineering Structure, College of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China; (H.Z.); (Q.H.); (S.F.); (X.Z.); (Z.Y.); (J.Z.); (X.W.); (J.L.)
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power (NCWU), Zhengzhou 450046, China;
- College of Civil Engineering, Guangzhou University, Guangzhou 510006, China;
| | - Qiang Huang
- Henan International Joint Laboratory of New Civil Engineering Structure, College of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China; (H.Z.); (Q.H.); (S.F.); (X.Z.); (Z.Y.); (J.Z.); (X.W.); (J.L.)
| | - Shuai Fu
- Henan International Joint Laboratory of New Civil Engineering Structure, College of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China; (H.Z.); (Q.H.); (S.F.); (X.Z.); (Z.Y.); (J.Z.); (X.W.); (J.L.)
| | - Xiuji Zhang
- Henan International Joint Laboratory of New Civil Engineering Structure, College of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China; (H.Z.); (Q.H.); (S.F.); (X.Z.); (Z.Y.); (J.Z.); (X.W.); (J.L.)
| | - Zhe Yang
- Henan International Joint Laboratory of New Civil Engineering Structure, College of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China; (H.Z.); (Q.H.); (S.F.); (X.Z.); (Z.Y.); (J.Z.); (X.W.); (J.L.)
| | - Jianhong Lu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power (NCWU), Zhengzhou 450046, China;
| | - Bo Liu
- Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Mingyan Shi
- College of Civil Engineering, Guangzhou University, Guangzhou 510006, China;
| | - Junjie Zhang
- Henan International Joint Laboratory of New Civil Engineering Structure, College of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China; (H.Z.); (Q.H.); (S.F.); (X.Z.); (Z.Y.); (J.Z.); (X.W.); (J.L.)
| | - Xiaoping Wen
- Henan International Joint Laboratory of New Civil Engineering Structure, College of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China; (H.Z.); (Q.H.); (S.F.); (X.Z.); (Z.Y.); (J.Z.); (X.W.); (J.L.)
| | - Junlong Li
- Henan International Joint Laboratory of New Civil Engineering Structure, College of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China; (H.Z.); (Q.H.); (S.F.); (X.Z.); (Z.Y.); (J.Z.); (X.W.); (J.L.)
| |
Collapse
|
27
|
Deng R, Chen Y, Deng X, Huang Z, Zhou S, Ren B, Jin G, Hursthouse A. A Critical Review of Resistance and Oxidation Mechanisms of Sb-Oxidizing Bacteria for the Bioremediation of Sb(III) Pollution. Front Microbiol 2021; 12:738596. [PMID: 34557178 PMCID: PMC8453088 DOI: 10.3389/fmicb.2021.738596] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 12/03/2022] Open
Abstract
Antimony (Sb) is a priority pollutant in many countries and regions due to its chronic toxicity and potential carcinogenicity. Elevated concentrations of Sb in the environmental originating from mining and other anthropogenic sources are of particular global concern, so the prevention and control of the source of pollution and environment remediation are urgent. It is widely accepted that indigenous microbes play an important role in Sb speciation, mobility, bioavailability, and fate in the natural environment. Especially, antimony-oxidizing bacteria can promote the release of antimony from ore deposits to the wider environment. However, it can also oxidize the more toxic antimonite [Sb(III)] to the less-toxic antimonate [Sb(V)], which is considered as a potentially environmentally friendly and efficient remediation technology for Sb pollution. Therefore, understanding its biological oxidation mechanism has great practical significance to protect environment and human health. This paper reviews studies of the isolation, identification, diversity, Sb(III) resistance mechanisms, Sb(III) oxidation characteristics and mechanism and potential application of Sb-oxidizing bacteria. The aim is to provide a theoretical basis and reference for the diversity and metabolic mechanism of Sb-oxidizing bacteria, the prevention and control of Sb pollution sources, and the application of environment treatment for Sb pollution.
Collapse
Affiliation(s)
- Renjian Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Yilin Chen
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Xinpin Deng
- Hunan 402 Geological Prospecting Part, Changsha, China
| | - Zhongjie Huang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Saijun Zhou
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Bozhi Ren
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Guizhong Jin
- Hsikwangshan Twinkling Star Co., Ltd., Lengshuijiang, China
| | - Andrew Hursthouse
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
- School of Computing, Engineering and Physical Sciences, The University of the West of Scotland, Paisley, United Kingdom
| |
Collapse
|
28
|
Liang C, Fu F, Tang B. Mn-incorporated ferrihydrite for Cr(VI) immobilization: Adsorption behavior and the fate of Cr(VI) during aging. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126073. [PMID: 34020359 DOI: 10.1016/j.jhazmat.2021.126073] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/15/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Chromium(VI) (Cr(VI)) is an environmental priority pollutant, and its mobility in natural environment is strongly controlled by ferrihydrite. Ferrihydrite always contains various ions, which may change the properties of ferrihydrite, thereby affecting the behavior of pollutants. This study aims to investigate the adsorption of Cr(VI) by Mn-incorporated ferrihydrite and the mobility behavior of Cr(VI) during aging. Results showed that the incorporation of Mn enhanced the adsorption of Cr(VI) on ferrihydrite, and the adsorption performance increased with the increase of Mn content. The maximum adsorption capacity for Cr(VI) reached to 48.5 mg/g with molar ratio of Mn/Fe 5%, while it was 36.1 mg/g for pure ferrihydrite. After aging for 7 days, ferrihydrite transformed into goethite and hematite. The adsorbed Cr(VI) on the surface of ferrihydrite was released into the solution during aging. The incorporation of Mn retarded the transformation of ferrihydrite, which inhibited the migration of adsorbed Cr(VI). Nevertheless, the incorporation of Mn resulted in the transformation of adsorbed Cr(VI) to non-desorbed Cr(VI), thereby enhancing the retention of Cr(VI). Our results suggest that the incorporation of Mn into ferrihydrite has an important role on the mobility of Cr(VI), which enhances our understanding of the behavior of Cr(VI) in the environment.
Collapse
Affiliation(s)
- Chenwei Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
29
|
Yan W, Guo W, Wang L, Jing C. Extracellular polymeric substances from Shewanella oneidensis MR-1 biofilms mediate the transformation of Ferrihydrite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147245. [PMID: 34088061 DOI: 10.1016/j.scitotenv.2021.147245] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Extracellular polymeric substances (EPS) of dissimilatory iron-reducing bacteria (DIRB) such as Shewanella oneidensis MR-1 play a crucial role in the biotransformation of iron-containing minerals, but the mechanism has not been fully deciphered. Herein, abiotic and biotic transformation of ferrihydrite (Fh) were compared to clarify the contributions of MR-1, EPS-free MR-1 (MR-1-EPS), loosely bound EPS (LB-EPS), and tightly bound EPS (TB-EPS). The results of abiotic Fh transformation indicated that EPS did not block the Fh surfaces and thus has an insignificant effect on the adsorbed Fe(II)-Fh interaction. The complexation of the Fe(III) intermediate (Fe(III)active) with EPS, especially LB-EPS, however, inhibited the nucleation of secondary Fe minerals and changed the crystallization pathway. For biotic Fh transformation, on the other hand, EPS had dual effects that accelerated Fh bioreduction due to the enhanced extracellular electron transfer (EET) and constrained the following Fh mineralization by cutting of the chain reactions leading to mineral crystallization. Our finding also suggested that the effects of EPS on Fh biotransformation largely depend on the chemical properties of EPS, especially the polar functional groups such as carboxyl and phosphate, because of their important abilities for the cell attachment and Fe(II)/Fe(III) binding.
Collapse
Affiliation(s)
- Wei Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wen Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liying Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
30
|
Yin X, Zhang G, Su R, Zeng X, Yan Z, Zhang D, Ma X, Lei L, Lin J, Wang S, Jia Y. Oxidation and incorporation of adsorbed antimonite during iron(II)-catalyzed recrystallization of ferrihydrite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146424. [PMID: 34030383 DOI: 10.1016/j.scitotenv.2021.146424] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
The toxicity and mobility of antimony (Sb) are strongly influenced by the redox transformation of widely spread 2-line ferrihydrite (Fh) in natural soils and sediments. This study investigated the transformation and redistribution of adsorbed antimonite (Sb(III)) during Fe(II)-catalyzed recrystallization of Fh under anaerobic conditions. X-ray diffraction (XRD), transmission electron microscopy (TEM), and synchrotron based X-ray absorption spectroscopy (XAS) were utilized to characterize the mineralogy and morphology of generated minerals as well as the speciation of Sb and Fe. Chemical analysis and Sb LIII-edge XANES spectra demonstrated that a great part of Sb(III) (80%-90%) was oxidized to Sb(V) by reactive oxygen species (ROS) during the Fe(II)-catalyzed transformation of Fh. Chemical extraction results showed that the mobility of Sb was significantly reduced with 50%-70% of initially adsorbed Sb(III) transformed to phosphate-unextractable phase. Antimony K-edge EXAFS analysis showed the SbO6 octahedra were incorporated into secondary minerals by substituting the Fe atoms. Our findings shed new light on the understanding of the geochemical behavior of Sb(III) under anoxic conditions.
Collapse
Affiliation(s)
- Xiuling Yin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqing Zhang
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Rui Su
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zelong Yan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Danni Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xu Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lei Lei
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jinru Lin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shaofeng Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
31
|
Diquattro S, Castaldi P, Ritch S, Juhasz AL, Brunetti G, Scheckel KG, Garau G, Lombi E. Insights into the fate of antimony (Sb) in contaminated soils: Ageing influence on Sb mobility, bioavailability, bioaccessibility and speciation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145354. [PMID: 33736407 PMCID: PMC8064402 DOI: 10.1016/j.scitotenv.2021.145354] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 05/19/2023]
Abstract
The effect of long-term ageing (up to 700 days) on the mobility, potential bioavailability and bioaccessibility of antimony (Sb) was investigated in two soils (S1: pH 8.2; S2: pH 4.9) spiked with two Sb concentrations (100 and 1000 mg·kg-1). The Sb mobility decreased with ageing as highlighted by sequential extraction, while its residual fraction significantly increased. The concentration of Sb (CDGT), as determined by diffusive gradients in thin films (DGT), showed a reduction in potential contaminant bioavailability during ageing. The DGT analysis also showed that Sb-CDGT after 700 days ageing was significantly higher in S1-1000 compared to S2-1000, suggesting soil pH plays a key role in Sb potential bioavailability. In-vitro tests also revealed that Sb bioaccessibility (and Hazard Quotient) decreased over time. Linear combination fitting of Sb K-edge XANES derivative spectra showed, as a general trend, an increase in Sb(V) sorption to inorganic oxides with ageing as well as Sb(V) bound to organic matter (e.g. up to 27 and 37% respectively for S2-100). The results indicated that ageing can alleviate Sb ecotoxicity in soil and that the effectiveness of such processes can be increased at acidic pH. However, substantial risks due to Sb mobility, potential bioavailability and bioaccessibility remained in contaminated soils even after 700 days ageing.
Collapse
Affiliation(s)
- Stefania Diquattro
- Dipartimento di Agraria, University of Sassari, Viale Italia 39/B, 07100 Sassari, Italy
| | - Paola Castaldi
- Dipartimento di Agraria, University of Sassari, Viale Italia 39/B, 07100 Sassari, Italy
| | - Susie Ritch
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Gianluca Brunetti
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Kirk G Scheckel
- U. S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45268, United States
| | - Giovanni Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39/B, 07100 Sassari, Italy.
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| |
Collapse
|
32
|
Hockmann K, Karimian N, Schlagenhauff S, Planer-Friedrich B, Burton ED. Impact of Antimony(V) on Iron(II)-Catalyzed Ferrihydrite Transformation Pathways: A Novel Mineral Switch for Feroxyhyte Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4954-4963. [PMID: 33710876 DOI: 10.1021/acs.est.0c08660] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The environmental mobility of antimony (Sb) is controlled by interactions with iron (Fe) oxides, such as ferrihydrite. Under near-neutral pH conditions, Fe(II) catalyzes the transformation of ferrihydrite to more stable phases, thereby potentially altering the partitioning and speciation of associated Sb. Although largely unexplored, Sb itself may also influence ferrihydrite transformation pathways. Here, we investigated the impact of Sb on the Fe(II)-induced transformation of ferrihydrite at pH 7 across a range of Sb(V) loadings (Sb:Fe(III) molar ratios of 0, 0.003, 0.016, and 0.08). At low and medium Sb loadings, Fe(II) induced rapid transformation of ferrihydrite to goethite, with some lepidocrocite forming as an intermediate phase. In contrast, the highest Sb:Fe(III) ratio inhibited lepidocrocite formation, decreased the extent of goethite formation, and instead resulted in substantial formation of feroxyhyte, a rarely reported FeOOH polymorph. At all Sb loadings, the transformation of ferrihydrite was paralleled by a decrease in aqueous and phosphate-extractable Sb concentrations. Extended X-ray absorption fine structure spectroscopy showed that this Sb immobilization was attributable to incorporation of Sb into Fe(III) octahedral sites of the neo-formed minerals. Our results suggest that Fe oxide transformation pathways in Sb-contaminated systems may strongly differ from the well-known pathways under Sb-free conditions.
Collapse
Affiliation(s)
- Kerstin Hockmann
- Department of Hydrology, University of Bayreuth, Bayreuth Center for Ecology and Environmental Research (BayCEER), Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Niloofar Karimian
- Southern Cross GeoScience, Southern Cross University, Lismore New South Wales 2480, Australia
| | - Sara Schlagenhauff
- Environmental Geochemistry, University of Bayreuth, Bayreuth Center for Ecology and Environmental Research (BayCEER), Universitaetsstrasse 30, 95440 Bayreuth, Germany
- Alfred Wegener Institute, Helmholz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, University of Bayreuth, Bayreuth Center for Ecology and Environmental Research (BayCEER), Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Edward D Burton
- Southern Cross GeoScience, Southern Cross University, Lismore New South Wales 2480, Australia
| |
Collapse
|
33
|
Ye C, Ariya PA, Fu F, Yu G, Tang B. Influence of Al(III) and Sb(V) on the transformation of ferrihydrite nanoparticles: Interaction among ferrihydrite, coprecipitated Al(III) and Sb(V). JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124423. [PMID: 33162243 DOI: 10.1016/j.jhazmat.2020.124423] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Ferrihydrite is ubiquitous in natural environments and is usually co-precipitated with impure ions and toxic contaminants like Al(III) and Sb(V) during the neutralization process of acid mine drainage. However, little is known about the dynamic interactions among ferrihydrite, Al(III) and Sb(V). In this study, the influence of coprecipitated Al(III) and Sb(V) on the transformation of ferrihydrite was investigated. The samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy before and after aging for 10 days at 70 °C. Results indicated that the Al(III) enhanced the immobilization of Sb(V) under neutral and alkaline conditions, and the presence of Sb(V) induced more production of extractable Al(III). XRD patterns revealed that the transformation rate of coprecipitated Al(III) and Sb(V) ferrihydrite was higher than Al-coprecipitated ferrihydrite. It is speculated that the presence of Sb(V) weakened the inhibition of Al(III) under experimental conditions. Competitive reaction of Al(III) and Sb(V) for substitution on the lattice Fe of ferrihydrite, likely decreased Al(III) substitution on ferrihydrite, and thus increased the observed transformation rate of ferrihydrite. These results have significant environmental implications for predicting the role of impurities and contaminants on ferrihydrite transformation processes.
Collapse
Affiliation(s)
- Chujia Ye
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Parisa A Ariya
- Department of Atmospheric & Oceanic Sciences, McGill University, Montreal, PQ H3A 0B9, Canada; Department of Chemistry, McGill University, Montreal, PQ H3A 0B8, Canada
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guangda Yu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
34
|
Deng S, Zhang C, Dang Y, Collins RN, Kinsela AS, Tian J, Holmes DE, Li H, Qiu B, Cheng X, Waite TD. Iron Transformation and Its Role in Phosphorus Immobilization in a UCT-MBR with Vivianite Formation Enhancement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12539-12549. [PMID: 32897064 DOI: 10.1021/acs.est.0c01205] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The formation of vivianite (Fe3(PO4)2·8H2O) in iron (Fe)-dosed wastewater treatment facilities has the potential to develop into an economically feasible method of phosphorus (P) recovery. In this work, a long-term steady FeIII-dosed University of Cape Town process-membrane bioreactor (UCT-MBR) system was investigated to evaluate the role of Fe transformations in immobilizing P via vivianite crystallization. The highest fraction of FeII, to total Fe (Fetot), was observed in the anaerobic chamber, revealing that a redox condition suitable for FeIII reduction was established by improving operational and configurational conditions. The supersaturation index for vivianite in the anaerobic chamber varied but averaged ∼4, which is within the metastable zone and appropriate for its crystallization. Vivianite accounted for over 50% of the Fetot in the anaerobic chamber, and its oxidation as it passed through the aerobic chambers was slow, even in the presence of high dissolved oxygen concentrations at circumneutral pH. This study has shown that the high stability and growth of vivianite crystals in oxygenated activated sludge can allow for the subsequent separation of vivianite as a P recovery product.
Collapse
Affiliation(s)
- Shaoyu Deng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Changyong Zhang
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Richard N Collins
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Andrew S Kinsela
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jingbao Tian
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Dawn E Holmes
- Department of Physical and Biological Sciences, Western New England University, 1215 Wilbraham Road, Springfield, Massachusetts 01119, United States
| | - Hongsuo Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Xiang Cheng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
35
|
Abstract
The adsorption and desorption process of the tungstate ion was studied in three soils characteristic of the Mediterranean area, with particularly reference to bioavailability pathways. In the three soils examined, the tungstate adsorption was described by a Langmuir-type equation, while the desorption process showed that not all the adsorbed tungstate was released, probably due to the formation of different bonds with the adsorbing soil surfaces. The pH was found to be the main soil property that regulates the adsorption/desorption: The maximum adsorption occurred in the soil with the acidic pH, and the maximum desorption in the most basic soil. In addition, the organic matter content played a fundamental role in the adsorption of tungstate by soils, being positively correlated with the maximum of adsorption. These results indicate that the lowest bioavailability should be expected in the acidic soil characterized by the highest adsorption capacity. This is confirmed by the trend of the maximum buffer capacity (MBC) of soils which is inversely related to bioavailability, and was the highest in the acidic soil and the lowest in the most basic soil. Our data could contribute in drafting environmental regulations for tungsten that are currently lacking for Mediterranean soils.
Collapse
|
36
|
Jin X, Li X, Guo C, Jiang M, Yao Q, Lu G, Dang Z. Fate of oxalic-acid-intervened arsenic during Fe(II)-induced transformation of As(V)-bearing jarosite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137311. [PMID: 32120095 DOI: 10.1016/j.scitotenv.2020.137311] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Jarosite is a metastable Fe(III)-oxyhydroxysulfate mineral that can act as an excellent scavenger for arsenic (As) in acid sulfate soils (ASSs) and in areas polluted by acid mine drainage (AMD). The Fe(II)-induced transformation of jarosite can influence the As mobility in reducing soil and sediment systems. Although organic acids are prevalent in these environments, their influence on the behavior of As during the Fe(II)-induced transformation of jarosite is yet to be fully understood. In this study, we investigated the effects of oxalic acid on the partitioning of As into dissolved, adsorbed, poorly crystalline, and residual phases during the Fe(II)-induced transformation of As(V)-bearing jarosite at pH 5.5 and 1 mM Fe(II) concentration. The results demonstrated that jarosite frequently transformed to lepidocrocite in treatments without oxalic acid or with low oxalic acid (0.1 mM), and As was typically redistributed in the surface-bound exchangeable and residual phases. While a high concentration of oxalic acid (1 mM) retarded the transformation of jarosite and produced goethite as the primary end product, it also changed the Fe(II)-induced transformation pathway and drove most As into the residual phase (approximately 92%). The results indicated that oxalic acid exerts a significant influence on the partitioning and speciation of As during the above-mentioned transformation. X-ray photo electron spectroscopy analysis of the reaction products also revealed that As(V) may be still the dominant redox species. Overall, this study provides critical information for understanding the fate of As during the transformation of secondary minerals under complex influencing factors, thereby assisting in more accurately predicting the geochemical cycling of As in natural systems.
Collapse
Affiliation(s)
- Xiaohu Jin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaofei Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| | - Mengge Jiang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Qian Yao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
37
|
Johnston SG, Bennett WW, Doriean N, Hockmann K, Karimian N, Burton ED. Antimony and arsenic speciation, redox-cycling and contrasting mobility in a mining-impacted river system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136354. [PMID: 32050372 DOI: 10.1016/j.scitotenv.2019.136354] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
The Macleay River in eastern Australia is severely impacted by historic stibnite- and arsenopyrite-rich mine-tailings. We explore the partitioning, speciation, redox-cycling, mineral associations and mobility of antimony and arsenic along >70 km reach of the upper Macleay River. Elevated Sb/As occur throughout the active channel-zone and in floodplain pockets up to the regolith margin, indicating broad dispersal during floods. Sb concentrations in bulk-sediments decay exponentially downstream more efficiently than As, likely reflecting sediment dilution, hydraulic sorting and comparatively greater leaching of (more mobile) Sb(V) species. However, Sb in bulk-sediments becomes proportionally more bio-available downstream. Sb(V) and As(V) species dominate stream fine-grained (<180 μm) bulk-sediments, reflecting oxidative weathering downstream. Increasing poorly-crystalline Fe(III) [Fe(III)HCl] in bulk-sediments also indicates progressive oxidative weathering of Fe(II)-bearing minerals downstream and significant (P < .05) correlations exist between PO4-3-exchangeable As and Sb fractions and Fe(III)HCl. Accumulations of poorly-crystalline Fe(III) precipitates (mainly ferrihydrite/feroxyhyte) occur intermittently in hyporheic-zone seeps and are enriched in As relative to Sb and contain some As(III) and Sb(III) (~30-40%). There is dynamic in-stream redox-cycling of both Sb and As, with localised S-coordinated As and Sb species re-forming in organic-rich, hyporheic sediments subject to contemporary sulfidogenesis. Sb [mainly Sb(V)] is comparatively more mobile in hyporheic and surface waters under oxic conditions, whereas As [mainly As(III)] is more mobile in hyporheic porewaters subject to reducing/sulfidogenic conditions. Repeat water-leaching of bulk-sediments confirms that Sb is proportionally more mobile than As. Mean concentrations of Sb in river water 168 km downstream from the mine are significantly (P < .05) higher than As, while Kd data indicate Sb is more strongly partitioned to the aqueous phase than As. Although the (mainly) oxic flow path of this river favours aqueous Sb mobility compared to As, localised redox-driven shifts in speciation of both elements strongly influence their respective mobility and partitioning.
Collapse
Affiliation(s)
- Scott G Johnston
- Southern Cross Geoscience, Southern Cross University, Lismore, NSW 2480, Australia.
| | - William W Bennett
- Environmental Futures Research Institute, Griffith University Gold Coast campus, Southport, QLD 4215, Australia
| | - Nicholas Doriean
- Environmental Futures Research Institute, Griffith University Gold Coast campus, Southport, QLD 4215, Australia
| | - Kerstin Hockmann
- University of Bayreuth, Bayreuth Center for Ecology and Environmental Research (BayCEER), Universitaetsstrasse 30, D-95440 Bayreuth, Germany
| | - Niloofar Karimian
- Southern Cross Geoscience, Southern Cross University, Lismore, NSW 2480, Australia
| | - Edward D Burton
- Southern Cross Geoscience, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
38
|
Verbeeck M, Thiry Y, Smolders E. Soil organic matter affects arsenic and antimony sorption in anaerobic soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113566. [PMID: 31813702 DOI: 10.1016/j.envpol.2019.113566] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/09/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Soil organic matter (SOM) affects arsenic (As) and antimony (Sb) mobility in soils under waterlogged conditions by acting as an electron donor, by catalyzing redox-cycling through electron shuttling and by acting as a competing ligand. This study was set up to disentangle these different effects of SOM towards As and Sb sorption in anaerobic soils. Nine samples were taken at different depths in an agricultural soil profile to collect samples with a natural SOM gradient (<1-40 g soil organic carbon kg-1). The samples were incubated either or not under waterlogged conditions in an anaerobic chamber for 63-70 days, and glucose (5 g C kg-1) was either or not added to the anaerobic incubated samples as an electron donor that neither acts as an electron shuttle nor as a competing ligand. The solid-liquid distribution coefficients (KD) of As and Sb were measured at trace levels. The KD values of As decreased ∼2 orders of magnitude upon waterlogging the SOM rich topsoil, while no additional changes were observed when glucose was added. In contrast, smaller changes in the As KD values were found in the low SOM containing subsoil samples, unless glucose was added that mobilised As. The Sb KD values increased upon reducing conditions up to factor 20, but again only in the high SOM topsoil samples. Surprisingly, the Sb immobilisation during waterlogging only occurred in Sb amended soils whereas the geogenic Sb was mobilised upon reducing conditions, although total dissolved Sb concentrations remained low (<10 nM). The change in As and Sb sorption upon waterlogging was similar in the SOM rich topsoil as in the low SOM subsoil amended with glucose. This suggests that the SOM dependent changes in As and Sb mobility in response to soil waterlogging are primarily determined by the role of SOM as electron donor.
Collapse
Affiliation(s)
- Mieke Verbeeck
- KU Leuven, Department of Earth and Environmental Sciences, Kasteelpark Arenberg 20 Bus 2459, 3001, Leuven, Belgium.
| | - Yves Thiry
- Andra Research and Development Division, 1-7 rue Jean-Monnet, 92298, Châtenay-Malabry, France
| | - Erik Smolders
- KU Leuven, Department of Earth and Environmental Sciences, Kasteelpark Arenberg 20 Bus 2459, 3001, Leuven, Belgium
| |
Collapse
|
39
|
Karimian N, Burton ED, Johnston SG. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113112. [PMID: 31479811 DOI: 10.1016/j.envpol.2019.113112] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/01/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Antimony, as the Sb(V) species, often occurs in oxic soils and sediments as coprecipitates with poorly-crystalline Fe(III)-bearing minerals. It is common for these Sb(V)-Fe(III) coprecipitates to also contain varying quantities of co-occurring humic acid (HA). When exposed to reducing conditions, the production of Fe(II) may cause the initial metastable HA-Sb(V)-Fe(III) phases to undergo rapid transformations to more stable phases, thereby potentially influencing the geochemical behavior of coprecipitated Sb(V). However, little is known about the impacts of this transformation on the mobility and speciation of Sb. In this study, we reacted synthetic HA-Sb(V)-Fe(III) coprecipitates (Fe:Sb ratio = 4, and C:Fe molar ratios = 0, 0.3, 0.8 and 1.3) with 0, 1 or 10 mM Fe(II) under O2-free conditions at pH 7.0 for 15 days. Fe K-edge EXAFS spectroscopy revealed that solid-phase Fe(III) in the initial coprecipitates contained a mixture of ∼4/5 ferrihydrite (Fe10O14(OH)2) and ∼1/5 tripuhyite (FeSbO4), regardless of the corresponding amount of coprecipitated HA. Tripuhyite persisted throughout the full experiment duration, while ferrihydrite was partially replaced by goethite (FeOOH) when either 1 or 10 mM Fe(II)aq was added to the coprecipitates. The greatest level of goethite formation (∼55% of solid-phase Fe) was observed in the HA-free/10 mM Fe(II)aq treatment, with ferrihydrite transformation being partially attenuated at higher levels of HA. Mobilisation of aqueous Sb was the greatest for 1 mM Fe(II) treatments at high HA:Fe ratios. Sb K-edge XANES spectroscopy showed that the largest reduction of Sb(V) to Sb(III) (∼37%) and the greatest repartitioning of Sb to the mineral surface (∼7.9-9.8%) occurred in the coprecipitates with the highest HA contents in the presence of 10 mM Fe(II). The results indicate that the amount of HA in HA-Sb(V)-Fe(III) coprecipitates can greatly influence mobility and speciation of Sb in Fe(II)-rich conditions. The results of this study provide new insights into alterations in Sb mobility and retention in response to Fe cycling under organic matter-rich reducing conditions.
Collapse
Affiliation(s)
- Niloofar Karimian
- Southern Cross Geoscience, Southern Cross University, Lismore, NSW 2480, Australia.
| | - Edward D Burton
- Southern Cross Geoscience, Southern Cross University, Lismore, NSW 2480, Australia
| | - Scott G Johnston
- Southern Cross Geoscience, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
40
|
Influence of Increasing Tungsten Concentrations and Soil Characteristics on Plant Uptake: Greenhouse Experiments with Zea mays. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9193998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tungsten is largely used in high-tech and military industries. Soils are increasingly enriched in this element, and its transfer in the food chain is an issue of great interest. This study evaluated the influence of soil characteristics on tungsten uptake by Zea mays grown on three soils, spiked with increasing tungsten concentrations. The soils, classified as Histosol, Vertisol, and Fluvisol, are characteristic of the Mediterranean area. The uptake of the element by Zea mays was strictly dependent on the soil characteristics. As the pH of soils increases, tungsten concentrations in the roots and shoots of the plants increased. Also, humic substances showed a great influence on tungsten uptake, which decreased with increasing organic matter of soils. Tungsten uptake by Zea mays can be described by a Freundlich-like equation. This soil-to-plant transfer model may be useful in promoting environmental regulations on the hazards of this element in the environment.
Collapse
|
41
|
Besold J, Eberle A, Noël V, Kujala K, Kumar N, Scheinost AC, Pacheco JL, Fendorf S, Planer-Friedrich B. Antimonite Binding to Natural Organic Matter: Spectroscopic Evidence from a Mine Water Impacted Peatland. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10792-10802. [PMID: 31436960 DOI: 10.1021/acs.est.9b03924] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Peatlands and other wetlands are sinks for antimony (Sb), and solid natural organic matter (NOM) may play an important role in controlling Sb binding. However, direct evidence of Sb sequestration in natural peat samples is lacking. Here, we analyzed solid phase Sb, iron (Fe), and sulfur (S) as well as aqueous Sb speciation in three profiles up to a depth of 80 cm in a mine water impacted peatland in northern Finland. Linear combination fittings of extended X-ray absorption fine structure spectra showed that Sb binding to Fe phases was of minor importance and observed only in the uppermost layers of the peatland. Instead, the dominant (to almost exclusive) sequestration mechanism was Sb(III) binding to oxygen-containing functional groups, and at greater depths, increasingly Sb(III) binding to thiol groups of NOM. Aqueous Sb speciation was dominated by antimonate, while antimonite concentrations were low, further supporting our findings of much higher reactivity of Sb(III) than Sb(V) toward peat surfaces. Insufficient residence time for efficient reduction of antimonate to antimonite currently hinders higher Sb removal in the studied peatland. Overall, our findings imply that Sb(III) binding to solid NOM acts as an important sequestration mechanism under reducing conditions in peatlands and other high-organic matter environments.
Collapse
Affiliation(s)
- Johannes Besold
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER) , Bayreuth University , 95440 Bayreuth , Germany
| | - Anne Eberle
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER) , Bayreuth University , 95440 Bayreuth , Germany
| | - Vincent Noël
- Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Katharina Kujala
- Water Resources and Environmental Engineering Research Unit , University of Oulu , FI-90014 , Oulu , Finland
| | - Naresh Kumar
- Department of Geological Sciences, School of Earth, Energy, and Environmental Sciences , Stanford University , Stanford , California 94305 , United States
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science , University of Vienna , 1090 Vienna , Austria
| | - Andreas C Scheinost
- The Rossendorf Beamline (ROBL) at ESRF, 38043 Grenoble, France and Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Juan Lezama Pacheco
- Department of Earth System Science, School of Earth, Energy, and Environmental Sciences , Stanford University , Stanford , California 94305 , United States
| | - Scott Fendorf
- Department of Earth System Science, School of Earth, Energy, and Environmental Sciences , Stanford University , Stanford , California 94305 , United States
| | - Britta Planer-Friedrich
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER) , Bayreuth University , 95440 Bayreuth , Germany
| |
Collapse
|