1
|
Alipour V, Mahmoudi I, Borzoei M, Mehri F, Sarkhosh M, Limam I, Nasiri R, Fakhri Y. Concentration of Potentially Toxic Elements (PTEs) in Rapid Coffee Products in Bandar Abbas, Iran: Probabilistic Non-Carcinogenic and Carcinogenic Risk Assessment. Biol Trace Elem Res 2025; 203:1209-1220. [PMID: 38755494 DOI: 10.1007/s12011-024-04228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Coffee is one of the most widely consumed beverages in the world. However, coffee plants are often exposed to potentially toxic elements (PTEs) pollution. The main aims of current study were to detect the PTEs in instant coffee and health risk assessment of consumers in Bandar Abbas city. To achieve this, 40 samples of instant coffee were randomly collected from various points in the city in 2023 and PTEs concentrations were measured using flame atomic absorption spectrometry (FAAS). The non-carcinogenic and carcinogenic risks were calculated using Monte Carlo simulation (MCS) method. The concentrations of Fe and Cu were higher than other PTEs, equaling 404.41 mg/kg and 0.0046 mg/kg, respectively. The non-carcinogenic risk assessment revealed that THQ (Fe > Pb > As > Cd > Ni > Cu) and TTHQ levels were less than 1 based on the 95% percentile in adults and children, indicating there is no possibility of a non-carcinogenic risk associated with instant coffee. The carcinogenic risk due to inorganic As in instant coffee was acceptable (2.63E-5 and 1.27E-5 based on the 95% percentile for adults and children, respectively), therefore PTEs in instant coffee do not endanger the health of consumers.
Collapse
Affiliation(s)
- Vali Alipour
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Iman Mahmoudi
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Mohammad Borzoei
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Sarkhosh
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Intissar Limam
- Laboratory of Materials, Treatment and Analysis, National Institute of Research and Physicochemical Analysis; and High School for Science and Health Techniques of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rasul Nasiri
- Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
2
|
M B B, Tiwari AK, N S M, Mohan M, C M L. Source apportionment of major ions and trace metals in the lacustrine systems of Schirmacher Hills, East Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174189. [PMID: 38936712 DOI: 10.1016/j.scitotenv.2024.174189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The fabric of the Antarctic lacustrine system has a crucial role in assimilating the anthropogenic inputs and mitigating their long time impacts on climate change. Here, we present the changes in the concentrations of major ions and trace metals in the surface water of the lacustrine system to understand the extent of anthropogenic impacts from the adjacent Schirmacher Hills, East Antarctica. The results show that the land-locked lakes (closed-basin lakes surrounded by topographical barriers such as mountains or bedrock formations) in the region have a moderate enrichment in elemental concentrations compared to the pro-glacial lakes (marginal freshwater bodies that form at the terminus of a glacier or ice sheet). The water quality index (WQI: 7.58-12.63) and pollution evaluation index (PEI: 1.36-2.35) remained normal, indicating that the water in these lake are of good quality. However, a significant correlation between lithogenic elements (Al, Fe) and potentially toxic elements (Cd, Cr, and Ba), suggests an increase in the anthropogenic impacts. Based on the principal component analysis (PCA), the source of trace metals to the lacustrine systems appears to be the surrounding environment, followed by aerosol dust particles. Hierarchical cluster analysis (HCA) revealed that regional topography significantly impacts the supply of major ions/trace metals to these lakes. The present study provides baseline data and can be used to estimate and forecast future local and/or global anthropogenic contaminations in the lacustrine system of Schirmacher Hills, East Antarctica. Moreover, the presence of research stations (Maitri and Novolazarevskaya), tourist activities, and the potential for anthropogenic stressors necessitate continued monitoring and impact assessment programs within the Schirmacher Hills lacustrine systems. These programs are crucial for safeguarding this pristine ecosystem from future environmental disturbances under a changing Antarctic climate, as mandated by the Antarctic Treaty System and the Indian Antarctic Act.
Collapse
Affiliation(s)
- Binish M B
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India.
| | - A K Tiwari
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India
| | - Magesh N S
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India; Centre for Water Resources Development and Management, Kozhikode, Kerala 673571, India
| | - Mahesh Mohan
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India; International Centre for Polar Studies, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Laluraj C M
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India.
| |
Collapse
|
3
|
Dong Y, Li Z, Zhang Q, Hu X, Wang Z, Fan S, Sun X, Zhang X, Xu Q. Accumulation of trace metal elements in ophiuroids with different feeding types in the North Yellow Sea. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106639. [PMID: 38991430 DOI: 10.1016/j.marenvres.2024.106639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Ophiuroids, as an important group of echinoderms, are widely distributed in marine benthic habitats. Previous studies have identified two primary feeding types of ophiuroids in the Yellow Sea, including carnivorous (Ophiura sarsii vadicola and Stegophiura sladeni) and suspension feeders (Ophiopholis mirabilis). Despite their ecological role in the benthic food webs, little is known about their accumulation of trace metal elements (TMEs). In this study, the content of TMEs (Pb, As, Cd, Hg, Cr, Cu, Zn), methylmercury (MeHg) and δ15N value of three ophiuroids species from the North Yellow Sea were determined. Our results showed that the contents of some TMEs (As, Cd, Cr, Cu and Zn) and MeHg were significantly different in three species of ophiuroid (p < 0.05). There were significant correlations between the accumulations of trace metal elements (Pb, Cd and Zn) and the δ15N value of the ophiuroids (p < 0.05). Additionally, As and Zn exhibited opposite correlations in ophiuroid with two feeding types, which may be related to their host species and different feeding habits. This study provided fundamental data for understanding the distribution of trace metal elements in echinoderms.
Collapse
Affiliation(s)
- Yue Dong
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China; Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, 266061, China
| | - Zhong Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China; Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, 266061, China
| | - Qian Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266003, China
| | - Xuying Hu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266003, China
| | - Zongling Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266003, China
| | - Shiliang Fan
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266003, China
| | - Xia Sun
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, 266061, China
| | - Xuelei Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266003, China
| | - Qinzeng Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266003, China.
| |
Collapse
|
4
|
Mbandzi-Phorego N, Puccinelli E, Pieterse PP, Ndaba J, Porri F. Metal bioaccumulation in marine invertebrates and risk assessment in sediments from South African coastal harbours and natural rocky shores. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124230. [PMID: 38810679 DOI: 10.1016/j.envpol.2024.124230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/04/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Industrial and urban activities are major contributors to metal contamination in coastal systems, often impacting the physiology, distribution and diversity of marine invertebrates. This study assessed metal contaminations in sediments, seawater, algae and invertebrates across four armoured systems (harbours) and two natural sites along the south coast of South Africa. Bioaccumulation factors such as Biosediment (BSAF), Biowater (BWAF), Bioaccumulation (BAF) and bioremediation of metals by invertebrate bioindicators were also determined. Spatial variation in metal concentrations were observed, however, bioaccumulation of metals was site and species-specific. Invertebrates bioaccumulated higher metal concentrations in armoured than natural sites, with filter feeders exhibiting higher concentrations than grazers. Among filter feeders, Octomeris angulosa and Crassostrea gigas bioaccumulated elevated aluminium (Al), arsenic (As), chromium (Cr), zinc (Zn) and copper (Cu), while, Perna perna accumulated elevated nickel (Ni), cadmium (Cd) and lead (Pb). Among grazers, Siphonaria serrata and Scutellastra longicosta bioaccumulated elevated Al, Cr, Cd, cobalt (Co), Cu, Ni and Zn. Bioaccumulation factors indicated that (As, Ni, Zn) were bioaccumulated by algae, and invertebrates from sediment (BSAF>1) and from seawater (BWAF>1). Additionally, invertebrates bioaccumulated metals from their prey item, algae as indicated by (BAF>1). Arsenic Cd and Pb in invertebrates were above the maximum limit set for human consumption by various regulatory bodies. Our findings underscore the significant role of coastal invertebrates in bioaccumulating and bioremediating metals, suggesting a natural mechanism for water quality enhancement, especially in urbanised coastal areas.
Collapse
Affiliation(s)
- Nokubonga Mbandzi-Phorego
- South African Institute for Aquatic Biodiversity, Somerset Street, Private Bag 1015, Makhanda, 6139, South Africa; Department of Ichthyology & Fisheries Science, Rhodes University, Makhanda, South Africa.
| | - Eleonora Puccinelli
- South African Institute for Aquatic Biodiversity, Somerset Street, Private Bag 1015, Makhanda, 6139, South Africa; Department of Coastal Systems, Royal Netherlands Institute for Sea Research (NIOZ), Texel, Netherlands; Department of Oceanography, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| | | | - Jabulani Ndaba
- South African Institute for Aquatic Biodiversity, Somerset Street, Private Bag 1015, Makhanda, 6139, South Africa; Department of Ichthyology & Fisheries Science, Rhodes University, Makhanda, South Africa
| | - Francesca Porri
- South African Institute for Aquatic Biodiversity, Somerset Street, Private Bag 1015, Makhanda, 6139, South Africa; Department of Ichthyology & Fisheries Science, Rhodes University, Makhanda, South Africa
| |
Collapse
|
5
|
Li A, Li J, Liu F, Zhu L, Liu L, Xue S, Zhang M, Tang Y, Mao Y. Assessment of benthic ecological status and heavy metal contamination in an estuarine intertidal mudflat in the Northern Bohai Sea. MARINE POLLUTION BULLETIN 2024; 203:116501. [PMID: 38761681 DOI: 10.1016/j.marpolbul.2024.116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Evaluating the ecological quality and pollution status of coastal mudflats is crucial for environmental protection and management, particularly when these areas serve as major shellfish production hotspots. In this study, we assessed the benthic ecological quality and heavy metals pollution in Geligang, located in the Northern Bohai Sea using the macrobenthos diversity index and the heavy metal pollution index. The Shannon-Wiener index (H'), AZTI marine biotic index (AMBI), multivariate AMBI (M-AMBI) showed that the benthic ecological quality in Geligang is either good or high. The potential ecological risk index and geoaccumulation index highlighted that cadmium (Cd) and mercury (Hg) as the primary heavy metal pollutants in Geligang. Surprisingly, the biomass of the two dominant species other than these indices serve as reliable indicators of heavy metal pollution. This suggests that the biomass of Mactra veneriformis and Potamocorbula laevis could be used to assess heavy metal pollution levels in Geligang.
Collapse
Affiliation(s)
- Ang Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Jiaqi Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China.
| | - Fang Liu
- Panjin Guanghe Crab Industry Co., Ltd, Panjin 124200, China
| | - Ling Zhu
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Lulei Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Suyan Xue
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Meng Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Yuze Tang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Yuze Mao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
6
|
Reindl AR, Wolska L, Piotrowicz-Cieślak AI, Saniewska D, Bołałek J, Saniewski M. The impact of global climate changes on trace and rare earth elements mobilization in emerging periglacial terrains: Insights from western shore of Admiralty Bay (King George Island, Antarctic). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171540. [PMID: 38492601 DOI: 10.1016/j.scitotenv.2024.171540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/03/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
In the rapidly changing climate, the biogeochemical behaviours of trace elements and Rare Earth Elements (REEs) in emerging periglacial environments assumes profound importance. This study provides pivotal insights into this dynamic by investigating the Antarctic's response to global climate change. The bedrock of King George Island is rich in REEs, with the presence of trace metals (TEs), with the highest concentrations of metals found in ornithogenic soil (∑REE 84.01-85.53 mg∙kg-1 dry weight). REEs in the studied soil, found mainly in igneous rocks, as is indicated by the positive correlation of these elements with sodium and calcium. The TEs released as a result of weathering are leached by water flowing down local watercourses to Admiralty Bay, as indicated by the decreasing results of ∑REE = 11.59 μg∙dm-3 in watercourse water, ∑REE = 1.62 μg∙dm-3 in watercourse pools and ∑REE = 0.66 μg∙dm-3 in the water of Admiralty Bay at the outlet of the watercourse. Water originating from the melting of snow on the glacier also carried REEs (∑REE = 0.14 μg∙dm-3), a fact which suggest the further influx of these elements from atmospheric deposition. The Prasiola crispa turned out to be the most susceptible to the accumulation of REEs (∑ 80.73 ± 5.05 μg g-1) and TEs, with the exception of chromium and zinc, whose concentrations were found to be at their highest in Deschampsia antarctica. In Usnea antarctica, Xanthoria candelaria, and Ceratodon purpureus and Politrichastrum alpinum, a dominant role in the accumulation of REEs was played by HREEs. The determined enrichment factor (EF) indicates that the soil cover is a source of REEs (EFAlgae for ∑REE = 5.07; EFLichen for ∑REE = 6.65; EFBryophyta for ∑REE = 5.04; EFVascular for ∑REE = 4.38), while Ni, As and Pb accumulated in plants may originate from other sources than the soil.
Collapse
Affiliation(s)
- Andrzej R Reindl
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland.
| | - Lidia Wolska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka I Piotrowicz-Cieślak
- Department of Plant Physiology and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Dominika Saniewska
- Faculty of Oceanography and Geography, University of Gdansk, Gdynia, Poland
| | - Jerzy Bołałek
- Faculty of Oceanography and Geography, University of Gdansk, Gdynia, Poland
| | - Michał Saniewski
- Institute of Meteorology and Water Management - National Research Institute, Gdynia, Poland
| |
Collapse
|
7
|
Mahmudiono T, Hoseinvandtabar S, Mehri F, Borzoei M, Heidarinejad Z, Amin Nakoozadeh M, Daraei H, Atamaleki A, Fakhri Y, Mousavi Khaneghah A. Potentially toxic elements (PTEs) in coastal sediments of Bandar Abbas city, North of Persian Gulf: An ecological risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1255-1269. [PMID: 36731517 DOI: 10.1080/09603123.2023.2173154] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The concentration of potentially toxic elements (PTEs; Lead (Pb), Nickel (Ni), and Cadmium (Cd) Pb, Ni, and Cd), using flame atomic absorption spectrometry (FAAS) was measured in fifty surface coastal sediment samples collected from 5 points coastal sediment of Bandar Abbas city, Iran besides the potential ecological risk index (RI) estimated the environmental health risk. The rank order of PTEs was Pb (52.090 ± 4.113 mg/kg dry weight) > Ni (34.940 ± 8.344 mg/kg dry weight) > Cd (2.944 ± 0.013 mg/kg dry weight). RI due to PTEs in sediments for A, B, C, D, and E points were 187.655, 190.542, 191.079, 189.496, and 192.053, respectively. RI for sampling points A to E was at moderate risk (150 ≤ RI < 300). Therefore, it is recommended to carry out control programs to reduce the amount of PTEs in the coastal sediment of the Persian Gulf.
Collapse
Affiliation(s)
- Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Somayeh Hoseinvandtabar
- Student Research Committee, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences. Hamadan, Iran
| | - Mohammad Borzoei
- Department of Occupational Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zoha Heidarinejad
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Nakoozadeh
- Department of Occupational Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hasti Daraei
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Atamaleki
- Department of Environmental Health Engineering, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| |
Collapse
|
8
|
Papale M, Giannarelli S, Azzaro di Rosamarina M, Ghezzi L, Lo Giudice A, Rizzo C. Chemical and microbiological insights into two littoral Antarctic demosponge species: Haliclona ( Rhizoniera) dancoi (Topsent 1901) and Haliclona ( Rhizoniera) scotti (Kirkpatrick 1907). Front Microbiol 2024; 15:1341641. [PMID: 38404594 PMCID: PMC10884823 DOI: 10.3389/fmicb.2024.1341641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Antarctic Porifera have gained increasing interest as hosts of diversified associated microbial communities that could provide interesting insights on the holobiome system and its relation with environmental parameters. Methods The Antarctic demosponge species Haliclona dancoi and Haliclona scotti were targeted for the determination of persistent organic pollutant (i. e., polychlorobiphenyls, PCBs, and polycyclic aromatic hydrocarbons, PAHs) and trace metal concentrations, along with the characterization of the associated prokaryotic communities by the 16S rRNA next generation sequencing, to evaluate possible relationships between pollutant accumulation (e.g., as a stress factor) and prokaryotic community composition in Antarctic sponges. To the best of our knowledge, this approach has been never applied before. Results Notably, both chemical and microbiological data on H. scotti (a quite rare species in the Ross Sea) are here reported for the first time, as well as the determination of PAHs in Antarctic Porifera. Both sponge species generally contained higher amounts of pollutants than the surrounding sediment and seawater, thus demonstrating their accumulation capability. The structure of the associated prokaryotic communities, even if differing at order and genus levels between the two sponge species, was dominated by Proteobacteria and Bacteroidota (with Archaea abundances that were negligible) and appeared in sharp contrast to communities inhabiting the bulk environment. Discussions Results suggested that some bacterial groups associated with H. dancoi and H. scotti were significantly (positively or negatively) correlated to the occurrence of certain contaminants.
Collapse
Affiliation(s)
- Maria Papale
- Institute of Polar Sciences, National Research Council, Messina, Italy
| | - Stefania Giannarelli
- Department of Chemical and Industrial Chemistry, University of Pisa, Pisa, Italy
| | | | - Lisa Ghezzi
- Department of Earth Sciences, University of Pisa, Pisa, Italy
| | | | - Carmen Rizzo
- Institute of Polar Sciences, National Research Council, Messina, Italy
- Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Messina, Italy
| |
Collapse
|
9
|
Raudonytė-Svirbutavičienė E, Jokšas K, Stakėnienė R, Rybakovas A, Nalivaikienė R, Višinskienė G, Arbačiauskas K. Pollution patterns and their effects on biota within lotic and lentic freshwater ecosystems: How well contamination and response indicators correspond? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122294. [PMID: 37544404 DOI: 10.1016/j.envpol.2023.122294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/04/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
Aquatic environments are often severely polluted with chemical substances of anthropogenic origin, which can pose a potential threat to aquatic organisms and human health. In this study, patterns and sources of heavy metals (HMs, 6 metals) and polycyclic aromatic hydrocarbons (PAHs, 16 hydrocarbons), contamination indicators, environmental genotoxicity measures and metrics of ecological status in lotic and lentic ecosystems were collated for the first time. Chemical analysis has confirmed previously reported long-term contamination at certain study sites. The sediments of Lake Talkša, located in a city and characterized by exclusive anthropogenic pressure, exhibited the highest levels of contamination by both HMs and PAHs. Through positive matrix factorization (PMF) analysis, vehicle and industrial emissions were identified as the primary sources of HMs and PAHs. Our results revealed that frequencies of genotoxic aberrations were higher in river sites compared to lakes, with the highest genotoxic risk observed in the Nemunas River below industrial cities Alytus and Kaunas. Surprisingly, even the severely contaminated Lake Talkša showed only a "moderate" grade of genotoxic risk, highlighting the potential for adaptation of biota to long-term contamination especially in lentic ecosystems. The ecological quality status assessed by macroinvertebrate metrics, which may be sensitive to observed high biological contamination, appeared to be unrelated to contamination patterns. Consequently, to obtain the robust information on anthropogenic contamination and its effects, a combination of various assessment methods and metrics should be employed.
Collapse
Affiliation(s)
| | - Kęstutis Jokšas
- Nature Research Centre, Akademijos St. 2, 08412, Vilnius, Lithuania; Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko St. 24, LT-03225, Vilnius, Lithuania.
| | - Rimutė Stakėnienė
- Nature Research Centre, Akademijos St. 2, 08412, Vilnius, Lithuania.
| | | | - Reda Nalivaikienė
- Nature Research Centre, Akademijos St. 2, 08412, Vilnius, Lithuania.
| | | | - Kęstutis Arbačiauskas
- Nature Research Centre, Akademijos St. 2, 08412, Vilnius, Lithuania; Vilnius University, Life Sciences Center, 7 Saulėtekio Ave, LT- 10257 Vilnius, Lithuania.
| |
Collapse
|
10
|
Lam KL, Tam NFY, Xu SJL, Mo WY, Chan PL, Lee FWF. Intra- and inter-habitat variation in sediment heavy metals, antibiotics and ecological risks in Mai Po RAMSAR, China. MARINE POLLUTION BULLETIN 2023; 193:115178. [PMID: 37354831 DOI: 10.1016/j.marpolbul.2023.115178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
Distribution of heavy metals (HMs) and antibiotics (ABs) in surface sediments of three habitats: mudflat, mangrove and gei wai (inter-tidal shrimp ponds), at Mai Po RAMSAR were determined with inductively coupled plasma and liquid chromatograph tandem - mass spectrometry, respectively. Eight HMs (Cr, As, Pb, Cd, Mn, Ni, Cu and Zn), and ten ABs (tetracyclines, quinolones, macrolides and sulphonamides) were detected in all habitats, with relatively lower concentration in gei wai. Ecological risk assessment based on PNEC revealed that HMs posed a higher ecological risk to microorganisms than ABs. All metals except Mn were above their respective threshold effect levels according to sediment quality guidelines, indicating their potential toxicity to benthos. The enrichment factor and geo-accumulation index on background values suggested sediments were moderately polluted by Zn, Cu and Cd, possibly from anthropogenic inputs. This study implies that HMs pollution must be prevented through proper regulation of agricultural and industrial discharge.
Collapse
Affiliation(s)
- Kit-Ling Lam
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong SAR, China
| | - Nora Fung-Yee Tam
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong SAR, China; Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Steven Jing-Liang Xu
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong SAR, China
| | - Wing-Yin Mo
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong SAR, China
| | - Ping-Lung Chan
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong SAR, China.
| | - Fred Wang-Fat Lee
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong SAR, China; Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
11
|
Wang L, Yang F, Hu M, Chen G, Wang Y, Xue H, Fu D, Bai H, Hu G, Cao H. GPX4 utilization by selenium is required to alleviate cadmium-induced ferroptosis and pyroptosis in sheep kidney. ENVIRONMENTAL TOXICOLOGY 2023; 38:962-974. [PMID: 36655595 DOI: 10.1002/tox.23740] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd), a persistent and harmful heavy metal in the environment, can accumulate in the kidneys and cause nephrotoxicity. Selenium (Se) is a beneficial natural element that alleviates the toxicity of Cd. To ascertain the relationship between the protective mechanism of Se against Cd nephrotoxicity and ferroptosis and pyroptosis, we randomly divided 48 sheep into four groups and treated them with Cd chloride and/or sodium selenite for 50 days. The data confirmed that Cd apparently resulted in impaired kidney histology and function, depletion of GSH and nicotinamide adenine dinucleotide phosphate contents and CAT and SOD activities, elevation of MDA level, as well as the reduction in selenoprotein mRNA (GPX1, GPX4, TXNRD1, SELP) levels and GPX4 protein level and immunofluorescence intensity. Meanwhile, Cd induced ferroptosis by causing iron overload, up-regulating PTGS2, NCOA4, TFR1, and LC3B mRNA levels and PTGS2 and LC3B-II/LC3B-I protein levels, reducing SLC7A11 and FTH1 mRNA and protein levels, and enhancing the immunofluorescence co-localization of FTH1/LC3B. Moreover, it was also found that Cd triggered pyroptosis, which was evidenced by the increase of NLRP3 immunohistochemical positive signal, GSDMD-N immunofluorescence intensity, IL-1β and IL-18 release and the levels of pyroptosis-related mRNA (NLRP3, ASC, Caspase-1, GSDMD, IL-1β and IL-18) and proteins (NLRP3, Caspase-1p20, GSDMD-N, IL-1β and IL-18). Notably, Se increased the expression level of GPX4 and the transcription factors TFAP2c and SP1, and ameliorated Cd-induced changes in aforementioned factors. In conclusion, GPX4 utilization by Se might be required to alleviate Cd-induced ferroptosis and pyroptosis in sheep kidney.
Collapse
Affiliation(s)
- Li Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Mingwen Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guiping Chen
- Department of Agriculture and Rural Affairs of Jiangxi Province, Jiangxi Provincial Agricultural Ecology and Resource Protection Station, Nanchang, Jiangxi, China
| | - Yun Wang
- Jiangxi Biotech Vocational College, Department of Animal Science and Technology, Nanchang, Jiangxi, China
| | - Haotian Xue
- Jiangxi Biotech Vocational College, Department of Animal Science and Technology, Nanchang, Jiangxi, China
| | | | - He Bai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
12
|
Delhaye LJ, Elskens M, Ricaurte-Villota C, Cerpa L, Kochzius M. Baseline concentrations, spatial distribution and origin of trace elements in marine surface sediments of the northern Antarctic Peninsula. MARINE POLLUTION BULLETIN 2023; 187:114501. [PMID: 36584434 DOI: 10.1016/j.marpolbul.2022.114501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Increased human activity in the Antarctic Peninsula combined with accelerated melting of its glaciers highlights the importance of monitoring trace element concentrations. Surface sediment samples were collected around King George Island, Hope Bay and in the Bransfield Strait in February 2020 and were analysed by X-ray fluorescence spectroscopy and inductively coupled plasma mass spectrometry. The methods display a good correlation. Our results show clear distinctions between these regions for selected elements with high local heterogeneities. Hope Bay exhibited lower concentrations of Fe, Mn, Co, V, Zn while most stations in the Bransfield Strait and around King George Island showed moderate to significant enrichment in Cu, As and Cd. Twelve stations presented a moderate ecological risk. The consistency of our values supports a natural rather than anthropogenic origin, possibly related to volcanism and the geology of the area. However, our results suggest an increase in Cr that should be further investigated.
Collapse
Affiliation(s)
- Louise J Delhaye
- Marine Biology, Ecology & Biodiversity, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium.
| | - Marc Elskens
- Analytical, Environmental and Geo-Chemistry Laboratory, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Constanza Ricaurte-Villota
- Program of Marine and Coastal Geosciences, Institute of Marine and Coastal Research (INVEMAR), Santa Marta, Colombia
| | - Luis Cerpa
- Instituto Geológico Minero y Metalúrgico (INGEMMET), Lima, Peru
| | - Marc Kochzius
- Marine Biology, Ecology & Biodiversity, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| |
Collapse
|
13
|
da Silva JRMC, Bergami E, Gomes V, Corsi I. Occurrence and distribution of legacy and emerging pollutants including plastic debris in Antarctica: Sources, distribution and impact on marine biodiversity. MARINE POLLUTION BULLETIN 2023; 186:114353. [PMID: 36436273 DOI: 10.1016/j.marpolbul.2022.114353] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Since the first explorers reached Antarctica, their activities have quickly impacted both land and sea and thus, together with the long-range transport, hazardous chemicals began to accumulate. It is commonly recognized that anthropogenic pollution in Antarctica can originate from either global or local sources. Heavy metals, organohalogenated compounds, hydrocarbons, and (more recently) plastic, have been found in Antarctic biota, soil sediments, seawater, air, snow and sea-ice. Studies in such remote areas are challenging and expensive, and the complexity of potential interactions occurring in such extreme climate conditions (i.e., low temperature) makes any accurate prediction on potential impacts difficult. The present review aims to summarize the current state of knowledge on occurrence and distribution of legacy and emerging pollutants in Antarctica, such as plastic, from either global or local sources. Future actions to monitor and mitigate any potential impact on Antarctic biodiversity are discussed.
Collapse
Affiliation(s)
- José Roberto Machado Cunha da Silva
- Department of Cell and Developmental Biology, Institute of Biomedical Science / CEBIMar (Centro de Biologia Marinha), University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP: 05509900, Brazil.
| | - Elisa Bergami
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| | - Vicente Gomes
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, São Paulo, SP 05508-120, Brazil
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| |
Collapse
|
14
|
Wang Q, Shi S, Liu X. Functional diversity of macrofaunal assemblages as indicators to assess heavy metal pollution in the Bohai Sea, China. MARINE POLLUTION BULLETIN 2022; 185:114265. [PMID: 36283153 DOI: 10.1016/j.marpolbul.2022.114265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Functional diversity of macrofaunal assemblages can reflect the composition and differences of functional traits, indicating their response to various contaminants, especially heavy metal pollution. We explored the effects of environment variables over gradients of heavy metal pollution on macrofaunal assemblages, using biological traits analysis, generalized linear model (GLM), AZTI marine biotic index (AMBI), and various biodiversity indexes. The RLQ (co-inertia analysis) and fourth-corner approaches were used to investigate the specific response of functional traits to heavy metal pollution. Most sites were environmentally degraded by heavy metal pollution and macrofaunal body size had a miniaturization trend. There was a significant correlation between functional diversity indexes and AMBI. The RLQ and fourth-corner analysis and GLM models showed that heavy metal and natural environmental gradients had a profound effect on functional diversity. The functional divergence and dispersion indexes, along with the abundance of some specific species, were appropriate indexes for heavy metal pollution.
Collapse
Affiliation(s)
- Qi Wang
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Shujie Shi
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiaoshou Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
15
|
Taylor S, Terkildsen M, McQuilty R, Lee D, Wing-Simpson A, Gray R. Non-essential heavy metals and protective effects of selenium against mercury toxicity in endangered Australian sea lion (Neophoca cinerea) pups with hookworm disease. ENVIRONMENT INTERNATIONAL 2022; 169:107521. [PMID: 36148712 DOI: 10.1016/j.envint.2022.107521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/06/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
The endangered Australian sea lion, Neophoca cinerea, faces ongoing population decline. Identification of key threats to N. cinerea population recovery, including disease and pollutants, is an objective of the species' recovery plan. Previous studies have identified Uncinaria sanguinis, an intestinal nematode, as a significant cause of disease and mortality in N. cinerea pups. Given the impact of heavy metals on the immune response, investigation of these pollutants is critical. To this end, the concentrations of arsenic (As), total mercury (Hg), cadmium (Cd), chromium (Cr), lead (Pb) and selenium (Se) were determined in blood collected from N. cinerea pups sampled during the 2017/18, 2019 and 2020/21 breeding seasons at Seal Bay Conservation Park, South Australia. Significant differences (p < 0.05) in Hg, As, Cr, and Se concentrations and molar ratio of Se:Hg were seen between breeding seasons. Pup age, maternal parity and inter-individual foraging behaviour were considered factors driving these differences. The concentrations of Hg (357, 198 and 241 µg/L) and As (225, 834 and 608 µg/L) were high in 2017/18, 2019 and 2020/21 respectively with Hg concentrations in the blood of N. cinerea pups above toxicological thresholds reported for marine mammals. The concentration of Se (1332, 647, 763 µg/L) and molar ratio of Se:Hg (9.47, 7.98 and 6.82) were low compared to other pinniped pups, indicating potential vulnerability of pups to the toxic effects of Hg. Significant (p < 0.05) negative associations for Pb and Cd with several red blood cell parameters suggest they could be exacerbating the anaemia caused by hookworm disease. Temporal (age-related) changes in element concentrations were also seen, such that pup age needs to be considered when interpreting bioaccumulation patterns. Further investigation of the role of elevated heavy metal concentrations on N. cinerea pup health, disease and development is recommended, particularly with respect to immunological impacts.
Collapse
Affiliation(s)
- Shannon Taylor
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia
| | | | - Robert McQuilty
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, Sydney 2050, Australia
| | - David Lee
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, Sydney 2050, Australia
| | - Aileen Wing-Simpson
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, Sydney 2050, Australia
| | - Rachael Gray
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
16
|
Zhang M, Tang L, Ji H. Elements and Pb isotopic composition as evidence for contaminant-metal dispersal in surficial soil and sediment of drinking water source in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155682. [PMID: 35525363 DOI: 10.1016/j.scitotenv.2022.155682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Pb pollution in soils and sediments has adverse effects on human health and the environment. Identifying and quantifying the relative contribution of Pb pollution sources are key issues to control Pb pollution. In this study, U, Th and Pb concentration, Pb enrichment coefficient and Pb isotopic composition in the sediment and surface soil samples of the Miyun Reservoir and its upstream Chaohe, Baihe and Tanghe River were analysed to determine the source and relative contribution of Pb pollution. Results show a significant enrichment of Pb in the sediments of the Baihe River (2.7 ± 0.9). The enrichment of Pb in the soils in Baihe (8.0 ± 10.5) and Tanghe (313.3 ± 1139.4) is more obvious, and Pb is unevenly distributed in the soil in the Tanghe Basin. In general, soil is more seriously affected by human activities than sediment. The Pb isotope ratio indicates that mining activities and natural background are the main sources of Pb in soil and sediment. Based on the binary mixture model, the average contribution rate of mining activities to Pb pollution in the sediment is 21.5%, of which the contribution rates in the Miyun Reservoir, Chaohe, Baihe and Tanghe River are 14.86%, 17.20%, 41.03% and 26.32%, respectively. The average contribution rate of mining activities to soil Pb is 43.1%, among which the contribution rates in the Chaohe River Basin, Baihe River Basin and Tanghe River Basin are 58.79%, 60.98% and 36.24%, respectively. In summary, soils and sediments in the basin are affected by mining activities to varying degrees. Nevertheless, natural background is still the main source of Pb in the sediments in the basin and in soil in the Tanghe River. Mining activities are the main sources of Pb in soils in the Chaohe and Baihe River.
Collapse
Affiliation(s)
- Meng Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongbing Ji
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
17
|
O’Brien KM, Oldham CA, Sarrimanolis J, Fish A, Castellini L, Vance J, Lekanof H, Crockett EL. Warm acclimation alters antioxidant defences but not metabolic capacities in the Antarctic fish, Notothenia coriiceps. CONSERVATION PHYSIOLOGY 2022; 10:coac054. [PMID: 35935168 PMCID: PMC9346567 DOI: 10.1093/conphys/coac054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The Southern Ocean surrounding the Western Antarctic Peninsula region is rapidly warming. Survival of members of the dominant suborder of Antarctic fishes, the Notothenioidei, will likely require thermal plasticity and adaptive capacity in key traits delimiting thermal tolerance. Herein, we have assessed the thermal plasticity of several cellular and biochemical pathways, many of which are known to be associated with thermal tolerance in notothenioids, including mitochondrial function, activities of aerobic and anaerobic enzymes, antioxidant defences, protein ubiquitination and degradation in cardiac, oxidative skeletal muscles and gill of Notothenia coriiceps warm acclimated to 4°C for 22 days or 5°C for 42 days. Levels of triacylglycerol (TAG) were measured in liver and oxidative and glycolytic skeletal muscles, and glycogen in liver and glycolytic muscle to assess changes in energy stores. Metabolic pathways displayed minimal thermal plasticity, yet antioxidant defences were lower in heart and oxidative skeletal muscles of warm-acclimated animals compared with animals held at ambient temperature. Despite higher metabolic rates at elevated temperature, energy storage depots of TAG and glycogen increase in liver and remain unchanged in muscle with warm acclimation. Overall, our studies reveal that N. coriiceps displays thermal plasticity in some key traits that may contribute to their survival as the Southern Ocean continues to warm.
Collapse
Affiliation(s)
- Kristin M O’Brien
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 USA
| | - Corey A Oldham
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 USA
| | - Jon Sarrimanolis
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 USA
| | - Autumn Fish
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 USA
| | - Luke Castellini
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 USA
| | - Jenna Vance
- Department of Biological Sciences, Ohio University, Athens, OH 45701 USA
| | - Hayley Lekanof
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 USA
| | | |
Collapse
|
18
|
Mbandzi N, Vincent Nakin MD, Oyedeji AO. Temporal and spatial variation of heavy metal concentration in four limpet species along the southeast coast of South Africa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119056. [PMID: 35227843 DOI: 10.1016/j.envpol.2022.119056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/30/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Rocky shores are experiencing heavy metal (HM) pollution as a result of anthropogenic activities. The information on the use of limpets Scutellastra spp. and Cellana sp. as bioindicators is limited. This study aimed to assess HM concentration in water samples, soft and shell tissues of four limpet species, Scutellastra granularis, S. longicosta; S. cochlear and Cellana capensis along the southeast coast of South Africa. Individual species were collected between 2019 and 2020 in four sites and four seasons during spring low tide. The physico-chemical parameters were simultaneously measured in situ with limpet species collection for correlation with HM. Concentration of Zn, As, Cd, Cu, Fe, Pb, Hg and Ni in limpet tissues were analysed using inductively coupled plasma optical emission spectrometry (ICP-OES). Data were explored using SPSS v26, GraphPad Prism v5, Primer v7 and MS-excel 2016. Temporal/spatial differences of physico-chemicals and HM in limpet tissues were evident. Heavy metal concentration was species specific e.g. Fe, Ni and were high in S. granularis, and Hg, As, Pb in C. capensis. The lower shore species S. longicosta and S. cochlear were notable accumulators of Zn and Cd. Limpet soft tissues concentrated 5-10 times magnitude of HM than shell tissues. This study provided a baseline information on the concentration of HM in marine limpets along the southeast coast of South Africa and suggest limpets as bioindicator species.
Collapse
Affiliation(s)
- Nokubonga Mbandzi
- Department of Biological and Environmental Science, Walter Sisulu University, Mthatha, South Africa; Risk and Vulnerability Science Centre, Walter Sisulu University, Mthatha, South Africa.
| | | | | |
Collapse
|
19
|
Palmer TA, Klein AG, Sweet ST, Frazier AJ, Montagna PA, Wade TL, Beseres Pollack J. Using epibenthic fauna as biomonitors of local marine contamination adjacent to McMurdo Station, Antarctica. MARINE POLLUTION BULLETIN 2022; 178:113621. [PMID: 35421642 DOI: 10.1016/j.marpolbul.2022.113621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Ten benthic fauna taxa in a polluted marine area adjacent to McMurdo Station, Antarctica were deemed to be potential biomonitors because PCBs, DDTs, PAHs, copper, lead and/or zinc in their tissues were significantly higher than in tissues of taxa living in reference areas (p < 0.05). Concentrations of PCBs and DDT were highest in Trematomus (fish). Total PAH concentrations were highest in Alcyonium antarcticum (soft coral), Isotealia antarctica (anemone) and L. elliptica. Copper and lead concentrations were highest in Laternula elliptica (bivalve) and Flabegraviera mundata (polychaete), and lowest in Trematomus and Parbolasia corrugatus (nemertean). However, copper concentrations were even higher in the asteroids Perknaster fuscus antarcticus, Odontaster validus and Psilaster charcoti. Bioaccumulation factors for different species were highest for PCBs and DDT, and lowest for lead. Bioaccumulation of some contaminants are likely prevalent in benthic taxa at McMurdo Station, but concentrations are usually low relative to human consumption standards.
Collapse
Affiliation(s)
- Terence A Palmer
- Harte Research Institute, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Unit 5869, Corpus Christi, TX 78412-5869, USA.
| | - Andrew G Klein
- Department of Geography, Texas A&M University, College Station, TX 77843, USA
| | - Stephen T Sweet
- Geochemical and Environmental Research Group, Texas A&M University, College Station, TX 77843, USA
| | - Amanda J Frazier
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| | - Paul A Montagna
- Harte Research Institute, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Unit 5869, Corpus Christi, TX 78412-5869, USA
| | - Terry L Wade
- Geochemical and Environmental Research Group, Texas A&M University, College Station, TX 77843, USA
| | - Jennifer Beseres Pollack
- Harte Research Institute, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Unit 5869, Corpus Christi, TX 78412-5869, USA
| |
Collapse
|
20
|
Fonseca VG, Kirse A, Giebner H, Vause BJ, Drago T, Power DM, Peck LS, Clark MS. Metabarcoding the Antarctic Peninsula biodiversity using a multi-gene approach. ISME COMMUNICATIONS 2022; 2:37. [PMID: 37938273 PMCID: PMC9723778 DOI: 10.1038/s43705-022-00118-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 07/04/2023]
Abstract
Marine sediment communities are major contributors to biogeochemical cycling and benthic ecosystem functioning, but they are poorly described, particularly in remote regions such as Antarctica. We analysed patterns and drivers of diversity in metazoan and prokaryotic benthic communities of the Antarctic Peninsula with metabarcoding approaches. Our results show that the combined use of mitochondrial Cox1, and 16S and 18S rRNA gene regions recovered more phyla, from metazoan to non-metazoan groups, and allowed correlation of possible interactions between kingdoms. This higher level of detection revealed dominance by the arthropods and not nematodes in the Antarctic benthos and further eukaryotic diversity was dominated by benthic protists: the world's largest reservoir of marine diversity. The bacterial family Woeseiaceae was described for the first time in Antarctic sediments. Almost 50% of bacteria and 70% metazoan taxa were unique to each sampled site (high alpha diversity) and harboured unique features for local adaptation (niche-driven). The main abiotic drivers measured, shaping community structure were sediment organic matter, water content and mud. Biotic factors included the nematodes and the highly abundant bacterial fraction, placing protists as a possible bridge for between kingdom interactions. Meiofauna are proposed as sentinels for identifying anthropogenic-induced changes in Antarctic marine sediments.
Collapse
Affiliation(s)
- V G Fonseca
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, UK.
| | - A Kirse
- Zoological Research Museum Alexander Koenig (ZFMK), Bonn, Germany
| | - H Giebner
- Zoological Research Museum Alexander Koenig (ZFMK), Bonn, Germany
| | - B J Vause
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - T Drago
- Portuguese Institute for Sea and Atmosphere (IPMA), Tavira, Portugal
- Institute Dom Luiz (IDL), University of Lisbon, Lisbon, Portugal
| | - D M Power
- Centre of Marine Sciences (CCMAR), Faro, Portugal
| | - L S Peck
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - M S Clark
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| |
Collapse
|
21
|
Li J, Zhang D, Gao F, Sun C, Cao W, Jiang F. Occurrence and spatial distribution of trace metals in seawaters of the Drake Passage and Antarctic Peninsula. MARINE POLLUTION BULLETIN 2022; 176:113387. [PMID: 35150986 DOI: 10.1016/j.marpolbul.2022.113387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
In this study, surface seawater was collected from 82 stations in the Drake Passage and Antarctic Peninsula sea area, and the distribution characteristics and correlations of 11 trace elements (i.e., V, Cr, Mn, Co, Cu, Zn, As, Mo, Cd, Pb, and U) in the seawater were analyzed. Results showed remarkable differences in the concentration of different elements, among which those of Mn (53.15%), Mo (22.77%), Zn (9.81%), and U (6.23%) were relatively high. The concentration of trace elements in Drake Passage water was relatively low, likely because a westerly drift that enhances large circulating currents exists in the sea area, thereby affecting the distribution of substances in the water. Mn, Co, Cu, Zn, Cd, and Pb showed relatively high concentrations at more stations than the other elements, and the high concentrations of Mn, Co, and Cd were mainly found in shallow water areas. UV, MoV, AsV, AsMo, AsU, and MoU demonstrated good linear correlations with correlation coefficients in the range of 0.878-0.961. These results could provide support for further explorations of the environmental behavior of trace elements in Antarctica.
Collapse
Affiliation(s)
- Jingxi Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Di Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Fenglei Gao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Chengjun Sun
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Qingdao National Laboratory of Marine Science and Technology, Laboratory of Marine Drugs and Biological Products, Qingdao 266071, China.
| | - Wei Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Fenghua Jiang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|
22
|
Raudonytė-Svirbutavičienė E, Stakėnienė R, Jokšas K, Valiulis D, Byčenkienė S, Žarkov A. Distribution of polycyclic aromatic hydrocarbons and heavy metals in soil following a large tire fire incident: A case study. CHEMOSPHERE 2022; 286:131556. [PMID: 34311403 DOI: 10.1016/j.chemosphere.2021.131556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/22/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
In October 2019, a fire occurred in a tire-recycling facility in Alytus (Lithuania), where around 5000 t of tires had been stored. Only after 10 days was the fire completely extinguished, and the potential contamination of the surrounding environment has raised a large public concern. With an aim to assess the pollution level and pollutants distribution in the surrounding area, we conducted a study on polycyclic aromatic hydrocarbons (PAHs) and heavy metals. High concentrations of total PAHs were found inside the fire zone (315-5872 ng g-1 dw), whereas those detected in the surrounding soils were significantly lower (1.9-72 ng g-1 dw). Some areas with higher anthropogenic impact were found to contain PAH concentrations as high as 70198 ng g-1 dw. Concentrations of Cr, Zn, Ni, Cu, Pb were in the range of 1.1-93.9; 20.7-227.5; 0.2-35.7; 0.9-21.3; 0.9-102.9 μg g-1, respectively. Zn was the prevailing metal in the fire zone, elevated concentrations of Cr, Ni and Cu were also detected in this area. Principal component analysis (PCA) revealed several locations affected by the fire. The one located the closest to the fire zone was found to be highly contaminated with the heavy metals, just like the whole fire zone. Increase of the carcinogenic risk was observed in the fire zone, but no significant risk was detected in the fire-affected stations. The highest carcinogenic risk was detected in the zones with high anthropogenic loading (traffic and urban activities).
Collapse
Affiliation(s)
| | - Rimutė Stakėnienė
- SRI Nature Research Centre, Institute of Geology and Geography, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| | - Kęstutis Jokšas
- SRI Nature Research Centre, Institute of Geology and Geography, Akademijos Str. 2, LT-08412, Vilnius, Lithuania; Institute of Geosciences, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania
| | - Darius Valiulis
- Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300, Vilnius, Lithuania
| | - Steigvilė Byčenkienė
- Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300, Vilnius, Lithuania
| | - Aleksej Žarkov
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania
| |
Collapse
|
23
|
Marrone A, La Russa D, Brunelli E, Santovito G, La Russa MF, Barca D, Pellegrino D. Antarctic Fish as a Global Pollution Sensor: Metals Biomonitoring in a Twelve-Year Period. Front Mol Biosci 2021; 8:794946. [PMID: 34957222 PMCID: PMC8695606 DOI: 10.3389/fmolb.2021.794946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
Antarctica represents a unique natural laboratory for ecotoxicological studies as it is characterized by low internal pollutants emissions but high external contamination levels. Indeed, warm temperatures promote pollutant evaporation (low latitudes), while cool temperatures (high latitudes) promote its deposition from the atmosphere on land/water. Metals are the most important pollutants in ecosystems and represent a serious and global threat to aquatic and terrestrial organisms. Since 2000, the risks posed by metals have led many States to ratify protocols aimed at reducing their emissions. Endemic Antarctic organisms represent excellent bioindicators in order to evaluate the efficacy of global measures adopted to mitigate pollutants release into the environment. In this study (supported by PNRA18-00133), we estimated the metals contamination levels and the metallothionein-1 expression in liver samples of two Antarctic fish species, the icefish Chionodraco hamatus and the red-blooded Trematomus bernacchii, collected in the same area during 2002 and 2014. The chosen area is located in the Ross Sea, a unique area as it is also isolated from the rest of the Southern Ocean. The analysis of contamination trends throughout this period showed, in both species, a significant increase over time of metals bioaccumulation and metallothionein-1 expression. In addition, our result clearly indicated that the detoxifying ability of the two organisms analyzed greatly differs, probably due to haemoglobin presence/absence. Our work represents an important early step to obtain valuable information in conservation strategies for both Antarctic and non-Antarctic ecosystems.
Collapse
Affiliation(s)
- Alessandro Marrone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Daniele La Russa
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | | | | | - Donatella Barca
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Daniela Pellegrino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
24
|
Zhang C, Shi C, Zhang H, Yu K, Wang Y, Jiang J, Kan G. Metabolomics reveals the mechanism of Antarctic yeast Rhodotorula mucliaginosa AN5 to cope with cadmium stress. Biometals 2021; 35:53-65. [PMID: 34731410 DOI: 10.1007/s10534-021-00350-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023]
Abstract
Heavy metal pollution in Antarctica has far exceeded expectations. Antarctic yeast is widely present in polar marine environment. The mechanisms of metabolomics effect of heavy metal on polar yeast have not been reported previously. In this study, gas chromatography-mass spectrometry (GC-MS) wascarried out to performed the metabolite profiling analysis of Antarctic sea-ice yeast Rhodotorula mucilaginosa AN5 exposed to different cadmium (Cd) stresses of 5 mM (HM5), 10 mM (HM10) and 20 mM (HM20), respectively. Metabolic profile analysis showed that the composition and contents of cellular metabolites have been altered by cadmium. 93 different metabolites were identified altogether, among which 23, 58 and 81 different metabolites were found in HM5, HM10 and HM20 group respectively. MetaboAnalyst analysis showed that in HM5, HM10 and HM20 groups, 12, 24 and 31 metabolic pathways were involved in the stress of cadmium to R. mucilaginosa, respectively. By contrasting with Kyoto Encyclopedia of Genes and Genomes database, we discovered that exposure of yeast AN5 to Cd stress resulted in profound biochemical changes including amino acids, organic acids and saccharides. These results will supply a nonnegligible basis of studying the adaptive resistance mechanism of Antarctic yeast Rhodotorula mucilaginosa to heavy metal.
Collapse
Affiliation(s)
- Chuanzhou Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Huancui District, Weihai, 264209, Shandong, China
| | - Cuijuan Shi
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Huancui District, Weihai, 264209, Shandong, China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Huancui District, Weihai, 264209, Shandong, China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Huancui District, Weihai, 264209, Shandong, China
| | - Yingying Wang
- School of Science, Harbin Institute of Technology (Weihai), Weihai, 264209, Shandong, China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Huancui District, Weihai, 264209, Shandong, China.,School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Huancui District, Weihai, 264209, Shandong, China.
| |
Collapse
|
25
|
Soledad BRM, Oscar TM, Sergio GI, Alicia SV, José Luis AN, Adrián SSS, Catalina GE, Víctor RG. Source of detritus and toxic elements of seabed sediments from Acapulco Bay (southern Mexico) and their ecological risk. MARINE POLLUTION BULLETIN 2021; 172:112797. [PMID: 34391010 DOI: 10.1016/j.marpolbul.2021.112797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Total concentrations of Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, V, Zn, and As together with Sr and Pb isotopic compositions of seabed sediments from the worldwide famous tourist destination of Acapulco Bay, Guerrero (southern Mexico) were determined to reveal the origin of detritus and toxic elements (TEs), their potential natural and anthropogenic sources, elemental distribution and their ecological risk. Sediments derive entirely from the nearby Acapulco Granite and their concentrations of TEs are variable and rather low, although, several are above the Local Geochemical Baseline in some sites of the bay. The enrichment factor (EF) and Pb isotopes indicate that TEs derive from the Acapulco Granite with contributions of an anthropogenic source represented, very likely, by ship-bottom paints. Wastewaters are a significant source of Pb and Cu. The ecological risk of TEs is low and only Cu represents a moderate ecological risk in a few sites.
Collapse
Affiliation(s)
- Bahena-Román Marbella Soledad
- Maestría en Recursos Naturales y Ecología, Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Gran Vía Tropical 20, Fraccionamiento Las Playas, Acapulco de Juárez, Guerrero, Mexico
| | - Talavera-Mendoza Oscar
- Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, ExHacienda San Juan Bautista s/n, 40323 Taxco el Viejo, Guerrero, Mexico.
| | - García-Ibáñez Sergio
- Maestría en Recursos Naturales y Ecología, Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Gran Vía Tropical 20, Fraccionamiento Las Playas, Acapulco de Juárez, Guerrero, Mexico
| | - Sarmiento-Villagrana Alicia
- Facultad de Ciencias Agropecuarias y Ambientales, Universidad Autónoma de Guerrero, Periférico Poniente s/n Frente a la Colonia Villa de Guadalupe, CP40040 Iguala de la Independencia, Guerrero, Mexico
| | - Aguirre-Noyola José Luis
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, AP. 565-A, CP 62210 Cuernavaca, Morelos, Mexico
| | - Salgado-Souto Sergio Adrián
- Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, ExHacienda San Juan Bautista s/n, 40323 Taxco el Viejo, Guerrero, Mexico
| | - Gómez-Espinosa Catalina
- Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, ExHacienda San Juan Bautista s/n, 40323 Taxco el Viejo, Guerrero, Mexico
| | - Rosas-Guerrero Víctor
- Escuela Superior en Desarrollo Sustentable, Universidad Autónoma de Guerrero, Carretera Nacional Acapulco-Zihuatanejo km 106+900. Col.Las Tunas, 40900 Técpan de Galeana, Guerrero, Mexico
| |
Collapse
|
26
|
Lee Y, Yoon DS, Lee YH, Kwak JI, An YJ, Lee JS, Park JC. Combined exposure to microplastics and zinc produces sex-specific responses in the water flea Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126652. [PMID: 34329117 DOI: 10.1016/j.jhazmat.2021.126652] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 05/07/2023]
Abstract
Microplastics are ubiquitous environmental pollutants and a great threat to the aquatic environment. Due to their small size (ranging from 1 µm to 5 mm), microplastics be easily ingested by a wide range of organisms and can serve as a vector for various contaminants. In this study, additive or possible synergistic effects of microplastics and zinc were demonstrated through sex-specific alterations in behavior, redox status, and modulation of detoxification-related genes in Daphnia magna, with males being more sensitive than females with stronger modulations of antioxidant responses, particularly on glutathione S-transferases expressions. Furthermore, we demonstrated microplastics may act as vectors for metals (Zn2+) in the aquatic environment in D. magna, with reduced bio-concentration of the total Zn concentration, inducing greater toxicity. Our findings demonstrated synergistic toxicity of the heavy metal Zn and microplastics and could contribute to greater understanding of sex-specific effects of microplastics in aquatic organisms.
Collapse
Affiliation(s)
- Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Deok-Seo Yoon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin Il Kwak
- Department of Environmental Health Science, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
27
|
Di Giglio S, Agüera A, Pernet P, M'Zoudi S, Angulo-Preckler C, Avila C, Dubois P. Effects of ocean acidification on acid-base physiology, skeleton properties, and metal contamination in two echinoderms from vent sites in Deception Island, Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142669. [PMID: 33268256 DOI: 10.1016/j.scitotenv.2020.142669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 06/12/2023]
Abstract
Antarctic surface waters are expected to be the first to experience severe ocean acidification (OA) with carbonate undersaturation and large decreases in pH forecasted before the end of this century. Due to the long stability in environmental conditions and the relatively low daily and seasonal variations to which they are exposed, Antarctic marine organisms, especially those with a supposedly poor machinery to eliminate CO2 and protons and with a heavily calcified skeleton like echinoderms, are hypothesized as highly vulnerable to these environmental shifts. The opportunities offered by the natural pH gradient generated by vent activities in Deception Island caldera, Western Antarctic Peninsula, were used to investigate for the first time the acid-base physiologies, the impact of OA on the skeleton and the impact of pH on metal accumulation in the Antarctic sea star Odontaster validus and sea urchin Sterechinus neumayeri. The two species were sampled in four stations within the caldera, two at pH (total scale) 8.0-8.1 and two at reduced pH 7.8. Measured variables were pH, alkalinity, and dissolved inorganic carbon of the coelomic fluid; characteristic fracture force, stress and Young's modulus using Weibull statistics and Cd, Cu, Fe, Pb and Zn concentrations in the integument, gonads and digestive system. Recorded acid-base characteristics of both studied species fit in the general picture deduced from temperate and tropical sea stars and sea urchins but conditions and possibly confounding factors, principally food availability and quality, in the studied stations prevented definitive conclusions. Reduced seawater pH 7.8 and metals had almost no impact on the skeleton mechanical properties of the two investigated species despite very high Cd concentrations in O. validus integument. Reduced pH was correlated to increased contamination by most metals but this relation was weak. Translocation and caging experiments taking into account food parameters are proposed to better understand future processes linked to ocean acidification and metal contamination in Antarctic echinoderms.
Collapse
Affiliation(s)
- S Di Giglio
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP 160/15, Avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium.
| | - A Agüera
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP 160/15, Avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium; Institute of Marine Research in Norway, Austevoll Research Station, Sauganeset 16, 5392, Norway
| | - Ph Pernet
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP 160/15, Avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium
| | - S M'Zoudi
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP 160/15, Avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium
| | - C Angulo-Preckler
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - C Avila
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Ph Dubois
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP 160/15, Avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium
| |
Collapse
|
28
|
Basu S, Chanda A, Gogoi P, Bhattacharyya S. Organochlorine pesticides and heavy metals in the zooplankton, fishes, and shrimps of tropical shallow tidal creeks and the associated human health risk. MARINE POLLUTION BULLETIN 2021; 165:112170. [PMID: 33621901 DOI: 10.1016/j.marpolbul.2021.112170] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Studies on organochlorine pesticides (OCPs) and heavy metals (HMs) from tidal creeks are scarce. Sixteen OCPs and seven HMs were measured in the surface water, zooplankton, two fishes (Harpadon nehereus and Pampus argenteus), and one shrimp (Penaeus indicus) collected from three tidal creeks of the Indian Sundarban. The surface water was polluted by hexachlorocyclohexane isomers (ΣHCH: 525-1581 ng l-1), dichlorodiphenyltrichloroethane congeners (ΣDDT: 188-377 ng l-1), endosulfan congeners (ΣEND: 687-1474 ng l-1), and other OCPs (512-1334 ng l-1). However, the mean HM concentrations in the surface water were <1 μg l-1. The zooplankton community exhibited bioaccumulation of both OCPs and HMs. Aldrin, Heptachlor, and α-HCH levels in the edible biotas could lead to cancer. Co and Cd levels could lead to non-cancerous risks, and Pb levels could pose a cancerous risk. This study showed that creeks could be potential sites of both OCP and HM pollution.
Collapse
Affiliation(s)
- Sanghamitra Basu
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Abhra Chanda
- School of Oceanographic Studies, Jadavpur University, Kolkata, West Bengal 700032, India.
| | - Pranab Gogoi
- Central Inland Fisheries Research Institute, CGO Complex, DF Block, Kolkata 700064, West Bengal, India
| | - Subarna Bhattacharyya
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal 700032, India.
| |
Collapse
|
29
|
Levit RL, Shigaeva TD, Kudryavtseva VA. Heavy Metals in Macrozoobenthos and Sediments of the Coastal Zone of the Eastern Gulf of Finland. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363220130265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Ranjbar Jafarabadi A, Mitra S, Raudonytė-Svirbutavičienė E, Riyahi Bakhtiari A. Large-scale evaluation of deposition, bioavailability and ecological risks of the potentially toxic metals in the sediment cores of the hotspot coral reef ecosystems (Persian Gulf, Iran). JOURNAL OF HAZARDOUS MATERIALS 2020; 400:122988. [PMID: 32947728 DOI: 10.1016/j.jhazmat.2020.122988] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Coral reefs of the Persian Gulf are vulnerable to the potentially toxic metals (PTMs) accumulated in the ambient sediments. Nonetheless, few studies have investigated the PTMs pollution and risk in the hotspot coral ecosystems of the Persian Gulf at a large-scale. Hereupon, this study focused on the PTMs contamination, their potential ecological risks, historical depositions, geochemical controls and the plausible pollution sources in the core sediments (0-40 cm) collected from the ten coral ecosystems of the Persian Gulf, Iran. Both total and fraction analysis indicated considerable metal pollution levels. Contamination was steadily decreasing towards the bottom of the sediment core, revealing the impact of a recent anthropogenic input. High metal association with the exchangeable and other mobile fractions was observed, indicating their high bioavailability. Of all the elements analyzed, toxic metals Cd, Hg and As exhibited the highest potential ecological risk (RI). Site rank index (SRI), modified degree of contamination (mCd), and contamination severity index (CSI) based approaches identified stations ST5, ST9 and ST10 as the most contaminated sites of the study area. The same stations were also found to possess considerable ecological risk. Principal component analysis (PCA) revealed that the stations located in the zone of the highest anthropogenic impact contain pollution sources for all the metals analyzed, whereas areas with low anthropogenic activity are mainly affected by the river runoff and urban emissions.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Soumita Mitra
- Department of Marine Science, University of Calcutta, Calcutta, India
| | | | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| |
Collapse
|
31
|
Thomas CR, Bennett WW, Garcia C, Simmonds A, Honchin C, Turner R, Madden Hof CA, Bell I. Coastal bays and coral cays: Multi-element study of Chelonia mydas forage in the Great Barrier Reef (2015-2017). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140042. [PMID: 32927538 DOI: 10.1016/j.scitotenv.2020.140042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
There is increasing interest in understanding potential impacts of complex pollutant profiles to long-lived species such as the green sea turtle (Chelonia mydas), a threatened megaherbivore resident in north Australia. Dietary ingestion may be a key exposure route for metals in these animals and marine plants can accumulate metals at higher concentrations than the surrounding environment. We investigated concentrations of 19 metals and metalloids in C. mydas forage samples collected from a group of offshore coral cays and two coastal bays over a period of 2-3 years. Although no samples exceeded sediment quality guidelines, coastal forage Co, Fe, and V concentrations were up to 2-fold higher, and offshore forage Sr concentrations were ~3-fold higher, than global seagrass means. Principal Component Analysis differentiated coastal bay from coral cay forage according to patterns consistent with underlying terrigenous-type or marine carbonate-type sediment geochemistry, such that coastal bay forage was higher in Fe, Co, Mn, Cu, and Mo (and others) but forage from coral cays was higher in Sr and U. Forage from the two coastal bays was differentiated according to temporal variation in metal profiles, which may be associated with a more episodic sediment disturbance regime in one of the bays. For all study locations, some forage metal concentrations were higher than previously reported in the global literature. Our results suggest that forage metal profiles may be influenced by the presence of some metals in insoluble forms or bound to ultra-fine sediment particles adhered to forage surfaces. Metal concentrations in Great Barrier Reef forage may be present at levels higher than expected from the global seagrass literature and appear strongly influenced by underlying sediment geochemistry.
Collapse
Affiliation(s)
- Colette R Thomas
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville 4811, Australia.
| | - William W Bennett
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Gold Coast 4222, Australia.
| | - Clement Garcia
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK.
| | - Andrew Simmonds
- Great Barrier Reef Marine Park Authority, Townsville 4805, Australia
| | - Carol Honchin
- Great Barrier Reef Marine Park Authority, Townsville 4805, Australia.
| | - Ryan Turner
- Department of Environment and Science, Queensland Government, Dutton Park 4102, Australia.
| | | | - Ian Bell
- Aquatic Species Program, Queensland Parks and Wildlife, Department of Environment and Science, Townsville 4810, Australia.
| |
Collapse
|
32
|
Yang J, Holbach A, Wilhelms A, Krieg J, Qin Y, Zheng B, Zou H, Qin B, Zhu G, Wu T, Norra S. Identifying spatio-temporal dynamics of trace metals in shallow eutrophic lakes on the basis of a case study in Lake Taihu, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114802. [PMID: 32559868 DOI: 10.1016/j.envpol.2020.114802] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
In shallow eutrophic lakes, metal remobilization is closely related to the resuspension and eutrophication. An improved understanding of metal dynamics by biogeochemical processes is essential for effective management strategies. We measured concentrations of nine metals (Cr, Cu, Zn, Ni, Pb, Fe, Al, Mg, and Mn) in water and sediments during seven periods from 2014 to 2018 in northern Lake Taihu, to investigate the metal pollution status, spatial distributions, mineral constituents, and their interactions with P. Moreover, an automatic weather station and online multi-sensor systems were used to measure meteorological and physicochemical parameters. Combining these measurements, we analyzed the controlling factors of metal dynamics. Shallow and eutrophic northern Lake Taihu presents more serious metal pollution in sediments than the average of lakes in Jiangsu Province. We found chronic and acute toxicity levels of dissolved Pb and Zn (respectively), compared with US-EPA "National Recommended Water Quality Criteria". Suspended particles and sediment have been polluted in different degrees from uncontaminated to extremely contaminated according to German pollution grade by LAWA (Bund/Länder-Arbeitsgemeinschaft Wasser). Polluted particles might pose a risk due to high resuspension rate and intense algal activity in shallow eutrophic lakes. Suspended particles have similar mineral constituents to sediments and increased with increasing wind velocity. Al, Fe, Mg, and Mn in the sediment were rarely affected by anthropogenic pollution according to the geoaccumulation index. Among them, Mn dynamics is very likely associated with algae. Micronutrient uptake by algal will affect the migration of metals and intensifies their remobilization. Intensive pollution of most particulate metals were in the industrialized and down-wind area, where algae form mats and decompose. Moreover, algal decomposition induced low-oxygen might stimulate the release of metals from sediment. Improving the eutrophication status, dredging sediment, and salvaging cyanobacteria biomass are possible ways to remove or reduce metal contaminations.
Collapse
Affiliation(s)
- Jingwei Yang
- Institute of Applied Geosciences, Working Group Environmental Mineralogy and Environmental System Analysis (ENMINSA) Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany.
| | - Andreas Holbach
- Institute of Applied Geosciences, Working Group Environmental Mineralogy and Environmental System Analysis (ENMINSA) Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany; Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Andre Wilhelms
- Institute of Applied Geosciences, Working Group Environmental Mineralogy and Environmental System Analysis (ENMINSA) Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Julia Krieg
- Institute of Applied Geosciences, Working Group Environmental Mineralogy and Environmental System Analysis (ENMINSA) Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Yanwen Qin
- Chinese Research Academy of Environmental Sciences, Dayangfang 8, Anwai Beiyuan, Beijing, 100012, PR China
| | - Binghui Zheng
- Chinese Research Academy of Environmental Sciences, Dayangfang 8, Anwai Beiyuan, Beijing, 100012, PR China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Boqiang Qin
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, 73 East Beijing Road, 210008, Nanjing, PR China
| | - Guangwei Zhu
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, 73 East Beijing Road, 210008, Nanjing, PR China
| | - Tingfeng Wu
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, 73 East Beijing Road, 210008, Nanjing, PR China
| | - Stefan Norra
- Institute of Applied Geosciences, Working Group Environmental Mineralogy and Environmental System Analysis (ENMINSA) Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| |
Collapse
|
33
|
Wang J, Jiang Y, Sun J, She J, Yin M, Fang F, Xiao T, Song G, Liu J. Geochemical transfer of cadmium in river sediments near a lead-zinc smelter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110529. [PMID: 32247240 DOI: 10.1016/j.ecoenv.2020.110529] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is a highly toxic element and non-essential to human. Herein, the source and fate of Cd were examined in a typical sediment profile from the North River, South China, which was affected by the massive Pb-Zn smelting activities for decades. An exceptionally high enrichment of Cd, 107-441 mg/kg, was observed across the whole profile. Approximately 50-75% of Cd was retained in the weak acid soluble fraction. Risk assessment based on geoaccumulation index (Igeo), potential ecological risk index (Eri), bioavailable metal index (BMI) and toxic risk index (TRI) further indicated an extremely strong degree of potential ecological pollution and high toxic risks. The mineralogical composition of particles from the sediment profile exhibited the presence of pyrite, magnetite, wurtzite and greenockite. This further confirmed that Cd was migrated from smelting slags to the North River basin and enriched in sediment profile. Sediment Cd speciation analysis also implied a possible transformation of Cd from metal oxides in smelting slags to adsorbed phases and carbonates, which enhances the bioavailability of Cd. The findings indicate proper countermeasures or remediation approaches should be promptly taken towards high ecological risks of Cd arising from the depth profile extending nearly 1 m, due to lead-zinc smelting related activities.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou, 510006, China
| | - Yanjun Jiang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Jingye She
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Meiling Yin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Fa Fang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Gang Song
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou, 510006, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
34
|
Convey P, Peck LS. Antarctic environmental change and biological responses. SCIENCE ADVANCES 2019; 5:eaaz0888. [PMID: 31807713 PMCID: PMC6881164 DOI: 10.1126/sciadv.aaz0888] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/04/2019] [Indexed: 05/22/2023]
Abstract
Antarctica and the surrounding Southern Ocean are facing complex environmental change. Their native biota has adapted to the region's extreme conditions over many millions of years. This unique biota is now challenged by environmental change and the direct impacts of human activity. The terrestrial biota is characterized by considerable physiological and ecological flexibility and is expected to show increases in productivity, population sizes and ranges of individual species, and community complexity. However, the establishment of non-native organisms in both terrestrial and marine ecosystems may present an even greater threat than climate change itself. In the marine environment, much more limited response flexibility means that even small levels of warming are threatening. Changing sea ice has large impacts on ecosystem processes, while ocean acidification and coastal freshening are expected to have major impacts.
Collapse
|