1
|
Javed R, Sharafat U, Rathnayake A, Galagedara L, Selopal GS, Thomas R, Cheema M. Valorization and repurposing of seafood waste to next-generation carbon nanofertilizers. BIORESOURCE TECHNOLOGY 2025; 416:131783. [PMID: 39528026 DOI: 10.1016/j.biortech.2024.131783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/08/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The surge in population growth, urbanization, and shifts in food consumption patterns have resulted in a rise in the global production of organic waste. This waste material must be repurposed and effectively managed to minimize environmental footprints. The generation of abundant biowaste, especially from marine sources, may have detrimental impacts on the environment and human health if left untreated. In recent years, substantial efforts have been made to valorize seafood waste, contributing significantly to the sustainability of the blue economy through the repurposing of marine discards. Seafood waste can be transformed into different by-products which can be applied as soil amendment to enhance soil quality and health, demonstrating a holistic approach to repurposing and waste utilization. The extraction of bioactive metabolites from these waste materials has opened avenues for developing nanofertilizers. This intersection of waste valorization and nanotechnology is pertinent in the context of sustainable agriculture. While conventional fertilizers improve soil fertility with significant leaching and gaseous losses, the advent of nanofertilizers introduces a paradigm shift with their targeted and controlled delivery mechanisms, rendering them significantly more efficient in resource utilization and mitigation of environmental crises. This review delves into the global issue of seafood waste accumulation, offering an overview of various methods for repurposing. The primary aim of this review is to bring into limelight the recent efforts in developing a portfolio of carbon-based nanofertilizers derived from organic waste, replacing previous valorization methods due to their sustainability, efficiency, and eco-friendliness. There are immense opportunities for future work in this direction by exploring innovative nanoengineering approach owing to the potential of carbon nanofertilizers in enhancing the production of value-added products and reduction of environmental pollution.
Collapse
Affiliation(s)
- Rabia Javed
- School of Science and the Environment, Memorial University of Newfoundland and Labrador, Corner Brook A2H 5G4, Newfoundland, Canada.
| | - Uzma Sharafat
- School of Science and the Environment, Memorial University of Newfoundland and Labrador, Corner Brook A2H 5G4, Newfoundland, Canada
| | - Ayesha Rathnayake
- School of Science and the Environment, Memorial University of Newfoundland and Labrador, Corner Brook A2H 5G4, Newfoundland, Canada
| | - Lakshman Galagedara
- School of Science and the Environment, Memorial University of Newfoundland and Labrador, Corner Brook A2H 5G4, Newfoundland, Canada
| | - Gurpreet Singh Selopal
- Department of Engineering, Faculty of Agricultural, Dalhousie University, Truro B2N 5E3, NS, Canada
| | - Raymond Thomas
- Biotron Experimental Climate Change Research Centre, Department of Biology, Western University, London, ON, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Memorial University of Newfoundland and Labrador, Corner Brook A2H 5G4, Newfoundland, Canada.
| |
Collapse
|
2
|
Mancuso G, Habchi S, Maraldi M, Valenti F, El Bari H. Comprehensive review of technologies for separate digestate treatment and agricultural valorisation within circular and green economy. BIORESOURCE TECHNOLOGY 2024; 409:131252. [PMID: 39127359 DOI: 10.1016/j.biortech.2024.131252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Anaerobic digestion (AD) has the potential to catalyse the shift from a linear to a circular economy. However, effective treatment and management of both solid (DSF) and liquid (DLF) digestate fraction treatment and management require adopting sustainable technologies to recover valuable by-products like energy, biofuels, biochar, and nutrients. This study reviews state-of-the-art advanced technologies for DSF and DLF treatment and valorisation, using life cycle assessment (LCA) and techno-economic analysis (TEA) in integrated digestate management (IDM). Key findings highlight these technologies' potential in mitigating environmental impacts from digestate management, but there's a need to improve process efficiency, especially at larger scales. Future research should prioritize cost-effective and eco-friendly IDM technologies. This review emphasizes how LCA and TEA can guide decision-making and promote sustainable agricultural practices. Ultimately, sustainable IDM technologies can boost resource recovery and advance circular economy principles, enhancing the environmental and economic sustainability of AD processes.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, viale Giuseppe Fanin 50, Bologna 40127, Italy
| | - Sanae Habchi
- Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Mirko Maraldi
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, viale Giuseppe Fanin 50, Bologna 40127, Italy
| | - Francesca Valenti
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, viale Giuseppe Fanin 50, Bologna 40127, Italy.
| | - Hassan El Bari
- Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
3
|
Hassaan MA, Elkatory MR, El-Nemr MA, Ragab S, Yi X, Huang M, El Nemr A. Synthesis, characterization, optimization and application of Pisum sativum peels S and N-doping biochars in the production of biogas from Ulva lactuca. RENEWABLE ENERGY 2024; 221:119747. [DOI: 10.1016/j.renene.2023.119747] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
4
|
Hua H, Jinliang W, Iqbal W, Tang YM, Chau KY. Digital technology and its application in supply chain management: new evidence from China's economy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106242-106259. [PMID: 37725303 DOI: 10.1007/s11356-023-29486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/20/2023] [Indexed: 09/21/2023]
Abstract
The purpose of this article is to investigate the influence that practices using information technology (IT) have on the development of a competitive advantage across the supply chain. An organization has a competitive advantage when it has qualities that give the required foundations for it to separate itself from other organizations that are also in its industry. Pressure is applied to the corporate environment as a result of competition and ongoing changes, such as the introduction of new products and technical advancements, the decline of product lifestyles, and the proliferation of products. In order to maintain a competitive edge and achieve financial success in business, organizations are necessary for responding to changes in the market. Through the use of supply chain markets, companies are able to react quickly to unforeseen shifts in the market, and these shifts may be turned into lucrative business possibilities. One of the most significant things that firms can do to assist themselves is make use of information technology to improve their supply chain management agility. From March 2021 through January 2022, the area of China will have a total sample size of 247 persons fill out a questionnaire as part of the data collection process. In each and every questionnaire, the measurements were taken using a Likert scale with five points. The partial least square-structural equation modeling (PLS-SEM) approach is used to the causal model in order to assess the model's reliability and validity. This technique is used to evaluate the causal model. The findings indicate that information technology has a favorable impact on the adaptability of supply chain management systems. In addition, the findings that were collected have shown that there are four factors that influence the SCM systems. These factors are the IT skills and knowledge, the integration of IT-based systems, the IT infrastructure, and the design of global position system and geographic information systems. In addition, this research offers practitioners recommendations for implementing digital technology for supply chain management and building suitable business strategies at various stages of digitalization.
Collapse
Affiliation(s)
- Huang Hua
- Faculty of Business, City University of Macau, Taipa, Macau, China
| | - Wang Jinliang
- Faculty of Business, City University of Macau, Taipa, Macau, China
- School of Management, Guangdong University of Science & Technology, Dongguan, Guangdong, China
| | - Wasim Iqbal
- Department of Business, ILMA University, Karachi, Pakistan
| | - Yuk Ming Tang
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Ka Yin Chau
- Faculty of Business, City University of Macau, Taipa, Macau, China.
| |
Collapse
|
5
|
Allende S, Brodie G, Jacob MV. Breakdown of biomass for energy applications using microwave pyrolysis: A technological review. ENVIRONMENTAL RESEARCH 2023; 226:115619. [PMID: 36906271 DOI: 10.1016/j.envres.2023.115619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The agricultural industry faces a permanent increase in waste generation, which is associated with the fast-growing population. Due to the environmental hazards, there is a paramount demand for generating electricity and value-added products from renewable sources. The selection of the conversion method is crucial to develop an eco-friendly, efficient and economically viable energy application. This manuscript investigates the influencing factors that affect the quality and yield of the biochar, bio-oil and biogas during the microwave pyrolysis process, evaluating the biomass nature and diverse combinations of operating conditions. The by-product yield depends on the intrinsic physicochemical properties of biomass. Feedstock with high lignin content is favourable for biochar production, and the breakdown of cellulose and hemicellulose leads to higher syngas formation. Biomass with high volatile matter concentration promotes the generation of bio-oil and biogas. The pyrolysis system's conditions of input power, microwave heating suspector, vacuum, reaction temperature, and the processing chamber geometry were influence factors for optimising the energy recovery. Increased input power and microwave susceptor addition lead to high heating rates, which were beneficial for biogas production, but the excess pyrolysis temperature induce a reduction of bio-oil yield.
Collapse
Affiliation(s)
- Scarlett Allende
- Electronics Material Lab, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Graham Brodie
- Electronics Material Lab, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Mohan V Jacob
- Electronics Material Lab, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
6
|
Wang W, Chang JS, Lee DJ. Digestate-derived carbonized char and activated carbon: Application perspective. BIORESOURCE TECHNOLOGY 2023; 381:129135. [PMID: 37164231 DOI: 10.1016/j.biortech.2023.129135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
The flourishment of anaerobic digestion (AD) on waste treatment emphasizes the importance of digestate valorization, which plays an essential role in determining the benefits provided by the AD process. The perception of digestate gradually shifts from waste to products to realize the concept of circular economy and maximize the benefits of digestate valorization. This review first outlined the current status of digestate valorization, focusing on thermal-chemical methods. The novel valorization methods were then summarized from the recent research, illustrating prospects for digestate valorization. Limits and perspectives are finally addressed. Methods for preparing digestate-derived activated carbon and impurity effects were elucidated. Inherent mineral content/inorganic impurity could be a niche for downstream use. High surface area and well-developed pore structure are essential for satisfying downstream use performance, but they are not the only factors. Digestate char applications other than use as an energy fuel are suggested.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
7
|
Akkol-Solakoglu S, Hevey D. Internet-delivered cognitive behavioural therapy for depression and anxiety in breast cancer survivors: Results from a randomised controlled trial. Psychooncology 2023; 32:446-456. [PMID: 36635249 DOI: 10.1002/pon.6097] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Depression and anxiety symptoms are common among breast cancer survivors. Access to evidence-based psychological therapy remains a major challenge. Despite the proven effectiveness of internet-delivered cognitive behavioural therapy (iCBT) in reducing depression and anxiety, the research with cancer survivors is still limited. This study evaluated the effectiveness of an iCBT intervention on depression and anxiety, quality of life, fear of recurrence, active and avoidant coping, and perceived social support in breast cancer survivors. METHODS Seventy-two participants were randomised to a 7-module guided iCBT intervention or treatment-as-usual (TAU). Depression and anxiety symptoms were measured using the Hospital Anxiety and Depression Scale total score (HADS-T). The secondary measures included the European Organization for Research and Treatment of Cancer Quality of Life Core Questionnaire (EORTC-QLQ), Breast Cancer Worry Scale (CWC), Brief Coping Orientation to Problems Encountered (Brief COPE), Medical Outcomes Study Social Support Survey (MOS-SSS). All were completed at baseline, post-intervention, and 2-month follow-up. Groups were compared using linear mixed models. RESULTS Although non-significant, iCBT group had lower HADS-T scores than TAU at post-intervention. This difference was statistically significant at 2-month follow-up (Hedge's g = -0.094). No significant group-by-time interaction effects were found for quality of life, fear of recurrence, active coping, avoidant coping, and perceived social support. The intervention adherence was acceptable; 52.8% (n = 28) completed all seven modules. CONCLUSIONS iCBT intervention demonstrated its preliminary effectiveness in reducing distress in breast cancer survivors.
Collapse
Affiliation(s)
| | - David Hevey
- School of Psychology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Fang X, Huang Y, Fan X, Wang S, Huang Z, Zhou N, Fan S. Effect of water-washing pretreatment on the enhancement of tetracycline adsorption by biogas residue biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49720-49732. [PMID: 36780084 DOI: 10.1007/s11356-023-25817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/05/2023] [Indexed: 02/14/2023]
Abstract
Biochar preparation was a feasible strategy for realizing the reduction, harmlessness, and resource utilization of biogas residue (BR) simultaneously. How to enhance the adsorption performance of biogas residue biochar through simple, friendly, and effective way still needs to be investigated. In this study, water-washing pretreatment of BR was adopted before biochar preparation (BRBC-W), and pristine biochar (BRBC) was also produced to serve as control. The adsorption behavior and possible adsorption mechanisms of tetracycline (TC) onto biochars were comprehensively studied. The results showed that water-washing pretreatment could increase the surface area and mesoporous volume of biochar from 358.63 to 391.98 cm3∙g-1, and 0.459 to 0.488 cm3∙g-1, respectively. More graphitic structure was observed in BRBC-W. In addition, the surface morphology, element content, minerals composition, and surface functional groups also changed in biochar after water-washing pretreatment. The pseudo-second-order and Redlich-Peterson models better descried the adsorption behavior of TC on BCRBC-W. The maximum adsorption capacity of BRBC and BRBC-W for TC based on Langmuir isotherm was 224.93 and 306.94 mg·g-1, respectively. The adsorption affinity of BRBC-W toward TC was greater than that of BRBC. BRBC and BRBC-W can effectively remove TC in water within a wide pH range and under the interference of co-existing ions. The adsorption mechanism of TC onto BRBC and BRBC-W included ore filling, π-π interaction, and hydrogen bonding. The enhancement of TC on BRBC-W by water-washing pretreatment was attributable to the strengthening of pore diffusion and π-π interaction. Therefore, water-washing pretreatment effectively enhanced the adsorption performance of BRB, and BRBC-W was an effective eco-friendly adsorbent for the removal of TC from aquatic environment.
Collapse
Affiliation(s)
- Xiang Fang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yingying Huang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Xinru Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shuo Wang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Zijian Huang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Na Zhou
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shisuo Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
9
|
Haque S, Singh R, Pal DB, Harakeh S, Alghanmi M, Teklemariam AD, Abujamel TS, Srivastava N, Gupta VK. Recent Update on anaerobic digestion of paddy straw for biogas production: Advancement, limitation and recommendations. ENVIRONMENTAL RESEARCH 2022; 215:114292. [PMID: 36100106 DOI: 10.1016/j.envres.2022.114292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
At present, development and production of advanced green energy sources are highly demanded, and this may offer a clean and sustainable environment to our modern society. In this reference, biogas is emerging as a promising green energy source and seems to have high potential to replace fossil-fuel based energy sources in the coming future. Further, lignocellulosic biomass (LCB) based biogas production technology has been found to be highly promising owing to several advantages associated therewith. Rich inorganic content, renewable nature, huge availability and low-cost are the key beneficial factors of LCB-based feedstock l to produce biogas. Among the varieties of LCB, paddy straw is one of the most demanding feedstocks and is highly rich in organic compounds that are imperative to producing biogas. Nevertheless, it is noticed that paddy straw as a waste material is usually disposed-off by direct burning, whereas it exhibits low natural digestibility due to the presence of high lignin and silica content which causes severe environmental pollution. On the other hand, paddy straw can be a potential feedstock to produce biogas through anaerobic digestion. Therefore, based on the current ongoing research studies worldwide, this review evaluates the advancements made in the AD process. Meanwhile, existing limitations and future recommendations to improve the yield and productivity of the biogas using paddy straw have been discussed. The emphasis has also been given to various operational parameters developments, related shortcomings, and strategies to improve biogas production at pilot scale.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Harcourt Butler Technical University, Nawabganj Kanpur, 208002, Uttar Pradesh, India
| | - Steve Harakeh
- King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maimonah Alghanmi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Addisu Demeke Teklemariam
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turki S Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, Uttar Pradesh, India.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
10
|
Awasthi SK, Sarsaiya S, Kumar V, Chaturvedi P, Sindhu R, Binod P, Zhang Z, Pandey A, Awasthi MK. Processing of municipal solid waste resources for a circular economy in China: An overview. FUEL 2022; 317:123478. [DOI: 10.1016/j.fuel.2022.123478] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
11
|
Ahmad S, Ahmad HW, Bhatt P. Microbial adaptation and impact into the pesticide's degradation. Arch Microbiol 2022; 204:288. [PMID: 35482163 DOI: 10.1007/s00203-022-02899-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/13/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
Abstract
The imprudent use of agrochemicals to control agriculture and household pests is unsafe for the environment. Hence, to protect the environment and diversity of living organisms, the degradation of pesticides has received widespread attention. There are different physical, chemical, and biological methods used to remediate pesticides in contaminated sites. Compared to other methods, biological approaches and their associated techniques are more effective, less expensive and eco-friendly. Microbes secrete several enzymes that can attach pesticides, break down organic compounds, and then convert toxic substances into carbon and water. Thus, there is a lack of knowledge regarding the functional genes and genomic potential of microbial species for the removal of emerging pollutants. Here we address the knowledge gaps by highlighting systematic biology and their role in adaptation of microbial species from agricultural soils with a history of pesticide usage and profiling shifts in functional genes and microbial taxa abundance. Moreover, by co-metabolism, the microbial species fulfill their nutritional requirements and perform more efficiently than single microbial-free cells. But in an open environment, free cells of microbes are not much prominent in the degradation process due to environmental conditions, incompatibilities with mechanical equipment and difficulties associated with evenly distributing inoculum through the agroecosystem. This review highlights emerging techniques involving the removal of pesticides in a field-scale environment like immobilization, biobed, biocomposites, biochar, biofilms, and bioreactors. In these techniques, different microbial cells, enzymes, natural fibers, and strains are used for the effective biodegradation of xenobiotic pesticides.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Hafiz Waqas Ahmad
- Department of Food Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Pankaj Bhatt
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
12
|
Kaushik M, Kaushik P, Parvez S. Memory related molecular signatures: The pivots for memory consolidation and Alzheimer's related memory decline. Ageing Res Rev 2022; 76:101577. [PMID: 35104629 DOI: 10.1016/j.arr.2022.101577] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 12/31/2022]
Abstract
Age-related cognitive decline is the major cause of concern due to its 70% more incidence than dementia cases worldwide. Moreover, aging is also the major risk factor of Alzheimer's disease (AD), associated with progressive memory loss. Approx. 13 million people will have Alzheimer-related memory decline by 2050. Learning and memory is the fundamental process of brain functions. However, the mechanism for the same is still under investigation. Thus, it is critical to understand the process of memory consolidation in the brain and extrapolate its understanding to the memory decline mechanism. Research on learning and memory has identified several molecular signatures such as Protein kinase M zeta (PKMζ), Calcium/calmodulin-dependent protein kinase II (CaMKII), Brain-derived neurotrophic factor (BDNF), cAMP-response element binding protein (CREB) and Activity-regulated cytoskeleton-associated protein (Arc) crucial for the maintenance and stabilization of long-term memory in the brain. Interestingly, memory decline in AD has also been linked to the abnormality in expressing these memory-related molecular signatures. Hence, in the present consolidated review, we explored the role of these memory-related molecular signatures in long-term memory consolidation. Additionally, the effect of amyloid-beta toxicity on these molecular signatures is discussed in detail.
Collapse
Affiliation(s)
- Medha Kaushik
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
13
|
Waste to Energy in Developing Countries—A Rapid Review: Opportunities, Challenges, and Policies in Selected Countries of Sub-Saharan Africa and South Asia towards Sustainability. SUSTAINABILITY 2022. [DOI: 10.3390/su14073740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Daily per capita waste generation will increase by 40% and 19%, for developing and developed countries by 2050, respectively. The World Bank estimates that total waste generation is going to triple in Sub-Saharan Africa (SSA) and double in South Asia (SA) by 2050. This article conducts a rapid review and aims to demonstrate the current waste management scenario and the potential of waste to energy generation in the developing world, focusing on SSA and SA. Although many review articles related to waste to energy (WtE) in developing countries are available in the literature, a rapid review particularly focusing on countries in SSA and SA is rarely seen. An analysis of different WtE generation technologies, and current waste management practices in developing countries in SSA and SA are also presented. The analysis shows that about three-fourths of waste is openly dumped in developing countries of SSA and SA. In terms of waste composition, on average, about 48.70% and 51.16% of waste generated in developing economies of SSA and SA are organic. Opportunities to convert this waste into energy for developing countries are highlighted, with a case study of Bangladesh, a country in SA. Major challenges regarding the waste to energy (WtE) projects in the developing world are found to be the composition of waste, absence of waste separation scheme at source, ineffective waste collection method, lack of suitable WtE generation technology in place, lack of financial support and policies related to a WtE project, and absence of coordination between different governmental institutions.
Collapse
|
14
|
Liu T, Miao P, Shi Y, Tang KHD, Yap PS. Recent advances, current issues and future prospects of bioenergy production: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152181. [PMID: 34883167 DOI: 10.1016/j.scitotenv.2021.152181] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 05/09/2023]
Abstract
With the immense potential of bioenergy to drive carbon neutrality and achieve the climate targets of the Paris Agreement, this paper aims to present the recent advances in bioenergy production as well as their limitations. The novelty of this review is that it covers a comprehensive range of strategies in bioenergy production and it provides the future prospects for improvement. This paper reviewed more than 200 peer-reviewed scholarly papers mainly published between 2010 and 2021. Bioenergy is derived from biomass, which, through thermochemical and biochemical processes, is converted into various forms of biofuels. This paper reveals that bioenergy production is temperature-dependent and thermochemical processes currently have the advantage of higher efficiency over biochemical processes in terms of lower response time and higher conversion. However, biochemical processes produce more volatile organic compounds and have lower energy and temperature requirements. The combination of the two processes could fill the shortcomings of a single process. The choices of feedstock are diverse as well. In the future, it can be anticipated that continuous technological development to enhance the commercial viability of different processes, as well as approaches of ensuring their sustainability, will be among the main aspects to be studied in greater detail.
Collapse
Affiliation(s)
- Tianqi Liu
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Pengyun Miao
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yang Shi
- Department of Architecture and Design, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Kuok Ho Daniel Tang
- Environmental Science Program, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| |
Collapse
|
15
|
Wang Y, Li Y, Zhang Y, Song Y, Yan B, Wu W, Zhong L, Li N, Chen G, Hou L. Hydrothermal carbonization of garden waste by pretreatment with anaerobic digestion to improve hydrohcar performance and energy recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151014. [PMID: 34662616 DOI: 10.1016/j.scitotenv.2021.151014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Sustainable and resourceful utilization of garden waste with high lignocellulosic content remains a huge challenge, anaerobic digestion (AD) and hydrothermal treatment provide prospective technologies with achieving environmental and economic benefits. In this study, a 7-28 d AD was provided as a biomass pretreatment means and combined with hydrothermal carbonization (HTC) to treat three typical garden wastes (leaves, branches, grass). The results showed that AD pretreatment could effectively change the surface composition and structure properties of the feedstocks and thus modulating the properties of the hydrochar downstream. Compared to the unpretreatment samples, the specific surface area (SSA), higher heating value (HHV), energy density and nutrient elements (P and K) of hydrochar obtained by AD pretreatment were significantly improved and enriched, respectively. Specifically, the highest HHV of hydrochar obtained from leaves, branches, and grass were 25.71, 25.63, and 23.81 MJ/kg, which obtained with 21, 14, and 7 d of AD pretreatment respectively. The P contents of hydrochar of leaves and grass pretreated with AD for 14 and 7 d were 205% and 15% higher than those without AD pretreatment, respectively. Additionally, in this coupled system, the biomass energy recovery of 90.2% (78.2% biochar and 12.0% CH4) was achieved on leaves pretreated with AD for 21 d. Energy recovery of 81.2% (66.8% biochar, 14.4% CH4) and 71.3% (39.7% biochar, 31.6% CH4) was obtained by 14 d of AD pretreatment on branches and grass, respectively. Thus, this study enhances energy utilization efficiency and reduces secondary waste generation, providing valuable new insights into AD coupled with HTC technology.
Collapse
Affiliation(s)
- Yanshan Wang
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Yihang Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Yingxiu Zhang
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China.
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Wenzhu Wu
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Lei Zhong
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Ning Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
| | - Li'an Hou
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China; Xi'an High-Tech Institute, Xi'an 710025, Shanxi, China
| |
Collapse
|
16
|
Wang Y, Song Y, Li N, Liu W, Yan B, Yu Y, Liang L, Chen G, Hou L, Wang S. Tunable active sites on biogas digestate derived biochar for sulfanilamide degradation by peroxymonosulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126794. [PMID: 34365236 DOI: 10.1016/j.jhazmat.2021.126794] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/05/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Conversion of digestate into biochar-based catalysts is an effective strategy for disposal and resource utilization. The active sites on biochar correlated with reactive species formation in peroxymonosulfate (PMS) system directly. Clarifying the structure-performance relationship of digestate derived biochar in PMS system was essential for decomposition of contaminants. Herein, dairy manure digestate derived biochar (DMDB) was prepared for PMS activation and sulfamethoxazole (SMX) degradation. The higher pyrolysis temperature could promote effective sites generation. Especially, the DMDB-800 catalyst exhibited excellent performance for PMS activation, achieving 90.2% degradation of SMX within 60 min. Based on the correlation analysis between log (k) values and active sites, defects, graphite N and CO were identified as dominant sites for PMS activation. The 1O2 oxidation and surface electron transfer were critical routes for SMX degradation. Besides, the degradation pathways of SMX were proposed according to DFT calculations and intermediates determination. The cleavage of the sulfonamide bond, hydroxylation of the benzene ring and oxidation of the amino group mainly occurred during SMX degradation. Overall, this study provides deep insights into the enhanced mechanism of tunable active sites on DMDBs for PMS activation, boosting the application of digestate biochar for water treatment in advanced oxidation systems.
Collapse
Affiliation(s)
- Yanshan Wang
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Ning Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China.
| | - Wen Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Yang Yu
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Lan Liang
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
| | - Li'an Hou
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China; Xi'an High-Tech Institute, Xi'an 710025, Shanxi, China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
17
|
Lachos-Perez D, César Torres-Mayanga P, Abaide ER, Zabot GL, De Castilhos F. Hydrothermal carbonization and Liquefaction: differences, progress, challenges, and opportunities. BIORESOURCE TECHNOLOGY 2022; 343:126084. [PMID: 34610425 DOI: 10.1016/j.biortech.2021.126084] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Thermochemical processes including hydrothermal technology are gaining research interest as a potentially green method for deconstructing biomass into platform chemicals or energy carriers. Hydrothermal liquefaction (HTL) and Hydrothermal Carbonization (HTC) are advantageous because of their enhanced process performance while being environmentally friendly and technologically innovative. However, after a deep review, several works have shown a misunderstanding between HTL and HTC concepts. Therefore, this review advances understanding on the main differences and gaps found between HTL and HTC in terms of operation parameters, technical issues, and main products. Furthermore, environmental and techno-economic assessments (TEA) were presented to appraise the environmental sustainability and economic implications of these techniques. Perspectives and challenges are presented and the integration approaches of hydrothermal valorization pathways and biorefining are explored.
Collapse
Affiliation(s)
- Daniel Lachos-Perez
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Paulo César Torres-Mayanga
- Professional School of Engineering in Food Industries, Department of Engineering, National University of Barranca, Barranca, Lima, Peru
| | - Ederson R Abaide
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Giovani L Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1345, Ernesto Barros Street, Cachoeira do Sul, RS 96506-322, Brazil
| | - Fernanda De Castilhos
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
18
|
Zhao Y, Qamar SA, Qamar M, Bilal M, Iqbal HMN. Sustainable remediation of hazardous environmental pollutants using biochar-based nanohybrid materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113762. [PMID: 34543967 DOI: 10.1016/j.jenvman.2021.113762] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023]
Abstract
Biochar is a well-known carbon material with diversified functionalities and excellent physicochemical characteristics with high wastewater treatment potential. This review aims to summarize recent advancements in the development of biochar and biochar-based nanohybrid materials as a potential tool for the removal of harmful organic compounds such as synthetic dyes/effluents. The formation of biochar using pyrolysis of renewable feedstocks and their applications in various industries are explained hereafter. The characteristics and construction of biochar-based hybrid materials are explained in detail. Diversity of feedstocks, including municipal wastes, industrial byproducts, agricultural, and forestry residues, endows different biochar types with a wide structural variety. The production of cost-effective biochar drives the interest in manipulating biochars and induces desire functionality using nanoscale reinforcements. Various types of biochars, such as magnetic biochar, layered nanomaterial coated biochar, nanometallic oxide composites, chemically and physically functionalized biochar, have been produced. With the aid of nanomaterial, hybrid biochar exhibits a high potential to remove toxic contaminants. Depending upon biochar type, dyes/effluents can be removed via different mechanisms, including the Fenton process, photocatalytic degradation, π-π interaction, electrostatic interaction, and physical adsorption. In conclusion, desired physicochemical features, and tunable surface properties of biochar present high potential material in removing organic dyes and other effluents. The blended biochar with different materials/nanomaterials endows broader development and multi-functional opportunities for treating dyes/effluents.
Collapse
Affiliation(s)
- Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Sarmad Ahmad Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Mahpara Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
19
|
Subramani AK, Ramani SE, Selvasembian R. Understanding the microstructure, mineralogical and adsorption characteristics of guar gum blended soil as a liner material. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:855. [PMID: 34853926 DOI: 10.1007/s10661-021-09644-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Guar gum blended soil (GGBS) offers potentially advantageous engineering characteristics of hydraulic conductivity and strength for a soil to be used as a liner material. Characterization techniques such as X-ray diffraction, X-ray fluorescence, Fourier transform infrared spectroscopy and scanning electron microscope were used to examine the mineral composition, functional groups and morphological changes in the unblended soil (UBS) and GGBS. These characterization approaches are used to understand adsorption-associated mechanisms of Pb(II) removal. Batch adsorption tests were performed to evaluate the adsorption capacity of UBS and the GGBS with various proportions (0.5%, 1.0%, 1.5% and 2.0%) of guar gum (GG) towards the removal of Pb(II) ions. Batch adsorption experiments were conducted by varying the pH, dosage of adsorbent, concentration of metal ions and contact time. The experimental results showed that the optimum removal of Pb(II) ions was high at a pH of 3.0 for all blends, and adsorption tests beyond 3.0 pH demonstrated a decline in adsorption performance. The maximum Pb(II) removal efficiency of 95% was obtained using the 2.0% GGBS. The isotherm model assessment for adsorption experimental data of Pb(II) showed the best fit for the Langmuir model on using GG. The present research demonstrated that the guar gum-treated blends exhibited potential Pb(II) ion adsorption properties and therefore can be used as sustainable liner material in sanitary landfills.
Collapse
Affiliation(s)
- Anandha Kumar Subramani
- Department of Civil Engineering, Aditya Engineering College, Andhra Pradesh, Surampalem, East Godavari (D.T), 533437, India
- Centre for Advanced Research On Environment, School of Civil Engineering, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India
| | - Sujatha Evangelin Ramani
- Centre for Advanced Research On Environment, School of Civil Engineering, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India.
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India
| |
Collapse
|
20
|
Angulo-Mosquera LS, Alvarado-Alvarado AA, Rivas-Arrieta MJ, Cattaneo CR, Rene ER, García-Depraect O. Production of solid biofuels from organic waste in developing countries: A review from sustainability and economic feasibility perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148816. [PMID: 34237536 DOI: 10.1016/j.scitotenv.2021.148816] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 04/15/2023]
Abstract
The current increase in the world population and its energy demand promotes the study and implementation of cleaner energy forms since the traditional energy recovery systems are seriously affecting the environment. Biofuels and especially biomass or solid biofuels represent a sustainable energy source for developed and developing countries. This review aims to discuss the characteristics and advantages of solid biofuels, analyse the pretreatments and thermal treatments required to recover energy, and compare them with traditional fossil fuels. Other areas such as the sustainability and economic feasibility of solid biofuels are likewise addressed by explaining frequently used tools to evaluate the environmental impact as Life Cycle Assessment (LCA). Comparatively, more recent methodologies are examined as efforts for accomplishing sustainability in the biofuel industry, namely Life Cycle Sustainability Assessment (LCSA) and certification schemes like the Roundtable on Sustainable Biomaterials (RSB), the Inter-American Development Bank Sustainability Scorecard, and initiatives like the Roundtable for Sustainable Palm Oil (RSPO). Finally, it was revealed that the economic feasibility and competitiveness of solid biofuels differ among developing countries but represent a notable contribution to their energy matrix.
Collapse
Affiliation(s)
- Lina S Angulo-Mosquera
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands.
| | - Allan A Alvarado-Alvarado
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| | - María J Rivas-Arrieta
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| | - Carlos R Cattaneo
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| | - Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr Mergelina, s/n, 47011 Valladolid, Spain
| |
Collapse
|
21
|
Abstract
To reach net-zero emissions by 2050, buildings in the UK need to replace natural gas boilers with heat pumps and district heating. These technologies are efficient at reduced flow/return temperatures, typically 55/25 °C, while traditional heating systems are designed for 82/71 °C, and an oversized heating system can help this temperature transition. This paper reviews how heating systems have been sized over time in the UK and the degree of oversizing in existing buildings. It also reviews if lessons from other countries can be applied to the UK’s building stock. The results show that methods to size a heating system have not changed over time, but the modern level of comfort, the retrofit history of buildings and the use of margin lead to the heating system being generally oversized. It is not possible to identify a specific trend by age, use or archetype. Buildings in Scandinavia have a nascent readiness for low-temperature heat as they can use it for most of the year without retrofit. Limitations come primarily from the faults and malfunctions of such systems. In the UK, it is estimated that 10% of domestic buildings would be ready for a supply temperature of 55 °C during extreme external conditions and more buildings at part-load operation. Lessons from Scandinavia should be considered with caution. The building stock in the UK generally underperforms compared to other EU buildings, with heating systems in the UK operating at higher temperatures and with night set-back; the importance of providing a low-return temperature does not exist in the UK despite being beneficial for condensing boiler operation. Sweden and Denmark started to develop district heating technologies with limitations to supply temperatures some 40 years ago whereas the UK is only just starting to consider similar measures in 2021. Recommendations for policy makers in this context have been drawn from this review in the conclusions.
Collapse
|
22
|
Management of Lignocellulosic Waste towards Energy Recovery by Pyrolysis in the Framework of Circular Economy Strategy. ENERGIES 2021. [DOI: 10.3390/en14185864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The article presents the possibilities of effective management of lignocellulosic waste by including it in the circular economy. The pyrolysis process was chosen as the thermal conversion method. This approach, due to a high flexibility of the obtained products, better quality of the solid residue (char), and the lower emission of pollutants into the atmosphere, e.g., SO2 and NOx, is a competitive solution compared to combustion process. Wood waste from alder and pine were analyzed. As part of laboratory tests, the elementary composition was determined, i.e., C, H, N, S, and O. The pyrolysis process was carried out at a temperature of 600 °C on an experimental stand for the conversion of solid fuels in a stationary bed. For the obtained data, using the Ansys Chemkin-Pro calculation tool, the detailed chemical composition of gaseous products of the pyrolysis process was modeled for a varying temperature range and residence time in the reactor. The studies have shown that for certain process conditions it is possible to obtain a high calorific value of pyrolytic gas, up to 25 MJ/m3.
Collapse
|
23
|
Pérez-Vas R, Puime Guillén F, Enríquez-Díaz J. Valuation of a Company Producing and Trading Seaweed for Human Consumption: Classical Methods vs. Real Options. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105262. [PMID: 34063346 PMCID: PMC8156343 DOI: 10.3390/ijerph18105262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
Aquaculture is an increasingly relevant sector in the exploitation of natural resources; therefore, it is appropriate to propose various models that include the fundamental variables for its economic-financial valuation from a business point of view. The objective of this paper is to analyze different models for the valuation of investment projects in a company in the aquaculture sector in order to conclude whether there is a model that represents a better valuation. Therefore, in this study, four valuation models have been applied, three classical models (net present value, internal rate of return, and payback) and a more recent model, real options (RO) for a company producing and marketing seaweed in Galicia (region located in the northwest of Spain). The results obtained, RO (€5,527,144.04) and net present value (€5,479,659.19), conclude that the RO model estimates a higher added value by taking into account in its calculations the flexibility given by the expansion option. Future lines of research include the application of valuation models that have been applied to companies belonging to the same sector in order to compare whether the results found are similar.
Collapse
Affiliation(s)
- Raisa Pérez-Vas
- Faculty of Economics and Business, IC2-ECOBAS, Universidade de Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain
- Correspondence: ; Tel.: +34-986-813509
| | - Félix Puime Guillén
- Faculty of Economics and Business, University of A Coruña, 15008 A Coruña, Spain; (F.P.G.); (J.E.-D.)
| | - Joaquín Enríquez-Díaz
- Faculty of Economics and Business, University of A Coruña, 15008 A Coruña, Spain; (F.P.G.); (J.E.-D.)
| |
Collapse
|
24
|
Ahmed M, Andreottola G, Elagroudy S, Negm MS, Fiori L. Coupling hydrothermal carbonization and anaerobic digestion for sewage digestate management: Influence of hydrothermal treatment time on dewaterability and bio-methane production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111910. [PMID: 33401118 DOI: 10.1016/j.jenvman.2020.111910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/07/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Hydrothermal carbonization (HTC) technology is addressed in the framework of sewage digestate management. HTC converts digestate into a stabilized and sterilized solid (the hydrochar) and a liquor (HTCL) rich in organic carbon. This study aims to optimize the HTC operating parameters, namely the treatment time, in terms of hydrochar production, HTC slurry dewaterability, HTCL bio-methane yields in anaerobic digestion (AD), and process energy consumption. Digestate slurry was processed through HTC at different treatment times (0.5, 1, 2 and 3 h) at 190 °C, and the dewaterability of the treated slurries was addressed through capillary suction time and centrifuge lab-testing. In addition, biochemical methane potential (BMP) tests were conducted for HTCL under mesophilic conditions. Results show that by increasing the HTC treatment time the dewaterability was further improved, ammonium concentration in HTCL increased, and methane potential of HTCL decreased. 0.5 h HTCL had the highest bio-methane potential of 142 ± 3 mL CH4/g COD yet the treatment time was not sufficient for improving the slurry's dewaterability. HTC treatment time of 1 h at 190 °C was identified as the optimum trade-off for improved dewaterability and utilisation of HTCL for biogas production. 1 h HTCL bio-methane potential can cover around 25% of the HTC and AD thermal and electrical energy needs without considering the eventual use of the hydrochar as a biofuel.
Collapse
Affiliation(s)
- Mostafa Ahmed
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy; Public Works Department, Faculty of Engineering, Ain Shams University, 1 ElSarayat St., Abassia, Cairo, Egypt
| | - Gianni Andreottola
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy
| | - Sherien Elagroudy
- Public Works Department, Faculty of Engineering, Ain Shams University, 1 ElSarayat St., Abassia, Cairo, Egypt; Egypt Solid Waste Management Center of Excellence, Ain Shams University, 1 ElSarayat St., Abassia, Cairo, Egypt
| | - Mohamed Shaaban Negm
- Public Works Department, Faculty of Engineering, Ain Shams University, 1 ElSarayat St., Abassia, Cairo, Egypt
| | - Luca Fiori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy.
| |
Collapse
|
25
|
Wang W, Lee DJ. Valorization of anaerobic digestion digestate: A prospect review. BIORESOURCE TECHNOLOGY 2021; 323:124626. [PMID: 33418353 DOI: 10.1016/j.biortech.2020.124626] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion is recognized as promising technology for bioenergy production from biowaste, with huge quantity of digestate being produced as the residual waste. The digestate contains substantial amounts of organic and inorganic matters that be considered highly risky contaminants to the receiving environments if not properly treated, but also potential renewable resources if are adequately recovered. This prospect review summarized the current research efforts on digestate valorization, including aspects of resource recovery and the proposed applications, particularly on the conversion techniques and economic feasibility. The prospects for digestate valorization were highlighted at the end of this review.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
26
|
Hu Q, Jung J, Chen D, Leong K, Song S, Li F, Mohan BC, Yao Z, Prabhakar AK, Lin XH, Lim EY, Zhang L, Souradeep G, Ok YS, Kua HW, Li SFY, Tan HTW, Dai Y, Tong YW, Peng Y, Joseph S, Wang CH. Biochar industry to circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143820. [PMID: 33248779 DOI: 10.1016/j.scitotenv.2020.143820] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
Biochar, produced as a by-product of pyrolysis/gasification of waste biomass, shows great potential to reduce the environment impact, address the climate change issue, and establish a circular economy model. Despite the promising outlook, the research on the benefits of biochar remains highly debated. This has been attributed to the heterogeneity of biochar itself, with its inherent physical, chemical and biological properties highly influenced by production variables such as feedstock types and treating conditions. Hence, to enable meaningful comparison of results, establishment of an agreed international standard to govern the production of biochar for specific uses is necessary. In this study, we analyzed four key uses of biochar: 1) in agriculture and horticulture, 2) as construction material, 3) as activated carbon, and 4) in anaerobic digestion. Then the guidelines for the properties of biochar, especially for the concentrations of toxic heavy metals, for its environmental friendly application were proposed in the context of Singapore. The international status of the biochar industry code of practice, feedback from Singapore local industry and government agencies, as well as future perspectives for the biochar industry were explained.
Collapse
Affiliation(s)
- Qiang Hu
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore
| | - Janelle Jung
- Research & Horticulture Department, Gardens by the Bay, 18 Marina Gardens Drive, Singapore 018953, Singapore
| | - Dexiang Chen
- Research & Horticulture Department, Gardens by the Bay, 18 Marina Gardens Drive, Singapore 018953, Singapore
| | - Ken Leong
- Mursun PTE. LTD, 14 Robinson Road, Singapore 048545, Singapore
| | - Shuang Song
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Fanghua Li
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore
| | - Babu Cadiam Mohan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zhiyi Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Arun Kumar Prabhakar
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore
| | - Xuan Hao Lin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ee Yang Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore
| | - Gupta Souradeep
- School of Civil and Environmental Engineering, The University of New South Wales, Kingsford, NSW 2032, Australia
| | - Yong Sik Ok
- Korea Biochar Research Center & APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Harn Wei Kua
- Department of Building, School of Design and Environment, National University of Singapore, 4 Architecture Drive, Singapore 117566, Singapore
| | - Sam F Y Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hugh T W Tan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Yanjun Dai
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yinghong Peng
- Department of Mechanical Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Stephen Joseph
- School of Materials Science and Engineering, University of New South Wales, Kensington, NSW 2052, Australia
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
27
|
Cesaro A. The valorization of the anaerobic digestate from the organic fractions of municipal solid waste: Challenges and perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111742. [PMID: 33308930 DOI: 10.1016/j.jenvman.2020.111742] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 05/12/2023]
Abstract
The anaerobic digestion is a well-established process for the treatment of organic solid waste, pursuing its conversion into a methane rich gas destined to energy generation. Research has largely dealt with the enhancement of the overall bioconversion yields, providing several strategies to maximize the production of bio-methane from the anaerobic processing of a wide variety of substrates. Nevertheless, the valorization of the process effluents should be pursued as well, especially if the anaerobic digestion is regarded in the light of the circular economy principles. Aim of this work is in identifying the state of the art of the strategies to manage the digestate from the anaerobic processing of the organic fractions of municipal solid waste. Conventional approaches are described and novel solutions are figured out in order to highlight their potential scale up as well as to address future research perspectives.
Collapse
Affiliation(s)
- Alessandra Cesaro
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, via Claudio 21, 80125, Napoli, Italy.
| |
Collapse
|
28
|
Linyi C, Yujie Q, Buqing C, Chenglong W, Shaohong Z, Renglu C, Shaohua Y, Lan Y, Zhiju L. Enhancing degradation and biogas production during anaerobic digestion of food waste using alkali pretreatment. ENVIRONMENTAL RESEARCH 2020; 188:109743. [PMID: 32592938 DOI: 10.1016/j.envres.2020.109743] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/17/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Alkali pretreatment of anaerobic digestion (AD) was investigated as a strategy to degrade complex organic matter such as fats. AD of food waste (FW) with alkali pretreatment was conducted using batch assays and long-term experiments for 70 days in two reactors. The aim of this study was to compare the impact of alkali pretreatment on solubilization and biogas production and to evaluate the performance in reactors with that of the untreated FW. The alkali pretreatment enhanced the solubilization of organic matter. The best biogas yield (829 mL/g VS) and methane content (65.48%) were obtained by the pretreatment with 1% CaO with the highest Pi, n (66.06%) of biodegradable soluble materials. The long-term reactors with pretreatment performed more steadily with higher biogas production under organic loading rates (OLR) over 5 g VS/(L⋅d). The bacterial community structure was different under various conditions. Methanosaeta and Methanospirillum were the dominant archaea in this study, while Methanosaeta increased in R1 at OLR of 6 g VS/(L⋅d). The study concluded that alkali pretreatment with 1% CaO appeared as a potential strategy for AD of FW.
Collapse
Affiliation(s)
- Chen Linyi
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Qin Yujie
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
| | - Chen Buqing
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Wu Chenglong
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Zheng Shaohong
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Chen Renglu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Yang Shaohua
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Yang Lan
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Liu Zhiju
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| |
Collapse
|
29
|
Katakojwala R, Kopperi H, Kumar S, Venkata Mohan S. Hydrothermal liquefaction of biogenic municipal solid waste under reduced H 2 atmosphere in biorefinery format. BIORESOURCE TECHNOLOGY 2020; 310:123369. [PMID: 32335345 DOI: 10.1016/j.biortech.2020.123369] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Municipal solid waste (MSW), an inexorable by-product of anthropogenic activities composes of nearly 50% of the organic (biogenic) fraction. Hydrothermal liquefaction (HTL) was studied to facilitate thermal depolymerization of organic fraction of MSW to biocrude at sub-critical region of water (200 °C; 100 bar pressure) employing H2 induced reducing conditions. Food, vegetable, and composite wastes were evaluated as feedstocks to produce HTL derivatives in the form of liquor (biocrude and aqueous phase), biochar and bio-gas. The biocrude (HTLOF) showed middle oil as major fraction along with C6-C22 compounds. Composite waste resulted in relatively higher yield of biocrude fraction. The aqueous phase (HTLAF) documented the presence of reducing sugars, sotolon and furfurals as major fraction. Biochar (HTLBC) composition showed maximum carbon fraction followed by hydrogen and oxygen. H2 induced reduced condition facilitated conversion of the biogenic MSW at relatively lower input conditions to various biobased fractions cohesively addressing the basic biorefinery requirement.
Collapse
Affiliation(s)
- Ranaprathap Katakojwala
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad 500 007, India
| | - Harishankar Kopperi
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad 500 007, India.
| |
Collapse
|
30
|
Cai Y, Huang Y, Huang X, Fan Z, Yu T. Efficient biodegradation of organic matter using a thermophilic bacterium and development of a cost-effective culture medium for industrial use. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:686-696. [PMID: 32107954 DOI: 10.1080/10934529.2020.1732173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/02/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Microorganisms with efficient organic matter degradation ability are essential for organic waste treatment. In this study, a thermophilic bacterium, Bacillus thermoliquefaciens, was identified to have excellent cellulase, amylase, and protease activity, and provided efficient degradation of food waste. This is the first report on the organic matter degradation potential of B. thermoliquefaciens. Using a "one-variable-at-a-time" approach and response surface methodology, the optimal culture conditions for B. thermoliquefaciens were determined to be a 5% inoculation level, 50 °C culture temperature, 25 mL filling volumes in 250 mL flasks, and 180 rpm shaking for 24 h. The optimized medium was formulated as 1 g Na2HPO4, 1 g KH2PO4, 0.05 g MgSO4, 3 g NaCl, 0.05 g CaCl2, 11.44 g wheat bran powder, 4.92 g soybean meal, and 1 L distilled water at pH 7.12. The maximum biomass attained was 1.57 ± 0.153 × 109 CFU/mL. The cost of this medium was 4.18 times less than that before optimization. This promising result lays a foundation for future industrial application of this bacterium to the degradation of organic waste.
Collapse
Affiliation(s)
- Yiting Cai
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Yining Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Xuedi Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhuoying Fan
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Ting Yu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|