1
|
Chen S, Tao Z, Zheng X, Chen F, Zhang L, Chen S, Pan K. Rare earth elements in seagrass beds: Contamination, bioaccumulation, and biomonitoring. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138271. [PMID: 40239517 DOI: 10.1016/j.jhazmat.2025.138271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Coastal environments are increasingly vulnerable to contamination from rare earth elements (REE) due to expanding anthropogenic activities, yet the fate and ecological risks of REE in ecologically critical seagrass ecosystems remain poorly understood. This study deciphered the behavior, fractionation, and compartmentalization of REE in both seagrass sediments and tissues. Total REE concentrations in sediments ranged from 70.5 to 258.8 mg kg-1, with Ce emerging as the most enriched REE in both matrices. Pollution Load Index varied from 0.7 to 3.0, indicating slight to moderate REE pollution, with localized enrichment of some REE (e.g., Tb, Lu) pointing to anthropogenic influences such as industrial effluents and marine traffic. Principal component and enrichment factor analyses attribute approximately 66 % of REE patterns to geogenic weathering, while 22.6 % reflect anthropogenic contributions. Geochemical partitioning revealed that Fe-Mn oxides serve as major REE sinks, while organic matter plays a dual role-enhancing total REE retention through complexation yet reducing mobility by stabilizing labile fractions. Correlations between REE concentrations in seagrass tissues and sediments suggest species-specific uptake and limited translocation. These findings underscore the capacity of seagrasses to serve as sensitive bioindicators for REE pollution and highlight the importance of organic matter and rhizosphere processes in modulating REE bioavailability.
Collapse
Affiliation(s)
- Shanshan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Zhenghua Tao
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Xinqing Zheng
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China
| | - Shiquan Chen
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 570125, China; Dongzhaigang, Conservation and Restoration of Seagrass Bed Resources, Hainan Observation and Research Station, Haikou 570125, China.
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Castro-Ocampo O, Santos-Raga G, Santoyo E, Guerrero FJ, Delesma C, Muñiz J. Insights into the mobility of rare earth complexes in groundwater-rock interactions: A geochemical view from modeling of computational chemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179422. [PMID: 40253853 DOI: 10.1016/j.scitotenv.2025.179422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 04/22/2025]
Abstract
This study investigates the prediction and stability of novel complexes of rare earth elements (REE) under simulated groundwater and hydrothermal conditions. The electronic structure properties of the REE complexes LnX3 and Ln2Y3, with Ln = La, Lu; X = Cl-, F-, (HCO3)-, (AlO2)-, and Y = (SO4)2-, (CO3)2- were explored using density functional theory (DFT) including relativistic effects. The nature of the bonding in the complexes was assessed via the theory of atoms in molecules. Evidence shows that relativistic contributions play a significant role in stabilization energy and bonding distance, especially in La-complexes, where bond distances shrink by 0.64-6.82 %. Formation energies were calculated to identify the most stable configurations, being the most stable Ln2 (SO4)3. Molecular electrostatic potential (MEP) was analyzed to predict the acidic or basic behavior of the complexes. Ab initio molecular dynamics (AIMD) simulations were also performed for models with the first solvation shell, and also for models representing massive systems. In large-scale systems at 300 °C, the stability varies by element. For La, the most stable is La2(CO3)3, while for Lu, it is Lu2(SO4)3 ≈ Lu2(CO3)3. It evidences the feasibility of the existence of the REE complexes in aqueous media. These results give insight into the mobility and stability that these complexes may present in water-rock interaction processes of groundwater and environmental systems.
Collapse
Affiliation(s)
- O Castro-Ocampo
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP 62580, Mexico.
| | - Gustavo Santos-Raga
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP 62580, Mexico
| | - E Santoyo
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP 62580, Mexico
| | - Fernando J Guerrero
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP 62580, Mexico
| | - Cornelio Delesma
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria, Apartado Postal 70-360, Ciudad de México 04510, Mexico
| | - Jesús Muñiz
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP 62580, Mexico.
| |
Collapse
|
3
|
Mohamed E, Ren J, Tao L, Mala A. Assessment the impact of palygorskite modified by chlorides on speciation and environmental risk of heavy metals in soil contaminated. Sci Rep 2025; 15:12505. [PMID: 40216799 PMCID: PMC11992066 DOI: 10.1038/s41598-024-75359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/04/2024] [Indexed: 04/14/2025] Open
Abstract
This study aims to evaluate the effectiveness of palygorskite (PAL) modified with various chlorides (PMNaCl), (PMCaCl2), (PMMgCl2), (PMFeCl3) and (PMAlCl3) in stabilizing Cu and Ni in contaminated soils. Characterization methods involving Scanning Electron Microscopy (SEM), X-ray deflection (XRD and Fourier Transform Infrared Spectroscopy (FT-IR) were used to characterize the effects of palygorskite on the chemical functional groups of chloride stick and the construction of stabilizers. The Diethylene Triamine Pentaacetic Acid ("DTPA extraction") and Toxicity Characteristic Leaching Procedure (TCLP) were conducted to assess the bioavailability and mobility of Cu and Ni in soil with PAL-modified chlorides. The germinated index (GI) was employed to examine and analyze the microstructure and physico-chemical properties of the contaminated soil. The residue speciation concentration enhanced substantially, illustrating that the heavy metal speciation had stabilized after being with PAL-modified chloride. After the amendment of the PAL-modified chlorides the soil pH was enhanced by 1.33 units, whereas Electrical Conductivity (EC) increased significantly (P < 0.05) from 2.61 to 4.95 µS cm-1, Cation Exchange Capacity (CEC) increased significantly (P < 0.05) from 11.50 to 13.00 cmol/kg, while the available potassium (K) was significantly (P < 0.05) increased from 51.67 to 69.30, and the available phosphate (P) was significantly (P < 0.05) increased from 0.38 to 0.63. The most significant Sequential Extraction Procedure (BCR) in residual fraction for Cu and Ni in soil treated by PMFC and PMMC were significantly (P < 0.05) increased by 37.37% and 39.33%, respectively. Our findings indicate that PAL-modified chlorides significantly stabilize heavy metals in soil, making them promising candidates for soil remediation.
Collapse
Affiliation(s)
- Elnour Mohamed
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, P.R. China
| | - Jun Ren
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, P.R. China.
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P.R. China.
- Gansu Hanxing Environmental Protection Co. Ltd., Lanzhou, 730070, P.R. China.
| | - Ling Tao
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, P.R. China
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P.R. China
- Gansu Hanxing Environmental Protection Co. Ltd., Lanzhou, 730070, P.R. China
| | - Azizza Mala
- Center for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
4
|
Martina A, Ferroni L, Marrocchino E. The Soil-Plant Continuity of Rare Earth Elements: Insights into an Enigmatic Class of Xenobiotics and Their Interactions with Plant Structures and Processes. J Xenobiot 2025; 15:46. [PMID: 40126264 PMCID: PMC11932217 DOI: 10.3390/jox15020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
Rare earth elements (REEs) are increasingly present in the environment owing to their extensive use in modern industries, yet their interactions with plants remain poorly understood. This review explores the soil-plant continuum of REEs, focusing on their geochemical behavior in soil, the mechanisms of plant uptake, and fractionation processes. While REEs are not essential for plant metabolism, they interact with plant structures and interfere with the normal functioning of biological macromolecules. Accordingly, the influence of REEs on the fundamental physiological functions of plants is reviewed, including calcium-mediated signalling and plant morphogenesis. Special attention is paid to the interaction of REEs with photosynthetic machinery and, particularly, the thylakoid membrane. By examining both the beneficial effects at low concentrations and toxicity at higher levels, this review provides some mechanistic insights into the hormetic action of REEs. It is recommended that future research should address knowledge gaps related to the bioavailability of REEs to plants, as well as the short- and long-range transport mechanisms responsible for REE fractionation. A better understanding of REE-plant interactions will be critical in regard to assessing their ecological impact and the potential risks in terms of agricultural and natural ecosystems, to ensure that the benefits of using REEs are not at the expense of environmental integrity or human health.
Collapse
Affiliation(s)
| | - Lorenzo Ferroni
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.M.); (E.M.)
| | | |
Collapse
|
5
|
Cai J, Zhang B, Dang J, Zhao Y, Liang D, Xie Q, Fan M, Liu J. Insights into critical metal element migration and enrichment in coal gasification. RSC Adv 2025; 15:8169-8179. [PMID: 40103982 PMCID: PMC11912349 DOI: 10.1039/d5ra00809c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025] Open
Abstract
With the rapid development of China's semiconductor, military, and new energy industries, ensuring a stable supply and acquisition of critical metal elements, including lithium, gallium, germanium, and indium, has gained increasing attention. The migration and enrichment of critical metals during coal gasification can provide essential insights for developing metal extraction strategies from gasification slag. This work focused on the patterns of migration and enrichment of critical metal elements under varying gasification temperatures through comprehensive element distribution analysis and molecular structure characterization. Results show that the main component of gasification slag is mullite, which is composed of aluminate- and silicate-containing groups, namely, Si-O, O-Si-O, Al-O, and O-Al-O. As the gasification temperature increases from 1000 °C to 1500 °C, lithium, gallium, and germanium exist in the residual state, while the enrichment state of indium is complex. The concentrations of the residual state of each element gasified at 1500 °C are 121.2 μg g-1, 46.93 μg g-1, 0.12 μg g-1, and 0.03 μg g-1. However, lithium is mainly associated with clay minerals in coal slag. Meanwhile, gallium exhibits a relatively high bonding affinity for aluminates and silicates in the slag when the gasification temperature exceeds 1400 °C. By contrast, germanium and indium are demonstrated to have low affinity for aluminates and silicates in coal gasification slag. Germanium has more potential to combine with sulfur than aluminates and silicates, as revealed through enrichment factor analysis. Indium displays a complicated occurrence form in coal slag, demonstrating a better bonding affinity for oxygen and hydrogen in high-temperature gasification.
Collapse
Affiliation(s)
- Juan Cai
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 China
| | - Boyan Zhang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 China
| | - Jiatao Dang
- College of Mechanical & Electrical Engineering, Henan Agricultural University Zhengzhou 450002 Henan China
| | - Yunpeng Zhao
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining and Technology Xuzhou 221116 Jiangsu China
| | - Dingcheng Liang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 China
| | - Qiang Xie
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 China
| | - Maohong Fan
- College of Engineering and Physical Sciences, School of Energy Resources, University of Wyoming Laramie WY 82071 USA
| | - Jinchang Liu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 China
| |
Collapse
|
6
|
Guo X, Li M, Wang B, Zong H, Wang F, Huang X, Shuaiqi L, Song N, Li M. Modeling praseodymium toxicity in solution to wheat root elongation using the biotic ligand model theory. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118023. [PMID: 40073784 DOI: 10.1016/j.ecoenv.2025.118023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 01/11/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Praseodymium (Pr[Ⅲ]) is a rare earth element (REE) with chronic toxicity. With the increasing use of REE in various fields, considerable amounts of praseodymium have been released into the environment. Consequently, understanding the toxic effects and ecological risks of Pr(III) on organisms is crucial. This study utilized a soil-simulated solution culture method to investigate the influence of Ca2 +, K+, Na+, Mg2+, and pH on acute toxicity to wheat through a single-factor control experiment and established a Pr(III) toxicity prediction model based on the biotic ligand model (BLM). These findings demonstrated that increasing the activities of Mg2+, Ca2+ and H+ reduced the toxicity of Pr(III) on wheat root elongation. In contrast, increasing the activities of K+ and Na+ exhibited no significant effects. Additionally, pH influenced both the solubility and speciation of Pr(III). At pH < 6.5, Pr(III) predominately exists as Pr3+ and PrCl2+, whereas at pH 7.0, the proportion of PrOH2+ significantly increased. Based on DPS9.0 software fitting results, the stability constants were determined as follows: logKPrBL = 2.54, logKPrClBL = 3.26, logKPrOHBL = 3.18, logKCaBL = 2.50, logKMgBL = 2.61, logKHBL = 3.88, and fPrBL50% = 0.36. These results suggest that the BLM effectively predicts Pr(III) toxicity by accounting for toxic species such as Pr3+, PrCl2+, and PrOH2+, along with the competition for binding sites by Mg2+, Ca2+, and H+. The improved Pr(III)-BLM performance is believed to be applicable to a wide range of land plants.
Collapse
Affiliation(s)
- Xiaohong Guo
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Mengjia Li
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Bin Wang
- Institute of Soil Fertilizer and Agricultural Water Saving, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Haiying Zong
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Fangli Wang
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoli Huang
- Central Laboratory Qingdao Agricultural University, Qingdao 266109, China
| | - Liu Shuaiqi
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Ningning Song
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China.
| | - Meng Li
- Shandong Institute of Sericulture, Yantai 264001, China.
| |
Collapse
|
7
|
Huang ZY, Syu CH, Hseu ZY. Evaluating the bioavailability of rare earth elements in paddy soils and their uptake in rice grains for human health risk. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:49. [PMID: 39806121 DOI: 10.1007/s10653-025-02360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Rare earth elements (REEs) are a critical global focus due to their increasing use, raising concerns about their environmental distribution and human exposure, both vital to food safety and human health. Surface soil (0-30 cm) and corresponding rice grain samples (n = 85) were collected from paddy fields in Taiwan. This study investigated the total REE contents in soil through aqua regia digestion, as well as their labile forms extracted using 0.05 M ethylenediaminetetraacetic acid (EDTA), 0.10 M hydrogen chloride (HCl), and 0.01 M calcium chloride (CaCl2). The REE concentrations in the rice grains (Oryza sativa L.) were also analyzed. The estimated daily intake (EDI) of REEs through rice consumption for males was 1.3 times higher than that for females. Children under 12 years of age, regardless of gender, had the highest EDI of REEs compared to other age groups. High rice consumption and a high proportion of children are potentially at higher risk for elevated REE exposure. The transport of REEs from soil to rice demonstrated their shift of fractionation by the lower ratio of light REEs and heavy REEs in rice grain compared to soil and their upper continental crust (UCC)-normalized patterns. Empirical equations were developed to estimate the concentrations of REEs in rice grains based on soil pH, clay content, organic carbon, cation exchange capacity, dithionite-citrate-bicarbonate extractable iron, and labile REEs. This study provides critical insights into the health risks of REEs, clarifying their human exposure and the bioavailability from paddy soil to rice.
Collapse
Affiliation(s)
- Zzu-Ying Huang
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Chien-Hui Syu
- Ministry of Agriculture, Taiwan Agricultural Research Institute, Taichung, 413, Taiwan
| | - Zeng-Yei Hseu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
8
|
Wang X, Li B, Zhu M, Tang J, Liu G, Wang J, Wang Y, Hu J. Geochemical behavior of rare earth elements in mining-affected waters, southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177747. [PMID: 39608262 DOI: 10.1016/j.scitotenv.2024.177747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Mining activities have led to significant rare earth elements (REEs) contamination and ecotoxicological risks in aquatic systems. However, the concentration, speciation, and primary controlling factors of REEs in aquatic systems in southwest China have remained unclear. This study investigated the water geochemistry, concentration, speciation, fractionation patterns, and anomalies of REEs in the surface water, shallow groundwater, and deep groundwater within a mining-impacted catchment area in southwest China across different seasons. REE concentrations were in the range of 1.12-73.66 μg/L in surface water, 0.09-96.58 μg/L in shallow groundwater, and 0.09-1.05 μg/L in deep groundwater. Seasonal variations significantly impacted REE concentrations in surface water and shallow groundwater. The variability of environmental parameters, driven by higher temperatures during the wet season, significantly controlled the increases in the proportions of dissolved REE in both surface water and groundwater. The water recharge between surface water and groundwater resulted in analogous REE fractionation patterns and anomalies. Variation in pH, oxidation-reduction potential, iron, manganese and aluminum content in water influenced the fractionation indices of REEs. Cerium and europium anomalies in water samples provided insights into REE sources and associated hydrological dynamics. Our results demonstrate that REE fractionation patterns and anomalies were influenced by water-rock interactions, mining activities and hydrogeological factors, which facilitates a comprehensive understanding of the hydrogeochemistry process in aqueous systems.
Collapse
Affiliation(s)
- Xuemei Wang
- College of Environment Civil Engineering, Chengdu University of Technology, Chengdu 610059, PR China; School of Environment and Resource, Xichang University, Xichang 615000, PR China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu 610059, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Bo Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu 610059, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China; College of Environmental Science and Engineering, China West Normal University, Nanchong 10637001, PR China
| | - Mingtan Zhu
- College of Environment Civil Engineering, Chengdu University of Technology, Chengdu 610059, PR China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu 610059, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Jie Tang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu 610059, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Guo Liu
- College of Environment Civil Engineering, Chengdu University of Technology, Chengdu 610059, PR China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu 610059, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China.
| | - JinJin Wang
- School of Environment and Resource, Xichang University, Xichang 615000, PR China
| | - Yanqun Wang
- School of Environment and Resource, Xichang University, Xichang 615000, PR China
| | - Jinzhao Hu
- School of Environment and Resource, Xichang University, Xichang 615000, PR China
| |
Collapse
|
9
|
Frazzoli C, Bocca B, Battistini B, Ruggieri F, Rovira J, Amadi CN, Offor SJ, Orisakwe OE. Rare Earth and Platinum Group Elements In Sub-Saharan Africa and Global Health: The Dark Side of the Burgeoning of Technology. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241271553. [PMID: 39282214 PMCID: PMC11393805 DOI: 10.1177/11786302241271553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/01/2024] [Indexed: 09/18/2024]
Abstract
Despite steady progress in the development and promotion of the circular economy as a model, an overwhelming proportion of technological devices discarded by the Global North still finds its way to the Global South, where technology-related environmental health problems start from the predation of resources and continue all the way to recycling and disposal. We reviewed literature on TCEs in sub-Saharan Africa (SSA), focussing on: the sources and levels of environmental pollution; the extent of human exposure to these substances; their role in the aetiology of human diseases; their effects on the environment. Our review shows that even minor and often neglected technology-critical elements (TCEs), like rare earth elements (REEs) and platinum group elements (PGEs), reveal the environmental damage and detrimental health effects caused by the massive mining of raw materials, exacerbated by improper disposal of e-waste (from dumping to improper recycling and open burning). We draw attention of local research on knowledge gaps such as workable safer methods for TCE recovery from end-of-life products, secondary materials and e-waste, environmental bioremediation and human detoxification. The technical and political shortcomings in the management of TCEs in SSA is all the more alarming against the background of unfavourable determinants of health and a resulting higher susceptibility to diseases, especially among children who work in mines and e-waste recycling sites or who reside in dumping sites.This paper demonstrates, for the first time, that the role of unjust North-South dynamics is evident even in the environmental levels of minor trace elements and that the premise underlying attempts to solve the problem of e-waste dumped in Africa through recycling and disposal technology is in fact misleading. The influx of foreign electrical and electronic equipments should be controlled and limited by clearly defining what is a 'useful' second-hand device and what is e-waste; risks arising from device components or processing by-products should be managed differently, and scientific uncertainty and One Health thinking should be incorporated in risk assessment.
Collapse
Affiliation(s)
- Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, Istituto Superiore di Sanità (Italian National Institute of Health), Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Catalonia, Spain
- Environmental Engineering Laboratory, Department d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Cecilia Nwadiuto Amadi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Samuel James Offor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, Nigeria
- Advanced Research Centre, European University of Lefke, Lefke, Northern Cyprus, Turkey
| |
Collapse
|
10
|
Brouziotis AA, Heise S, Saviano L, Zhang K, Giarra A, Bau M, Tommasi F, Guida M, Libralato G, Trifuoggi M. Levels of rare earth elements on three abandoned mining sites of bauxite in southern Italy: A comparison between TXRF and ICP-MS. Talanta 2024; 275:126093. [PMID: 38615453 DOI: 10.1016/j.talanta.2024.126093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
The essential utilization of rare earth elements (REEs) for the production of several electronic devices is making the demand for them being increased all the time. This extensive use of these elements has also increased concern about human and environmental health. Previous studies have shown that REE levels are higher in environmental samples near mining sites, and they are highly possible to be transferred to biota. In this study, REE levels were determined in environmental samples collected from three abandoned mining sites of bauxite (Gargano, Otranto, and Spinazzola) in the region of Puglia, Southern Italy. The samples were digested and analyzed by two different techniques, Total X-Ray Fluorescence (TXRF) and Inductively Coupled Plasma - Mass Spectroscopy (ICP-MS) to investigate which technique is the most suitable for analysis of the REE content in samples from abandoned mining sites of bauxite. Only 6 REEs could be detected by TXRF, while all REEs were detected in all the samples by ICP-MS. Spinazzola is the richest site and Ce the most abundant REE in all three regions. REE levels are correlated between the soil and biota samples in many cases, although the calculation of the bioconcentration factor showed that REEs are not bioaccumulative. ICP-MS seems to be a more suitable technique for analysis of the whole REE content in environmental samples from abandoned mining sites of bauxite.
Collapse
Affiliation(s)
- Antonios Apostolos Brouziotis
- University of Naples Federico II, Department of Biology, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy; University of Naples Federico II, Department of Chemical Sciences, Analytical Chemistry for the Environment, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy.
| | - Susanne Heise
- Hamburg University of Applied Sciences, Faculty of Life Sciences, Ulmenliet 20, 21033 Hamburg, Germany
| | - Lorenzo Saviano
- University of Naples Federico II, Department of Biology, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy
| | - Keran Zhang
- Constructor University, CritMET, School of Science, Campus Ring 1, 28219, Bremen, Germany
| | - Antonella Giarra
- University of Naples Federico II, Department of Chemical Sciences, Analytical Chemistry for the Environment, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy
| | - Michael Bau
- Constructor University, CritMET, School of Science, Campus Ring 1, 28219, Bremen, Germany
| | - Franca Tommasi
- Aldo Moro Bari University, Department of Plant Biology, Via E. Orabona 4, I-70124 Bari, Italy
| | - Marco Guida
- University of Naples Federico II, Department of Biology, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy; University of Naples Federico II, CeSMA Advanced Metrological and Technological Service Center, Corso Nicolangelo Protopisani, 80134 Naples, Italy
| | - Giovanni Libralato
- University of Naples Federico II, Department of Biology, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy; University of Naples Federico II, CeSMA Advanced Metrological and Technological Service Center, Corso Nicolangelo Protopisani, 80134 Naples, Italy
| | - Marco Trifuoggi
- University of Naples Federico II, Department of Chemical Sciences, Analytical Chemistry for the Environment, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy; University of Naples Federico II, CeSMA Advanced Metrological and Technological Service Center, Corso Nicolangelo Protopisani, 80134 Naples, Italy
| |
Collapse
|
11
|
da Costa Alves Filho PP, da Silveira Pereira WV, Dias YN, Ferreira de Moraes AL, Rodrigues FHS, Ramos SJ, Santos de Souza E, Fontes do Amaral AM, Fernandes AR. Artisanal mining of monazite and cassiterite in the Amazon: Potential risks of rare earth elements for the environment and human health. ENVIRONMENTAL MANAGEMENT 2024; 73:1201-1214. [PMID: 38573351 DOI: 10.1007/s00267-024-01964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Artisanal mining is intensely carried out in developing countries, including Brazil and especially in the Amazon. This method of mineral exploration generally does not employ mitigation techniques for potential damages and can lead to various environmental problems and risks to human health. The objectives of this study were to quantify the concentrations of rare earth elements (REEs) and estimate the environmental and human health risks in cassiterite and monazite artisanal mining areas in the southeastern Amazon, as well as to understand the dynamics of this risk over time after exploitation. A total of 35 samples of wastes classified as overburden and tailings in active areas, as well as in areas deactivated for one and ten years were collected. Samples were also collected in a forest area considered as a reference site. The concentrations of REEs were quantified using alkaline fusion and ICP-MS. The results were used to calculate pollution indices and environmental and human health risks. REEs showed higher concentrations in anthropized areas. Pollution and environmental risk levels were higher in areas deactivated for one year, with considerable contamination factors for Gd and Sm and significant to extreme enrichment factors for Sc. Human health risks were low (< 1) in all studied areas. The results indicate that artisanal mining of cassiterite and monazite has the potential to promote contamination and enrichment by REEs.
Collapse
Affiliation(s)
| | | | - Yan Nunes Dias
- Vale Institute of Technology, Belém, Pará, 66055-090, Brazil
| | | | | | | | - Edna Santos de Souza
- Federal University of Southern and Southeastern Pará, São Félix do Xingu, Pará, 68380-000, Brazil
| | | | | |
Collapse
|
12
|
Li Y, Saparov G, Zeng T, Abuduwaili J, Ma L. Geochemical behavior of rare earth elements in agricultural soils along the Syr Darya River within the Aral Sea Basin. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:493. [PMID: 38691227 DOI: 10.1007/s10661-024-12647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
The widespread use of rare earth elements (REEs) across various industries makes them a new type of pollutant. Additionally, REEs are powerful indicators of geochemical processes. As one of the two main rivers in the Aral Sea, identifying the geochemical behavior of REEs in agricultural soils of the Syr Darya River is of great significance for subsequent indicative studies. In this study, the geochemical characteristics, influencing factors, and potential application significance of REEs in agricultural soils from three sampling areas along the Syr Darya River were analyzed using soil geography and elemental geochemical analyses. The results showed that the highest total concentration of REEs in the agricultural soil was in Area I, with a mean value of 142.49 μg/g, followed by Area III with a mean value of 124.56 μg/g, and the lowest concentration was in Area II with a mean value of 122.48 μg/g. The agricultural soils in the three regions were enriched in light rare earth elements (LREEs), with mean L/H values of 10.54, 10.13, and 10.24, respectively. The differentiation between light and heavy rare earth elements (HREEs) was also high. The concentration of REEs in agricultural soil along the Syr Darya River was primarily influenced by minerals such as monazite and zircon, rather than human activities (the pollution index of all REEs was less than 1.5). The relationship between Sm and Gd can differentiate soils impacted by agricultural activities from natural background soils. The results of this study can serve as a basis for indicative studies of REEs in Central Asia.
Collapse
Affiliation(s)
- Yizhen Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Galymzhan Saparov
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China
- Kazakh Research Institute of Soil Science and Agrochemistry Named After U. U. Uspanov, Almaty, 050060, Kazakhstan
| | - Tao Zeng
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jilili Abuduwaili
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Ma
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Xinjiang Key Laboratory of Water Cycle and Utilization in Arid Zone, Urumqi, 830011, China.
| |
Collapse
|
13
|
Saha B, Eliason K, Golui D, Masud J, Bezbaruah AN, Iskander SM. Rare earth elements in sands collected from Southern California sea beaches. CHEMOSPHERE 2023; 344:140254. [PMID: 37742769 DOI: 10.1016/j.chemosphere.2023.140254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Rare earth elements (REEs) are considered the limiting resources for advancing clean technologies and electronics. Because global REEs reserve is limited, non-conventional and secondary sources are being investigated for recovery. Here, we investigated wet and dry sand from seven Southern California beaches for sixteen REEs. These include five light REEs, two medium REEs, and nine heavy REEs, separated by their atomic weight. The mass of the magnetically separated compounds ranged from 15.19 to 129.91 g per kg of dry sand in the studied sea beaches in Southern California. The total REEs concentration ranged from 1168.1 to 6816.7 μg per kg of wet sand (dry sand basis) and 1474.7-7483.8 μg per kg of dry sand. Cerium (Ce) and Yttrium (Y) were the most prevalent REEs in these beaches ranging from 387.4 to 2241.1 μg kg-1 and 104.5-2302.3 μg kg-1 of sand respectively. This study found light REEs concentration accounted for 70-80% of total rare earth elements in the studied beaches. The concentrations of the analyzed REEs were significantly different (p < 0.05) from each other in the studied beaches. Additionally, Pearson correlation showed that the REEs were strongly correlated (r ≥ 0.83) with each other in the reported sea beaches, indicating a similar origin of the REEs. The dominant heavy metals in the studied samples were Vanadium (V), Chromium (Cr), Cobalt (Co), Nickel (Ni), Copper (Cu), Zinc (Zn), and Strontium (Sr). Dominant minerals identified in sands were quartz, anorthite, ilmenite, and xenotime. All the beaches are lowly enriched with REEs, and any of the REEs caused no ecological risk or pollution. Similarly, no pollution/ecological risk was observed for the analyzed heavy metals. This study identified beach sand as a potential REEs source and demonstrated an easy separation of REEs containing magnetic compounds from sand.
Collapse
Affiliation(s)
- Biraj Saha
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND, 58102, USA
| | - Kira Eliason
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND, 58102, USA
| | - Debasis Golui
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND, 58102, USA; Department of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110 012, India
| | - Jahangir Masud
- Energy and Environmental Research Center, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Achintya N Bezbaruah
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND, 58102, USA; Materials and Nanotechnology Program, North Dakota State University, Fargo, ND, 58108, USA; Environmental and Conservation Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Syeed Md Iskander
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND, 58102, USA; Environmental and Conservation Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
14
|
Pereira WVDS, Ramos SJ, Melo LCA, Dias YN, Martins GC, Ferreira LCG, Fernandes AR. Human and environmental exposure to rare earth elements in gold mining areas in the northeastern Amazon. CHEMOSPHERE 2023; 340:139824. [PMID: 37586491 DOI: 10.1016/j.chemosphere.2023.139824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Rudimentary methods are used to exploit gold (Au) in several artisanal mines in the Amazon, producing hazardous wastes that may pose risks of contamination by rare earth elements (REEs). The objectives of this study were to quantify the concentrations of REEs and assess their environmental and human health risks in artisanal Au mining areas in the northeastern Amazon. Thus, 25 samples of soils and mining wastes were collected in underground, colluvial, and cyanidation exploration sites, as well as in a natural forest that was considered as a reference area. The concentrations of REEs were quantified using alkaline fusion and inductively coupled plasma mass spectrometry, and the results were used to estimate pollution indices and risks associated with the contaminants. All REEs showed higher concentrations in waste deposition areas than in the reference area, especially Ce, Sc, Nd, La, Pr, Sm, and Eu. Pollution and enrichment levels were higher in the underground and cyanidation mining areas, with very high contamination factors (6.2-27) for Ce, Eu, La, Nd, Pr, Sm, and Sc, and significant to very high enrichment factors (5.5-20) for Ce, La, Nd, Pr, and Sc. The ecological risk indices varied from moderate (167.3) to high (365.7) in the most polluted sites, but risks to human health were low in all areas studied. The results of this study indicate that artisanal Au mining has the potential to cause contamination, enrichment, and ecological risks by REEs in the northeastern Amazon. Mitigation measures should be implemented to protect the environment from the negative impacts of these contaminants.
Collapse
Affiliation(s)
- Wendel Valter da Silveira Pereira
- Institute of Agricultural Sciences, Federal Rural University of the Amazon, 66077-830, Belém, Pará, Brazil; Vale Institute of Technology - Sustainable Development, 66055-090, Belém, Pará, Brazil.
| | - Sílvio Junio Ramos
- Vale Institute of Technology - Sustainable Development, 66055-090, Belém, Pará, Brazil
| | - Leônidas Carrijo Azevedo Melo
- Department of Soil Science, School of Agricultural Sciences, Federal University of Lavras, 37200-900, Lavras, Minas Gerais, Brazil
| | - Yan Nunes Dias
- Vale Institute of Technology - Sustainable Development, 66055-090, Belém, Pará, Brazil
| | | | | | | |
Collapse
|
15
|
Chen S, Wang X, Ye X, Qin Y, Wang H, Liang Z, Zhu L, Zhou L, Martyniuk CJ, Yan B. Dopaminergic and serotoninergic neurotoxicity of lanthanide phosphate (TbPO 4) in developing zebrafish. CHEMOSPHERE 2023; 340:139861. [PMID: 37597622 DOI: 10.1016/j.chemosphere.2023.139861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Rare earth elements (REEs) are exploited for global use in manufacturing. Such activities result in their release into the environment and the transformation into more stable phosphate deposition. The objective of this study was to evaluate molecular and behavioral changes of zebrafish exposed to the synthesized terbium phosphate (TbPO4) at concentrations of 10, 20, and 50 mg/L and to determine its potential for neurotoxicity. Metabolomics related to neurotransmitters, and assessment of transcripts and proteins were conducted to uncover the molecular mechanisms underlying TbPO4 with emphasis on neurotransmitter systems. Exposure to 20 mg/L TbPO4 induced larval hyperactivity and perturbed the cholinergic system in zebrafish. Based on metabolomics related to neurotransmitters, dopamine (DA), serotonin (5-HT), and many of their precursors and metabolites were decreased in abundance by TbPO4. In addition, the expression levels of transcripts related to the synthesis, transport, receptor binding, and metabolism of DA and 5-HT were analyzed at the mRNA and protein levels. Transcript and protein levels for tyrosine hydroxylase (TH), the rate-limiting enzyme for DA synthesis, were down-regulated in larval fish. Monoamine oxidase (MAO), an enzyme that catabolizes monoamines DA and 5-HT, was also reduced in mRNA abundance. We hypothesize that DA synthesis and monoamine metabolism are associated with behavioral alterations. This study elucidates putative mechanisms and exposure risks to wildlife and humans by characterizing phosphatic REE-induced neurotoxicity in developing zebrafish.
Collapse
Affiliation(s)
- Siying Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Xiaohong Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Xiaolin Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yingju Qin
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Haiqing Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Zhenda Liang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Lishan Zhu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Li Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
16
|
Li Z, Hadioui M, Wilkinson KJ. Extraction of Silicon-Containing Nanoparticles from an Agricultural Soil for Analysis by Single Particle Sector Field and Time-of-Flight Inductively Coupled Plasma Mass Spectrometry. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2049. [PMID: 37513060 PMCID: PMC10383646 DOI: 10.3390/nano13142049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
The increased use of silica and silicon-containing nanoparticles (Si-NP) in agricultural applications has stimulated interest in determining their potential migration in the environment and their uptake by living organisms. Understanding the fate and behavior of Si-NPs will require their accurate analysis and characterization in very complex environmental matrices. In this study, we investigated Si-NP analysis in soil using single-particle ICP-MS. A magnetic sector instrument was operated at medium resolution to overcome the impact of polyatomic interferences (e.g., 14N14N and 12C16O) on 28Si determinations. Consequently, a size detection limit of 29 ± 3 nm (diameter of spherical SiO2 NP) was achieved in Milli-Q water. Si-NP were extracted from agricultural soil using several extractants, including Ca(NO3)2, Mg(NO3)2, BaCl2, NaNO3, Na4P2O7, fulvic acid (FA) and Na2H2EDTA. The best extraction efficiency was found for Na4P2O7, for which the size distribution of Si-NP in the leachates was well preserved for at least one month. On the other hand, Ca(NO3)2, Mg(NO3)2 and BaCl2 were relatively less effective and generally led to particle agglomeration. A time-of-flight ICP-MS was also used to examine the nature of the extracted Si-NP on a single-particle basis. Aluminosilicates accounted for the greatest number of extracted NP (~46%), followed by NP where Si was the only detected metal (presumably SiO2, ~30%).
Collapse
Affiliation(s)
- Zhizhong Li
- Department of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montreal, QC H2V 0B3, Canada
| | - Madjid Hadioui
- Department of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montreal, QC H2V 0B3, Canada
| | - Kevin J Wilkinson
- Department of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montreal, QC H2V 0B3, Canada
| |
Collapse
|
17
|
Weng BS, Wan RA, Yu RL, Hu GR, Yan Y, Lin CQ, Huang HB. Characteristics and provenances of rare earth elements and Nd isotopes in surface sediments of mangrove wetlands in the Jiulong River Estuary, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:73890-73898. [PMID: 37198366 DOI: 10.1007/s11356-023-27558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/07/2023] [Indexed: 05/19/2023]
Abstract
Rare earth elements (REEs) and Nd isotopes are frequently employed to determine provenance, although their characteristics and provenances in the surface sediments of mangrove wetlands are rarely analyzed. In this study, a thorough analysis of the characteristics and provenances of REEs and Nd isotopes in the surface sediments of mangrove wetland in the Jiulong River Estuary was carried out. According to the results, the mean concentration of REEs in the surface sediments was 290.9 mg·kg-1, which was greater than the background value. Unpolluted to moderately polluted for La and Ce, as well as a moderate ecological risk for Lu, were indicated by the geoaccumulation index (Igeo) and potential ecological risk of individual factors ([Formula: see text]), respectively. The surface sediments showed substantial negative Eu anomalies but no significant Ce anomalies. The enrichments in LREE and flat HREE patterns are visible in the chondrite-normalized REE patterns. REEs in the surface sediments might be attributed to both natural sources (granite and magmatic rocks) and anthropogenic activities, including coal combustion, vehicle exhaust, steel smelting, and fertilizer, based on the (La/Yb)N-∑REE and ternary (La/Yb)N-(La/Sm)N-(Gd/Yb)N plots. The three-dimensional ∑LREE/∑HREE-Eu/Eu*-εNd(0) plot, when combined with the Nd isotope, further demonstrated that the REEs in the surface sediments appeared to have come from additional nonlocal potential sources.
Collapse
Affiliation(s)
- Bo-Sen Weng
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
- Institute of Environmental and Ecological Engineering, Huaqiao University, Xiamen, 361021, China
| | - Rui-An Wan
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Rui-Lian Yu
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China.
- Institute of Environmental and Ecological Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Gong-Ren Hu
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
- Institute of Environmental and Ecological Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yu Yan
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
- Institute of Environmental and Ecological Engineering, Huaqiao University, Xiamen, 361021, China
| | - Cheng-Qi Lin
- Key Laboratory of Fujian Universities for Environmental Monitoring, Xiamen, 361024, China
| | - Hua-Bin Huang
- Key Laboratory of Fujian Universities for Environmental Monitoring, Xiamen, 361024, China
| |
Collapse
|
18
|
Zerizghi T, Guo Q, Wei R, Ziteng W, Du C, Deng Y. Rare earth elements in soil around coal mining and utilization: Contamination, characteristics, and effect of soil physicochemical properties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121788. [PMID: 37164222 DOI: 10.1016/j.envpol.2023.121788] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/20/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
REEs are emerging contaminants, and soils nearby coal and coal ash with high REEs composition are vulnerable to REEs contamination. Besides, coal industry alters surrounding soil characteristics. However, there is information paucity about REEs contamination and geochemical behaviors along with soil characteristics around coal industrial areas, which are essential for understanding their toxicity and mobilization. The study was conducted in soils surrounding Kriel coal-fired power plant (KCM) and Greenside coal mining in Witbank (GSCM), South Africa. Multivariate statistical analysis, pollution and fractionation indices, and BCR sequential extraction were applied. The ∑REEs in the soils were compared to abundance of ∑REEs in the upper earth's crust (UEC), and slightly higher ∑REEs were found in KCM but slightly lower in GSCM. Generally, LREEs are abundant. The REEs in the soils were normalized using the Post-Archean Australian Shale (PAAS) and then Eu and Gd in KCM and Gd in GSCM were >1. Contamination assessment revealed slightly to moderately contaminated soils by REEs. ∑REEs in KCM was significantly correlated with soil particle sizes of 2.00-50.00 μm, Al2O3, Fe2O3, and MnO, while with 2.00-3.00 μm and Al2O3 in GSCM. Fractionation characteristics showed a positive Ce anomaly with positive linear regressions with Fe2O3 and MnO. In contrast, a negative Eu anomaly was found with positive linear regressions with Al, Ca, and Mg-oxides. Oxidizable fractioned REEs accounted for 32.33% of the ∑REEs in GSCM and 35.85% in KCM, and their high EF suggest enrichment that could be due to coal mining and utilization. Most soil physicochemical properties appear to be negatively correlated with the exchangeable REEs. Overall, the soils are contaminated by REEs, and characteristics of the REEs are considerably influenced by the major elements oxide, U, and Th contents. Therefore, more attention should be paid to REEs contamination and impacts around coal mining and utilization.
Collapse
Affiliation(s)
- Teklit Zerizghi
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hamelmalo Agricultural College, National Commission for Higher Education, Keren, P.O. Box 397, Eritrea
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wang Ziteng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenjun Du
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinan Deng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; School of Earth Sciences, Yunnan University, Kunming, 650091, China
| |
Collapse
|
19
|
Azizi M, Faz A, Zornoza R, Martinez-Martinez S, Acosta JA. Phytoremediation Potential of Native Plant Species in Mine Soils Polluted by Metal(loid)s and Rare Earth Elements. PLANTS (BASEL, SWITZERLAND) 2023; 12:1219. [PMID: 36986908 PMCID: PMC10058974 DOI: 10.3390/plants12061219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Mining activity has an adverse impact on the surrounding ecosystem, especially via the release of potentially toxic elements (PTEs); therefore, there is an urgent need to develop efficient technologies to remediate these ecosystems, especially soils. Phytoremediation can be potentially used to remediate contaminated areas by potentially toxic elements. However, in soils affected by polymetallic contamination, including metals, metalloids, and rare earth elements (REEs), it is necessary to evaluate the behavior of these toxic elements in the soil-plant system, which will allow the selection of the most appropriate native plants with phytoremediation potential to be used in phytoremediation programs. This study was conducted to evaluate the level of contamination of 29 metal(loid)s and REEs in two natural soils and four native plant species (Salsola oppositifolia, Stipa tenacissima, Piptatherum miliaceum, and Artemisia herba-alba) growing in the vicinity of a Pb-(Ag)-Zn mine and asses their phytoextraction and phytostabilization potential. The results indicated that very high soil contamination was found for Zn, Fe, Al, Pb, Cd, As, Se, and Th, considerable to moderate contamination for Cu, Sb, Cs, Ge Ni, Cr, and Co, and low contamination for Rb, V, Sr, Zr, Sn, Y, Bi and U in the study area, dependent of sampling place. Available fraction of PTEs and REEs in comparison to total concentration showed a wide range from 0% for Sn to more than 10% for Pb, Cd, and Mn. Soil properties such as pH, electrical conductivity, and clay content affect the total, available, and water-soluble concentrations of different PTEs and REEs. The results obtained from plant analysis showed that the concentration of PTEs in shoots could be at a toxicity level (Zn, Pb, and Cr), lower than toxic but more than sufficient or natural concentration accepted in plants (Cd, Ni, and Cu) or at an acceptable level (e.g., V, As, Co, and Mn). Accumulation of PTEs and REEs in plants and the translocation from root to shoot varied between plant species and sampling soils. A. herba-alba is the least efficient plant in the phytoremediation process; P. miliaceum was a good candidate for phytostabilization of Pb, Cd, Cu, V, and As, and S. oppositifolia for phytoextraction of Zn, Cd, Mn, and Mo. All plant species except A. herba-alba could be potential candidates for phytostabilization of REEs, while none of the plant species has the potential to be used in the phytoextraction of REEs.
Collapse
|
20
|
Fan J, Deng L, Wang W, Yi X, Yang Z. Contamination, Source Identification, Ecological and Human Health Risks Assessment of Potentially Toxic-Elements in Soils of Typical Rare-Earth Mining Areas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15105. [PMID: 36429823 PMCID: PMC9690513 DOI: 10.3390/ijerph192215105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The mining and leaching processes of rare-earth mines can include the entry of potentially toxic elements (PTEs) into the environment, causing ecological risks and endangering human health. However, the identification of ecological risks and sources of PTEs in rare-earth mining areas is less comprehensive. Hence, we determine the PTE (Co, Cr, Cu, Mn, Ni, Pb, Zn, V) content in soils around rare-earth mining areas in the south and analyze the ecological health risks, distribution characteristics, and sources of PTEs in the study area using various indices and models. The results showed that the average concentrations of Co, Mn, Ni, Pb and Zn were higher than the soil background values, with a maximum of 1.62 times. The spatial distribution of PTEs was not homogeneous and the hot spots were mostly located near roads and mining areas. The ecological risk index and the non-carcinogenic index showed that the contribution was mainly from Co, Pb, and Cr, which accounted for more than 90%. Correlation analysis and PMF models indicated that eight PTEs were positively correlated, and rare-earth mining operations (concentration of 22.85%) may have caused Pb and Cu enrichment in soils in the area, while other anthropogenic sources of pollution were industrial emissions and agricultural pollution. The results of the study can provide a scientific basis for environmental-pollution assessment and prevention in rare-earth mining cities.
Collapse
Affiliation(s)
- Jiajia Fan
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an 710064, China
| | - Li Deng
- Ecological Environment Planning and Environmental Protection Technology Center of Qinghai Province, Xining 810007, China
| | - Weili Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiu Yi
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an 710064, China
| | - Zhiping Yang
- Jiangxi Research Academy of Ecological Civilization, Nanchang 330036, China
| |
Collapse
|
21
|
Sena ICM, Souza LA, Patire VF, Arias-Ortiz A, Creed JC, Cruz I, Hatje V. Environmental settings of seagrass meadows control rare earth element distribution and transfer from soil to plant compartments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157095. [PMID: 35779729 DOI: 10.1016/j.scitotenv.2022.157095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The role of seagrass meadows in the cycling and accumulation of rare earth elements and yttrium (REEY) is unknown. Here, we measured the concentration of REEY in the different compartments of Halodule wrightii (shoots, rhizomes, and roots) and soils in seagrass meadows near sandy beaches, mangroves, and coral reefs in the Todos os Santos Bay, Brazil. We provide data on the accumulation dynamics of REEY in seagrass compartments and demonstrate that plant compartments and soil properties determine accumulation patterns. The ∑REEY in soils were ~1.7-fold higher near coral reefs (93.0 ± 5.61 mg kg-1) than near mangrove sites (53.9 ± 31.5 mg kg-1) and were slightly higher than in sandy beaches (81.7 ± 49.1 mg kg-1). The ∑REEY in seagrasses varied between 35.4 ± 28.1 mg kg-1 near coral reefs to 59.2 ± 21.3 mg kg-1 near sandy beaches, respectively. The ∑REE bioaccumulation factor (BAF) was highest in seagrass roots near sandy beaches (BAF = 0.67 ± 0.48). All values of ∑REE translocation are <1, indicating inefficient translocation of REE from roots to rhizome to shoot. PAAS normalized REE was enriched in light REE (LREE) over heavy REE (HREE). The REEY accumulation in Halodule wrightii revealed a low potential of the seagrass to act as a sink for these elements. However, their bioavailability and potential uptake may change with soil properties. Our results serve as a basis for a better understanding of REE biogeochemical cycling and its fate in the marine environment. REE have experienced increased use as they are central to new technologies revealing an urgent need for further investigations of potential impacts on coastal ecosystems.
Collapse
Affiliation(s)
- Ingrid C M Sena
- Centro Interdisciplinar de Energia e Ambiente, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Ondina, Salvador, BA 40170-290, Brazil.
| | - Laís A Souza
- Centro Interdisciplinar de Energia e Ambiente, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Ondina, Salvador, BA 40170-290, Brazil
| | - Vinicius F Patire
- Centro Interdisciplinar de Energia e Ambiente, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Ondina, Salvador, BA 40170-290, Brazil
| | - Ariane Arias-Ortiz
- Ecosystem Science Division, Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA; Institute of Marine Science, University of California, Santa Cruz, CA 95064, USA
| | - Joel C Creed
- Departamento de Ecologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20550-900, Brazil
| | - Igor Cruz
- Departamento de Oceanografia, Instituto de Geociências, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil
| | - Vanessa Hatje
- Centro Interdisciplinar de Energia e Ambiente, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Ondina, Salvador, BA 40170-290, Brazil; Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Ondina, Salvador, BA 40170-290, Brazil
| |
Collapse
|
22
|
Wang M, Liu C, Zhang J, Xiao K, Pan T. Synergistic effects of a functional bacterial consortium on enhancing phenanthrene biodegradation and counteracting rare earth biotoxicity in liquid and slurry systems. Lett Appl Microbiol 2022; 75:1515-1525. [PMID: 36000244 DOI: 10.1111/lam.13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022]
Abstract
The biodegradation of polycyclic aromatic hydrocarbons (PAHs) by microorganisms in the environment is often inhibited by coexisting metal ions. The aim of this work is to study a bacterial consortium for enhancing phenanthrene biodegradation under the inhibition effect of the rare earth (RE) ions Ce3+ and Y3+ . This bacterial consortium was composed of two bacteria, namely, the RE-adsorbing Bacillus subtilis MSP117 and the phenanthrene-degrading Moraxella osloensis CFP312. Ce3+ and Y3+ at the concentration of 1.15 mmol L-1 inhibited CFP312 from degrading phenanthrene but not glucose. Using glucose as a co-substrate could promote the proliferation of CFP312 but decreased phenanthrene degradation. Adsorption experiments and electron microscopy imaging showed that CFP312 had no RE ions adsorption capacity for RE ions and that RE elements could not be observed on its cell surfaces. MSP117 could adsorb 0.14 and 0.12 mmol g-1 wet cells of Ce3+ and Y3+ in aqueous solution, respectively, thus demonstrating considerable adsorption capacity. The MSP117 cell surface immobilized part of the free RE ions and reduced their bioaccessibility, thereby alleviating their biotoxic effect on phenanthrene degradation by CFP312. In liquid and slurry systems, glucose, which was used as the co-substrate of the bacterial consortium, must be kept at a low level to avoid the catabolism repression of phenanthrene degradation by CFP312.
Collapse
Affiliation(s)
- Meini Wang
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Congyang Liu
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Jiameng Zhang
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Kun Xiao
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Tao Pan
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| |
Collapse
|
23
|
Pereira WVDS, Ramos SJ, Melo LCA, Braz AMDS, Dias YN, Almeida GVD, Fernandes AR. Levels and environmental risks of rare earth elements in a gold mining area in the Amazon. ENVIRONMENTAL RESEARCH 2022; 211:113090. [PMID: 35278468 DOI: 10.1016/j.envres.2022.113090] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/20/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Artisanal gold (Au) mining may have increased the concentrations of rare earth elements (REEs) in the Serra Pelada mine (southeastern Amazon, Brazil), which has not been evaluated so far. The objectives of this study were to determine the concentrations of cerium (Ce), lanthanum (La), scandium (Sc), and yttrium (Y) in the surroundings of the Serra Pelada mine, as well as the environmental risks associated with these elements. Therefore, 27 samples were collected in agricultural, forest, mining, and urban areas, and submitted to chemical and particle size characterization. The concentrations of REEs were quantified by inductively coupled plasma mass spectrometry (ICP-MS) and used to estimate pollution indices and environmental risks of the studied elements. All REEs had higher levels in the anthropized areas when compared to the forest area, except Sc in the mining and urban areas. Pollution load indices revealed that all areas are contaminated (>1) by the combined effect of REEs, especially the agricultural areas (index of 2.3). The element of greatest enrichment in the studied areas was Y, with enrichment factors of 18.2, 39.0, and 44.4 in the urban, agriculture, and mining areas, respectively. However, the potential ecological risk indices were low (<150) in all areas, indicating that there are no current environmental risks by the studied REEs.
Collapse
Affiliation(s)
| | - Sílvio Junio Ramos
- Vale Institute of Technology - Sustainable Development, 66055-090, Belém, Pará, Brazil
| | - Leônidas Carrijo Azevedo Melo
- Department of Soil Science, School of Agricultural Sciences, Federal University of Lavras, 37200-900, Lavras, Minas Gerais, Brazil
| | | | - Yan Nunes Dias
- Institute of Agricultural Sciences, Federal Rural University of the Amazon, 66077-830, Belém, Pará, Brazil
| | | | | |
Collapse
|
24
|
Meng F, Huang Q, Cai Y, Li F, Yuan G. Effects of biowaste-derived biochar on the dynamic behavior of cadmium fractions in soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59043-59051. [PMID: 35381922 DOI: 10.1007/s11356-022-18802-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
As a commonly used amendment to soil contaminated by heavy metals, biochar has attracted great attention and has been applied for decades due to the benefits to the soil. However, the effects of biochar on the dynamic behavior of soil properties and metal fractions are still unclear. Here, we used two biochars, derived from biowastes (reed and bamboo willow), to treat two cadmium (Cd)-contaminated soils, S1 (loamy sand) and S2 (sandy loam), and determined the dynamic effects. The incubation experiments were designed to investigate the effects of biochar on the dynamic behavior of soil pH, dissolved organic matter (DOM), bioavailable Cd, and the transformation of Cd fractions for 270 days. The results showed that the soil pH, DOM, and bioavailable Cd initially increased and then decreased with incubation time, and the soil pH and DOM were higher, but bioavailable Cd content was lower than the original value. The transformation of the metal fractions changed dynamically, and the exchangeable fraction of Cd decreased with incubation time. Furthermore, the correlation results showed that the DOM can directly control the redistribution of Cd fractions, while soil pH can control it indirectly by regulating the DOM. This study highlighted that biochar can affect soil pH and DOM, redistribute Cd fractions, decrease bioavailable Cd content, and lower the potential risk of heavy metals. This study suggests ways to immobilize heavy metals in contaminated soils using biochar.
Collapse
Affiliation(s)
- Fande Meng
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China.
| | - Qiuxiang Huang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China
| | - Yongbing Cai
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China
| | - Feiyue Li
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China
| | - Guodong Yuan
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, Guangdong, China.
| |
Collapse
|
25
|
Hu R, Beguiristain T, De Junet A, Leyval C. Transfer of La, Ce, Sm and Yb to alfalfa and ryegrass from spiked soil and the role of Funneliformis mosseae. MYCORRHIZA 2022; 32:165-175. [PMID: 35253102 DOI: 10.1007/s00572-022-01073-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Rare earth elements (REEs) are widely used in high-tech industries, and REE waste emissions have become a concern for ecosystems, food quality and human beings. Arbuscular mycorrhizal fungi (AMF) have repeatedly been reported to alleviate plant stress in metal-contaminated soils. To date, little information is available concerning the role of AMF in REE-contaminated soils. We recently showed that there was no transfer of Sm to alfalfa by Funneliformis mosseae, but only a single REE was examined, while light and heavy REEs are present in contaminated soils. To understand the role of AMF on the transfer of REEs to plants, we carried out an experiment using alfalfa (Medicago sativa) and ryegrass (Lolium perenne) in compartmented pots with separate bottom compartments that only were accessible by F. mosseae fungal hyphae. The bottom compartments contained a mixture of four REEs at equal concentrations (La, Ce, Sm and Yb). The concentration of REEs in plants was higher in roots than in shoots with higher REE soil-root than root-shoot transfer factors. Moreover, significantly higher light-REEs La and Ce were transferred to ryegrass shoots than Sm and the heavy-REE Yb, but this was not observed for alfalfa. Alfalfa dry weight was significantly increased by F. mosseae inoculation, but not ryegrass dry weight. For both plant species, there was significantly higher P uptake by the mycorrhizal plants than the nonmycorrhizal plants, but there was no significant transfer of La, Ce, Sm or Yb to alfalfa and ryegrass roots or shoots due to F. mosseae inoculation.
Collapse
Affiliation(s)
- Ruoyu Hu
- Université de Lorraine, CNRS, LIEC, 54000, Nancy, France
| | | | | | - Corinne Leyval
- Université de Lorraine, CNRS, LIEC, 54000, Nancy, France.
| |
Collapse
|
26
|
Metal Accumulation and Biomass Production in Young Afforestations Established on Soil Contaminated by Heavy Metals. PLANTS 2022; 11:plants11040523. [PMID: 35214856 PMCID: PMC8879495 DOI: 10.3390/plants11040523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022]
Abstract
The restoration of forest ecosystems on metal-contaminated sites can be achieved whilst producing valuable plant biomass. Here, we investigated the metal accumulation and biomass production of young afforestations on contaminated plots by simulating brownfield site conditions. On 16 3-m2 plots, the 15 cm topsoil was experimentally contaminated with Zn/Cu/Pb/Cd = 2854/588/103/9.2 mg kg−1 using smelter filter dust, while 16 uncontaminated plots (Zn/Cu/Pb/Cd = 97/28/37/< 1) were used as controls. Both the calcareous (pH 7.4) and acidic (pH 4.2) subsoils remained uncontaminated. The afforestations consisted of groups of conifers, deciduous trees, and understorey plants. During the four years of cultivation, 2254/86/0.35/10 mg m−2 Zn/Cu/Pb/Cd were extracted from the contaminated soils and transferred to the aboveground parts of the plants (1279/72/0.06/5.5 mg m−2 in the controls). These extractions represented 3/2/3% of the soluble soil Zn/Cu/Cd fractions. The conifers showed 4–8 times lower root-to-shoot translocation of Cu and Zn than the deciduous trees. The contamination did not affect the biomass of the understorey plants and reduced that of the trees by 23% at most. Hence, we conclude that the afforestation of brown field sites with local tree species is an interesting option for their reclamation from an ecological as well as economic perspective.
Collapse
|
27
|
Siciliano A, Guida M, Pagano G, Trifuoggi M, Tommasi F, Lofrano G, Padilla Suarez EG, Gjata I, Brouziotis AA, Liguori R, Libralato G. Cerium, gadolinium, lanthanum, and neodymium effects in simplified acid mine discharges to Raphidocelis subcapitata, Lepidium sativum, and Vicia faba. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147527. [PMID: 34000556 DOI: 10.1016/j.scitotenv.2021.147527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
The alteration of rare earth elements (REEs) biogeochemical cycles has increased the potential effects related to their environmental exposure in a one-health perspective. Cerium (Ce), gadolinium (Gd), lanthanum (La), and neodymium (Nd) are frequently related to technological applications and their environmental concentrations are already in the μg/kg - mg/kg (i.e., or L) range depending on the considered matrices. The effect of Ce, Gd, La, and Nd was investigated in a simulated AMD (0.01-10.22 mg/L) at pH 4 and 6 considering a battery of photosynthetic organisms (Raphidocelis subcapitata, Lepidium sativum, and Vicia faba) according to a multiple-endpoint approach (growth inhibition, germination index, and mutagenicity). According to modelled chemical speciation, the considered elements were mostly in the trivalent free form (86-88%) at pH 4. Gd, La, and Nd exerted the most relevant toxic effect at pH 4. The pH 6 scenario evidenced a reduction in REEs toxicity level. Mutagenicity was detected only at pH 4 by Gd (up to 3-fold compared to negative controls), La and Nd, while Ce did not show any adverse effect. Toxic effects due to Ce, Gd, La, and Nd can be reduced by controlling the pH, but several gaps of knowledge still remain about their uptake and trophic transfer, and long-term effects on targeted species.
Collapse
Affiliation(s)
- Antonietta Siciliano
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy; Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Giovanni Pagano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Marco Trifuoggi
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Franca Tommasi
- Department of Biology, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Giusy Lofrano
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Edith Guadalupe Padilla Suarez
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Isidora Gjata
- Department of Biology, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Antonios Apostolos Brouziotis
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Renato Liguori
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy.
| |
Collapse
|
28
|
Wang JX, Xu DM, Fu RB, Chen JP. Bioavailability Assessment of Heavy Metals Using Various Multi-Element Extractants in an Indigenous Zinc Smelting Contaminated Site, Southwestern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8560. [PMID: 34444310 PMCID: PMC8392273 DOI: 10.3390/ijerph18168560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022]
Abstract
Despite recent studies have investigated the strong influences of smelting activities on heavy metal contamination in the soil environment, little studies have been conducted on the current information about the potential environmental risks posed by toxic heavy metals in smelting contaminated sites. In the present study, a combination of the bioavailability, speciation, and release kinetics of toxic heavy metals in the indigenous zinc smelting contaminated soil were reliably used as an effective tool to support site risk assessment. The bioavailability results revealed that the bioavailable metal concentrations were intrinsically dependent on the types of chemical extractants. Interestingly, 0.02 mol/L EDTA + 0.5 mol/L CH3COONH4 was found to be the best extractant, which extracted 30.21% of Cu, 31.54% of Mn, 2.39% of Ni and 28.89% of Zn, respectively. The sequential extraction results suggested that Cd, Pb, and Zn were the most mobile elements, which would pose the potential risks to the environment. The correlation of metal bioavailability with their fractionation implied that the exchangeable metal fractions were easily extracted by CaCl2 and Mehlich 1, while the carbonate and organic bound metal fractions could be extracted by EDTA and DTPA with stronger chelating ability. Moreover, the kinetic modeling results suggested that the chemical desorption mechanism might be the major factor controlling heavy metal release. These results could provide some valuable references for the risk assessment and management of heavy metals in the smelting contaminated sites.
Collapse
Affiliation(s)
- Jun-Xian Wang
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, China;
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Da-Mao Xu
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, China;
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Rong-Bing Fu
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, China;
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jia-Peng Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
| |
Collapse
|
29
|
Carvalho GS, Oliveira JR, Vasques ICF, Justi M, Santana MLT, Job MTP, Marques JJ. Steel mill waste effects on rice growth: comparison of chemical extractants on lead and zinc availability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25844-25857. [PMID: 33475922 DOI: 10.1007/s11356-021-12420-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Zinc deficiency is widespread in cultivated soils, limiting the grain crop production and the adequate human nutrition. Several wastes from metallurgical activity can be used as Zn source, but these materials generally also have other potentially toxic elements, such as Pb, that can be highly toxic for plants and humans. This study aimed to evaluate the efficiency of five chemical extractors (water, citric acid, DTPA, Mehlich 1, and USEPA 3051A) in better correlating with the bioavailable contents of Zn and Pb in soils treated with steel mill wastes (metallurgic press residue (MPR), filter press mud (FPM), and phosphate mud (PM)). Rice plants were cultivated in pots with 4 kg of a Haplic Eutrophic Gleisol and steel mill wastes were applied in soil at increasing doses (0, 0.5, 1, 2, 4, 8, and 16 t ha-1). The availability of the potentially toxic elements Zn and Pb was assessed as total contents in rice shoots, grains, husks, and roots. The results showed that the USEPA 3051A method extracted greater contents of Zn and Pb from soil compared with other extractants. Due to their greater natural Pb and Zn contents, MPR and PM promoted higher contents of these elements in soils, respectively. Doses of PM influenced Zn contents in grains. After adding 16 t ha-1 of PM, Zn content in rice grains was 0.1 mg kg-1. However, at doses 0.5, 1, 2, and 4 t ha-1, the average concentration of Zn in the grains was 40 mg kg-1. The wastes MPR and FPM at 16 t ha-1 promoted Zn concentration in grains of 42 and 45 mg kg-1, respectively. The greatest contents of Pb in grains were found after addition of FPM at doses 0.5, 1, and 2 t ha-1: 6.67, 4.96, and 0.45 mg kg-1, respectively, and above 4 t ha-1 (4, 8, and 16 t ha-1); Pb content in grains was less than 0.3 mg kg-1. The content of Pb in roots at 16 t ha-1 of PM, MPR, and FPM was 18, 25, and 155 mg kg-1, respectively, and for Zn, under the same conditions, 100, 255, and 813 mg kg-1 for MPR, FPM, and PM, respectively. USEPA 3051A can be used to assess Pb and Zn available contents, and positive correlations with bioavailable contents of these elements in roots prove its feasibility. Further studies are necessary to state the safety of using steel mill application, including the use of other crop species, but PM is a promising waste for soil Zn fertilization.
Collapse
Affiliation(s)
- Geila S Carvalho
- Soil Science Department, Universidade Federal de Lavras, Avenida Dr Sylvio Menicucci, Lavras, 37200-900, Brazil
| | - Jakeline R Oliveira
- Soil Science Department, Universidade Federal de Lavras, Avenida Dr Sylvio Menicucci, Lavras, 37200-900, Brazil
| | - Isabela C F Vasques
- Soils Department, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, Vicosa, 36570-000, Brazil
| | - Marina Justi
- Soil Science Department, Universidade Federal de Lavras, Avenida Dr Sylvio Menicucci, Lavras, 37200-900, Brazil
| | - Monna Lysa T Santana
- Soil Science Department, Universidade Federal de Lavras, Avenida Dr Sylvio Menicucci, Lavras, 37200-900, Brazil
| | - Marcel T P Job
- Soils Department, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, Vicosa, 36570-000, Brazil
| | - João José Marques
- Soil Science Department, Universidade Federal de Lavras, Avenida Dr Sylvio Menicucci, Lavras, 37200-900, Brazil.
| |
Collapse
|
30
|
Li M, Liu Y, Xu G, Wang Y, Yu Y. Impacts of polyethylene microplastics on bioavailability and toxicity of metals in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144037. [PMID: 33348149 DOI: 10.1016/j.scitotenv.2020.144037] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
In this study, we investigated the bioavailability and toxicity of metals (Cu and Ni) in the soil containing polyethylene microplastics (PE-MPs). The bioavailability of the metals determined by the five-step chemical sequential extraction method increased with the addition of MPs (0.1%, 1%, 10%) in the soil, which was confirmed by the adsorption-desorption characteristics. To further examine the bioavailability and toxicity of metals, earthworms (Eisenia fetida) were exposed to soil containing Cu2+ (100 mg/kg) or Ni2+ (40 mg/kg) with different amounts (0.01%, 0.05%, and 0.1%) of PE-MPs for 21 days. The highest concentrations of Cu2+ and Ni2+ in earthworms reached to 73.3 and 36.3 mg/kg, respectively. Moreover, metal concentrations in earthworms increased with MP contents in the soil, which was consistent with the bioavailability measured by the sequential extraction method. Furthermore, changes in biomarkers including peroxidase (POD), catalase (CAT) and superoxide dismutase (SOD) activity, malondialdehyde (MDA) contents, and related gene expression levels in earthworms suggested that the pollutants caused toxicity to earthworms. Overall, MPs increased the bioavailability of metals in the soil and the toxic effects to earthworms. These findings provide insights regarding the impacts of MPs on the bioavailability of metals and the combined toxic effects of these two kinds of pollutants on terrestrial animals.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yang Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
31
|
Hong X, Yang K, Liang H. Characterization of acidity and sulfate in dust obtained from the Wuda coal base, northern China: spatial distribution and pollution assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12897-8. [PMID: 33634406 DOI: 10.1007/s11356-021-12897-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The coal fire in Wuda, Inner Mongolia of China, is one of the most serious coal fires in the world with a history over 50 years and endangers the neighboring downwind urban area. A lack of effective measures to control coal fires in this region can aggravate environmental pollution. In this study, the levels and spatial distributions of acid (pH) and SO42- in dust in the Wuda coalfield and its surrounding areas in Inner Mongolia, North China, were reported to identify the potential acid and SO42- pollution in the local environment with an area of 270 km2. The mean pH and SO42- content was to found to be 7.44 and 5981 μg·g-1, respectively. Through the analysis of the spatial distribution of pH and SO42- concentrations, it was found that most of contaminated areas are mainly distributed in coalfield and its affiliated industrial parks, and the Wuda urban area also suffered from pollution. Based on chemical equilibrium, the surface acid pollution might have resulted in the change of the dust type from the original weakly alkaline CaCO3 type to the CaSO4 type in coalfield and industrial parks. Finally, the pollution assessment revealed that the coalfield and industrial parks are both at heavy pollution levels, and the urban area is mostly moderately polluted, followed by farm and peripheral region with a certain pollution risk. The results indicated that the long-term release of acidic gas from the coal fires and industrial parks can led to significantly elevated acidity and SO42- levels in the dust of the local environment, while coal fires can aggravate surface pollution in industrial parks, but the extent of contamination was also closely related to the terrain and wind direction in the study area.
Collapse
Affiliation(s)
- Xiuping Hong
- College of Life Science, Huaibei Normal University, Huaibei, 235000, China.
| | - Kang Yang
- School of Chemical & Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Handong Liang
- State Key Laboratory of Coal Resources and Safety Mining, China University of Mining and Technology, Beijing, 100083, China.
| |
Collapse
|
32
|
Oliveira DLB, Pereira LHDS, Schneider MP, Silva YJAB, Nascimento CWA, van Straaten P, Silva YJAB, Gomes ADA, Veras G. Bio-inspired algorithm for variable selection in i-PLSR to determine physical properties, thorium and rare earth elements in soils from Brazilian semiarid region. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Galhardi JA, de Mello JWV, Wilkinson KJ. Bioaccumulation of potentially toxic elements from the soils surrounding a legacy uranium mine in Brazil. CHEMOSPHERE 2020; 261:127679. [PMID: 32717510 DOI: 10.1016/j.chemosphere.2020.127679] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/24/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
It is important to understand the environmental fate and potential risks posed by metals and metalloids around mines and in legacy mining areas. In order to assess the bioavailable concentrations of several potentially toxic elements (PTEs: As, Pb, Cd, Ni, Cu, Cr, Mn, Zn, Ba, U) and rare earth elements (REEs: La to Lu), a multi-method evaluation of their concentrations/fractionation/speciation in soils was related to their biouptake in corn, for a region surrounding a legacy U mine in Brazil. Chemical fractions of the PTE and REE in soils were determined using the BCR (Community Bureau of Reference) sequential extraction procedure; a single extraction with Ca(NO3)2 and the diffusion gradient in thin films (DGT) technique. All techniques were better correlated to the metals accumulated by the crops as compared to total metal concentrations. Ba, Cu, Mn and Zn were shown to have high mobility and high bioaccumulation factors in the corn. Concentrations of U, As, Cd, and Pb were above threshold concentrations and strongly correlated, suggesting that they had a similar anthropogenic source. Geospatial modeling agreed with results from principal component analysis, indicating multiple sources for the contamination. Results highlighted the need for multi-method approaches when evaluating the long-term risks posed by PTEs and REEs in agricultural soils.
Collapse
Affiliation(s)
- Juliana A Galhardi
- Biophysical Environmental Chemistry Group, Department of Chemistry, University of Montreal, Montreal, Quebec, H3C 3J7, Canada.
| | - Jaime W V de Mello
- Soil Chemistry and Environmental Geochemistry Group, Department of Soil, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Kevin J Wilkinson
- Biophysical Environmental Chemistry Group, Department of Chemistry, University of Montreal, Montreal, Quebec, H3C 3J7, Canada
| |
Collapse
|
34
|
Galhardi JA, de Mello JWV, Wilkinson KJ. Environmental and health risk assessment of agricultural areas adjacent to uranium ore fields in Brazil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:3965-3981. [PMID: 32653967 DOI: 10.1007/s10653-020-00659-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
To investigate the risks posed by trace and rare earth elements (REEs) in two tropical uranium ore fields, metal concentrations from 50 vegetable samples (corn and soybean) and their corresponding agricultural soils were evaluated in a U mining area and a U-rich coal mining area in Brazil. Samples from both areas had metal concentrations (REE: La to Lu, and trace elements: As, Pb, Cd, Ni, Cu, Cr, Mn, Zn, Ba, U, Sr) that were higher than the guidelines proposed by the Brazilian environmental agency. Soils from the U mining area (Poços de Caldas) generally had higher contents of trace elements than the coal mining area (Figueira), with the exception of Ni and Cr, indicating a higher risk of pollution, which was confirmed by a pollution load index that was greater than unity. For both sites, concentrations of uranium in the soil and plants, its hazard quotients and the soil contamination factor were higher in agricultural fields closer to the mines, indicating that contamination and the consequent risks to human health were distance dependent. REE concentrations averaged 52.8 mg kg-1 in the topsoils and 0.76 mg kg-1 in the grains for Figueira, whereas higher values of 371 mg kg-1 (topsoils) and 0.9 mg kg-1 (grains) were found in Poços de Caldas. Based upon corn and soybean consumption, the estimated intake dose of the REE was lower than the intake dose predicted to be problematic for human health for both sites, indicating limited risk related to the ingestion of REE.
Collapse
Affiliation(s)
- Juliana A Galhardi
- Biophysical Environmental Chemistry Group, Department of Chemistry, University of Montreal, Montreal, QC, Canada.
| | - Jaime W V de Mello
- Soil Chemistry and Environmental Geochemistry Group, Department of Soil, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Kevin J Wilkinson
- Biophysical Environmental Chemistry Group, Department of Chemistry, University of Montreal, Montreal, QC, Canada
| |
Collapse
|