1
|
Yévenes M, Gajardo G, Gallardo-Escárate C. Decoding Local Adaptation in the Exploited Native Marine Mussel Mytilus chilensis: Genomic Evidence from a Reciprocal Transplant Experiment. Int J Mol Sci 2025; 26:931. [PMID: 39940706 PMCID: PMC11817969 DOI: 10.3390/ijms26030931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 02/16/2025] Open
Abstract
Local adaptations are important in evolution as they drive population divergence and preserve standing genetic diversity essential for resilience under climate change and human impacts. Protecting locally adapted populations is essential for aquaculture species. However, high larval connectivity and frequent translocations challenge this in Chilean blue mussel (Mytilus chilensis) aquaculture, a world-class industry in Chiloé Island. This study examined local adaptations in two ecologically distinct natural beds, Cochamó (northernmost inner sea of Chiloé) and Yaldad (southernmost tip), through a 91-day reciprocal transplant experiment and genomic evidence. Cochamó mussels grew faster in their native environment (0.015 g/day) than Yaldad (0.004 g/day), though growth declined upon transplantation. Mussels transplanted within and between beds displayed distinctive adaptive transcriptomic responses, with differentially expressed genes involved with immune function, osmoregulation, metabolism, and cellular balance. Additionally, 58 known outlier SNPs mapped over the species' genome sequence were linked with adaptive genes involved with osmoregulation, oxidative stress, and oxygen management, revealing selection-targeted specific genome regions. This study highlights how translocations affect the adaptive genomic response of M. chilensis and the impact of local environments in counterbalancing its genetic connectivity, concluding that the genomic differences in natural beds should be monitored and conserved for sustainable aquaculture practices.
Collapse
Affiliation(s)
- Marco Yévenes
- Laboratorio de Genética, Acuicultura & Biodiversidad, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno 5290000, Chile;
| | - Gonzalo Gajardo
- Laboratorio de Genética, Acuicultura & Biodiversidad, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno 5290000, Chile;
| | - Cristian Gallardo-Escárate
- Centro Interdisciplinario para la Investigación en Acuicultura, Universidad de Concepción, Concepción 4070386, Chile;
| |
Collapse
|
2
|
Uguen M, Gaudron SM, Seuront L. Plastic pollution and marine mussels: Unravelling disparities in research efforts, biological effects and influences of global warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178078. [PMID: 39709840 DOI: 10.1016/j.scitotenv.2024.178078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
The ever-growing contamination of the environment by plastics is a major scientific and societal concern. Specifically, the study of microplastics (1 μm to 5 mm), nanoplastics (< 1 μm), and their leachates is a critical research area as they have the potential to cause detrimental effects, especially when they impact key ecological species. Marine mussels, as ecosystem engineers and filter feeders, are particularly vulnerable to this type of pollution. In this study, we reviewed the 106 articles that focus on the impacts of plastic pollution on marine mussels. First, we examined the research efforts in terms of plastic characteristics (size, polymer, shape, and leachates) and exposure conditions (concentration, duration, species, life stages, and internal factors), their disparities, and their environmental relevance. Then, we provided an overview of the effects of plastics on mussels at each organisational levels, from the smaller scales (molecular, cellular, tissue and organ impacts) to the organism level (functional, physiological, and behavioural impacts) as well as larger-scale implications (associated community impacts). We finally discussed the limited research available on multi-stressor studies involving plastics, particularly in relation to temperature stress. We identified temperature as an underestimated factor that could shape the impacts of plastics, and proposed a roadmap for future research to address their combined effects. This review also highlights the impact of plastic pollution on mussels at multiple levels and emphasises the strong disparities in research effort and the need for more holistic research, notably through the consideration of multiple stressors, with a specific focus on temperature which is likely to become an increasingly relevant forcing factor in an era of global warming. By identifying critical gaps in current knowledge, we advocate for more coordinated interdisciplinary and international collaborations and raise awareness of the need for environmental coherence in the choice and implementation of experimental protocols.
Collapse
Affiliation(s)
- Marine Uguen
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France.
| | - Sylvie M Gaudron
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France; Sorbonne Université, UFR 927, F-75005 Paris, France
| | - Laurent Seuront
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
3
|
Zhang J, Hu Y, Wang J, Hou X, Xiao Y, Wang X, Hu J, Bao Z, Xing Q, Huang X. Tissue-specific, temporal, and core gene-dependent expression patterns of Hsp70s reveal functional allocation in Chlamys farreri under heat stress. Int J Biol Macromol 2024; 283:137537. [PMID: 39537055 DOI: 10.1016/j.ijbiomac.2024.137537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Heat shock proteins 70 KDa (Hsp70s) engage in a broad spectrum of cellular functions in response to various stressors. Marine bivalves face substantial threats from the rising seawater temperature attributed to global warming. In the present study, expression patterns of Hsp70s in Zhikong scallop Chlamys farreri (CfHsp70s) were determined in embryos and larvae at all developmental stages, in healthy adult tissues, and across four various tissues exposed to high temperature for acute and chronic periods through in silico analysis. Spatiotemporal expressions suggested CfHsp70s performed specific functional differentiations in scallop's development and growth. Regulatory expression patterns of CfHsp70s, characterized by predominant down-regulation in the mantle, gill and hemocytes, as well as contrasting up-regulation in the heart, suggest differential functional allocation of CfHsp70s among tissues in response to heat stress. Particularly, a core set of 14 CfHsp70s, especially the nine members of the Hsp70B2s, characterized by gene expansion, intron-less structure, shorter gene length, preference for hydrophilic amino acids, and coordinated expression profiles, was predominantly responsible for the inducible up-regulations observed across all four tissue types. Collectively, the tissue-specific, temporal and core gene-dependent expression patterns of CfHsp70s illustrate the functional allocation and molecular evolution of Hsp70 family members in Zhikong scallops.
Collapse
Affiliation(s)
- Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuqing Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yang Xiao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xinyuan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China.
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
4
|
Balbi T, Bozzo M, Auguste M, Montagna M, Miglioli A, Drouet K, Vezzulli L, Canesi L. Impact of ocean warming on early development of the Mediterranean mussel Mytilus galloprovincialis: Effects on larval susceptibility to potential vibrio pathogens. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109937. [PMID: 39357629 DOI: 10.1016/j.fsi.2024.109937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
In a global change scenario, ocean warming and pathogen infection can occur simultaneously in coastal areas, threatening marine species. Data are shown on the impact of temperature on early larvae of the Mediterranean mussel Mytilus galloprovincialis. Increasing temperatures (18-20-22 °C) altered larval phenotypes at 48 hpf and affected gene expression from eggs to 24 and 48 hpf, with shell biogenesis related genes among the most affected. The effects of temperature on larval susceptibility to infection were evaluated using Vibrio coralliilyticus, a coral pathogen increasingly associated with bivalve mortalities, whose ecology is affected by global warming. Malformations and mortalities at 48 hpf were observed at higher temperature and vibrio concentrations, with interactive effects. In non-lethal conditions, interactions on gene expression at 24 and 48 hpf were also detected. Although temperature is the main environmental driver affecting M. galloprovincialis early larvae, warming may increase the susceptibility to vibrio infection, with consequences on mussel populations.
Collapse
Affiliation(s)
- Teresa Balbi
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy; National Biodiversity Future Center, 90133, Palermo, Italy.
| | - Matteo Bozzo
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy
| | - Manon Auguste
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - Michele Montagna
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy
| | - Angelica Miglioli
- Sorbonne Université/CNRS, Institut de la Mer, UMR7009 Laboratoire de Biologie du Développement, 06230, Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| | - Kévin Drouet
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIO, Toulon, France
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - Laura Canesi
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|
5
|
Cunha M, Petrillo V, Madeira M, He Y, Coppola F, Meucci V, De Marchi L, Soares AMVM, Freitas R. The influence of temperature on the impacts of caffeine in mussels: Evaluating subcellular impacts and model predictions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173453. [PMID: 38802017 DOI: 10.1016/j.scitotenv.2024.173453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
In aquatic ecosystems, the presence of pharmaceuticals, particularly caffeine (CAF), has been linked to wastewater discharge, hospital waste, and the disposal of expired pharmaceutical products containing CAF. Additionally, rising temperatures due to climate change are anticipated in aquatic environments. This study aimed to assess the toxicity of various CAF concentrations under current (17 °C) and projected (21 °C) temperature conditions, using the mussel Mytilus galloprovincialis as a bioindicator species. Subcellular impacts were evaluated following 28 days of exposure to four CAF concentrations (0.5; 1.0; 5.0; 10.0 μg/L) at the control temperature (17 °C). Only effects at an environmentally relevant CAF concentration (5.0 μg/L) were assessed at the highest temperature (21 °C). The overall biochemical response of mussels was evaluated using non-metric Multidimensional Scaling (MDS) and the Integrated Biomarker Response (IBR) index, while the Independent Action (IA) model was used to compare observed and predicted responses. Results showed that at 17 °C, increased CAF concentrations were associated with higher metabolism and biotransformation capacity, accompanied by cellular damage at the highest concentration. Conversely, under warming conditions (21 °C), the induction of antioxidant enzymes was observed, although insufficient to prevent cellular damage compared to the control temperature. Regarding neurotoxicity, at 17 °C, the activity of the acetylcholinesterase enzyme was inhibited up to 5.0 μg/L; however, at 10.0 μg/L, activity increased, possibly due to CAF competition for adenosine receptors. The IA model identified a synergistic response for most parameters when CAF and warming acted together, aligning with observed results, albeit with slightly lower magnitudes.
Collapse
Affiliation(s)
- Marta Cunha
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vincenzo Petrillo
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Madalena Madeira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, PR China; Sino-portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 Jiangsu Province, China
| | - Francesca Coppola
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Yévenes M, Gallardo-Escárate C, Gajardo G. Epigenetic variation mediated by lncRNAs accounts for adaptive genomic differentiation of the endemic blue mussel Mytiluschilensis. Heliyon 2024; 10:e23695. [PMID: 38205306 PMCID: PMC10776947 DOI: 10.1016/j.heliyon.2023.e23695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/09/2023] [Indexed: 01/12/2024] Open
Abstract
Epigenetic variation affects gene expression without altering the underlying DNA sequence of genes controlling ecologically relevant phenotypes through different mechanisms, one of which is long non-coding RNAs (lncRNAs). This study identified and evaluated the gene expression of lncRNAs in the gill and mantle tissues of Mytilus chilensis individuals from two ecologically different sites: Cochamó (41°S) and Yaldad (43°S), southern Chile, both impacted by climatic-related conditions and by mussel farming given their use as seedbeds. Sequences identified as lncRNAs exhibited tissue-specific differences, mapping to 3.54 % of the gill transcriptome and 1.96 % of the mantle transcriptome, representing an average of 2.76 % of the whole transcriptome. Using a high fold change value (≥|100|), we identified 43 and 47 differentially expressed lncRNAs (DE-lncRNAs) in the gill and mantle tissue of individuals sampled from Cochamó and 21 and 17 in the gill and mantle tissue of individuals sampled from Yaldad. Location-specific DE-lncRNAs were also detected in Cochamó (65) and Yaldad (94) samples. Via analysis of the differential expression of neighboring protein-coding genes, we identified enriched GO terms related to metabolic, genetic, and environmental information processing and immune system functions, reflecting how the impact of local ecological conditions may influence the M. chilensis (epi)genome expression. These DE-lncRNAs represent complementary biomarkers to DNA sequence variation for maintaining adaptive differences and phenotypic plasticity to cope with natural and human-driven perturbations.
Collapse
Affiliation(s)
- Marco Yévenes
- Laboratorio de Genética, Acuicultura y Biodiversidad, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile
| | - Cristian Gallardo-Escárate
- Centro Interdisciplinario para la Investigación en Acuicultura, Universidad de Concepción, Concepción, Chile
| | - Gonzalo Gajardo
- Laboratorio de Genética, Acuicultura y Biodiversidad, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile
| |
Collapse
|
7
|
Yévenes M, Núñez-Acuña G, Gallardo-Escárate C, Gajardo G. Adaptive Differences in Gene Expression in Farm-Impacted Seedbeds of the Native Blue Mussel Mytilus chilensis. Front Genet 2021; 12:666539. [PMID: 34093658 PMCID: PMC8174845 DOI: 10.3389/fgene.2021.666539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/23/2021] [Indexed: 01/02/2023] Open
Abstract
The study of adaptive population differences is relevant for evolutionary biology, as it evidences the power of selective local forces relative to gene flow in maintaining adaptive phenotypes and their underlying genetic determinants. However, human-mediated hybridization through habitat translocations, a common and recurrent aquaculture practice where hybrids could eventually replace local genotypes, risk populations' ability to cope with perturbations. The endemic marine mussel Mytilus chilensis supports a booming farming industry in the inner sea of Chiloé Island, southern Chile, which entirely relies on artificially collected seeds from natural beds that are translocated to ecologically different fattening centers. A matter of concern is how farm-impacted seedbeds will potentially cope with environmental shifts and anthropogenic perturbations. This study provides the first de novo transcriptome of M. chilensis; assembled from tissue samples of mantles and gills of individuals collected in ecologically different farm-impacted seedbeds, Cochamó (41°S) and Yaldad (43°S). Both locations and tissue samples differentially expressed transcripts (DETs) in candidate adaptive genes controlling multiple fitness traits, involved with metabolism, genetic and environmental information processing, and cellular processes. From 189,743 consensus contigs assembled: 1,716 (Bonferroni p value ≤ 0.05) were DETs detected in different tissues of samples from different locations, 210 of them (fold change ≥ | 100|) in the same tissue of samples from a different location, and 665 (fold change ≥ | 4|) regardless of the tissue in samples from a different location. Site-specific DETs in Cochamó (169) and Yaldad (150) in candidate genes controlling tolerance to temperature and salinity shifts, and biomineralization exhibit a high number of nucleotide genetic variants with regular occurrence (frequency > 99%). This novel M. chilensis transcriptome should help assessing and monitoring the impact of translocations in wild and farm-impacted mussel beds in Chiloé Island. At the same time, it would help designing effective managing practices for conservation, and translocation traceability.
Collapse
Affiliation(s)
- Marco Yévenes
- Programa de Doctorado en Ciencias, Mención Conservación y Manejo de Recursos Naturales, Universidad de Los Lagos, Osorno, Chile
- Laboratorio de Genética, Acuicultura & Biodiversidad, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile
| | - Gustavo Núñez-Acuña
- Laboratorio de Biotecnología y Genómica Acuícola, Centro Interdisciplinario para la Investigación en Acuicultura, Universidad de Concepción, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Laboratorio de Biotecnología y Genómica Acuícola, Centro Interdisciplinario para la Investigación en Acuicultura, Universidad de Concepción, Concepción, Chile
| | - Gonzalo Gajardo
- Laboratorio de Genética, Acuicultura & Biodiversidad, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile
| |
Collapse
|
8
|
Tlili S, Mouneyrac C. New challenges of marine ecotoxicology in a global change context. MARINE POLLUTION BULLETIN 2021; 166:112242. [PMID: 33706213 DOI: 10.1016/j.marpolbul.2021.112242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 05/27/2023]
Abstract
Currently, research agenda in marine ecotoxicology is facing new challenges with the emergence of newly and complex synthetized chemicals. The study of the fate and adverse effects of toxicants remains increasingly complicated with global change events. Ecotoxicology had provided for a decades, precious scientific data and knowledge but also technical and management tools for the environmental community. Regarding those, it is necessary to update methodologies dealing with these issues such as combined effect of conventional and emergent stressors and global changes. In this point of view article, we discuss one hand the new challenges of ecotoxicology in this context, and in the other hand, the need of updating agenda and methodologies currently used in monitoring programs and finally recommendations and future research needs. Among recommendations, it could be cited the necessity to perform long-term experiments, the standardization of sentinel species and taking benefit from baseline studies and omics technologies.
Collapse
Affiliation(s)
- Sofiene Tlili
- Laboratoire Mer, Molécules, Santé (MMS, EA 2160), Université Catholique, de l'Ouest, 49000 Angers, France.
| | - Catherine Mouneyrac
- Laboratoire Mer, Molécules, Santé (MMS, EA 2160), Université Catholique, de l'Ouest, 49000 Angers, France
| |
Collapse
|
9
|
Sforzini S, Banni M, Oliveri C, Moore MN, Viarengo A. New insights into the possible multiple roles of histidine-rich glycoprotein in blue mussels. Comp Biochem Physiol B Biochem Mol Biol 2020; 245:110440. [DOI: 10.1016/j.cbpb.2020.110440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023]
|
10
|
Wenne R, Zbawicka M, Bach L, Strelkov P, Gantsevich M, Kukliński P, Kijewski T, McDonald JH, Sundsaasen KK, Árnyasi M, Lien S, Kaasik A, Herkül K, Kotta J. Trans-Atlantic Distribution and Introgression as Inferred from Single Nucleotide Polymorphism: Mussels Mytilus and Environmental Factors. Genes (Basel) 2020; 11:genes11050530. [PMID: 32397617 PMCID: PMC7288462 DOI: 10.3390/genes11050530] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
Large-scale climate changes influence the geographic distribution of biodiversity. Many taxa have been reported to extend or reduce their geographic range, move poleward or displace other species. However, for closely related species that can hybridize in the natural environment, displacement is not the only effect of changes of environmental variables. Another option is subtler, hidden expansion, which can be found using genetic methods only. The marine blue mussels Mytilus are known to change their geographic distribution despite being sessile animals. In addition to natural dissemination at larval phase—enhanced by intentional or accidental introductions and rafting—they can spread through hybridization and introgression with local congeners, which can create mixed populations sustaining in environmental conditions that are marginal for pure taxa. The Mytilus species have a wide distribution in coastal regions of the Northern and Southern Hemisphere. In this study, we investigated the inter-regional genetic differentiation of the Mytilus species complex at 53 locations in the North Atlantic and adjacent Arctic waters and linked this genetic variability to key local environmental drivers. Of seventy-nine candidate single nucleotide polymorphisms (SNPs), all samples were successfully genotyped with a subset of 54 SNPs. There was a clear interregional separation of Mytilus species. However, all three Mytilus species hybridized in the contact area and created hybrid zones with mixed populations. Boosted regression trees (BRT) models showed that inter-regional variability was important in many allele models but did not prevail over variability in local environmental factors. Local environmental variables described over 40% of variability in about 30% of the allele frequencies of Mytilus spp. For the 30% of alleles, variability in their frequencies was only weakly coupled with local environmental conditions. For most studied alleles the linkages between environmental drivers and the genetic variability of Mytilus spp. were random in respect to “coding” and “non-coding” regions. An analysis of the subset of data involving functional genes only showed that two SNPs at Hsp70 and ATPase genes correlated with environmental variables. Total predictive ability of the highest performing models (r2 between 0.550 and 0.801) were for alleles that discriminated most effectively M. trossulus from M. edulis and M. galloprovincialis, whereas the best performing allele model (BM101A) did the best at discriminating M. galloprovincialis from M. edulis and M. trossulus. Among the local environmental variables, salinity, water temperature, ice cover and chlorophyll a concentration were by far the greatest predictors, but their predictive performance varied among different allele models. In most cases changes in the allele frequencies along these environmental gradients were abrupt and occurred at a very narrow range of environmental variables. In general, regions of change in allele frequencies for M. trossulus occurred at 8–11 psu, 0–10 °C, 60%–70% of ice cover and 0–2 mg m−3 of chlorophyll a, M. edulis at 8–11 and 30–35 psu, 10–14 °C and 60%–70% of ice cover and for M. galloprovincialis at 30–35 psu, 14–20 °C.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; (M.Z.); (P.K.); (T.K.)
- Correspondence: ; Tel.: +48-58-7311763
| | - Małgorzata Zbawicka
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; (M.Z.); (P.K.); (T.K.)
| | - Lis Bach
- Arctic Research Centre, Department of Bioscience, Aarhus University, 4000 Roskilde, Denmark;
| | - Petr Strelkov
- Department of Ichthyology and Hydrobiology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Mikhail Gantsevich
- Department of Invertebrate Zoology, Faculty of Biology, Moscow MV Lomonosov State University, 119234 Moscow, Russia;
| | - Piotr Kukliński
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; (M.Z.); (P.K.); (T.K.)
| | - Tomasz Kijewski
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; (M.Z.); (P.K.); (T.K.)
| | - John H. McDonald
- Biology Department, Western Washington University, Bellingham, WA 98225, USA;
| | - Kristil Kindem Sundsaasen
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway; (K.K.S.); (M.Á.); (S.L.)
| | - Mariann Árnyasi
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway; (K.K.S.); (M.Á.); (S.L.)
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway; (K.K.S.); (M.Á.); (S.L.)
| | - Ants Kaasik
- Estonian Marine Institute, University of Tartu, 12619 Tallinn, Estonia; (A.K.); (K.H.); (J.K.)
| | - Kristjan Herkül
- Estonian Marine Institute, University of Tartu, 12619 Tallinn, Estonia; (A.K.); (K.H.); (J.K.)
| | - Jonne Kotta
- Estonian Marine Institute, University of Tartu, 12619 Tallinn, Estonia; (A.K.); (K.H.); (J.K.)
| |
Collapse
|