1
|
Zhang Y, Cao H, Wang M, Zou Z, Zhou P, Wang X, Jin J. A review of iodine in plants with biofortification: Uptake, accumulation, transportation, function, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163203. [PMID: 37004776 DOI: 10.1016/j.scitotenv.2023.163203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
Iodine deficiency can cause thyroid disease, a serious health problem that has been affecting humans since several years. The biofortification of plants with iodine is an effective strategy for regulating iodine content in humans. In addition, radioiodine released into the atmosphere may contaminate terrestrial ecosystem along with dry or wet deposition and its accumulation in plants may cause exposure risks to humans via food chain. Recent progress in understanding the mechanisms related to iodine uptake, elementary speciation, dynamic transportation, nutritional role, and toxicity in plants is reviewed here. First, we introduced the iodine cycle in a marine-atmosphere-land system. The content and speciation of iodine in plants under natural conditions and biofortification backgrounds were also analyzed. We then discussed the mechanisms of iodine uptake and efflux by plants. The promotion or inhibition effects of iodine on plant growth were also investigated. Finally, the participation of radioiodine in plant growth and its safety risks along the food chain were evaluated. Furthermore, future challenges and opportunities for understanding the participation of iodine in plants have been outlined.
Collapse
Affiliation(s)
- Yue Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Han Cao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Min Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Ziwei Zou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Pingfan Zhou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiangxue Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Jie Jin
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
2
|
Thiry Y, Tanaka T, Bueno M, Pisarek P, Roulier M, Gallard H, Legout A, Nicolas M. Recycling and persistence of iodine 127 and 129 in forested environments: A modelling approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154901. [PMID: 35364144 DOI: 10.1016/j.scitotenv.2022.154901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Differences in the source and behaviour of 129I compared to 127I isotopes have been described for a variety of surface environments, but little is known about the cycling rates of each isotope in terrestrial ecosystems. We developed a compartment model of the iodine cycle in a forest ecosystem, with a labile and non-labile pool to simplify the complex fate of iodine in the forest floor and soil. Simulations were performed using atmospheric 127I and 129I inputs for sites differing in climate, vegetation, and soil. In general, considering dry deposition in addition to wet deposition improved model simulations. Model results support the view that soil is the sink for atmospheric iodine deposited in forest ecosystems, while tree vegetation has little influence on long-term iodine budgets. Modelling also showed that iodine cycling reaches equilibrium after a period of about 5000 years, mainly due to a gradual incorporation of iodine into the bulk stabilised soil organic matter. At steady state, this pool of non-labile iodine in soil can retain about 20% of total deposition with a mean residence time of 900 years, while the labile iodine pool is renewed after 90 years. The proportions of modern anthropogenic 129I in each modelled pool reflect those of stable 127I at least several decades after input to the forest; this result explains why isotopic disequilibrium is common in field data analysis. Volatilisation plays a central role in regulating iodine storage in soil and, therefore, its residence time, while drainage is a minor export pathway, except at some calcareous sites. Dynamic modelling has been particularly helpful for gaining insight into the long-term response of iodine partitioning to continuous, single or even varying deposition. Our modelling study suggested that better estimates of dry deposition of atmospheric iodine, weathering of parent rock, and volatilisation of the deposited iodine from soil and vegetation will be required for reliable predictions of iodine cycling in specific forests, because these processes remain insufficiently explored.
Collapse
Affiliation(s)
- Yves Thiry
- Andra, Research and Development Division, 1-7 Rue Jean-Monnet, 92298 Châtenay-Malabry cedex, France.
| | - Taku Tanaka
- EDF R&D, LNHE, 6 Quai Watier, 78400 Chatou, France
| | - Maïté Bueno
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254, Avenue du Président Angot, 64000 Pau, France
| | - Paulina Pisarek
- Andra, Research and Development Division, 1-7 Rue Jean-Monnet, 92298 Châtenay-Malabry cedex, France; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254, Avenue du Président Angot, 64000 Pau, France
| | - Marine Roulier
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254, Avenue du Président Angot, 64000 Pau, France; Institute of Radiation Protection and Nuclear Safety (IRSN), PSE-ENV, SRTE, LR2T, CE Cadarache, 13115 Saint Paul les Durance Cedex, France
| | - Hervé Gallard
- IC2MP UMR 7285, Université de Poitiers, 86073 Poitiers Cedex 9, France
| | - Arnaud Legout
- INRAE Grand Est, UR 1138, Biogéochimie des Ecosystèmes Forestiers, F-54280 Nancy, France
| | | |
Collapse
|
3
|
Ota M, Koarashi J. Contamination processes of tree components in Japanese forest ecosystems affected by the Fukushima Daiichi Nuclear Power Plant accident 137Cs fallout. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151587. [PMID: 34838924 DOI: 10.1016/j.scitotenv.2021.151587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
In forests affected by the Fukushima Daiichi Nuclear Power Plant accident, trees became contaminated with 137Cs. However, 137Cs transfer processes determining tree contamination (particularly for stem wood, a prominent commercial resource) remain insufficiently understood. We propose a model for simulating dynamic behavior of 137Cs in a forest tree-litter-soil system and applied it to contaminated forests of cedar plantation and natural oak stand in Fukushima to elucidate relative impact of distinct 137Cs transfer processes determining the tree contamination. The transfer of 137Cs to the trees occurred mostly (>99%) through surface uptake of 137Cs trapped by needles and bark during the fallout. Root uptake of soil 137Cs was several orders of magnitude lower than the surface uptake over a 50-year period following the accident. As a result, internal contamination of the trees proceeded through an enduring recycling (translocation) of 137Cs absorbed on the tree surface. A significant surface uptake of 137Cs through bark was suggested, contributing to 100% (leafless oak tree) and 30% (foliated cedar tree; the remaining uptake occurred at needles) of the total uptake by the trees, although that pathway still needs to be evaluated by experimental evidence. It was suggested that the activity concentration of 137Cs in stem wood of the trees at these sites are currently (as of 2021) decreasing by ~3% per year, mainly through radioactive decay of 137Cs and partly through dilution effect from tree growth. Although further refinement of the model is recommended, for example by including tree species specific 137Cs transportation in stem, these findings provide vital information for planning of forestry reactivation in Fukushima; e.g., removal of forest floor organic layer will not reduce the tree contamination for a long term because of the 137Cs absorption via the tree surface substantially greater than root uptake of 137Cs deposited to the floor.
Collapse
Affiliation(s)
- Masakazu Ota
- Research Group for Environmental Science, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan.
| | - Jun Koarashi
- Research Group for Environmental Science, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
| |
Collapse
|
4
|
Roulier M, Bueno M, Coppin F, Nicolas M, Thiry Y, Rigal F, Pannier F, Le Hécho I. Atmospheric iodine, selenium and caesium depositions in France: II. Influence of forest canopies. CHEMOSPHERE 2021; 273:128952. [PMID: 33228989 DOI: 10.1016/j.chemosphere.2020.128952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Estimation of the canopy influence on atmospheric inputs of iodine (I), selenium (Se) and caesium (Cs) in terrestrial ecosystems is an essential condition for appropriate biogeochemical models. However, the processes involved in rain composition modifications after its passage through forest canopy have been barely studied for these elements. We monitored I, Se and Cs concentrations in both rainfall and throughfall of fourteen French forested sites throughout one year, and estimated dry deposition and canopy exchange fluxes for these elements, as well as speciation of I and Se. Comparison of rainfall and throughfall elemental composition highlighted an important impact of forest canopy on both (i) concentrations and fluxes of I, Se and Cs, and (ii) I and Se species. For the three elements, most of their throughfall concentrations were higher than corresponding rainfall. The increase of throughfall elemental fluxes was mostly due to dry deposition for I and Se although the canopy exchange model revealed some sorption within the canopy in most cases; for Cs, foliage leaching was most influencing. Regarding speciation, iodine species in rainfall were highly modified by forest canopy with an important increase of unidentified I proportion in throughfall (on average 49 and 82% in rainfall and throughfall, respectively), possibly due to washoff of dry deposition and/or to transformation into organic forms. Similarly, while rainfall was composed of 26-54% of inorganic Se, inorganic species were undetectable in throughfall. This dataset represents key information to improve modelling of I, Se and Cs cycling within forest ecosystems.
Collapse
Affiliation(s)
- Marine Roulier
- CNRS/Univ. Pau & Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254, Avenue du Président Angot, 64000, Pau, France; Institute of Radiological Protection and Nuclear Safety (IRSN), PSE-ENV/SRTE/LR2T, CE Cadarache, 13115, Saint Paul les Durance Cedex, France.
| | - Maïté Bueno
- CNRS/Univ. Pau & Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254, Avenue du Président Angot, 64000, Pau, France.
| | - Frédéric Coppin
- Institute of Radiological Protection and Nuclear Safety (IRSN), PSE-ENV/SRTE/LR2T, CE Cadarache, 13115, Saint Paul les Durance Cedex, France.
| | - Manuel Nicolas
- Office National des Forêts (ONF), Direction Forêts et Risques Naturels, Département Recherche, Développement, Innovation, Boulevard de Constance, 77300, Fontainebleau, France.
| | - Yves Thiry
- Andra, Research and Development Division, Parc de la Croix Blanche, 1-7 Rue Jean Monnet, 92298, Châtenay-Malabry Cedex, France.
| | - François Rigal
- CNRS/Univ. Pau & Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254, Avenue du Président Angot, 64000, Pau, France; Azorean Biodiversity Group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Angra do Heroísmo, Azores, Portugal.
| | - Florence Pannier
- CNRS/Univ. Pau & Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254, Avenue du Président Angot, 64000, Pau, France.
| | - Isabelle Le Hécho
- CNRS/Univ. Pau & Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254, Avenue du Président Angot, 64000, Pau, France.
| |
Collapse
|
5
|
Ye F, Huang C, Jiang X, He W, Gao X, Ma L, Ao J, Xu L, Wang Z, Li Q, Li J, Ma H. Reusable fibrous adsorbent prepared via Co-radiation induced graft polymerization for iodine adsorption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111021. [PMID: 32888607 DOI: 10.1016/j.ecoenv.2020.111021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Volatile iodine released from nuclear power plant reactors is radiological hazard to environment and human's health because of their high fission yield and environmental mobility. The complexity of nuclear waste management motivated the development of solid-phase adsorbents. Herein, co-radiation induced graft polymerization (CRIGP) was employed in the graft polymerization of N-vinyl-2-pyrrolidone (NVP) onto polyethylene-coated polypropylene skin-core (PE/PP) fibers using electron beam (EB) irradiation. This work provides a one-step green synthetic approach to prepare iodine fibrous adsorbents without any chemical initiators or large amount of organic solvent. The original and modified PE/PP fibers were characterized by fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and scanning electron microscopy (SEM) to demonstrate the grafting of NVP onto the PE/PP fibers. The capacity of iodine absorbed by the PE/PP-g-PNVP fibers was 1237.8 mg/g after 180 min. Meanwhile, absorbents can be regenerated efficiently by two different means of ethanol elution and heating at 120 °C, respectively. Within 10 min, 94.17% and 90.12% of the iodine can be released from the PE/PP-g-PNVP fibers with these two methods, respectively. The adsorbent exhibited a long service life of at least ten adsorption-desorption cycles, suggesting that PE/PP-g-PNVP fibers might be a promising adsorbent for volatile iodine adsorption from fission products in nuclear power plant reactors.
Collapse
Affiliation(s)
- Feng Ye
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Huang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China; School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | | | - Wen He
- Qilu Institute of Technology, Jinan, 250200, China
| | - Xing Gao
- Qilu Institute of Technology, Jinan, 250200, China
| | - Lin Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junxuan Ao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Ziqiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Qingnuan Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jingye Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Hongjuan Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
| |
Collapse
|