1
|
Ahmad IA, Hu H, Islam MS, Fu Q, Zhu J, Miao F, Mehran M, Haider S, Murad Z, Ali A. Simultaneous adsorption of cadmium and arsenic by goethite-modified rice straw-derived biochar in water and soil: interactive ion effects and co-adsorption mechanism. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:648. [PMID: 40355771 DOI: 10.1007/s10661-025-14100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
The coexistence of cadmium (Cd(II)) and arsenic (As(III)) has long been an environmental problem. Green and cost-effective biochar (BC) shows considerable potential for addressing environmental issues, including the concurrent elimination of cadmium (Cd(II)) and arsenic (As(III)) from water and soil after nano-sized goethite modification. However, the behavior of goethite-modified rice straw-derived biochar (GBC) during co-adsorption of Cd (II)) and As (III)) in the presence of competing ions and anoxic vs oxic environments is unclear yet. This experiment (GBC) was successfully synthesized to study co-adsorption and the effects of environmental factors on it. The adsorption kinetics and isotherms for the mixed adsorption of Cd(II) and As(III) onto GBC showed that the pseudo-2nd-order model (R2 Cd(II) = 0.998, R2 As(III) = 0.996) and the Langmuir model (R2 Cd(II) = 0.982, R2 As(III) = 0.997) were both correctly portrayed. The highest adsorption of As(III) was 87.38 mg/g, and Cd(II) was 71.07 mg/g in a single adsorption system, which is considerably more significant than the values of 68.6 and 48.38 mg/g, correspondingly, in the co-adsorption system. The competitive adsorption of Cd(II) and As(III) on GBC was primarily driven by co-precipitation and ion exchange. Its efficacy in soil systems under aerobic and anaerobic situations remained undisturbed. At the same time, the anaerobic environment favors Cd adsorption, and the aerobic environment favors more As remediation in an aqueous system. The interactive ions Ca2+ and Mg2+ significantly enhanced the adsorption of As(III). On the other hand, phosphate and humic acid significantly promote Cd(II) adsorption. In summary, the different environmental conditions revealed by this study help a deeper understanding of the behaviors of As and Cd by GBC.
Collapse
Affiliation(s)
- Iftikhar Ali Ahmad
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Md Shoffikul Islam
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Soil Science, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Qingling Fu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jun Zhu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fei Miao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Mehran
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sharjeel Haider
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zaryab Murad
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ayaz Ali
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
2
|
Wu M, Wu L, Zhang W, Zhong X, Guo R, Cui Z, Yang Y, Lv J. Efficient removal of cadmium (II) and arsenic (III) from water by nano-zero-valent iron modified biochar-zeolite composite. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118178. [PMID: 40222112 DOI: 10.1016/j.ecoenv.2025.118178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
For the removal of Cd(II) and As(III) from water, this study synthesized a nano-zero-valent iron-loaded biochar-zeolite composite material (nZVI-BCZo) using a liquid-phase reduction method, with biochar, zeolite, and FeSO₄·7H₂O as precursors. The successful incorporation of nZVI onto the BCZo was verified through Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and Fourier Transform Infrared Spectroscopy (FTIR) analyses, which revealed significant modifications in the surface oxygen-containing functional groups. Batch adsorption experiments were conducted to evaluate the adsorption characteristics and performance of nZVI-BCZo for Cd(II) and As(III). Under optimal conditions (pH 6.0, temperature of 310 K, and an adsorption time of 360 min), the maximum adsorption capacities for Cd(II) and As(III) were found to be 28.09 mg/g and 186.99 mg/g, respectively. The influence of pH on removal efficiency was more pronounced than that of temperature, with nZVI-BCZo exhibiting a higher affinity for As(III) compared to Cd(II). Kinetic analysis showed that the adsorption process is primarily controlled by chemical adsorption and follows a monolayer adsorption mechanism. Regeneration tests demonstrated that nZVI-BCZo retained good adsorption capacity after three cycles, with adsorption efficiencies of 67.78 % for Cd(II) and 53.04 % for As(III), indicating its potential for repeated use in water treatment applications. The economic evaluation revealed that nZVI-BCZo has a lower processing cost. Therefore, this study established nZVI-BCZo as an efficient, reusable, and cost-effective adsorbent for the treatment of heavy metal-laden water.
Collapse
Affiliation(s)
- Mengyuan Wu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China
| | - Lijuan Wu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China
| | - Wen Zhang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China
| | - Xianbao Zhong
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China
| | - Runfeng Guo
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China
| | - Ziying Cui
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China
| | - Yajun Yang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China.
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China.
| |
Collapse
|
3
|
Lu F, Wang J, Zhang C, Xin Z, Deng Z, Ren J, Shi J. Sodium citrate-modification enhanced Fe 3S 4 for Cr(Ⅵ) removal from aqueous solution and soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125889. [PMID: 39986560 DOI: 10.1016/j.envpol.2025.125889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Fe3S4 has been widely employed to remove Cr(Ⅵ) from wastewater, however, its practical effectiveness is often limited by agglomeration and passivation. This study introduces sodium citrate (SC) as a ligand to synthesize an Fe3S4-SC magnetic micro-crystal for Cr(Ⅵ) removal from aqueous solutions and contaminated soils. Experimental results show that Fe3S4-SC exhibits superior Cr(Ⅵ) removal efficiency, especially in acidic environments, with a maximum adsorption capacity of 449.12 mg/g. When Fe3S4-SC was used to remediate Cr(Ⅵ)-contaminated soil with a Cr(Ⅵ) content of 664.98 mg/kg and a TCLP-Cr(Ⅵ) concentration of 26.57 mg/L, the removal efficiencies of Cr(Ⅵ) and TCLP-Cr(Ⅵ) were 99.29% and 98.52% after 60 days. Cr speciation shifted from exchangeable fraction and weak acid-soluble fraction to more stable species bound to Fe-Mn oxides and residual fraction. Cr(Ⅵ) removal was primarily facilitated by surface Fe(Ⅱ), dissolved Fe(Ⅱ), and surface S(-Ⅱ). Surface S(-Ⅱ) provided electrons to Fe(Ⅲ), facilitating Fe(Ⅱ) regeneration for the continuous reduction of Cr(Ⅵ). The SC ligand enhanced material dispersion and stability, promoted Fe(Ⅱ) dissolution, reduced passivation layer formation, and improved electron transfer efficiency, thus increasing the efficacy of Fe3S4-SC in Cr(Ⅵ) removal. These findings provide a valuable reference for effectively remediating Cr(Ⅵ) contamination in wastewater and soil.
Collapse
Affiliation(s)
- Feiyu Lu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Chun Zhang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Ziming Xin
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhenkun Deng
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiayu Ren
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Shree B, Kumari S, Singh S, Rani I, Dhanda A, Chauhan R. Exploring various types of biomass as adsorbents for heavy metal remediation: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:406. [PMID: 40095183 DOI: 10.1007/s10661-025-13826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
The intensifying problem of heavy metal contamination in water sources has led to the need for efficient and sustainable remediation technologies. Biomass-based adsorbents have emerged as a promising solution due to their cost-effectiveness, renewability, and environmental advantages. This review thoroughly analyzes recent advancements in biomass-based adsorbents for heavy metal remediation. It evaluates different types of biomass materials, such as agricultural residues, forestry by-products, and aquatic plants, highlighting their adsorptive capacities, modification techniques, and operational efficiencies. The review also explores the mechanisms of metal uptake, such as ion exchange, adsorption, and complexation, and discusses the performance of different biomass adsorbents. Furthermore, it highlights the key challenges and limitations associated with biomass-based adsorbents, such as regeneration issues, stability concerns, and scalability. By consolidating current research and technological developments, this review aims to offer insights into optimizing biomass-based adsorbents for practical applications and outlining future research directions in heavy metal remediation.
Collapse
Affiliation(s)
- Bhagya Shree
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Sachin Kumari
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India.
| | - Sushila Singh
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Indu Rani
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Ankush Dhanda
- Department of Soil Sciences, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Reena Chauhan
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
| |
Collapse
|
5
|
Yu P, Zhuang R, Liu H, Wang Z, Zhang C, Wang Q, Sun H, Huang W. Recycling alkali lignin-derived biochar with adsorbed cadmium into cost-effective CdS/C photocatalyst for methylene blue removal. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2025; 43:75-85. [PMID: 38390711 DOI: 10.1177/0734242x241231394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Cadmium (Cd)-enriched adsorbents wastes possess great environmental risk due to their large-scale accumulation and toxicity in the natural environment. Recycling spent Cd-enriched adsorbents into efficient catalysts for advanced applications could address the environmental issues and attain the carbon neutral goal. Herein, a facile strategy is developed for the first time to reutilize the alkali lignin (AL)-derived biochar (ALB) absorbed with Cd into cadmium sulphide (CdS)/C composite for the efficient methylene blue (MB) removal. The ALB is initially treated with Cd-containing solution, then the recycling ALB samples with adsorbed Cd are converted to the final CdS/C composite using NaS2 as the sulphurizing reagent for vulcanization reaction. The optimal ALB400 demonstrates a high adsorption capacity of 576.0 mg g-1 for Cd removal. Then the converted CdS/C composite shows an efficient MB removal efficiency of 94%. The photodegradation mechanism is mainly attributed to carbon components in the CdS/C composite as electron acceptor promoting the separation of photoelectrons/holes and slowing down the abrasion of CdS particles. The enhanced charge transfer and contact between the carrier and the active site thus improves the removal performance and reusability. This work not only develops a method for removing Cd from wastewater effectively and achieving the waste resource utilization but also further offers a significant guidance to use other kinds of spent heavy metal removal adsorbents for the construction of low-cost and high value-added functional materials.
Collapse
Affiliation(s)
- Peng Yu
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan, P. R. China
| | - Ronghao Zhuang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan, P. R. China
| | - Hui Liu
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan, P. R. China
| | - Zhiguo Wang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan, P. R. China
| | - Chun Zhang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan, P. R. China
| | - Qiongchao Wang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan, P. R. China
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, P. R. China
| | - Wei Huang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan, P. R. China
| |
Collapse
|
6
|
Ye Z, Jiang M, Yan F, Cao B, Wang F. Chemical aging of biochar-zero-valent iron composites in groundwater: Impact on Cd(II) and Cr(VI) co-removal. ENVIRONMENTAL RESEARCH 2024; 263:120022. [PMID: 39304017 DOI: 10.1016/j.envres.2024.120022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/27/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Biochar (BC), zero-valent iron (ZVI), and their composites are promising materials for use in permeable reactive barriers, although further research is needed to understand how their properties change during long-term aging in groundwater. In this study, BC, ZVI and their composites (4BC-1ZVI) were subjected to the chemical aging tests in five media (deionized water, NaCl, NaHCO3, CaCl2 and a mixture of CaCl2 and NaHCO3 solutions) for 20 days. After treatment, the microscopic analysis and performance tests for the co-removal of Cd(II) and Cr(VI) were carried out. The results indicated that the removal of Cd(II) by aged 4BC-1ZVI followed a pseudo-second-order model, whereas the removal of Cr(VI) was better fitted with a pseudo-first order model. The aging mechanism of 4BC-1ZVI was primarily governed by iron corrosion/passivation, the reduction of soluble components, and the formation of carbonate minerals. Less Fe3O4/ γ-Fe2O3 was formed during aging in deionized water, NaCl and CaCl2 solutions. The corrosion products, Fe3O4/ γ-Fe2O3, FeCO3 and α/γ-FeOOH, were observed after aging in NaHCO3 and a mixture of NaHCO3 and CaCl2 solutions. The decrease in the soluble components of biochar led to a decrease in cation exchange, while carbonate minerals contributed to Cd(II) precipitation. This work provides insights into the aging processes of BC-ZVI composites for long-term groundwater remediation applications.
Collapse
Affiliation(s)
- Zijun Ye
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing, 210096, China.
| | - Meiyang Jiang
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing, 210096, China
| | - Fangmin Yan
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing, 210096, China
| | - Benyi Cao
- School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Fei Wang
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
7
|
Garg R, Mittal M, Tripathi S, Eddy NO. Core to concept: synthesis, structure, and reactivity of nanoscale zero-valent iron (NZVI) for wastewater remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67496-67520. [PMID: 38630403 DOI: 10.1007/s11356-024-33197-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/30/2024] [Indexed: 01/01/2025]
Abstract
Numerous technological advancements have been developed to tackle the issue of wastewater remediation effectively. However, the practical application of these technologies on a large scale has faced several challenges that have hindered their progress. These challenges include low selectivity, high energy requirements, and significant expenses. Nanoscale materials have demonstrated remarkable effectiveness in removing a wide range of contaminants. Nanoscale zero-valent iron (NZVI) exhibits a range of distinctive physical and chemical properties that have proven to be highly effective in various environmental remediation applications. These include its impressive surface area, remarkable reactivity, and its capacity to create stable colloidal suspensions. The paper explores the synthetic techniques for NZVI with special emphasis on green synthesis and the use of capping or support agents for maintaining stability and enhancing the reactivity of NZVI. The various structural and reactivity aspects of NZVI have been highlighted for its potential application in wastewater treatment sequestrating various categories of inorganic and organic contaminants. The discussion also delves into the limitations of NZVI, highlighting its dependence on water as a medium for contact reaction or electron transfer through the action mechanism of NZVI in adsorptive and photocatalytic sequestration of contaminants. The beneficial potential of NZVI-based composite systems in the field of environmental remediation has also been included which aids in the application of NZVI in environmental remediation.
Collapse
Affiliation(s)
- Rajni Garg
- Department of Applied Science and Humanities, Galgotias College of Engineering and Technology, Greater Noida, UP, 201310, India.
| | - Mona Mittal
- Department of Chemistry, Directorate of Geology and Mining, Lucknow, Uttar Pradesh, 226001, India
| | - Smriti Tripathi
- Department of Applied Science and Humanities, Galgotias College of Engineering and Technology, Greater Noida, UP, 201310, India
| | - Nnabuk Okon Eddy
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, 410105, Nigeria
| |
Collapse
|
8
|
Xie J, Wei H, Sun M, Huang L, Zhong J, Wu Y, Zou Q, Chen Z. The performance and mechanism of sulfidated nano-zero-valent iron for the simultaneous stabilization of arsenic and cadmium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175052. [PMID: 39074744 DOI: 10.1016/j.scitotenv.2024.175052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/23/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Co-contamination of soil and groundwater with arsenic (As) and cadmium (Cd) is widespread. Sulfidized Nanoscale Zero-Valent Iron (S-nZVI) is effective in removing As and Cd from contaminated environments. However, the mechanisms governing As and Cd removal from systems containing both species are still unclear. This study investigated the effectiveness of S-nZVI in the simultaneous removal of Cd(II) and As(III) from contaminated solutions and their interaction mechanisms. Adsorption experiments were conducted under aerobic conditions to investigate the effect of Cd(II) and As(III) on their co-immobilisation at different As(III) and Cd(II) concentrations. S-nZVI was characterised before and after the reaction to elucidate the mechanism of its simultaneous immobilisation of As(III) and Cd(II). Batch experiments revealed that the presence of Cd(II) and As(III) together considerably promotes the passivation of S-nZVI. The adsorption of Cd(II) at Cd:As = 1:3 was 198.37 mg/g, which was 27.6 % higher than that in Cd(II)-only systems, and the adsorption of As(III) at As:Cd = 1:3 was 204.05 mg/g, which was 175 % higher than that in As(III)-only systems. The results of X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy indicated that the removal of Cd(II) and As(III) by S-nZVI involves electrostatic adsorption, complexation and oxidation reactions, amongst which electrostatic adsorption and ternary-complex generation are responsible for the synergistic effect. As and Cd ions can form two types of surface complexes with FeOH or FeS on the outer layer of S-nZVI: anionic bridging to form Fe-As-Cd and cationic bridging to form Fe-Cd-As. This investigation elucidates the synergistic action of Cd(II) and As(III) during their removal using S-nZVI. Thus, S-nZVI is a promising material for the combined removal of Cd(II) and As(III), which can mitigate environmental pollution.
Collapse
Affiliation(s)
- JianXiong Xie
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, MEE, Guangzhou 510535, China; Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Hang Wei
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, MEE, Guangzhou 510535, China.
| | - MengQiang Sun
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, MEE, Guangzhou 510535, China
| | - Ling Huang
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, MEE, Guangzhou 510535, China
| | - Jie Zhong
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, MEE, Guangzhou 510535, China
| | - YuHui Wu
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, MEE, Guangzhou 510535, China
| | - Qi Zou
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, MEE, Guangzhou 510535, China
| | - Zhiliang Chen
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, MEE, Guangzhou 510535, China; Chinese Research Academy of Environmental Sciences, Beijing 10012, China.
| |
Collapse
|
9
|
Kang X, Geng N, Li Y, He W, Wang H, Pan H, Yang Q, Yang Z, Sun Y, Lou Y, Zhuge Y. Biochar with KMnO 4-hematite modification promoted foxtail millet growth by alleviating soil Cd and Zn biotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135377. [PMID: 39088960 DOI: 10.1016/j.jhazmat.2024.135377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/08/2024] [Accepted: 07/28/2024] [Indexed: 08/03/2024]
Abstract
The excessive accumulation of Cd and Zn in soil poisons crops and threatens food safety. In this study, KMnO4-hematite modified biochar (MnFeB) was developed and applied to remediate weakly alkaline Cd-Zn contaminated soil, and the heavy metal immobilization effect, plant growth, and metal ion uptake of foxtail millet were studied. MnFeB application reduced the phytotoxicity of soil heavy metals; bioavailable acid-soluble Cd and Zn were reduced by 57.79% and 35.64%, respectively, whereas stable, non-bioavailable, residual Cd and Zn increased by 96.44% and 32.08%, respectively. The chlorophyll and total protein contents and the superoxide dismutase (SOD)activity were enhanced, whereas proline, malondialdehyde, the H2O2 content, glutathione reductase (GR), ascorbate peroxidase (APX) and catalase (CAT) activities were reduced. Accordingly, the expressions of GR, APX, and CAT were downregulated, whereas the expression of MnSOD was upregulated. In addition, MnFeB promoted the net photosynthetic rate and growth of foxtail millet plants. Furthermore, MnFeB reduced the levels of Cd and Zn in the stems, leaves, and grains, decreased the bioconcentration factor of Cd and Zn in shoots, and weakened the translocation of Cd and Zn from roots to shoots. Precipitation, complexation, oxidation-reduction, ion exchange, and π-π stacking interaction were the main Cd and Zn immobilization mechanisms, and MnFeB reduced the soil bacterial community diversity and the relative abundance of Proteobacteria and Planctomycetota. This study provides a feasible and effective remediation material for Cd- and Zn-contaminated soils.
Collapse
Affiliation(s)
- Xirui Kang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong 271018, PR China
| | - Na Geng
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong 271018, PR China
| | - Yaping Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong 271018, PR China
| | - Wei He
- Observation and Research Station of Land Use Security in the Yellow River Delta, Ministry of Natural Resources (NMR), Shandong Provincial Territorial Spatial Ecological Restoration Center, PR China
| | - Hui Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong 271018, PR China
| | - Hong Pan
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong 271018, PR China
| | - Quangang Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong 271018, PR China
| | - Zhongchen Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong 271018, PR China
| | - Yajie Sun
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong 271018, PR China
| | - Yanhong Lou
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong 271018, PR China.
| | - Yuping Zhuge
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong 271018, PR China.
| |
Collapse
|
10
|
Chen M, Sun Y, Niu J, Zhou H, Zhou Y, Chen X. As(V) adsorption by FeOOH@coal gangue composite from aqueous solution: performance and mechanisms. ENVIRONMENTAL TECHNOLOGY 2024; 45:4376-4387. [PMID: 37609908 DOI: 10.1080/09593330.2023.2251655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/22/2023] [Indexed: 08/24/2023]
Abstract
Arsenic (As) pollution in water poses a significant threat to the ecological environment and human health. Meanwhile, the resource utilisation of coal gangue is of utmost importance in ecologically sustainable development. Thus, the FeOOH@coal gangue composite (FeOOH@CG) was synthesised for As(V) adsorption in this study. The results showed that α-FeOOH, β-FeOOH and Schwertmannite loaded on the surface of FeOOH@CG. Moreover, the adsorption behaviour of As(V) by FeOOH@CG was investigated under different reaction conditions, such as pH, contact time, initial concentration and co-existing anions. The optimum adsorption conditions were as follows: initial As(V) concentration of 60 mg/L, pH of 3.0 and adsorption time of 180-240 h. The adsorption capacity of FeOOH@CG for As(V) was pH-dependent and the maximum adsorption capacity was 185.94 mg/g. The presence of anions (H 2 PO 4 - , HCO 3 - and C l - ) decreased the adsorption efficiency of FeOOH@CG for As(V). The adsorption process of FeOOH@CG for As(V) could be well-described by the pseudo-second-order model and Langmuir model, indicating that the adsorption process mainly depended on chemical adsorption. The thermodynamic analysis suggested that the adsorption was a spontaneous and endothermic process. In addition, according to the analyses of XRD, FTIR and XPS, the dominant mechanisms of As(V) adsorption by FeOOH@CG were electrostatic attraction, complexation and precipitation. In conclusion, FeOOH@CG has great potential as an efficient and environmentally friendly adsorbent for As(V) adsorption from aqueous solution.
Collapse
Affiliation(s)
- Min Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, People's Republic of China
- Taizhou Institute of Zhejiang University, Zhejiang University, Taizhou, People's Republic of China
| | - Yuan Sun
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Jingwei Niu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Hai Zhou
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Yuzhi Zhou
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, People's Republic of China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area with High Groundwater Level, Huainan, People's Republic of China
| | - Xiaoyang Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, People's Republic of China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area with High Groundwater Level, Huainan, People's Republic of China
| |
Collapse
|
11
|
Pathak HK, Seth CS, Chauhan PK, Dubey G, Singh G, Jain D, Upadhyay SK, Dwivedi P, Khoo KS. Recent advancement of nano-biochar for the remediation of heavy metals and emerging contaminants: Mechanism, adsorption kinetic model, plant growth and development. ENVIRONMENTAL RESEARCH 2024; 255:119136. [PMID: 38740295 DOI: 10.1016/j.envres.2024.119136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Even though researches have shown that biochar can improve soil-health and plant-growth even in harsh environments and get rid of harmful heavy metals and new contaminants, it is still not sustainable, affordable, or effective enough. Therefore, scientists are required to develop nanomaterials in order to preserve numerous aquatic and terrestrial species. The carbonaceous chemical known as nano-biochar (N-BC) can be used to get rid of metal contamination and emerging contaminants. However, techniques to reduce hetero-aggregation and agglomeration of nano-biochar are needed that lead to the emergence of emerging nano-biochar (EN-BC) in order to maximise its capacity for adsorption of nano-biochar. To address concerns in regards to the expanding human population and sustain a healthy community, it is imperative to address the problems associated with toxic heavy metals, emerging contaminants, and other abiotic stressors that are threatening agricultural development. Nano-biochar can provide an effective solution for removal of emerging contaminants, toxic heavy metals, and non-degradable substance. This review provides the detailed functional mechanistic and kinetics of nano-biochar, its effectiveness in promoting plant growth, and soil health under abiotic stress. Nonetheless, this review paper has comprehensively illustrated various adsorption study models that will be employed in future research.
Collapse
Affiliation(s)
- Himanshu K Pathak
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, 222003, Uttar Pradesh, India
| | | | - Prabhat K Chauhan
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, 222003, Uttar Pradesh, India
| | - Gopal Dubey
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, 222003, Uttar Pradesh, India
| | - Garima Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, 222003, Uttar Pradesh, India.
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
12
|
Liu K, Li F, Zhu Z, Fang L. Nanoconfined Fe(II) releaser for long-term arsenic immobilization and its sustainability assessment. WATER RESEARCH 2024; 260:121954. [PMID: 38909421 DOI: 10.1016/j.watres.2024.121954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Ferrous (Fe(II))-based oxygen activation for pollutant abatements in soil and groundwater has attracted great attention, while the low utilization and insufficient longevity of electron donors are the primary challenges to hinder its practical applications. Herein, we propose a nanoconfined Fe(II) releasing strategy that enables stable long-term electron donation for oxygen activation and efficient arsenic (As) immobilization under oxic conditions, by encapsulating zero-valent iron in biomass-derived carbon shell (ZVI@porous carbon composites; ZVI@PC). This strategy effectively enhances the generation of reactive oxygen species, enabling efficient oxidation and subsequent immobilization of As(III) in soils. Importantly, this Fe(II) releaser exhibits strong anti-interference capability against complex soil matrices, and the accompanying generation of Fe(III) enables As immobilization in soils, effectively lowering soil As bioavailability. Soil fixed-bed column experiments demonstrate a 79.5 % reduction of the total As in effluent with a simulated rainfall input for 10 years, indicating the excellent long-term stability for As immobilization in soil. Life cycle assessment results show that this Fe(II) releaser can substantially mitigate the negative environmental impacts. This work offers new insights into developing green and sustainable technologies for environmental remediation.
Collapse
Affiliation(s)
- Kai Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhenlong Zhu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
13
|
Yang X, Deng D, Liu Z, Ke W, Xue S, Zhu F. Pb/As simultaneous removal from soil leachate of Pb/Zn smelting sites by magnetic biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121526. [PMID: 38924888 DOI: 10.1016/j.jenvman.2024.121526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/31/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Lead (Pb) and arsenic (As) contaminated soils, caused by Pb and zinc (Zn) smelting activities, pose an urgent environmental issue. Magnetic biochar (MB) has been regarded as an increasingly appealing candidate for the remediation of multi-metals in contaminated soils or their leachate. Finding economically feasible preparation methods for MB and demonstrating its remediation potential is desperately required for the remediation of such complex smelting sites. In this study, a modified MB was prepared using an optimized co-precipitation method, and its application potential for Pb/As simultaneous removal based on the basic properties of a typical Pb/Zn smelting site was evaluated. The surface modifications of MB facilitated the encapsulation of various ultrafine iron oxide particles, predominantly γ-Fe2O3 and Fe3O4, whilst notably enhancing the presence of oxygen-containing surface functional groups. The adsorption of Pb(II) and As(III) by MB was well-described using the pseudo-second-order adsorption and Langmuir models. The existence of SO42- and Ca2+ in the soil leachate competed with the adsorption sites for Pb(II) and As(III). Notably, within the pH range of 5-9, the adsorption efficiency of Pb(II) by MB increased with the rising solution pH, whereas alterations in pH minimally affected the removal rate of As(III), maintaining a consistent removal rate exceeding 95%. Furthermore, dissolved organic matter (DOM) abundant in organic functional groups, particularly CO and CC groups, significantly augmented the adsorption affinity for both Pb(II) and As(III). An application rate of 2 g/L could effectively reduce the concentration of Pb(II) and As(III) in soil leachate to <0.05 mg/L. The findings demonstrated the potential of the prepared MB for simultaneous removal of As(III) and Pb(II) in soil leachate, which should be beneficial to multi-metals polluted soil remediation in Pb/Zn smelting sites.
Collapse
Affiliation(s)
- Xiyun Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China.
| | - Dandan Deng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China.
| | - Zheng Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; BGI Engineering Consultants Ltd., Beijing, 100038, PR China.
| | - Wenshun Ke
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China.
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China.
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
14
|
Jin W, Yang Y, Jin J, Xu M, Zhang Z, Dong F, Shao M, Wan Y. Characterization of phosphate modified red mud-based composite materials and study on heavy metal adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43687-43703. [PMID: 38904876 DOI: 10.1007/s11356-024-33969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
In this paper, Bayer red mud (RM) and lotus leaf powder (LL) were used as the main materials, and KH2PO4 was added to modify the material. Under the condition of high-temperature carbonization, RMLL was prepared and phosphate modified red mud matrix composite (PRMLL) was prepared based on KH2PO4 modification, which can effectively remove Pb2+ from water. The optimum preparation and application conditions were determined through orthogonal experiment: dosage 0.1g, ratio 1:1, and temperature 600 °C. The effects of pH, dosage, and initial concentration on the adsorption of Pb2+ were studied. The pseudo-first-order, pseudo-second-order, and Elovich kinetic models were fitted to the experimental data. It was found that RMLL and PRMLL were more consistent with the pseudo-second-order kinetic model and chemisorption. Langmuir, Freundlich, Timkin, and Dubinin-Radushkevich isothermal adsorption models were used to fit the experimental data. It was found that RMLL and PRMLL were more consistent with Langmuir model. In addition, the maximum adsorption capacity of RMLL and PRMLL was 188.1 mg/g and 213.4 mg/g, respectively. It is larger than the adsorption capacity of their monomers. Therefore, the use of RMLL and PRMLL as the removal of Pb2+ from water is a potential application material.
Collapse
Affiliation(s)
- Wenlou Jin
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yanzhi Yang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Jiacheng Jin
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Mingchen Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Zhipeng Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Fan Dong
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Min Shao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yushan Wan
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
15
|
Acharya A, Jeppu G, Girish CR, Prabhu B, Murty VR, Martis AS, Ramesh S. Adsorption of arsenic and fluoride: Modeling of single and competitive adsorption systems. Heliyon 2024; 10:e31967. [PMID: 38868002 PMCID: PMC11167366 DOI: 10.1016/j.heliyon.2024.e31967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
The elevated co-occurrence of arsenic and fluoride in surface and groundwater poses risks to human health in many parts of the world. Using single and competitive batch equilibrium adsorption studies, this research focuses on As(V) and F adsorption by activated carbon and its modeling. BET, XRD, FESEM, EDS, and FTIR analysis were used to discern the structural characteristics of activated carbon. The influence of dosage, pH, and contact time were also investigated in single and simultaneous adsorption systems. The maximum adsorption capacity of activated carbon for arsenic and fluoride were found to be 3.58 mg/g and 2.32 mg/g, respectively. Kinetics studies indicated that pseudo-second-order kinetic model fit better than pseudo-first-order, Elovich, and intraparticle diffusion kinetic models. The non-linear regression analysis of Langmuir, Freundlich, Toth, Redlich Petersons, and Modified Langmuir Freundlich models was used to determine single-component asorption model parameters. Additionally, the simultaneous adsorption was rigorously modeled and compared using the Extended Langmuir (EL), Extended Langmuir Freundlich (ELF), Modified Competitive Langmuir (MCL), and Jeppu Amrutha Manipal Multicomponent (JAMM) isotherm models, and competitive mechanisms were interpreted for the simultaneous adsorption system. Further, the model performances were evaluated by statistical error analysis using the normalized average percentage error (NAPE), root mean square errors (RMSE), and the correlation coefficient (R2). According to the modeling results, single equilibrium data fitted better with the Modified Langmuir Freundlich isotherm model, with a higher R2 of 0.99 and lower NAPE values of 3.8 % and 1.28 % for As(V) and F, than other models. For the binary adsorption, the Extended Langmuir Freundlich isotherm model demonstrated excellent fit with lowest errors. All the competitive isotherm models fit the As(V) and F simultaneous sorption systems reasonably well. Furthermore, the research unveiled a nuanced hierarchy of isotherm fitting, with ELF > EL > MCL > JAMM in varying arsenic at a constant fluoride concentration, and ELF > JAMM > EL > MCL in varying fluoride at a constant arsenic concentrations. In addition, competitive studies divulged crucial insights into selective adsorption, as As(V) exhibits a pronounced adsorption selectivity over F on activated carbon. In essence, As(V) showed a more pronounced antagonistic behavior over F, whereas F exhibited a much lesser competitive behavior in the adsorption of arsenic.
Collapse
Affiliation(s)
- Amrutha Acharya
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Gautham Jeppu
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Chikmagalur Raju Girish
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Balakrishna Prabhu
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vytla Ramachandra Murty
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Alita Stephy Martis
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shrividya Ramesh
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
16
|
Yu P, Xing J, Tang J, Wang Z, Zhang C, Wang Q, Xiao X, Huang W. Polyethyleneimine-modified iron-doped birnessite as a highly stable adsorbent for efficient arsenic removal. J Colloid Interface Sci 2024; 661:164-174. [PMID: 38295698 DOI: 10.1016/j.jcis.2024.01.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
Remediation of arsenic contamination is of great importance given the high toxicity and easy mobility of arsenic species in water and soil. This work reports a new and stable adsorbent for efficient elimination of arsenic by coating polyethyleneimine (PEI) molecules onto the surface of iron-doped birnessite (Fe-Bir). Characterization results of surface microstructure and crystalline feature (scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and X-ray photoelectron spectroscopy (XPS), etc.) suggest that Fe-Bir/PEI possesses a fine particle structure, inhibiting the agglomeration of birnessite-typed MnO2 and offering abundant active sites for arsenic adsorption. Fe-Bir/PEI is capable of working in a wide pH range from 3 to 11, with an efficient removal capacity of 53.86 mg/g at initial pH (pH0) of 7. Meanwhile, commonly coexisting anions (NO3-, SO42-, and Cl-) and cations (Na+, K+, Ca2+ and Mg2+) pose no effect on the arsenic removal performance of Bir/PEI. Fe-Bir/PEI exhibits a good reusability for arsenic removal with low Mn and Fe ions leaching after 5 cycles. Besides, Fe-Bir/PEI possesses efficient remediation capability in simulated As-contaminated soil. The modification of PEI in Fe-Bir/PEI can adsorb newly formed As(V), which is impossible for the adsorbent without PEI. Further, the arsenic removal mechanism of Fe-Bir/PEI is revealed with redox effect, electrostatic attraction and hydrogen bonding.
Collapse
Affiliation(s)
- Peng Yu
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Junying Xing
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Zhiguo Wang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Chun Zhang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qiongchao Wang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark.
| | - Wei Huang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
17
|
Zeng W, Lu Y, Zhou J, Zhang J, Duan Y, Dong C, Wu W. Simultaneous removal of Cd(II) and As(V) by ferrihydrite-biochar composite: Enhanced effects of As(V) on Cd(II) adsorption. J Environ Sci (China) 2024; 139:267-280. [PMID: 38105054 DOI: 10.1016/j.jes.2023.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 12/19/2023]
Abstract
The coexistence of cadmium (Cd(II)) and arsenate (As(V)) pollution has long been an environmental problem. Biochar, a porous carbonaceous material with tunable functionality, has been used for the remediation of contaminated soils. However, it is still challenging for the dynamic quantification and mechanistic understanding of the simultaneous sequestration of multi-metals in biochar-engineered environment, especially in the presence of anions. In this study, ferrihydrite was coprecipitated with biochar to investigate how ferrihydrite-biochar composite affects the fate of heavy metals, especially in the coexistence of Cd(II) and As(V). In the solution system containing both Cd(II) and As(V), the maximum adsorption capacities of ferrihydrite-biochar composite for Cd(II) and As(V) reached 82.03 µmol/g and 531.53 µmol/g, respectively, much higher than those of the pure biochar (26.90 µmol/g for Cd(II), and 40.24 µmol/g for As(V)) and ferrihydrite (42.26 µmol/g for Cd(II), and 248.25 µmol/g for As(V)). Cd(II) adsorption increased in the presence of As(V), possibly due to the changes in composite surface charge in the presence of As(V), and the increased dispersion of ferrihydrite by biochar. Further microscopic and mechanistic results showed that Cd(II) complexed with both biochar and ferrihydrite, while As(V) was mainly complexed by ferrihydrite in the Cd(II) and As(V) coexistence system. Ferrihydrite posed vital importance for the co-adsorption of Cd(II) and As(V). The different distribution patterns revealed by this study help to a deeper understanding of the behaviors of cations and anions in the natural environment.
Collapse
Affiliation(s)
- Wenjun Zeng
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry breeding Pollution, Guangzhou 510655, China
| | - Yang Lu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry breeding Pollution, Guangzhou 510655, China
| | - Jingyan Zhou
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry breeding Pollution, Guangzhou 510655, China
| | - Jie Zhang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry breeding Pollution, Guangzhou 510655, China
| | - Yuanxiao Duan
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry breeding Pollution, Guangzhou 510655, China
| | - Changxun Dong
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wencheng Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry breeding Pollution, Guangzhou 510655, China.
| |
Collapse
|
18
|
Wang J, Chen M, Han Y, Sun C, Zhang Y, Zang S, Qi L. Fast and efficient As(III) removal from water by bifunctional nZVI@NBC. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:160. [PMID: 38592564 DOI: 10.1007/s10653-024-01939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024]
Abstract
As a notable toxic substance, metalloid arsenic (As) widely exists in water body and drinking As-contaminated water for an extended period of time can result in serious health concerns. Here, the performance of nanoscale zero-valent iron (nZVI) modified N-doped biochar (NBC) composites (nZVI@NBC) activated peroxydisulfate (PDS) for As(III) removal was investigated. The removal efficiencies of As(III) with initial concentration ranging from 50 to 1000 μg/L were above 99% (the residual total arsenic below 10 μg/L, satisfying the contaminant limit for arsenic in drinking water) within 10 min by nZVI@NBC (0.2 g/L)/PDS (100 μM). As(III) removal efficiency influenced by reaction time, PDS dosage, initial concentration, pH, co-existing ions, and natural organic matter in nZVI@NBC/PDS system were investigated. The nZVI@NBC composite is magnetic and could be conveniently collected from aqueous solutions. In practical applications, nZVI@NBC/PDS has more than 99% As(III) removal efficiency in various water bodies (such as deionized water, piped water, river water, and lake water) under optimized operation parameters. Radical quenching and EPR analysis revealed that SO4·- and ·OH play important roles in nZVI@NBC/PDS system, and the possible reaction mechanism was further proposed. These results suggest that nZVI@NBC activated peroxydisulfate may be an efficient and fast approach for the removal of water contaminated with As(III).
Collapse
Affiliation(s)
- Jiuwan Wang
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Mengfan Chen
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Yulian Han
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Congting Sun
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China.
| | - Ying Zhang
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Shuyan Zang
- Shenyang University of Chemical Technology, Shenyang, 110142, People's Republic of China.
| | - Lin Qi
- Shenyang Municipal Bureau of Ecology and Environment, Shenyang, 110036, People's Republic of China
| |
Collapse
|
19
|
Yin H, Zhou C, Wang J, Yin M, Wu Z, Song N, Song X, Shangguan Y, Sun Z, Zong Q, Hou H. Fe-CGS Effectively Inhibits the Dynamic Migration and Transformation of Cadmium and Arsenic in Soil. TOXICS 2024; 12:273. [PMID: 38668496 PMCID: PMC11054586 DOI: 10.3390/toxics12040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
The iron-modified coal gasification slag (Fe-CGS) material has excellent performance in purifying heavy-metal-contaminated water due to its good surface properties and adsorption capacities. However, it is unclear whether it can provide long-term simultaneous stabilization of Cd and As in composite-contaminated soils in extreme environments. This study investigated the long-term stabilization of Cd and As in acidic (JLG) and alkaline (QD) soils by simulating prolonged heavy rainfall with the addition of Fe-CGS. Multiple extraction methods were used to analyze the immobilization mechanisms of Cd and As in soil and their effects on bioavailability. The results indicate that the stabilization efficiency was related to the dosage of Fe-CGS. The concentrations of Cd and As in the JLG soil leachate were reduced by 77.6% (2.0 wt%) and 87.8% (1.0 wt%), respectively. Additionally, the availability of Cd and As decreased by 46.7% (2.0 wt%) and 53.0% (1.0 wt%), respectively. In the QD soil leachate, the concentration of Cd did not significantly change, while the concentration of As decreased by 92.3% (2.0 wt%). Furthermore, the availability of Cd and As decreased by 22.1% (2.0 wt%) and 40.2% (1.0 wt%), respectively. Continuous extraction revealed that Fe-CGS facilitated the conversion of unstable, acid-soluble Cd into oxidizable Cd and acid-soluble Cd. Additionally, it promoted the transformation of both non-specifically and specifically adsorbed As into amorphous iron oxide-bound and residual As. Fe-CGS effectively improved the soil pH, reduced the bioavailability of Cd and As, and blocked the migration of Cd and As under extreme rainfall leaching conditions. It also promoted the transformation of Cd and As into more stable forms, exhibiting satisfactory long-term stabilization performance for Cd and As.
Collapse
Affiliation(s)
- Hongliang Yin
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China; (H.Y.); (N.S.); (X.S.)
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| | - Changzhi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| | - Junhuan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| | - Mengxue Yin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| | - Zhihao Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| | - Ningning Song
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China; (H.Y.); (N.S.); (X.S.)
| | - Xin Song
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China; (H.Y.); (N.S.); (X.S.)
| | - Yuxian Shangguan
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Zaijin Sun
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China;
| | - Quanli Zong
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China; (H.Y.); (N.S.); (X.S.)
| | - Hong Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| |
Collapse
|
20
|
Lu Y, Zeng H, Lin H, Liang Y, Feng M, Zhou Z, Liang Z, Li H, Chen G. Synergistic removal performance and mechanism of Cd(II) and As(III) from irrigation water by iron sulfide-based porous biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11591-11604. [PMID: 38221557 DOI: 10.1007/s11356-024-31932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Since Cd(II) and As(III) have extremely opposite chemical characteristics, it is a huge challenging to simultaneously remove these two ions from aqueous solutions. Therefore, a novel iron sulfide-based porous biochar (FSB) was synthesized and used to evaluate its Cd(II) and As(III) removal performance and mechanisms. The characterization and batch experiments results indicated that FeS was successfully loaded on the surface of biochar and increased its adsorption sites. The iron sulfide-based porous biochar was very favorable for the removal of Cd(II) and As(III) in the weakly acidic environment. The maximum adsorption of Cd(II) and As(III) by FSB was 108.8 mg g-1 and 76.3 mg g-1, respectively, according to the Langmuir and Freundlich isothermal adsorption model, and the adsorption equilibrium time was 12 h and 4 h, respectively, according to the pseudo-second-order kinetic model. In the coexisting ion system, Cd(II) adsorption was suppressed by Ca2+, Mg2+, and humic acid, but enhanced by PO43- and As(III). As(III) adsorption was inhibited by PO43- and humic acid. Precipitation and complexation are the predominant adsorption mechanisms of Cd(II) and As(III), which contribute to the formation of Cd-O, Fe-O-Cd, As-O, Fe-O-As, ternary complex Cd-Fe-As, and stable compounds FeAsO4·2H2O and CdS. Therefore, The iron sulfide-based porous biochar can be an efficient and environmentally friendly candidate for the treatment of Cd(II) and As(III) co-polluted irrigation water.
Collapse
Affiliation(s)
- Yuxi Lu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin, 541004, China
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin, 541004, China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin, 541004, China
| | - Yanpeng Liang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin, 541004, China
| | - Mi Feng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin, 541004, China
| | - Zijian Zhou
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin, 541004, China
| | - Zihao Liang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin, 541004, China
| | - Huawei Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin, 541004, China
| | - Gongning Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
21
|
Liu Q, Sheng Y, Wang Z, Liu X. New insights into the sustainable use of co-pyrolyzed dredged sediment for the in situ remediation of Cd polluted sediments in coastal rivers. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133664. [PMID: 38309161 DOI: 10.1016/j.jhazmat.2024.133664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/02/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The remediation of Cd-polluted sediment in coastal rivers is essential because of its potential hazards to river and marine ecosystems. Herein, a co-pyrolysis product of contaminated dredged sediment (S@BC) was innovatively applied to cap and immobilize Cd-contaminated sediment in coastal rivers in situ, and their remediation efficiencies, mechanisms, and microbial responses were explored based on a 360 d incubation experiment. The results showed that although S@BC immobilization and capping restrained sediment Cd release to the overlying water, S@BC capping presented a high inhibitory efficiency (66.0% vs. 95.3% at 360 d). Fraction analysis indicated that labile Cd was partially transformed to stable fraction after remediation, with decreases of 0.5%- 32.7% in the acid-soluble fraction and increases of 5.0%- 182.8% in the residual fraction. S@BC immobilization and capping had minor influences on the sediment bacterial community structure compared to the control. S@BC could directly adsorb sediment mobile Cd (precipitation and complexation) to inhibit Cd release and change sediment properties (e.g., pH and cation exchange capacity) to indirectly reduce Cd release. Particularly, S@BC capping also promoted Cd stabilization by enhancing the sediment sulfate reduction process. Comparatively, S@BC capping was a priority approach for Cd-polluted sediment remediation. This study provides new insights into the remediation of Cd-contaminated sediments in coastal rivers.
Collapse
Affiliation(s)
- Qunqun Liu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Yanqing Sheng
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China.
| | - Zheng Wang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaozhu Liu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Wen J, Zhang Y, Du Y. Effective removal of Cr(VI) in water by bulk-size polyaniline/polyvinyl alcohol/amyloid fibril composite beads. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1944-1956. [PMID: 37906451 PMCID: wst_2023_327 DOI: 10.2166/wst.2023.327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
With the rapid expansion of industrial activities, chromium ions are discharged into the environment and cause water and soil pollution of various extents, which seriously endangers the natural ecological environment and human health. In this study, polyaniline/polyvinyl alcohol/amyloid fibril (PANI/PVA/AFL) composite gel beads (PPA) were prepared from polyaniline and amyloid fibrils with HCl as doping acid and PVA as a cross-linking agent. The results showed that PPA was an irregular composite bead with a diameter of 6 mm. The adsorption of Cr(VI) on the PPA gel beads followed the pseudo-second-order kinetics model, suggesting that chemical reactions were the controlling step in the Cr(VI) adsorption process. Though the Redlich-Peterson isotherm model had the best fit for the adsorption data, the isothermal adsorption process can be simplified using the Langmuir model. The maximum adsorption capacity for Cr(VI) in water was 51.5 mg g-1, comparable to or even higher than some PANI-based nanomaterials. Thermodynamic parameters showed that the adsorption process was a spontaneous, endothermic, and entropy-increasing process. Microscopic analysis revealed that the capture of Cr(VI) on PPA was mainly governed by electrostatic attraction, reduction, and complexation reactions. PPA can be used as a kind of effective remediation agent to remove Cr(VI) in water.
Collapse
Affiliation(s)
- Jia Wen
- Research Institute of Hunan University in Chongqing, Chongqing 401120, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China E-mail:
| | - Yuru Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yinlin Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
23
|
Shuyan Xiang, Fu L, Tang L, Chen F, Zhao S, Yin C. Mapping the Knowledge Domains of Research on Nanoscale Zero-Valent Iron in Remediation of Contaminated Soil: a Scientometric Study. EURASIAN SOIL SCIENCE 2023; 56:1014-1033. [DOI: 10.1134/s1064229322602712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 05/17/2025]
|
24
|
Aborisade MA, Geng H, Oba BT, Kumar A, Ndudi EA, Battamo AY, Liu J, Chen D, Okimiji OP, Ojekunle OZ, Yang Y, Sun P, Zhao L. Remediation of soil polluted with Pb and Cd and alleviation of oxidative stress in Brassica rapa plant using nanoscale zerovalent iron supported with coconut-husk biochar. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154023. [PMID: 37343484 DOI: 10.1016/j.jplph.2023.154023] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Accumulation of toxic elements by plants from polluted soil can induce the excessive formation of reactive oxygen species (ROS), thereby causing retarded plants' physiological attributes. Several researchers have remediated soil using various forms of zerovalent iron; however, their residual impacts on oxidative stress indicators and health risks in leafy vegetables have not yet been investigated. In this research, nanoscale zerovalent iron supported with coconut-husk biochar (nZVI-CHB) was synthesized through carbothermal reduction process using Fe2O3 and coconut-husk. The stabilization effects of varying concentrations of nZVI-CHB and CHB (250 and 500 mg/kg) on cadmium (Cd) and lead (Pb) in soil were analyzed, and their effects on toxic metals induced oxidative stress, physiological properties, and antioxidant defence systems of the Brassica rapa plant were also checked. The results revealed that the immobilization of Pb and Cd in soil treated with CHB was low, leading to a higher accumulation of metals in plants grown. However, nZVI-CHB could significantly immobilize Pb (57.5-62.12%) and Cd (64.1-75.9%) in the soil, leading to their lower accumulation in plants below recommended safe limits and eventually reduced carcinogenic risk (CR) and hazard quotient (HQ) for both Pb and Cd in children and adults below the recommended tolerable range of <1 for HQ and 10-6 - 10-4 for CR. Also, a low dose of nZVI-CHB significantly mitigated toxic metal-induced oxidative stress in the vegetable plant by inhibiting the toxic metals uptake and increasing antioxidant enzyme activities. Thus, this study provided another insightful way of converting environmental wastes to sustainable adsorbents for soil remediation and proved that a low-dose of nZVI-CHB can effectively improve soil quality, plant physiological attributes and reduce the toxic metals exposure health risk below the tolerable range.
Collapse
Affiliation(s)
- Moses Akintayo Aborisade
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin, 300072, China
| | - Hongzhi Geng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Belay Tafa Oba
- College of Natural Science, Arba Minch University, 21, Arba Minch, Ethiopia
| | - Akash Kumar
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Efomah Andrew Ndudi
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | | | - Jiashu Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Daying Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Oluwaseun Princess Okimiji
- Department of Environmental Management, Faculty of Environmental Sciences, Lagos State University, PMB. 102101, Lagos State, Nigeria
| | - Oluwasheyi Zacchaeus Ojekunle
- Department of Environmental Management and Toxicology, Federal University of Agriculture, Abeokuta, P.M.B 2240, Ogun State, Nigeria
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin, 300072, China.
| |
Collapse
|
25
|
Krishnani KK, Boddu VM, Singh RD, Chakraborty P, Verma AK, Brooks L, Pathak H. Plants, animals, and fisheries waste-mediated bioremediation of contaminants of environmental and emerging concern (CEECs)-a circular bioresource utilization approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84999-85045. [PMID: 37400699 DOI: 10.1007/s11356-023-28261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/10/2023] [Indexed: 07/05/2023]
Abstract
The release of contaminants of environmental concern including heavy metals and metalloids, and contaminants of emerging concern including organic micropollutants from processing industries, pharmaceuticals, personal care, and anthropogenic sources, is a growing threat worldwide. Mitigating inorganic and organic contaminants, which can be coined as contaminants of environmental and emerging concern (CEECs), is a big challenge as traditional physicochemical processes are not economically viable for managing mixed contaminants of low concentrations. As a result, low-cost materials must be designed to provide high CEEC removal efficiency. One of the environmentally viable and energy-efficient approaches is biosorption, which involves using biomass or biopolymers isolated from plants or animals to decontaminate heavy metals in contaminated environments using inherent biological mechanisms. Among chemical constituents in plant biomass, cellulose, lignin, hemicellulose, proteins, polysaccharides, phenolic compounds, and animal biomass include polysaccharides and other compounds to bind heavy metals covalently and non-covalently. These functional groups include carboxyl, hydroxyl, carbonyl, amide, amine, and sulfhydryl. Cation-exchange capacities of these bioadsorbents can be improved by applying chemical modifications. The relevance of chemical constituents and bioactives in biosorbents derived from agricultural production such as food and fodder crops, bioenergy and cash crops, fruit and vegetable crops, medicinal and aromatic plants, plantation trees, aquatic and terrestrial weeds, and animal production such as dairy, goatery, poultry, duckery, and fisheries is highlighted in this comprehensive review for sequestering and bioremediation of CEECs, including as many as ten different heavy metals and metalloids co-contaminated with other organic micropollutants in circular bioresource utilization and one-health concepts.
Collapse
Affiliation(s)
- Kishore Kumar Krishnani
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India.
| | - Veera Mallu Boddu
- Homeland Security & Material Management Division (HSMMD), Center for Environmental Solutions & Emergency Response (CESER), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Rajkumar Debarjeet Singh
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Puja Chakraborty
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Ajit Kumar Verma
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Lance Brooks
- Homeland Security & Material Management Division (HSMMD), Center for Environmental Solutions & Emergency Response (CESER), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Himanshu Pathak
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110001, India
| |
Collapse
|
26
|
Zhou C, Wang J, Wang Q, Leng Z, Geng Y, Sun S, Hou H. Simultaneous adsorption of Cd and As by a novel coal gasification slag based composite: Characterization and application in soil remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163374. [PMID: 37030369 DOI: 10.1016/j.scitotenv.2023.163374] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 06/01/2023]
Abstract
Cadmium (Cd) and arsenic (As) co-contamination has become increasingly serious in China agricultural soil due to rapid industrialization and urbanization. The opposite geochemical behaviors of Cd and As pose huge challenges for developing a material for their simultaneous immobilization in soils. Coal gasification slag (CGS) as a by-product of coal gasification process, is always dumped into a local landfill, which has a negative impact on environment. Few reports have been available on applying CGS as a material to immobilize simultaneously multiple soil heavy metals. A series of iron-modified coal gasification slag (IGS) composites IGS3/5/7/9/11 (with different pH values) were synthesized by alkali fusion and iron impregnation. After modification, carboxyl groups were activated, and Fe was successfully loaded onto the surface of IGS in the form of FeO and Fe2O3. The IGS7 exhibited the best adsorption capacity with the maximum Cd and As adsorption capacity of 42.72 mg/g and 35.29 mg/g, respectively. The Cd was mainly adsorbed through electrostatic attraction and precipitation, while the As through complexation with iron (hydr)oxides. IGS7 significantly reduced the bioavailability of Cd and As in soil with Cd bioavailability reduced from 1.17 mg/kg to 0.69 mg/kg and As bioavailability reduced from 10.59 mg/kg to 6.86 mg/kg at 1 % IGS7 addition. The Cd and As were all transformed to more stable fractions after IGS7 addition. The acid soluble and reducible Cd fractions were transformed into oxidizable and residual Cd fractions, and the non-specifically and specifically adsorbed As fractions were transformed to amorphous iron oxide-bound As fraction. This study provides valuable references for the application of CGS to the remediation of Cd and As co-contaminated soil.
Collapse
Affiliation(s)
- Changzhi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Junhuan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qian Wang
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Zheng Leng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yue Geng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shurui Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hong Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
27
|
Wang H, Chen D, Wen Y, Zhang Y, Liu Y, Xu R. Iron-rich red mud and iron oxide-modified biochars: A comparative study on the removal of Cd(II) and influence of natural aging processes. CHEMOSPHERE 2023; 330:138626. [PMID: 37028717 DOI: 10.1016/j.chemosphere.2023.138626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/19/2023] [Accepted: 04/04/2023] [Indexed: 05/14/2023]
Abstract
Red mud (RM) is a byproduct of various processes in the aluminum industry and has recently been utilized for synthesizing RM-modified biochar (RM/BC), which has attracted significant attention in terms of waste reutilization and cleaner production. However, there is a lack of comprehensive and comparative studies on RM/BC and the conventional iron-salt-modified biochar (Fe/BC). In this study, RM/BC and Fe/BC were synthesized and characterized, and the influence on environmental behaviors of these functional materials with natural soil aging treatment was analyzed. After aging, the adsorption capacity of Fe/BC and RM/BC for Cd(II) decreased by 20.76% and 18.03%, respectively. The batch adsorption experiments revealed that the main removal mechanisms of Fe/BC and RM/BC are co-precipitation, chemical reduction, surface complexation, ion exchange, and electrostatic attraction, etc. Furthermore, practical viability of RM/BC and Fe/BC was evaluated through leaching and regenerative experiments. These results can not only be used to evaluate the practicality of the BC fabricated from industrial byproducts but can also reveal the environmental behavior of these functional materials in practical applications.
Collapse
Affiliation(s)
- Huabin Wang
- School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming, 650500, PR China; Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Kunming, 650500, PR China.
| | - Dingxiang Chen
- School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming, 650500, PR China; Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Kunming, 650500, PR China
| | - Yi Wen
- School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming, 650500, PR China; Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Kunming, 650500, PR China
| | - Yong Zhang
- School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming, 650500, PR China; Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Kunming, 650500, PR China
| | - Ying Liu
- School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming, 650500, PR China; Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Kunming, 650500, PR China
| | - Rui Xu
- School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming, 650500, PR China; Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Kunming, 650500, PR China.
| |
Collapse
|
28
|
Wan X, Qiu G, Yves-Gaël Gbahouo A, Li Q, Wang G, Yang F. Synergistic removal of Cd(II)-organic complexes by combined permanent magnetic resins. CHEMOSPHERE 2023:139117. [PMID: 37285983 DOI: 10.1016/j.chemosphere.2023.139117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Due to the enormous threat of pollution by heavy metal ions and organics, the effective removal of HMIs-organic complexes from various wastewater is of vital importance. In this study, synergistic removal of Cd(II) and para-aminobenzoic acid (PABA) by combined permanent magnetic anion-/cation-exchange resin (MAER/MCER) was examined in batch adsorption experiments. The Cd(II) adsorption isotherms fitted the Langmuir model at all tested conditions, suggesting a monolayer adsorption nature in both the sole and binary systems. Moreover, the Elovich kinetic model fitting demonstrated a heterogeneous diffusion of Cd(II) by the combined resins. At the organic acids (OAs) concentration of 10 mmol/L (molar ratio of OAs: Cd = 20:1), the adsorption capacities of Cd(II) by MCER decreased by 26.0, 25.2, 44.6, and 28.6%, respectively, under the coexistence of tannic acid, gallic acid, citric acid and tartaric acid, indicating the high affinity of MCER towards Cd(II). The MCER displayed high selectivity towards Cd(II) in the presence of 100 mmol/L of NaCl, with the adsorption capacity of Cd(II) decreasing by 21.4%. The "salting out" effect also promoted the uptake of PABA. Decomplexing-adsorption of Cd(II) by MCER and selective adsorption of PABA by MAER were proposed as the predominant mechanism for the synergistic removal of Cd(II) and PABA from the mixed Cd/PABA solution. The PABA bridging on MAER surface could promote the uptake of Cd(II). The combined MAER/MCER showed excellent reusability during five reuse cycles, indicative of the great potential in the removal of HMIs-organics from various wastewater.
Collapse
Affiliation(s)
- Xiang Wan
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Guoyu Qiu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Adhean Yves-Gaël Gbahouo
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Qimeng Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China.
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Fei Yang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
29
|
Ahmed W, Mehmood S, Mahmood M, Ali S, Shakoor A, Núñez-Delgado A, Asghar RMA, Zhao H, Liu W, Li W. Adsorption of Pb(II) from wastewater using a red mud modified rice-straw biochar: Influencing factors and reusability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121405. [PMID: 36893974 DOI: 10.1016/j.envpol.2023.121405] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/26/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Efficient environmental remediation of toxic chemicals using effective sorbents has received considerable attention recently. For the present study, the synthesis of a red mud/biochar (RM/BC) composite was performed from rice straw with the aim of achieving Pb(II) removal from wastewater. Characterization was performed by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), Zeta potential analysis, elemental mapping, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Results showed that RM/BC had higher specific surface area (SBET = 75.37 m2 g-1) than raw biochar (SBET = 35.38 m2 g-1). The Pb(II) removal capacity (qe) of RM/BC was 426.84 mg g-1 at pH 5.0, and the adsorption data well fitted pseudo second order kinetics (R2 = 0.93 and R2 = 0.98), as well as the Langmuir isotherm model (R2 = 0.97 and R2 = 0.98) for both BC and RM/BC. Pb(II) removal was slightly hindered with the increasing strength of co-existing cations (Na+, Cu2+, Fe3+, Ni2+, Cd2+). The increase in temperatures (298 K, 308 K, 318 K) favored Pb(II) removal by RM/BC. Thermodynamic study indicated that Pb(II) adsorption onto BC and RM/BC was spontaneous and primarily governed by chemisorption and surface complexation. A regeneration study revealed the high reusability (>90%) and acceptable stability of RM/BC even after five successive cycles. These findings indicate that RM/BC evidenced special combined characteristics of red mud and biochar, hence its use for Pb removal from wastewater offers a green and environmentally sustainable approach fitting the "waste treating waste" concept.
Collapse
Affiliation(s)
- Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Centerfor Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Sajid Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Centerfor Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Centerfor Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Sehrish Ali
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Awais Shakoor
- Teagasc, Environment, Soils and Land Use Department, Johnstown Castle, Co. Wexford, Y35 Y521, Ireland
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | | | - Hongwei Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Centerfor Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Wenjie Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Centerfor Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Weidong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Centerfor Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
30
|
Zhao Z, Huang F, Liu Z, Yang J, Wang Y, Wang P, Xiao R. Quantification adsorption mechanisms of arsenic by goethite-modified biochar in aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27585-y. [PMID: 37208507 DOI: 10.1007/s11356-023-27585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
In this study, rice straw biochar (BC), goethite (GT), and goethite-modified biochar (GBC) were prepared and their differences in adsorption characteristics and mechanisms of arsenic were explored to provide theoretical and data reference for future design of modified biochar, aiming to address adsorption mechanism weakness and improve the efficiency of arsenic removal in water. Various characterization methods were employed to evaluate the influence of pH, adsorption kinetics, isotherms, and chemical analyses of the materials. At temperatures of 283 K, 298 K, and 313 K, the maximum actual adsorption capacity followed the order GBC > GT > BC, while at 313 K, the maximum Langmuir adsorption capacity of GBC reached 149.63 mg/g which was 95.92 times that of BC and 6.27 times of GT. Due to precipitation and complexation mechanisms, GBC exhibited more superior arsenic adsorption capacities than BC and GT, contributing to total adsorption ranging from 88.9% to 94.2%. BC was dominated by complexation and ion exchange mechanisms in arsenic adsorption, with contribution proportions of 71.8%-77.6% and 19.1%-21.9%, respectively. In GT, the precipitation mechanism played a significant role in total adsorption, contributing from 78.0% to 84.7%. Although GBC has significant potential for removing arsenic from aqueous solutions, the findings suggest that its ion exchange capacity needs improvement.
Collapse
Affiliation(s)
- Zilin Zhao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Fei Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Zetian Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Jiexin Yang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yishuo Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Peng Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Rongbo Xiao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
31
|
Zheng X, Wu Q, Huang C, Wang P, Cheng H, Sun C, Zhu J, Xu H, Ouyang K, Guo J, Liu Z. Synergistic effect and mechanism of Cd(II) and As(III) adsorption by biochar supported sulfide nanoscale zero-valent iron. ENVIRONMENTAL RESEARCH 2023; 231:116080. [PMID: 37164285 DOI: 10.1016/j.envres.2023.116080] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Biochar derived from bamboo was used to support sulfide nanoscale zero-valent iron (S-nZVI@BC) for simultaneous removal of Cd(II) and As (III) from aqueous media. Scanning electron microscopy (SEM) and X-ray diffraction spectroscopy (XRD) characterization confirmed the successful synthesis of the S-nZVI@BC. Adsorption kinetics and isotherms indicated that co-adsorption of Cd(II) and As(III) onto S-nZVI@BC was well represented by pseudo-second-order model (R2Cd(II) = 0.990, R2As(III) = 0.995) and Langmuir model (R2Cd(II) = 0.954, R2As(III) = 0.936). The maximum adsorption was 162.365 and 276.133 mg/g for Cd(II) and As(III), respectively, in a co-adsorption system, which was significantly higher than that in a single adsorption system (103.195 and 223.736 mg/g, respectively). Batch experiments showed that the Cd(II)-to-As(III) concentration ratio significantly affected the co-adsorption with the optimal ratio of 1:2. Ca2+ and Mg2+ significantly inhibited Cd(II) removal. In contrast, phosphate and humic acid significantly inhibited As(III) removal. Electrochemical analysis indicated S-nZVI@BC had a lower corrosion potential and resistance than nZVI@BC, making it more conducive to electron transfer and chemical reaction. Electrostatic adsorption, complexation, co-precipitation, and redox were the primary mechanisms for Cd(II) and As(III) removal. Overall, the present study provides new insights into the synergistic removal of Cd(II) and As(III) by S-nZVI@BC, which is a very promising adsorbent for the effective removal of Cd(II) and As(III) from contaminated wastewater.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Qiuju Wu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Hao Cheng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chengyou Sun
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Haiyin Xu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ke Ouyang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jing Guo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA.
| |
Collapse
|
32
|
Kim H, Lee SY, Choi JW, Jung KW. Synergistic effect in simultaneous removal of cationic and anionic heavy metals by nitrogen heteroatom doped hydrochar from aqueous solutions. CHEMOSPHERE 2023; 323:138269. [PMID: 36858118 DOI: 10.1016/j.chemosphere.2023.138269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Industrial wastewater typically contains both cationic and anionic heavy metals; therefore, their simultaneous removal must be considered to ensure environmental sustainability. Herein, nitrogen heteroatom (N) doped hydrochar derived from corncob was prepared via facile NH4Cl-aided hydrothermal carbonization and used for the simultaneous adsorption of divalent copper (Cu(II)) and hexavalent chromium (Cr(VI)) in aqueous solutions. During hydrothermal carbonization, NH4Cl played a vital role as the porogen and N dopant, which contributed to the efficient adsorption affinity toward coexisting Cu(II) and Cr(VI). The theoretical maximum adsorption capacities of the N-doped hydrochar were determined to be 1.223 mmol/g for Cu(II) and 1.995 mmol/g for Cr(VI), which were much better than those of the pristine hydrochar. Furthermore, in the binary-component system, the synergistic effect between Cu(II) and Cr(VI) significantly promoted the adsorption affinity of N-doped hydrochar, resulting in adsorption capacities for Cu(II) and Cr(VI) 9.48 and 1.92 times higher than those of the single-component system, respectively. A series of adsorption experiments and spectroscopic analyses demonstrated that multiple mechanisms, including electrostatic shielding, cation bridging, and redox reactions, mutually contributed to the synergistic effect in the adsorption of coexisting Cu(II) and Cr(VI). Overall, the N-doped hydrochar proved to be effective in simultaneously removing both cationic and anionic heavy metal pollutants.
Collapse
Affiliation(s)
- Heegon Kim
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Seon Yong Lee
- Department of Earth and Environmental Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jae-Woo Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Energy and Environmental Engineering, KIST School, Korea University of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Kyung-Won Jung
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
33
|
Bayuo J, Rwiza MJ, Sillanpää M, Mtei KM. Removal of heavy metals from binary and multicomponent adsorption systems using various adsorbents - a systematic review. RSC Adv 2023; 13:13052-13093. [PMID: 37124024 PMCID: PMC10140672 DOI: 10.1039/d3ra01660a] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023] Open
Abstract
The ecosystem and human health are both significantly affected by the occurrence of potentially harmful heavy metals in the aquatic environment. In general, wastewater comprises an array of heavy metals, and the existence of other competing heavy metal ions might affect the adsorptive elimination of one heavy metal ion. Therefore, to fully comprehend the adsorbent's efficiency and practical applications, the abatement of heavy metals in multicomponent systems is important. In the current study, the multicomponent adsorption of heavy metals from different complex mixtures, such as binary, ternary, quaternary, and quinary solutions, utilizing various adsorbents are reviewed in detail. According to the systematic review, the adsorbents made from locally and naturally occurring materials, such as biomass, feedstocks, and industrial and agricultural waste, are effective and promising in removing heavy metals from complex water systems. The systematic study further discovered that numerous studies evaluate the adsorption characteristics of an adsorbent in a multicomponent system using various important independent adsorption parameters. These independent adsorption parameters include reaction time, solution pH, agitation speed, adsorbent dosage, initial metal ion concentration, ionic strength as well as reaction temperature, which were found to significantly affect the multicomponent sorption of heavy metals. Furthermore, through the application of the multicomponent adsorption isotherms, the competitive heavy metals sorption mechanisms were identified and characterized by three primary kinds of interactive effects including synergism, antagonism, and non-interaction. Despite the enormous amount of research and extensive data on the capability of different adsorbents, several significant drawbacks hinder adsorbents from being used practically and economically to remove heavy metal ions from multicomponent systems. As a result, the current systematic review provides insights and perspectives for further studies through the thorough and reliable analysis of the relevant literature on heavy metals removal from multicomponent systems.
Collapse
Affiliation(s)
- Jonas Bayuo
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST) P.O. Box 447 Arusha Tanzania
- Department of Science Education, School of Science, Mathematics, and Technology Education (SoSMTE), C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS) Postal Box 24 Navrongo Upper East Region Ghana
| | - Mwemezi J Rwiza
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST) P.O. Box 447 Arusha Tanzania
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg P. O. Box 17011 Doornfontein 2028 South Africa
| | - Kelvin Mark Mtei
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST) P.O. Box 447 Arusha Tanzania
| |
Collapse
|
34
|
Lin H, Yang D, Zhang C, Liu W, Zhang L, Dong Y. Selective removal behavior of lead and cadmium from calcium-rich solution by MgO loaded soybean straw biochars and mechanism analysis. CHEMOSPHERE 2023; 319:138010. [PMID: 36731666 DOI: 10.1016/j.chemosphere.2023.138010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Modified biochars has great potential for removing heavy metals from aquatic environments, but the removal of heavy metals by biochars is usually significantly affected by the co-presence of the macro amount of metal ions, such as Ca. Enhancing the ion exchange capacity of biochar by increasing its alkali metal content is a very prospective method to improve its selectivity. In this paper, MgO loaded biochar (MBC) was synthesized by co-pyrolysis of soybean straw and MgCl2·6H2O for selective remove Pb and Cd from calcium-rich wastewater. MBC exhibited excellent selective adsorption performance for Pb and Cd in calcium-rich wastewater due to the successful loading of MgO. The adsorption capacities of MBC for Pb and Cd were 582.57 and 167.40 mg/g, and the removal efficiency of Ca below 2.5% with an initial concentration of 800 mg/L. The ion exchange capacities of Pb and Cd enhanced almost 27 and 23 times than BC. By analyzing the results of BET, XRD, SEM-EDS, XPS and FTIR, the adsorption mechanisms of MBC were mainly including ion exchange, precipitation with minerals, and interaction with oxygen-containing functional groups. The easy preparation method and high selective adsorption capacity makes MBC an ideal alternative for efficiently selective removal Pb and Cd from calcium-rich wastewater.
Collapse
Affiliation(s)
- Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Dongsheng Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Conghui Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Wei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Liping Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
35
|
Jin Y, Wang Y, Li X, Luo T, Ma Y, Wang B, Liang H. Remediation and its biological responses to Cd(II)-Cr(VI)-Pb(II) multi-contaminated soil by supported nano zero-valent iron composites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161344. [PMID: 36610630 DOI: 10.1016/j.scitotenv.2022.161344] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/18/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Multi-metal contaminated soil has received extensive attention. The biochar and bentonite-supported nano zero-valent iron (nZVI) (BC-BE-nZVI) composite was synthesized in this study by the liquid-phase reduction method. Subsequently, the BC-BE-nZVI composite was applied to immobilize cadmium (Cd), chromium (Cr), and lead (Pb) in simulated contaminated soil. The simultaneous immobilization efficiencies of Cd, Cr(VI), Crtotal, and Pb were achieved at 70.95 %, 100 %, 86.21 %, and 100 %, respectively. In addition, mobility and bioavailabilities of Cd, Cr, and Pb were significantly decreased and the risk of iron toxicity was reduced. Stabilized metal species in the contaminated soil (e.g., Cd(OH)2, Cd-Fe-(OH)2, CrxFe1-xOOH, CrxFe1-x(OH)3, PbO, PbCrO4, and Pb(OH)2) were formed after the BC-BE-nZVI treatment. Thus, the immobilization mechanisms of Cd, Cr, and Pb, including adsorption, reduction, co-precipitation, and complexation co-exist with the metals. More importantly, bacterial richness, bacterial diversity, soil enzyme activities (dehydrogenase, urease, and fluorescein diacetate hydrolase), and microbial activity were enhanced by applying the BC-BE-nZVI composite, thus increasing the soil metabolic function. Over all, this work applied a promising procedure for remediating multi- metal contaminated soil by using the BC-BE-nZVI composite.
Collapse
Affiliation(s)
- Yi Jin
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Yaxuan Wang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Xi Li
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, PR China.
| | - Ting Luo
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Yongsong Ma
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, PR China
| | - Bing Wang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, PR China
| | - Hong Liang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, PR China
| |
Collapse
|
36
|
Liu Y, Wang L, Liu C, Ma J, Ouyang X, Weng L, Chen Y, Li Y. Enhanced cadmium removal by biochar and iron oxides composite: Material interactions and pore structure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117136. [PMID: 36584474 DOI: 10.1016/j.jenvman.2022.117136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The combination of biochar (BC) and iron minerals improves their pollutant adsorption capacity. However, little is known about the reactivity of BC-iron mineral composites regarding their interaction and change in the pore structure. In this study, the mechanism of cadmium (Cd) adsorption by BC-iron oxide composites, such as BC combined with ferrihydrite (FH) or goethite (GT), was explored. The synergistic effect of the BC-FH composite significantly improved its Cd adsorption capacity. The adsorption efficiencies of BC-FH and BC-GT increased by 15.0% and 10.8%, respectively, compared with that of uncombined BC, FH, and GT. The strong Cd adsorption by BC-FH was attributed to stable interactions and stereoscopic pore filling between BC and FH. The scanning electron microscopy results showed that FH particles entered the BC pores, whereas GT particles were loaded onto the BC surface. FTIR spectroscopy showed that GT covered a larger area of the BC surface than FH. After loading FH and GT, BC porosities decreased by 9.3% and 4.1%, respectively. Quantum chemical calculations and independent gradient mode analysis showed that van der Waals interactions, H-bonds, and covalent-like interactions maintained stability between iron minerals and BC. Additionally, humic acid increased the agglomeration of iron oxides and formed larger particles, causing additional aggregates to load onto the BC surface instead of entering the BC pores. Our results provide theoretical support to reveal the interfacial behavior of BC-iron mineral composites in soil and provide a reference for field applications of these materials for pollution control and environmental remediation.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Long Wang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Chang Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Xiaoxue Ouyang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Liping Weng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Department of Soil Quality, Wageningen University, Wageningen, the Netherlands
| | - Yali Chen
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yongtao Li
- College of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou Jiangxi, 341000, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
37
|
Wang X, Jia P, Hua Y, Xu H, Xi M, Jiang Z. Natural organic matter changed the capacity and mechanism of Pb and Cd adsorptions on iron oxide modified biochars. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
38
|
Zeng X, Zhang G, Wen J, Li X, Zhu J, Wu Z. Simultaneous removal of aqueous same ionic type heavy metals and dyes by a magnetic chitosan/polyethyleneimine embedded hydrophobic sodium alginate composite: Performance, interaction and mechanism. CHEMOSPHERE 2023; 318:137869. [PMID: 36720414 DOI: 10.1016/j.chemosphere.2023.137869] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Heavy metals and azo dyes caused huge harm to the aqueous system and human health. A magnetic chitosan/polyethyleneimine embedded hydrophobic sodium alginate composite (MCPS) was designed and prepared to simultaneously remove aqueous same ionic type heavy metals and azo dyes. In mono-polluted system, the optimal pH for Cr(VI), MO (methyl orange), Cu(Ⅱ) and MB (methylene blue) were 3, 2, 6 and 12 with a saturated adsorption capacity of 87.53, 66.41, 351.03 and 286.54 mg/g, respectively. Pseudo-second-order was suitable to describe the adsorption kinetics of them and the adsorption isotherms were more consistent with the Langmuir isotherm model being a spontaneous, endothermic, and entropy-increasing process. In binary-polluted system, MCPS possessed simultaneous adsorption for Cr (Ⅵ)-MO and Cu(Ⅱ)-MB pollutants at their optimal pH, in addition, whether in anionic or cationic solution, the removal of heavy metals were promoted with the add of azo dyes but the removal of azo dyes were suppressed with the add of heavy metals. Both Cr (Ⅵ)-MO and Cu(Ⅱ)-MB pollutants could be effectively adsorbed and desorbed from MCPS by changing the pH of the aqueous solution to realize recyclability. Lastly, removal mechanism was revealed in detail by FT-IR, EDS and XPS.
Collapse
Affiliation(s)
- Xiangchu Zeng
- School of Chemistry and Bioengineering, Hechi University, Yizhou, Guangxi, 546300, PR China; Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, PR China
| | - Guanghua Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, PR China.
| | - Jia Wen
- College of Environmental Science & Engineering, Hunan University, Changsha, Hunan, 410000, PR China.
| | - Xiuling Li
- School of Chemistry and Bioengineering, Hechi University, Yizhou, Guangxi, 546300, PR China
| | - Junfeng Zhu
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, PR China
| | - Zhe Wu
- School of Chemistry and Bioengineering, Hechi University, Yizhou, Guangxi, 546300, PR China
| |
Collapse
|
39
|
Wang Q, Wen J, Yang L, Cui H, Zeng T, Huang J. Exploration on the role of different iron species in the remediation of As and Cd co-contamination by sewage sludge biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39154-39168. [PMID: 36595173 DOI: 10.1007/s11356-022-24952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Numerous studies have explored the adsorption of cadmium (Cd) and arsenic (As) by iron (Fe)-modified biochar, but few studies have examined in-depth the similarities and differences in the adsorption behavior of different iron types on Cd and As. In this study, sewage sludge biochar (BC) was co-pyrolyzed with self-made Fe minerals (magnetite, hematite, ferrihydrite, goethite, and schwertmannite) to treat Cd and As co-contaminated water. The adsorption of Cd and As on the Fe-modified biochar was further analyzed by adsorption kinetics, adsorption isotherms, and adsorption thermodynamics combined with a series of characterization experiments. Both SEM-EDX and XRD results confirmed the successful loading of iron minerals onto BC. Both adsorption kinetics and adsorption isotherms experiments showed that the adsorption of Cd and As by BC and the other five Fe-modified biochar was mainly controlled by chemical interactions. The results also indicated that goethite biochar (GtBC) was the most effective for the adsorption of Cd among the five Fe-modified biochar. Ferrihydrite biochar (FhBC) formed more diverse complexes, coupled with the relatively stronger electrons accepting ability, thus making it more effective for As adsorption than the others. Additionally, GtBC and hematite biochar (HmBC) were found effective for the adsorption of both Cd and As, whereas MBC was not found effective for either metal. Furthermore, combined with XPS results, the adsorption of Cd by the materials was mainly governed by Cd2+-π interactions, complexation precipitation, and co-precipitation, while oxidation reactions also existed for As.
Collapse
Affiliation(s)
- Qi Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Jia Wen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| | - Lisha Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Hongsheng Cui
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Tianjing Zeng
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha, 410019, People's Republic of China
| | - Jin Huang
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha, 410019, People's Republic of China
| |
Collapse
|
40
|
Nauman Mahamood M, Zhu S, Noman A, Mahmood A, Ashraf S, Aqeel M, Ibrahim M, Ashraf S, Liew RK, Lam SS, Irshad MK. An assessment of the efficacy of biochar and zero-valent iron nanoparticles in reducing lead toxicity in wheat (Triticum aestivum L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120979. [PMID: 36586554 DOI: 10.1016/j.envpol.2022.120979] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Soil heavy metal contamination is increasing rapidly due to increased anthropogenic activities. Lead (Pb) is a well-known human carcinogen causing toxic effects on humans and the environment. Its accumulation in food crops is a serious hazard to food security. Developing environment-friendly and cost-efficient techniques is necessary for Pb immobilization in the soil. A pot experiment was executed to determine the role of biochar (BC), zero-valent iron nanoparticles (n-ZVI), and zero-valent iron nanoparticles biochar composite (n-ZVI-BC) in controlling the Pb mobility and bioaccumulation in wheat (Triticum aestivum L.). The results showed that BC and n-ZVI significantly enhanced the wheat growth by increasing their photosynthetic and enzymatic activities. Among all the applied treatments, the maximum significant (p ≤ 0.05) improvement in wheat biomass was with the n-ZVI-BC application (T3). Compared to the control, the biomass of wheat roots, shoots & grains increased by 92.5, 58.8, and 49.1%, respectively. Moreover, the soil addition of T3 amendment minimized the Pb distribution in wheat roots, shoots, and grains by 33.8, 26.8, and 16.2%, respectively. The outcomes of this experiment showed that in comparison to control treatment plants, soil amendment with n-ZVI-BC (T3) increased the catalase (CAT), superoxide dismutase (SOD) activity by 49.8 and 31.1%, respectively, ultimately declining electrolyte leakage (EL), malondialdehyde (MDA) and hydrogen peroxide (H2O2) content in wheat by 38.7, 33.3, and 38%respectively. In addition, applied amendments declined the Pb mobility in the soil by increasing the residual Pb fractions. Soil amendment with n-ZVI-BC also increased the soil catalase (CAT), urease (UR), and acid phosphatase (ACP) activities by 68, 59, and 74%, respectively. Our research results provided valuable insight for the remediation of Pb toxicity in wheat. Hence, we can infer from our findings that n-ZVI-BC can be considered a propitious, environment friendly and affordable technique for mitigating Pb toxicity in wheat crop and reclamation of Pb polluted soils.
Collapse
Affiliation(s)
| | - Sihang Zhu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing, China; Agricultural Management Institute, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan
| | - Abid Mahmood
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Sana Ashraf
- College of Earth and Environmental Sciences, University of the Punjab, Lahore Pakistan
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Gansu, China
| | - Muhammad Ibrahim
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Sobia Ashraf
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Rock Keey Liew
- NV Western PLT, No. 208B, Second Floor, Macalister Road, 10400 Georgetown, Penang, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Muhammad Kashif Irshad
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan.
| |
Collapse
|
41
|
Yuan ZF, Zhou YJ, Zou L, Chen Z, Gustave W, Duan D, Kappler A, Tang X, Xu J. pH dependence of arsenic speciation in paddy soils: The role of distinct methanotrophs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120880. [PMID: 36528201 DOI: 10.1016/j.envpol.2022.120880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Arsenic (As) is a priority environmental pollutant in paddy field. The coupling of arsenate (As(V)) reduction with anaerobic methane (CH4) oxidation was recently demonstrated in paddy soils and has been suggested to serve as a critical driver for As transformation and mobilization. However, whether As(V)-dependent CH4 oxidation is driven by distinct methanotrophs under different pH conditions remains unclear. Here, we investigated the response of As(V)-dependent CH4 oxidation to pH shifts (pH 5.5-8.0) by employing isotopically labelled CH4. Furthermore, the underlying mechanisms were also investigated in well-controlled anoxic soil suspension incubations. Our results showed that As(V)-dependent CH4 oxidation is highly sensitive to pH changes (1.6-6.8 times variation of arsenite formation). A short-term (0-10 d) pH shift from near-neutral pH to acidic conditions (i.e., pH 5.5, -85% arsenite formation) had an inhibitory effect on As(V)-dependent CH4 oxidation. However, prolonged acidic conditions (i.e., >15 d) had no significant influence on As(V)-dependent CH4 oxidation. The microbial analyses indicated that As reduction in paddies can be driven by anaerobic CH4 oxidation archaea (ANME) and methanotrophs. And, methanotrophs may serve as a critical driver for As(V)-dependent CH4 oxidation. Moreover, type I methanotrophs Methylobacter were more active in oxidizing CH4 than type II methanotrophs Methylocystis when the pH ≥ 6.5. However, Methylocystis had a higher tolerance to soil acidification than Methylobacter. This study illustrates that As(V)-dependent CH4 oxidation could be dominated by distinct methanotrophs along with pH shifts, which eventually enhances As release in paddy soils.
Collapse
Affiliation(s)
- Zhao-Feng Yuan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Jie Zhou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lina Zou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zheng Chen
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Williamson Gustave
- Chemistry, Environmental & Life Sciences, University of the Bahamas, New Providence, Nassau, Bahamas
| | - Dechao Duan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen, 72076, Germany
| | - Xianjin Tang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
42
|
Ansari MAH, Khan ME, Mohammad A, Baig MT, Chaudary A, Tauqeer M. Application of nanocomposites in wastewater treatment. NANOCOMPOSITES-ADVANCED MATERIALS FOR ENERGY AND ENVIRONMENTAL ASPECTS 2023:297-319. [DOI: 10.1016/b978-0-323-99704-1.00025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
43
|
Cao X, Liu Q, Yue T, Zhang F, Liu L. Facile preparation of activated carbon supported nano zero-valent iron for Cd(Ⅱ) removal in aqueous environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116577. [PMID: 36323115 DOI: 10.1016/j.jenvman.2022.116577] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Activated carbon-supported nano-zero-valent iron (nZVI@AC) is considered to be one of the most promising materials for in-situ remediation of pollutants in aqueous environment, while liquid phase reduction (LPR) is one of the most commonly used preparation methods for nZVI@AC. However, the complex operation and the requirement of various agents limit the practical application of the traditional liquid-phase reduction (TLPR). In this study, an improved liquid phase reduction method (ILPR) was proposed, which was characterized by solid-state dosing of reducing agents. Compared with TLPR, ILPR simplified the preparation process, while there was no requirement of polyethylene glycol and ethanol. When the Cd(II) removal efficiency was used as the evaluation index, the preferred parameters of ILPR were as follows: AC/FeSO4·7H2O mass ratio was 15:1; NaBH4 dosage was 8 g; ultrasonic time was 1 h; stirring time was 20 min. Moreover, the Cd(II) removal efficiency of nZVI@AC prepared by ILPR (nZVI@AC-I) was greater than 92.00%, which was superior to that of nZVI@AC prepared by TLPR (nZVI@AC-T). The characterization results showed that the pore parameters, surface functional groups and iron contents of nZVI@AC-I and nZVI@AC-T were basically the same. However, the distribution of iron-containing particles on the surface of nZVI@AC-I was more uniform. Furthermore, the Fe0 in nZVI@AC-I had a smaller particle size and a higher content. Overall, this study provided a promising approach for nZVI@AC preparation.
Collapse
Affiliation(s)
- Xingfeng Cao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Qiaojing Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Tiantian Yue
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Fengzhi Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Liheng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
44
|
Chen C, Yang F, Beesley L, Trakal L, Ma Y, Sun Y, Zhang Z, Ding Y. Removal of cadmium in aqueous solutions using a ball milling-assisted one-pot pyrolyzed iron-biochar composite derived from cotton husk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12571-12583. [PMID: 36112289 DOI: 10.1007/s11356-022-22828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
A novel iron-biochar composite adsorbent was produced via ball milling-assisted one-pot pyrolyzed BM-nZVI-BC 800. Characterization proved that nano zero valent iron was successfully embedded in the newly produced biochar, and the nZVI payload was higher than that of traditional one-pot pyrolyzed methods. BM-nZVI-BC 800 provided a high adsorption performance of cadmium reaching 96.40 mg·g-1 during batch testing. Alkaline conditions were beneficial for cadmium removal of BM-nZVI-BC 800. The pseudo-second-order kinetic model and Langmuir isotherm fitted better, demonstrating that the Cd adsorption on the BM-nZVI-BC 800 was a chemical and surface process. The intraparticle diffusion controlled the adsorption of BM-nZVI-BC 800. The physisorption dominated by high specific surface area and mesoporous structure was the primary mechanism in the removal of cadmium, though electrostatic attraction and complexation also played a secondary role in cadmium adsorption. Compared to adsorbents prepared by more traditional methods, the efficiencies of the ball milling-assisted one-pot pyrolyzed method appears superior.
Collapse
Affiliation(s)
- Chen Chen
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Fengxia Yang
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Luke Beesley
- The James Hutton Institute, Aberdeen, AB15 8QH, UK
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycka 129, Prague, Suchdol, 165 00, Czech Republic
| | - Lukas Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycka 129, Prague, Suchdol, 165 00, Czech Republic
| | - Yongfei Ma
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuebing Sun
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Zulin Zhang
- The James Hutton Institute, Aberdeen, AB15 8QH, UK
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongzhen Ding
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
45
|
Zhang K, Yi Y, Fang Z. Remediation of cadmium or arsenic contaminated water and soil by modified biochar: A review. CHEMOSPHERE 2023; 311:136914. [PMID: 36272628 DOI: 10.1016/j.chemosphere.2022.136914] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Biochar has a high specific surface area with abundant pore structure and functional groups, which has been widely used in remediation of cadmium or arsenic contaminated water and soil. However, the bottleneck problem of low-efficiency of pristine biochar in remediation of contaminated environments always occurs. Nowadays, the modification of biochar is a feasible way to enhance the performance of biochar. Based on the Web of science™, the research progress of modified biochar and its application in remediation of cadmium or arsenic contaminated water and soil have been systematically summarized in this paper. The main modification strategies of biochar were summarized, and the variation of physicochemical properties of biochar before and after modification were illustrated. The efficiency and key mechanisms of modified biochar for remediation of cadmium or arsenic contaminated water and soil were expounded in detail. Finally, some constructive suggestions were given for the future direction and challenges of modified biochar research.
Collapse
Affiliation(s)
- Kai Zhang
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yunqiang Yi
- School of Environment, South China Normal University, Guangzhou, 510006, China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510006, China.
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou, 510006, China; SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan, 511500, China; Normal University Environmental Remediation Technology Co., Ltd, Qingyuan, 511500, China.
| |
Collapse
|
46
|
Development and optimization of high–performance nano–biochar for efficient removal Cd in aqueous: Absorption performance and interaction mechanisms. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
47
|
Ren J, Ma G, Zhao W, Tao L, Zhou Y, Liao C, Tian X, Wang H, Meng K, He Y, Dai L. Insights into enhanced removal of Cd 2+ from aqueous solutions by attapulgite supported sulfide-modified nanoscale zero-valent iron. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:3163-3180. [PMID: 36579876 DOI: 10.2166/wst.2022.394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The sulfidation of nanoscale zerovalent iron (nZVI) has received increasing attention for reducing the oxidizability of nZVI and improving its reactivity toward heavy metal ions. Here, a sulfide (S)-modified attapulgite (ATP)-supported nanoscale nZVI composite (S-nZVI@ATP) was rapidly synthesized under acidic conditions and used to alleviate Cd2+ toxicity from an aqueous solution. The degree of oxidation of S-nZVI@ATP was less than that of nZVI@ATP, indicating that the sulfide modification significantly reduced the oxidation of nZVI. The optimal loading ratio was at an S-to-Fe molar ratio of 0.75, and the adsorption performance of S-nZVI@ATP for Cd2+ was significantly improved compared with that of nZVI@ATP. The removal of Cd2+ by S-nZVI@ATP was 100% when the adsorbent addition was 1 g/L, the solution was 30 mL, and the adsorption was performed at 25 °C for 24 h with an initial Cd2+ concentration of 100 mg/L. Kinetics studies showed that the adsorption process of Cd followed the pseudo-second-order model, indicating that chemisorption was the dominant adsorption mechanism. The adsorption of Cd2+ by S-nZVI @ATP is dominated by the complexation between the iron oxide or iron hydroxide shell of S-nZVI and Cd2+ and the formation of Cd(OH)2 and CdS precipitates.
Collapse
Affiliation(s)
- Jun Ren
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China E-mail: ; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Gansu Hanxing Environmental Protection Co., Ltd., Lanzhou 730070, China
| | - Gui Ma
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China E-mail: ; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, China
| | - Weifan Zhao
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China E-mail:
| | - Ling Tao
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China E-mail: ; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Gansu Hanxing Environmental Protection Co., Ltd., Lanzhou 730070, China
| | - Yue Zhou
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, China
| | - Caiyun Liao
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, China
| | - Xia Tian
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, China
| | - Huan Wang
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, China
| | - Kai Meng
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China E-mail:
| | - Yongjie He
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China E-mail:
| | - Liang Dai
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China E-mail: ; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
48
|
Shao Y, Tian C, Yang Y, Shao Y, Zhang T, Shi X, Zhang W, Zhu Y. Carbothermal Synthesis of Sludge Biochar Supported Nanoscale Zero-Valent Iron for the Removal of Cd 2+ and Cu 2+: Preparation, Performance, and Safety Risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16041. [PMID: 36498112 PMCID: PMC9740856 DOI: 10.3390/ijerph192316041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The practical application of nanoscale zero-valent iron (NZVI) is restricted by its easy oxidation and aggregation. Here, sludge biochar (SB) was used as a carrier to stabilize NZVI for Cd2+ and Cu2+ removal. SB supported NZVI (SB-NZVI) was synthesized using the carbothermic method. The superior preparation conditions, structural characteristics, and performance and mechanisms of the SB-NZVI composites for the removal of Cd2+ and Cu2+ were investigated via batch experiments and characterization analysis. The optimal removal capacities of 55.94 mg/g for Cd2+ and 97.68 mg/g for Cu2+ were achieved at a Fe/sludge mass ratio of 1:4 and pyrolysis temperature of 900 °C. Batch experiments showed that the SB-NZVI (1:4-900) composite had an excellent elimination capacity over a broad pH range, and that weakly acidic to neutral solutions were optimal for removal. The XPS results indicated that the Cd2+ removal was mainly dependent on the adsorption and precipitation/coprecipitation, while reduction and adsorption were the mechanisms that play a decisive role in Cu2+ removal. The presence of Cd2+ had an opposite effect on the Cu2+ removal. Moreover, the SB-NZVI composites made of municipal sludge greatly reduces the leaching toxicity and bio-availability of heavy metals in the municipal sludge, which can be identified as an environmentally-friendly material.
Collapse
Affiliation(s)
- Yingying Shao
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Shandong Shanke Institute of Ecological Environment Co., Ltd., Jinan 250000, China
| | - Chao Tian
- Shandong Shanke Institute of Ecological Environment Co., Ltd., Jinan 250000, China
| | - Yanfeng Yang
- Shandong Shanke Institute of Ecological Environment Co., Ltd., Jinan 250000, China
| | - Yanqiu Shao
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Tao Zhang
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xinhua Shi
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Weiyi Zhang
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Ying Zhu
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
49
|
Wang P, Kong X, Ma L, Wang S, Zhang W, Song L, Li H, Wang Y, Han Z. Metal(loid)s removal by zeolite-supported iron particles from mine contaminated groundwater: Performance and mechanistic insights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120155. [PMID: 36130632 DOI: 10.1016/j.envpol.2022.120155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Iron-based materials have been widely investigated because of their high surface reactivity, which has shown potential for the remediation of metal(loid)s in groundwater. However, the disadvantages of structural stability and economic feasibility always limit their application in permeable reactive barrier (PRB) technology. In this study, zeolite-supported iron particles (Zeo-Fe) were synthesized by an innovative low-cost physical preparation method that is suitable for mass production. The removal efficiency and mechanism of typical metal(loid)s (Pb2+, Cd2+, Cr6+ and As3+) were subsequently investigated using various kinetic and equilibrium models and characterization methods. The results of scanning electron microscopy and energy dispersive spectrometry (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) confirmed that zero valent iron (Fe0) and oxidation product (Fe3O4) were successfully loaded and efficiently dispersed on zeolite. The synthesized Zeo-Fe exhibited excellent adsorption and redox capacities for the cations Pb2+, Cd2+ and anions Cr6+, As3+. The increase in the pH resulting from Fe0 corrosion also enhanced the precipitation of Fe-metal(loid)s. The maximum removal capacity for Pb2+, Cd2+, Cr6+ and As3+ was up to 70.00, 9.12, 2.35 and 0.36 mg/g, respectively. The removal processes were well described by the pseudo-second-order kinetic model for Pb2+ and Cd2+, Lagergren pseudo first-order kinetics model for As3+ and double phase first order kinetics model l for Cr6+. Cr6+ was rapidly reduced to Cr3+ by the Fe0 stabilized on Zeo-Fe, and the oxidation of As3+ to As5+ was attributed to the Fe0/Fe2+ oxidation process at the interface over time, which was further demonstrated by the mineral phase and element valence analyses of reacted Zeo-Fe. The removal mechanism for metal(loid)s was a combination of physical and chemical processes, including adsorption, co-precipitation and reduction-oxidation. Conclusively, Zeo-Fe has been shown to have potential as an effective and economical material for removing various metal(loid)s used in PRB.
Collapse
Affiliation(s)
- Ping Wang
- Institute of Hydrogeology & Environmental Geology, CAGS, Shijiazhuang, 050061, China; Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, 361021, China.
| | - Xiangke Kong
- Institute of Hydrogeology & Environmental Geology, CAGS, Shijiazhuang, 050061, China; Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang, 050061, China.
| | - Lisha Ma
- Institute of Hydrogeology & Environmental Geology, CAGS, Shijiazhuang, 050061, China; Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang, 050061, China.
| | - Shizhong Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Wei Zhang
- Institute of Hydrogeology & Environmental Geology, CAGS, Shijiazhuang, 050061, China; Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang, 050061, China.
| | - Le Song
- Institute of Hydrogeology & Environmental Geology, CAGS, Shijiazhuang, 050061, China; Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang, 050061, China.
| | - Hui Li
- Institute of Hydrogeology & Environmental Geology, CAGS, Shijiazhuang, 050061, China; Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang, 050061, China.
| | - Yanyan Wang
- Institute of Hydrogeology & Environmental Geology, CAGS, Shijiazhuang, 050061, China; Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang, 050061, China.
| | - Zhantao Han
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| |
Collapse
|
50
|
Hu YB, Du T, Ma L, Feng X, Xie Y, Fan X, Fu ML, Yuan B, Li XY. Insights into the mechanisms of aqueous Cd(II) reduction and adsorption by nanoscale zerovalent iron under different atmosphere conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129766. [PMID: 35985214 DOI: 10.1016/j.jhazmat.2022.129766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Nanoscale zero-valent iron (NZVI) can effectively remove and recover Cd(II) from aqueous solutions. However, the oxygen effects on Cd(II) removal by NZVI have been overlooked and not well studied. In this research, the Cd MNN auger lines obtained by X-ray photoelectron spectroscopy (XPS) revealed that Cd(II) adsorbed on the NZVI surface could be reduced to Cd(0) by the Fe(0) core under anaerobic conditions. With coexisting oxygen, the Cd(II) removal efficiency declined significantly, and Cd(II) reduction was inhibited by the thickened surface γ-FeOOH layer. Furthermore, the post-oxygen intrusion corroded the generated Cd(0) and led to the dramatic leaching of Cd(II) ions. According to the density functional theory (DFT) simulation, the adsorbed Cd(II) was preferably coordinated via a monodentate model on the surface of Fe3O4 and γ-FeOOH, which are the dominant surface species of NZVI under anaerobic and aerobic conditions, respectively. Thus, γ-FeOOH with doubly coordinated hydroxyl groups provided fewer adsorption sites than Fe3O4 for Cd(II) ions. Overall, the atmospheric conditions of subsurface remediation and wastewater treatment should be considered when applying NZVI for Cd(II) removal. Favorable atmospheric conditions would improve the efficiency and cost-effectiveness of NZVI-based technologies for the practical remediation of Cd(II) pollution.
Collapse
Affiliation(s)
- Yi-Bo Hu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Ting Du
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Lihang Ma
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xuening Feng
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Yujie Xie
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xiaoyao Fan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Ming-Lai Fu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Baoling Yuan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xiao-Yan Li
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|