1
|
Sáez‐Sandino T, Reich PB, Maestre FT, Cano‐Díaz C, Stefanski A, Bermudez R, Wang J, Dhar A, Singh BK, Gallardo A, Delgado‐Baquerizo M, Trivedi P. A Large Fraction of Soil Microbial Taxa Is Sensitive to Experimental Warming. GLOBAL CHANGE BIOLOGY 2025; 31:e70231. [PMID: 40406879 PMCID: PMC12100458 DOI: 10.1111/gcb.70231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/26/2025]
Abstract
Global warming is expected to significantly impact the soil fungal and bacterial microbiomes, yet the predominant ecological response of microbial taxa-whether an increase, decrease, or no change-remains unclear. It is also unknown whether microbial taxa from different evolutionary lineages exhibit common patterns and what factors drive these changes. Here, we analyzed three mid-term (> 5 years) warming experiments across contrasting dryland and temperate-boreal ecosystems, encompassing over 500 topsoil samples collected across multiple time points. We found that warming altered the relative abundance of microbial taxa, with both increases and decreases over time. For instance, the relative abundance of bacterial and fungal taxa responding to warming (increase or decrease) accounted for 35.9% and 42.9% in the dryland ecosystem, respectively. Notably, taxa within the same phylum exhibited divergent responses to warming. These ecological shifts were linked to factors such as photosynthetic cover and fungal lifestyle, both of which influence soil functions. Overall, our findings indicate that soil warming can reshape a significant fraction of the microbial community across ecosystems, potentially driving changes in soil functions.
Collapse
Affiliation(s)
- Tadeo Sáez‐Sandino
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Peter B. Reich
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
- Department of Forest ResourcesUniversity of MinnesotaSaint PaulMinnesotaUSA
- Institute for Global Change BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Fernando T. Maestre
- Environmental Sciences and Engineering, Biological and Environmental Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Concha Cano‐Díaz
- CISAS—Center for Research and Development in Agrifood Systems and SustainabilityInstituto Politécnico de Viana do Castelo (IPVC), Rua Escola Industrial e Comercial Nun'álvaresViana do CasteloPortugal
| | - Artur Stefanski
- Department of Forest ResourcesUniversity of MinnesotaSaint PaulMinnesotaUSA
- Colleage of Natural ResourcesUniversity of Wisconsin Stevens PointStevens PointWisconsinUSA
| | - Raimundo Bermudez
- Department of Forest ResourcesUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Juntao Wang
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Avinash Dhar
- Microbiome Network and Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Brajesh K. Singh
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Antonio Gallardo
- Departamento de Sistemas Físicos, Químicos y NaturalesUniversidad Pablo de OlavideSevillaSpain
| | - Manuel Delgado‐Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento EcosistémicoInstituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC)SevillaSpain
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil SciencesTexas Tech UniversityLubbockTexasUSA
| |
Collapse
|
2
|
Liu X, Bai Q, Liang K, Pei M, Chen J, Zhu B, Yu Q, Peng C, Xing F, Guo L. Altered precipitation affects soil enzyme activity related to nitrogen and phosphorous but not carbon cycling: A meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124709. [PMID: 40022796 DOI: 10.1016/j.jenvman.2025.124709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/18/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Altered precipitation significantly influences soil function in terrestrial ecosystems. As a bioindicator of soil function, soil extracellular enzyme activity (EEA) plays a crucial role in mediating ecosystem responses to altered precipitation. However, the global patterns and regulatory mechanisms of altered precipitation impacts on soil EEAs remain unclear. We conducted hierarchical mixed-effects meta-analyses to explore the responses and regulators of carbon, nitrogen, phosphorus hydrolytic EEAs, and carbon oxidative EEA to changes in precipitation, using the largest dataset to date, comprising 1185 observations of 14 soil EEAs from 73 publications. The results indicated that soil nitrogen hydrolytic EEA increased by 14.3% under increased precipitation, while phosphorus hydrolytic EEA decreased by 8.8% under decreased precipitation, showing higher sensitivity to altered precipitation compared to carbon-degrading EEAs. These responses varied across ecosystem types and depended on the magnitude of precipitation manipulation (MPM). Specially, decreased precipitation significantly reduced phosphorus hydrolytic EEA in forests, while increased precipitation enhanced nitrogen hydrolytic EEA in grasslands. Furthermore, these effects were linearly correlated with MPM, deviating from the expected nonlinear double asymmetric model. The response of soil hydrolytic EEAs was predominately regulated by soil water content, organic carbon, and microbial biomass. These findings underscore the higher sensitivity of nitrogen and phosphorus cycling EEAs to altered precipitation compared to carbon cycling EEAs and extend the application of the double asymmetric model for understanding soil EEAs' responses to precipitation changes. This synthesis provides essential insights for predicting biogeochemical cycling and improving ecosystem models to evaluate ecosystem functions under altered precipitation.
Collapse
Affiliation(s)
- Xiaowei Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Qing Bai
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China; Tech Entrepreneurship Centre of Ningxia Hui Autonomous Region, Yinchuan, 750001, China
| | - Ke Liang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Mengting Pei
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Ji Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Biao Zhu
- Institute of Ecology and Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Qiang Yu
- State Key Laboratory of Soil and Water Conservation and Desertification Control, Northwest A&F University, Yangling, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resource, Yangling, 712100, China
| | - Changhui Peng
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, China; Department of Biology Science, Institute of Environment Sciences, University of Quebec at Montreal, Montreal, H3C3P8, Canada
| | - Fu Xing
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Ministry of Education, Northeast Normal University, Changchun, 130024, China; Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, 130024, China.
| | - Liang Guo
- State Key Laboratory of Soil and Water Conservation and Desertification Control, Northwest A&F University, Yangling, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resource, Yangling, 712100, China; Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region (Qinghai University), Ministry of Education, Xining, 810016, China.
| |
Collapse
|
3
|
Bai Y, Peng Y, Zhang D, Yang G, Chen L, Kang L, Zhou W, Wei B, Xie Y, Yang Y. Heating up the roof of the world: tracing the impacts of in-situ warming on carbon cycle in alpine grasslands on the Tibetan Plateau. Natl Sci Rev 2025; 12:nwae371. [PMID: 39872222 PMCID: PMC11771398 DOI: 10.1093/nsr/nwae371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/17/2024] [Accepted: 10/06/2024] [Indexed: 01/30/2025] Open
Abstract
Climate warming may induce substantial changes in the ecosystem carbon cycle, particularly for those climate-sensitive regions, such as alpine grasslands on the Tibetan Plateau. By synthesizing findings from in-situ warming experiments, this review elucidates the mechanisms underlying the impacts of experimental warming on carbon cycle dynamics within these ecosystems. Generally, alterations in vegetation structure and prolonged growing season favor strategies for enhanced ecosystem carbon sequestration under warming conditions. Whilst warming modifies soil microbial communities and their carbon-related functions, its effects on soil carbon release fall behind the increased vegetation carbon uptake. Despite the fact that no significant accumulation of soil carbon stock has been detected upon warming, notable changes in its fractions indicate potential shifts in carbon stability. Future studies should prioritize deep soil carbon dynamics, the interactions of carbon, nitrogen, and phosphorus cycles under warming scenarios, and the underlying biological mechanisms behind these responses. Furthermore, the integration of long-term warming experiments with Earth system models is essential for reducing the uncertainties of model predictions regarding future carbon-climate feedback in these climate-sensitive ecosystems.
Collapse
Affiliation(s)
- Yuxuan Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yunfeng Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Guibiao Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Leiyi Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Luyao Kang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhong Xie
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Li T, Gao Z, Zhou P, Huang M, Wang G, Xu J, Deng W, Wang M. Structures and determinants of soil microbiomes along a steep elevation gradient in Southwest China. Front Microbiol 2025; 15:1504134. [PMID: 39834362 PMCID: PMC11743684 DOI: 10.3389/fmicb.2024.1504134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Soil microbial communities play a vital role in accelerating nutrient cycling and stabilizing ecosystem functions in forests. However, the diversity of soil microbiome and the mechanisms driving their distribution patterns along elevational gradients in montane areas remain largely unknown. In this study, we investigated the soil microbial diversity along an elevational gradient from 650 m to 3,800 m above sea level in southeast Tibet, China, through DNA metabarcode sequencing of both the bacterial and fungal communities. Our results showed that the dominant bacterial phyla across elevations were Proteobacteria, Acidobacteriota and Actinobacteriota, and the dominant fungal phyla were Ascomycota and Basidiomycota. The Simpson indices of both soil bacteria and fungi demonstrated a hollow trend along the elevational gradient, with an abrupt decrease in bacterial and fungal diversity at 2,600 m a.s.l. in coniferous and broad-leaved mixed forests (CBM). Soil bacterial chemoheterotrophy was the dominant lifestyle and was predicted to decrease with increasing elevation. In terms of fungal lifestyles, saprophytic and symbiotic fungi were the dominant functional communities but their relative abundance was negatively correlated with increasing elevation. Environmental factors including vegetation type (VEG), altitude (ALT), soil pH, total phosphorus (TP), nitrate nitrogen (NO3 --N), and polyphenol oxidase (ppo) all exhibited significant influence on the bacterial community structure, whereas VEG, ALT, and the carbon to nitrogen ratio (C/N) were significantly associated with the fungal community structure. The VPA results indicated that edaphic factors explained 37% of the bacterial community variations, while C/N, ALT, and VEG explained 49% of the total fungal community variations. Our study contributes significantly to our understanding of forest ecosystems in mountainous regions with large elevation changes, highlighting the crucial role of soil environmental factors in shaping soil microbial communities and their variations in specific forest ecosystems.
Collapse
Affiliation(s)
- Ting Li
- School of Ecology and Environment, Tibet University, Lhasa, China
- State Key Laboratory of Applied Microbiology in Southern China, and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Nanling Forest Ecosystem National Observation and Research Station, Shaoguan, China
| | - Ziyan Gao
- Xizang Agricultural and Animal Husbandry University, Nyingchi, China
| | - Ping Zhou
- Guangdong Nanling Forest Ecosystem National Observation and Research Station, Shaoguan, China
- Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou, China
| | - Mingmin Huang
- Guangdong Nanling Forest Ecosystem National Observation and Research Station, Shaoguan, China
| | - Gangzheng Wang
- State Key Laboratory of Applied Microbiology in Southern China, and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Wangqiu Deng
- State Key Laboratory of Applied Microbiology in Southern China, and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Mu Wang
- School of Ecology and Environment, Tibet University, Lhasa, China
- Xizang Agricultural and Animal Husbandry University, Nyingchi, China
| |
Collapse
|
5
|
Wepking C, Lucas JM, Boulos VS, Strickland MS. Antibiotic legacies shape the temperature response of soil microbial communities. Front Microbiol 2024; 15:1476016. [PMID: 39777145 PMCID: PMC11703895 DOI: 10.3389/fmicb.2024.1476016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Soil microbial communities are vulnerable to anthropogenic disturbances such as climate change and land management decisions, thus altering microbially-mediated ecosystem functions. Increasingly, multiple stressors are considered in investigations of ecological response to disturbances. Typically, these investigations involve concurrent stressors. Less studied is how historical stressors shape the response of microbial communities to contemporary stressors. Here we investigate how historical exposure to antibiotics drives soil microbial response to subsequent temperature change. Specifically, grassland plots were treated with 32-months of manure additions from cows either administered an antibiotic or control manure from cows not treated with an antibiotic. In-situ antibiotic exposure initially increased soil respiration however this effect diminished over time. Following the 32-month field portion, a subsequent incubation experiment showed that historical antibiotic exposure caused an acclimation-like response to increasing temperature (i.e., lower microbial biomass at higher temperatures; lower respiration and mass-specific respiration at intermediate temperatures). This response was likely driven by a differential response in the microbial community of antibiotic exposed soils, or due to indirect interactions between manure and soil microbial communities, or a combination of these factors. Microbial communities exposed to antibiotics tended to be dominated by slower-growing, oligotrophic taxa at higher temperatures. Therefore, historical exposure to one stressor is likely to influence the microbial community to subsequent stressors. To predict the response of soils to future stress, particularly increasing soil temperatures, historical context is necessary.
Collapse
Affiliation(s)
- Carl Wepking
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Jane M. Lucas
- Department of Soil and Water Systems, University of Idaho, Moscow, ID, United States
- Cary Institute of Ecosystem Studies, Millbrook, NY, United States
| | - Virginia S. Boulos
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Michael S. Strickland
- Department of Soil and Water Systems, University of Idaho, Moscow, ID, United States
| |
Collapse
|
6
|
Liu RZ, Borjigin Q, Gao JL, Yu XF, Hu SP, Li RP. Effects of different straw return methods on soil properties and yield potential of maize. Sci Rep 2024; 14:28682. [PMID: 39562621 PMCID: PMC11577005 DOI: 10.1038/s41598-024-70404-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/16/2024] [Indexed: 11/21/2024] Open
Abstract
Long-term continual straw return can enhance soil quality and increase crop yields by perpetually altering the soil environment. However, little is known about how different straw return methods affect soil physicochemical properties, enzymatic processes, and crop yields. The study aims to determine how different straw return practices improve soil structure, nutrients, enzyme activities, and maize yields. In this experiment, a field trial was conducted in 2021-2022 in the irrigated area of the Tumochuan Plain Irrigation District to determine the effects of four different straw returns on soil structure, nutrients, enzyme activities, soil quality, and maize yields. The four types of straw return included straw incorporation with deep tillage (DPR), straw incorporation with subsoiling (SSR), no-tillage mulching straw return, and farmer's shallow rotation (CK). Our results showed that DPR and SSR enhanced water retention capacity by reducing the bulk weight of the 0-45 cm soil layer. DPR and SSR significantly increased soil organic C (12.76%), total nitrogen (25.32%), and available nutrients (i.e. AP, NO3--N) in the 0-45 cm soil layer compared to CK, whereas there were no differences between straw-returned treatments in the 0-15 cm soil layer. Finally, maize yield was significantly increased by 13.14% and 11.41% in the second year of DPR and SSR, respectively, compared to CK. This study demonstrated that DPR and SSR are effective at enhancing the agricultural utilization of crop residues and represent feasible strategies for improving physical, chemical, and biological processes in continuous maize cropping systems, leading to increased crop productivity.
Collapse
Affiliation(s)
- Rui-Zhi Liu
- Inner Mongolia Agricultural University, No. 275, Xin Jian East Street, Hohhot, 010019, China
- Key Laboratory of Crop Cultivation and Genetic Improvement of Inner Mongolia Autonomous Region, Hohhot, 010019, Inner Mongolia Autonomous Region, China
- Inner Mongolia Autonomous Region Engineering Research Centre of Microorganisms for in Situ Corn Straw Return, Hohhot, 010019, Inner Mongolia Autonomous Region, China
| | - Qinggeer Borjigin
- Inner Mongolia Agricultural University, No. 275, Xin Jian East Street, Hohhot, 010019, China
- Key Laboratory of Crop Cultivation and Genetic Improvement of Inner Mongolia Autonomous Region, Hohhot, 010019, Inner Mongolia Autonomous Region, China
- Inner Mongolia Autonomous Region Engineering Research Centre of Microorganisms for in Situ Corn Straw Return, Hohhot, 010019, Inner Mongolia Autonomous Region, China
| | - Ju-Lin Gao
- Inner Mongolia Agricultural University, No. 275, Xin Jian East Street, Hohhot, 010019, China.
- Key Laboratory of Crop Cultivation and Genetic Improvement of Inner Mongolia Autonomous Region, Hohhot, 010019, Inner Mongolia Autonomous Region, China.
- Inner Mongolia Autonomous Region Engineering Research Centre of Microorganisms for in Situ Corn Straw Return, Hohhot, 010019, Inner Mongolia Autonomous Region, China.
| | - Xiao-Fang Yu
- Inner Mongolia Agricultural University, No. 275, Xin Jian East Street, Hohhot, 010019, China.
- Key Laboratory of Crop Cultivation and Genetic Improvement of Inner Mongolia Autonomous Region, Hohhot, 010019, Inner Mongolia Autonomous Region, China.
- Inner Mongolia Autonomous Region Engineering Research Centre of Microorganisms for in Situ Corn Straw Return, Hohhot, 010019, Inner Mongolia Autonomous Region, China.
| | - Shu-Ping Hu
- Key Laboratory of Crop Cultivation and Genetic Improvement of Inner Mongolia Autonomous Region, Hohhot, 010019, Inner Mongolia Autonomous Region, China
- Inner Mongolia Autonomous Region Engineering Research Centre of Microorganisms for in Situ Corn Straw Return, Hohhot, 010019, Inner Mongolia Autonomous Region, China
- Vocational and Technical College, Inner Mongolia Agricultural University, Altan Street, Baotou, 014109, China
| | - Rui-Ping Li
- Inner Mongolia Agricultural University, No. 275, Xin Jian East Street, Hohhot, 010019, China
- Key Laboratory of Crop Cultivation and Genetic Improvement of Inner Mongolia Autonomous Region, Hohhot, 010019, Inner Mongolia Autonomous Region, China
- Inner Mongolia Autonomous Region Engineering Research Centre of Microorganisms for in Situ Corn Straw Return, Hohhot, 010019, Inner Mongolia Autonomous Region, China
| |
Collapse
|
7
|
Mu Z, Asensio D, Sardans J, Ogaya R, Llusià J, Filella I, Tie L, Liu L, Tariq A, Zeng F, Peñuelas J. Effects of long-term nighttime warming on extractable soil element composition in a Mediterranean shrubland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175708. [PMID: 39179043 DOI: 10.1016/j.scitotenv.2024.175708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Understanding the soil biogeochemical responses to increasing global warming in the near future is essential for improving our capacity to mitigate the impacts of climate change on highly vulnerable Mediterranean ecosystems. Previous studies have primarily focused on the effects of warming on various biogeochemical processes. However, there is limited knowledge about how the changes in water availability associated to high temperatures can alter the bioavailability and dynamics of soil elements, thereby impacting ecosystem productivity, species composition, and pollution through soil biogeochemical and hydrological processes. In this study, we investigated the effects of long-term nighttime warming on the extractable concentrations of organic carbon (EOC), total nitrogen (ETN), total phosphorus (ETP), and 17 mineral elements (arsenic (As), calcium (Ca), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), sulfur (S), strontium (Sr), vanadium (V), and zinc (Zn)) through environmental experiments in a semi-arid Mediterranean shrubland. We explored the potential biotic and abiotic mechanisms underlying the seasonal and long-term changes in extractable-mobilizable elemental composition and concentrations. Our findings revealed that prolonged warming led to higher mean annual soil temperature (with an average increase of 0.67 °C from 1999 to 2014), accumulation of soil organic matter (EOC) and extractable concentrations of soil elements (particularly increased ETP and extractable Ca, Mg, Cu, Sr, Mn, and As). These changes were attributed to uniformly higher activities of extracellular soil enzymes and/or lower plant photosynthetic and nutrient uptake capacity linked to more water deficit under warmer conditions. Seasonality unevenly altered element extractable concentrations, with soil microclimate (temperature and water content) and biological (soil microbial and plant) activity being the main drivers of this variability, thus influencing soil element composition. These results suggest significant fluctuations in the extractable concentrations of specific mineral elements in these soils, implying potential future variations in soil element composition as well as the loss of total element concentrations/contents in semi-arid Mediterranean ecosystems due to increasing warming. Therefore, these findings enhance our ability to predict ecosystem management strategies and mitigate the observed negative impacts on plant-soil systems and water quality in the context of climate change.
Collapse
Affiliation(s)
- Zhaobin Mu
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, 848300 Cele, China
| | - Dolores Asensio
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy.
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain
| | - Romà Ogaya
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain
| | - Joan Llusià
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain
| | - Iolanda Filella
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain
| | - Liehua Tie
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550025 Guiyang, China
| | - Lei Liu
- Institute of Ecology, Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science & Technology, 210044 Nanjing, China
| | - Akash Tariq
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, 848300 Cele, China
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, 848300 Cele, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain
| |
Collapse
|
8
|
Li X, Zeng J, Liu J, Zhang Q, Liu Y, Wang X, Liu H, Zhao Y, Zhang Y, Ren C, Yang G, Han X. P-limitation regulates the accumulation of soil aggregates organic carbon during the restoration of Pinus tabuliformis forest. ENVIRONMENTAL RESEARCH 2024; 252:118936. [PMID: 38657847 DOI: 10.1016/j.envres.2024.118936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/23/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Artificial forest restoration is widely recognized as a crucial approach to enhance the potential of soil carbon sequestration. Nevertheless, there is still limited understanding regarding the dynamics of aggregate organic carbon (OC) and the underlying mechanisms driving these dynamics after artificial forest restoration. To address this gap, we studied Pinus tabuliformis forests and adjacent farmland in three recovery periods (13, 24 and 33 years) in the Loess Plateau region. Samples of undisturbed soil from the surface layer were collected and divided into three aggregate sizes: >2 mm (large aggregate), 0.25-2 mm (medium aggregate), and <0.25 mm (small aggregate). The aim was to examine the distribution of OC and changes in enzyme activity within each aggregate size. The findings revealed a significant increase in OC content for all aggregate sizes following the restoration of Pinus tabuliformis forests. After 33 years of recovery, the OC of large aggregates, medium aggregates and micro-aggregates increased by (30.23 ± 9.85)%, (36.71 ± 21.60)% and (37.88 ± 16.07)% respectively compared with that of farmland. Moreover, the restoration of Pinus tabuliformis forests lead to increased activity of hydrolytic enzymes and decreased activity of oxidative enzymes. It is noteworthy that the regulation of carbon in all aggregates is influenced by soil P-limitation. In large aggregates, P-limitation promotes the enhancement of hydrolytic enzyme activity, thereby facilitate OC accumulation. Conversely, in medium and small aggregates, P-limitation inhibits the increase in oxidative enzyme activity, resulting in OC accumulation. The results emphasize the importance of P-limitation in regulating OC accumulation during the restoration of Pinus tabulaeformis forest, in which large aggregates play a leading role.
Collapse
Affiliation(s)
- Xiangyang Li
- College of Agronomy, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Jia Zeng
- College of Agronomy, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Jianjian Liu
- College of Agronomy, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Qi Zhang
- College of Agronomy, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Yingyi Liu
- College of Agronomy, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Xing Wang
- College of Agronomy, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Hanyu Liu
- College of Agronomy, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Yongtao Zhao
- College of Agronomy, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Yunlong Zhang
- College of Agronomy, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Chengjie Ren
- College of Agronomy, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Gaihe Yang
- College of Agronomy, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Xinhui Han
- College of Agronomy, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| |
Collapse
|
9
|
Ma N, Ji Y, Dong H, Zhu J, Peng Y, Yue K, Zhang H, Ma Y, Zheng T, Wu Q, Li Y. Effects of seasonal precipitation regimes on microbial biomass and extracellular enzyme activity during shrub foliar litter decomposition in a subtropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173098. [PMID: 38729364 DOI: 10.1016/j.scitotenv.2024.173098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/16/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Elucidating the mechanisms underlying microbial biomass and extracellular enzyme activity responses to the seasonal precipitation regime during foliar litter decomposition is highly important for understanding the material cycle of forest ecosystems in the context of global climate change; however, the specific underlying mechanisms remain unclear. Hence, a precipitation manipulation experiment involving a control (CK) and treatments with decreased precipitation in the dry season and extremely increased precipitation in the wet season (IE) and decreased precipitation in the dry season and proportionally increased precipitation in the wet season (IP) was conducted in a subtropical evergreen broad-leaved forest in China from October 2020 to October 2021. The moisture, microbial biomass, and extracellular enzyme activities of foliar litter from two dominant shrub species, Phyllostachys violascens and Alangium chinense, were measured at six stages during the dry and wet seasons. The results showed that (1) both IE and IP significantly decreased the microbial biomass carbon and microbial biomass nitrogen content and the activities of β-1,4-glucosidase, β-1,4-N-acetylglucosaminidase, acid phosphatase and cellulase in the dry season, while the opposite effects were observed in the wet season. (2) Compared with those of IE, the effects of IP on foliar litter microbial biomass and extracellular enzyme activity were more significant. (3) The results from the partial least squares model indicated that extracellular enzyme activity during foliar litter decomposition was strongly controlled by the foliar litter water content, microbial biomass nitrogen, the ratio of total carbon to total phosphorus, foliar litter total carbon, and foliar litter total nitrogen. These results provide an important theoretical basis for elucidating the microbial mechanisms driving litter decomposition in a subtropical forest under global climate change scenarios.
Collapse
Affiliation(s)
- Nan Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yongkang Ji
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Huihui Dong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Jianxiao Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yan Peng
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Kai Yue
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Hui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuandan Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Tianli Zheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| | - Qiqian Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
10
|
Zheng J, Liang S, He R, Luo L, Li Y, Yin C, Pei X, Zhao C. Effects of warming on soil organic carbon pools mediated by mycorrhizae and hyphae on the Eastern Tibetan Plateau, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172121. [PMID: 38565345 DOI: 10.1016/j.scitotenv.2024.172121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Mycorrhizae and their hyphae play critical roles in soil organic carbon (SOC) accumulation. However, their individual contributions to SOC components and stability under climate warming conditions remain unclear. This study investigated the effects of warming on the SOC pools of Picea asperata (an ectomycorrhizal plant) and Fargesia nitida (an arbuscular mycorrhizal plant) mycorrhizae/hyphae on the eastern Tibetan Plateau. The results indicated that mycorrhizae made greater contributions to SOC accumulation than hyphae did by increasing labile organic carbon (LOC) components, such as particle organic carbon (POC), easily oxidizable organic carbon, and microbial biomass carbon, especially under warming conditions. Plant species also had different effects on SOC composition, resulting in higher mineral-associated organic carbon (MAOC) contents in F. nitida plots than in P. asperata plots; consequently, the former favored SOC stability more than the latter, with a lower POC/MAOC. Partial least-squares path modelling further indicated that mycorrhizae/hyphae indirectly affected LOC pools, mainly by changing soil pH and enzyme activities. Warming had no significant effect on SOC content but did change SOC composition by reducing LOC through affecting soil pH and iron oxides and ultimately increasing SOC stability in the presence of mycorrhizae for both plants. Therefore, the mycorrhizae of both plants are major contributors to the variation of SOC components and stability under warming conditions.
Collapse
Affiliation(s)
- Jin Zheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China; Sichuan Metallurgical Geological Survey and Design Group Co., Ltd, Chengdu 610000, China
| | - Shuang Liang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Rongyu He
- China National Environmental Protection Group, Beijing 100082, China
| | - Lin Luo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yunyi Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Chunying Yin
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiangjun Pei
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Chunzhang Zhao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
11
|
Liang X, Wang H, Wang C, Wang H, Yao Z, Qiu X, Ju H, Wang J. Unraveling the relationship between soil carbon-degrading enzyme activity and carbon fraction under biogas slurry topdressing. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120641. [PMID: 38513586 DOI: 10.1016/j.jenvman.2024.120641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/01/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Biogas slurry, a by-product of the anaerobic digestion of biomass waste, predominantly consisting of livestock and poultry manure, is widely acclaimed as a sustainable organic fertilizer owing to its abundant reserves of essential nutrients. Its distinctive liquid composition, when tactfully integrated with a drip irrigation system, unveils immense potential, offering unparalleled convenience in application. In this study, we investigated the impact of biogas slurry topdressing as a replacement for chemical fertilizer (BSTR) on soil total organic carbon (TOC) fractions and carbon (C)-degrading enzyme activities across different soil depths (surface, sub-surface, and deep) during the tasseling (VT) and full maturity stage (R6) of maize. BSTR increased the TOC content within each soil layer during both VT and R6 periods, inducing alterations in the content and proportion of individual C component, particularly in the topsoil. Notably, the pure biogas slurry topdressing treatment (100%BS) compared with the pure chemical fertilizer topdressing treatment (CF), exhibited a 38.9% increase in the labile organic carbon of the topsoil during VT, and a 30.3% increase in the recalcitrant organic carbon during R6, facilitating microbial nutrient utilization and post-harvest C storage during the vigorous growth period of maize. Furthermore, BSTR treatment stimulated the activity of oxidative and hydrolytic C-degrading enzymes, with the 100%BS treatment showcasing the most significant enhancements, with its average geometric enzyme activity surpassing that of CF treatment by 27.9% and 27.4%, respectively. This enhancement facilitated ongoing and efficient degradation and transformation of C. Additionally, we screened for C components and C-degrading enzymes that are relatively sensitive to BSTR. The study highlight the advantages of employing pure biogas slurry topdressing, which enhances C component and C-degrading enzyme activity, thereby reducing the risk of soil degradation. This research lays a solid theoretical foundation for the rational recycling of biogas slurry.
Collapse
Affiliation(s)
- Xiaoyang Liang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Hang Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Chuanjuan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Haitao Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Zonglu Yao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Xuefeng Qiu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Hui Ju
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiandong Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
12
|
Li Z, Guo X, Ma Y, Hu B, Yang Y, Tian H, Liu X, Meng N, Zhu J, Yan D, Song H, Bao B, Li X, Dai X, Zheng Y, Jin Y, Zheng H. The hidden risk: Changes in functional potentials of microbial keystone taxa under global climate change jeopardizing soil carbon storage in alpine grasslands. ENVIRONMENT INTERNATIONAL 2024; 185:108516. [PMID: 38447452 DOI: 10.1016/j.envint.2024.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/18/2024] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
Climate change is endangering the soil carbon stock of alpine grasslands on the Qinghai-Tibetan Plateau (QTP), but the limited comprehension regarding the mechanisms that sustain carbon storage under hydrothermal changes increases the uncertainty associated with this finding. Here, we examined the relative abundance of soil microbial keystone taxa and their functional potentials, as well as their influence on soil carbon storage with increased precipitation across alpine grasslands on the QTP, China. The findings indicate that alterations in precipitation significantly decreased the relative abundance of the carbon degradation potentials of keystone taxa, such as chemoheterotrophs. The inclusion of keystone taxa and their internal functional potentials in the two best alternative models explained 70% and 63% of the variance in soil organic carbon (SOC) density, respectively. Moreover, we found that changes in chemoheterotrophs had negative effects on SOC density as indicated by a structural equation model, suggesting that some specialized functional potentials of keystone taxa are not conducive to the accumulation of carbon sink. Our study offers valuable insights into the intricate correlation between precipitation-induced alterations in soil microbial keystone taxa and SOC storage, highlighting a rough categorization is difficult to distinguish the hidden threats and the importance of incorporating functional potentials in SOC storage prediction models in response to changing climate.
Collapse
Affiliation(s)
- Zuzheng Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Academy of Forestry and Landscape Architecture, Beijing 100044, China
| | - Xue Guo
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Ma
- Institute of Earth Environment, Chinese Academy of Sciences, Xian 710061, China
| | - Baoan Hu
- School of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yanzheng Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huixia Tian
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xujun Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Nan Meng
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 10084, China
| | - Jinyi Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danni Yan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hao Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Binqiang Bao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuhuan Dai
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Yi Zheng
- Beijing Academy of Forestry and Landscape Architecture, Beijing 100044, China
| | - Yingshan Jin
- Beijing Academy of Forestry and Landscape Architecture, Beijing 100044, China
| | - Hua Zheng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Li J, Zhang H, Xie W, Liu C, Liu X, Zhang X, Li L, Pan G. Elevated CO 2 increases soil redox potential by promoting root radial oxygen loss in paddy field. J Environ Sci (China) 2024; 136:11-20. [PMID: 37923422 DOI: 10.1016/j.jes.2023.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 11/07/2023]
Abstract
Soil redox potential (Eh) plays an important role in the biogeochemical cycling of soil nutrients. Whereas its effect soil process and nutrients' availability under elevated atmospheric CO2 concentration and warming has seldom been investigated. Thus, in this study, a field experiment was used to elucidate the effect of elevated CO2 concentration and warming on soil Eh, redox-sensitive elements and root radial oxygen loss (ROL). We hypothesized elevated CO2 and warming could alter soil Eh by promoting or inhibiting ROL. We found that soil Eh in the rhizosphere was significantly higher than that of non-rhizosphere. Elevated CO2 enhanced soil Eh by 11.5%, which corresponded to a significant decrease in soil Fe2+ and Mn2+concentration. Under elevated CO2, the concentration of Fe2+ and Mn2+ decreased by 14.7% and 13.7%, respectively. We also found that elevated CO2 altered rice root aerenchyma structure and promoted rice root ROL. Under elevated CO2, rice root ROL increased by 79.5% and 112.2% for Yangdao 6 and Changyou 5, respectively. Warming had no effect on soil Eh and rice root ROL. While warming increased the concentration of Mn2+ and SO42- by 4.9% and 19.3%, respectively. There was a significant interaction between elevated CO2 and warming on Fe2+ and Mn2+. Under elevated CO2, warming had no effect on the concentration of Fe2+ but decreased Mn2+ concentration significantly. Our study demonstrated that elevated atmospheric CO2 in the future could increase soil Eh by promoting rice root ROL, which will alter some soil nutrients' availability, such as Fe2+ and Mn2+.
Collapse
Affiliation(s)
- Jie Li
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Han Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyi Xie
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyu Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xuhui Zhang
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lianqing Li
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Genxing Pan
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Song Y, Sun L, Song C, Li M, Liu Z, Zhu M, Chen S, Yuan J, Gao J, Wang X, Wang W. Responses of soil microbes and enzymes to long-term warming incubation in different depths of permafrost peatland soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165733. [PMID: 37490945 DOI: 10.1016/j.scitotenv.2023.165733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Soil microbes and enzymes mediate soil carbon-climate feedback, and their responses to increasing temperature partly affect soil carbon stability subjected to the effects of climate change. We performed a 50-month incubation experiment to determine the effect of long-term warming on soil microbes and enzymes involved in carbon cycling along permafrost peatland profile (0-150 cm) and investigated their response to water flooding in the active soil layer. Soil bacteria, fungi, and most enzymes were observed to be sensitive to changes in temperature and water in the permafrost peatland. Bacterial and fungal abundance decreased in the active layer soil but increased in the deepest permafrost layer under warming. The highest decrease in the ratio of soil bacteria to fungi was observed in the deepest permafrost layer under warming. These results indicated that long-term warming promotes recalcitrant carbon loss in permafrost because fungi are more efficient in decomposing high-molecular-weight compounds. Soil microbial catabolic activity measured using Biolog Ecoplates indicated a greater degree of average well color development at 15 °C than at 5 °C. The highest levels of microbial catabolic activity, functional diversity, and carbon substrate utilization were found in the permafrost boundary layer (60-80 cm). Soil polyphenol oxidase that degrades recalcitrant carbon was more sensitive to increases in temperature than β-glucosidase, N-acetyl-β-glucosaminidase, and acid phosphatase, which degrade labile carbon. Increasing temperature and water flooding exerted a synergistic effect on the bacterial and fungal abundance and β-glucosidase, acid phosphatase, and RubisCO activity in the topsoil. Structural equation modeling analysis indicated that soil enzyme activity significantly correlated with ratio of soil bacteria to fungi and microbial catabolic activity. Our results provide valuable insights into the linkage response of soil microorganisms, enzymes to climate change and their feedback to permafrost carbon loss.
Collapse
Affiliation(s)
- Yanyu Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Li Sun
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Mengting Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Tourism and Geographical Science, Jilin Normal University, Siping 136000, China
| | - Zhendi Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy Sciences, Beijing 100049, China
| | - Mengyuan Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy Sciences, Beijing 100049, China
| | - Shuang Chen
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jiabao Yuan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy Sciences, Beijing 100049, China
| | - Jinli Gao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xianwei Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Wenjuan Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
15
|
Wen L, Peng Y, Zhou Y, Cai G, Lin Y, Li B. Effects of conservation tillage on soil enzyme activities of global cultivated land: A meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118904. [PMID: 37659371 DOI: 10.1016/j.jenvman.2023.118904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/05/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
The negative impacts of conventional agriculture and the imperative to adopt conservation tillage garnered significant attention. However, the effects of conservation tillage on soil enzyme activities still lack comprehensive cognition. Here, we collected 14,308 pairwise observations from 369 publications worldwide to systematically evaluate the effects of different conservation tillage practices (reduced tillage (T), reduced tillage with straw return (TS), reduced tillage with straw mulch return (TSO), no-tillage (NT), no-tillage with straw return (NTS), and no-tillage with straw mulch return (NTSO)) on the activities of 35 enzymes in soil. The results showed that: (1) the effect of conservation tillage on soil enzyme activity varied by enzyme type, except for peroxidase (-12.34%), which showed an overall significant positive effect (10.28-89.76%); (2) the NTS and TS demonstrated strong potential to improve soil enzyme activities by increasing a wide variety of soil enzyme activities (12-15) and efficacy (9.76-75.56%) than other conservation tillage (8.60-68.68%); (3) in addition, the effect of conservation tillage on soil enzyme activity was regulated by soil depth, crop type, years of conservation tillage, climate (mean annual precipitation and temperature), and soil physicochemical properties (e.g., pH, bulk density, electrical conductivity, organic matter, ammonium nitrogen, total phosphorus, available phosphorus, total potassium, available potassium, etc.). Overall, our quantitative analysis clearly suggests that conservation tillage is an effective measure for improving soil enzyme activity on global croplands, where combination of reduced tillage or no-till with straw return are considered to have great potential and promise. The results contribute to better comprehend the effects of conservation tillage on soil activity and provide a valuable insight for agricultural management.
Collapse
Affiliation(s)
- Linsheng Wen
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou, 350117, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Yun Peng
- Yuanzhou District Forestry Bureau, Yichun City, Jiangxi Province, 336000, China
| | - Yunrui Zhou
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou, 350117, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Guo Cai
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou, 350117, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Yuying Lin
- School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou, 350117, China; Postdoctoral Research Station of Ecology, Fujian Normal University, Fuzhou, 350117, China; School of Culture, Tourism and Public Administration, Fujian Normal University, Fuzhou, 350117, China; The Higher Educational Key Laboratory for Smart Tourism of Fujian Province, Fuzhou, 350007, China.
| | - Baoyin Li
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou, 350117, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
16
|
Liu X, Chen Q, Zhang H, Zhang J, Chen Y, Yao F, Chen Y. Effects of exogenous organic matter addition on agricultural soil microbial communities and relevant enzyme activities in southern China. Sci Rep 2023; 13:8045. [PMID: 37198213 DOI: 10.1038/s41598-023-33498-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 04/13/2023] [Indexed: 05/19/2023] Open
Abstract
Soil microbial community composition plays a key role in the decomposition of organic matter, while the quality of exogenous organic matter (EOM: rice straw, roots and pig manure) can influence soil chemical and biological properties. However, the evidences of the effect of combination of crop residues and pig manure on the changes in soil microbial community and enzymes activities are scarce. A greenhouse pot experiment was conducted to investigate the potential effect of EOM by analyzing soil properties, enzyme activities and microbial communities. The experiment consisted of eight treatments: CK (control), S (1% (w/w) rice straw), R (1% (w/w) rice root), SR (1% (w/w) rice straw + 1% (w/w) rice root), and added 1% (w/w) pig manure to CK, S, R and SR, respectively. Results showed that the straw treatment significantly increased the microbial biomass (carbon and nitrogen) and total carbon and nitrogen contents, cellulase and β-1,4-glucosidase activities, bacteria (i.e., gram-positive bacteria and gram-negative bacteria) PLFAs contents relative to CK regardless of whether pig manure was added. Moreover, the interaction between crop residues (e.g., straw and roots) and pig manure significantly influenced the contents of microbial biomass nitrogen and microbial biomass phosphorus, and the ratio of gram-positive bacteria to gram-negative bacteria. Redundance analysis confirmed that pH, nitrate nitrogen, ammonium nitrogen and dissolve organic carbon contents were significantly associated with soil microbial community under crop residues without pig manure addition. Furthermore, the experiment results showed that pig manure application not only provided more abundant nutrients (C, N and P) but also induced higher microbial and enzymatic activity compared with no pig manure addition. Our findings suggest that the combination of above-ground straw and pig manure is a better option for improving the functions of soil ecosystem.
Collapse
Affiliation(s)
- Xing Liu
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Qi Chen
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Huicheng Zhang
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaen Zhang
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Yuting Chen
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Fucheng Yao
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yingtong Chen
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
17
|
Tong Y, Long Y, Yang Z. Effects of warming and isolation from precipitation on the soil carbon, nitrogen, and phosphorus, and their stoichiometries in an alpine meadow in the Qinghai–Tibet Plateau: A greenhouse warming study. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1149240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
IntroductionIn the Qinghai–Tibet Plateau (QTP), alpine meadows are among the most noticeable reflection of global climate change. However, effects of global warming on soils hosting alpine meadows in the QTP, such as reduced moisture because of low precipitation, remain unclear.MethodsHere, the soil moisture content (SMC), pH, dissolved organic carbon (DOC), ammonium nitrogen (NH4+–N), nitrate nitrogen (NO3−–N) and available phosphorus (AP) contents in the QTP were analyzed. The changes in and stoichiometries of total carbon, nitrogen, and phosphorus (TC, TN, and TP), microbial biomass carbon, nitrogen, and phosphorus (MBC, MBN, and MBP), β-1,4-glucosidase (BG), β-1,4-N-acetylglucoaminosidase (NAG), leucine aminopeptidase (LAP), and acid phosphatase (ACP) in the 0–30 cm layer of soils associated with warming in a greenhouse in the QTP from 2015 to 2020 were characterized.ResultsWe found that warming in the greenhouse significantly decreased the SMC, NO3−–N, MBC, MBN, MBP, BG, LAP, ACP, and enzymatic C:N ratio. The warming increased the DOC, NH4+–N, AP, MBC:MBN, and enzymatic N:P ratios noticeably. The pH, TC, TN, TP, C:N, C:P, N:P, MBC:MBP, MBN:MBP, and enzymatic C:P ratios were minimally affected.ConclusionThe results showed that warming and isolation from precipitation promoted mineralization of N and P in the soil but did not significantly alter the cycling of elements in soils in an alpine meadow.
Collapse
|
18
|
Lee J, Zhou X, Seo YO, Lee ST, Yun J, Yang Y, Kim J, Kang H. Effects of vegetation shift from needleleaf to broadleaf species on forest soil CO 2 emission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158907. [PMID: 36150592 DOI: 10.1016/j.scitotenv.2022.158907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Forest soil harbors diverse microbial communities with decisive roles in ecosystem processes. Vegetation shift from needleleaf to broadleaf species is occurring across the globe due to climate change and anthropogenic activities, potentially change forest soil microbial communities and C cycle. However, our knowledge on the impact of such vegetation shift on soil microbial community and activities, and its consequences on forest soil C dynamics are still not well established. Here, we examined the seasonal variation of soil CO2 emission, soil extracellular enzyme activities (EEAs), and soil bacterial, fungal communities in subtropical forest from broadleaf, needleleaf, and mixed stands. In addition, soil CO2 emission and soil EEAs were measured in temperate forest during the growing season. Soil organic matter (SOM) content significantly differs between broadleaf and needleleaf forests and primarily distinguish various soil chemical and microbial characteristics. Significantly higher EEAs and soil CO2 emission in broadleaf forest compared to needleleaf forest were observed both in subtropical and temperate forests. The relative abundance of Basidiomycota positively correlated with SOM and EEAs and indirectly increase soil CO2 emission whereas the relative abundance of Ascomycota exhibits opposite trend, suggesting that soil fungal communities play a key role in determining the different microbial activities between broadleaf and needleleaf stands. The temperature sensitivity of soil CO2 emission was significantly higher in broadleaf forest compared to needleleaf forest, further suggesting that the soil organic carbon in broadleaf forests is more vulnerable to warming.
Collapse
Affiliation(s)
- Jaehyun Lee
- School of Civil and Environmental Engineering, Yonsei University, Republic of Korea; Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Xue Zhou
- School of Civil and Environmental Engineering, Yonsei University, Republic of Korea; College of Agricultural Science and Engineering, Hohai University, China
| | - Yeon Ok Seo
- Warm Temperate and Subtropical Forest Research Center, National Institute of Forest Science, Republic of Korea
| | - Sang Tae Lee
- Lab of Silvicultural Practices and Management, National Institute of Forest Science, Republic of Korea
| | - Jeongeun Yun
- School of Civil and Environmental Engineering, Yonsei University, Republic of Korea
| | - Yerang Yang
- School of Civil and Environmental Engineering, Yonsei University, Republic of Korea
| | - Jinhyun Kim
- School of Civil and Environmental Engineering, Yonsei University, Republic of Korea
| | - Hojeong Kang
- School of Civil and Environmental Engineering, Yonsei University, Republic of Korea.
| |
Collapse
|
19
|
Liao H, Li C, Ai S, Li X, Ai X, Ai Y. A simulated ecological restoration of bare cut slope reveals the dosage and temporal effects of cement on ecosystem multifunctionality in a mountain ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116672. [PMID: 36343402 DOI: 10.1016/j.jenvman.2022.116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 09/23/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Cement is a critical building material used in the restorations of bare cut slopes. Yet, how cement affects ecosystem's functions and their undertakers remains elusive. Here, we revealed the dosage and temporal effects of cement on plant and soil traits, extracellular enzymes, greenhouse gas fluxes and microbiome using simulation experiments. The results showed that soil pH increased with the cement content at 1st day but relatively constant values around 7 to 7.5 were detected in the flowing days. The β-1,4-glucosidase, phenol oxidase, leucine aminopeptidase and acid phosphatase showed high activities under high cement content, and they generally increased with the cultivations except for acid phosphatase. CH4 fluxes at 16th day were less than zero, and they increased to peak around at 37th to 44th days followed by decreasing until reaching to relatively stable fluctuations around 0. Despite of decrease patterns, N2O fluxes stayed around zero across the temporal gradient except for the maximum around at 30th day in 2%, 5% and 8% cement treatment. Microbial diversity decreased with the cement content, in which there were a recovery trend for bacteria. By integrating above- and belowground ecosystem traits into a multifunctionality index, we identified a potential optimum cement content (11%). PLSPM showed that multifunctionality was affected by the shifts in soil bacterial community, enzyme activity and greenhouse gases while these components were effected by other environmental changes resulted from cement. Our results demonstrate that cement determines multifunctionality through mediating microbial community and activity, providing new insights for designing in situ experiments and ecological restoration strategies for bare cut slopes.
Collapse
Affiliation(s)
- Haijun Liao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China; CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| | - Chaonan Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| | - Shenghao Ai
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Xiangzhen Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| | - Xiaoyan Ai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China.
| | - Yingwei Ai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
20
|
Kwiatkowska E, Joniec J. Effects of Agricultural Management of Spent Mushroom Waste on Phytotoxicity and Microbiological Transformations of C, P, and S in Soil and Their Consequences for the Greenhouse Effect. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912915. [PMID: 36232214 PMCID: PMC9565085 DOI: 10.3390/ijerph191912915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 06/02/2023]
Abstract
The huge volumes of currently generated agricultural waste pose a challenge to the economy of the 21st century. One of the directions for their reuse may be as fertilizer. Spent mushroom substrate (SMS) could become an alternative to manure (M). A three-year field experiment was carried out, in which the purpose was to test and compare the effect of SMS alone, as well as in multiple variants with mineral fertilization, and in manure with a variety of soil quality indices-such as enzymatic activity, soil phytotoxicity, and greenhouse gas emissions, i.e., CO2. The use of SMS resulted in significant stimulation of respiratory and dehydrogenase activity. Inhibition of acid phosphatase and arylsulfatase activity via SMS was recorded. SMS showed varying effects on soil phytotoxicity, dependent on time. A positive effect was noted for the growth index (GI), while inhibition of root growth was observed in the first two years of the experiment. The effect of M on soil respiratory and dehydrogenase activity was significantly weaker compared to SMS. Therefore, M is a safer fertilizer as it does not cause a significant persistent increase in CO2 emissions. Changes in the phytotoxicity parameters of the soil fertilized with manure, however, showed a similar trend as in the soil fertilized with SMS.
Collapse
|
21
|
Zhang Y, Ren M, Tang Y, Cui X, Cui J, Xu C, Qie H, Tan X, Liu D, Zhao J, Wang S, Lin A. Immobilization on anionic metal(loid)s in soil by biochar: A meta-analysis assisted by machine learning. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129442. [PMID: 35792428 DOI: 10.1016/j.jhazmat.2022.129442] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Metal pollution in soil has become one of the most serious environmental problems in China. Biochar is one of the most widely used remediation agents for soil metal pollution. However, the literature does not provide a consistent picture of the performance of biochar on the immobilization of anionic metal(loid)s, especially arsenic, in soil. To obtain a baseline understanding on the interactions of metals and biochar, 597 data records on four metal(loid)s (As, Cr, Sb and V) were collected from 70 publications for this meta-analysis, and the results are highlighted below. Biochar has a significant immobilization effect on anionic metal(loid)s in soil and reduces the bioavailability of these metals to plants. Subgroup analysis found that biochar could decrease the potential mobility of Cr, Sb and V, but the immobilization effect on As was not always consistent. Meanwhile, biochar pH and soil pH are the most key factors affecting the immobilization effect. To summarize, biochar can effectively immobilize Cr, Sb and V in soil, but more attention should be given to As immobilization in future applications. By regulating the properties of biochar and appropriate modification, anionic metal(loid)s in soil can be immobilized more effectively. Hence, both of the soil quality and crop quality can be improved.
Collapse
Affiliation(s)
- Yinjie Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meng Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yiming Tang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuedan Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jun Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Congbin Xu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongpo Liu
- College of Ecological Environment, Institute of Disaster Prevention, Hebei 065201, China
| | - Jiashun Zhao
- College of Chemical and Environmental Engineering, North China Institute of Science and Technology, Hebei 065201, China
| | - Shuguang Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
22
|
Hu S, Wang C, Risch AC, Liu Y, Li Y, Li L, Xu X, He N, Han X, Huang J. Hydrothermal conditions determine soil potential net N mineralization rates in arid and semi‐arid grasslands. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuya Hu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences Beijing China
- University of the Chinese Academy of Sciences Beijing China
| | - Changhui Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences Beijing China
- College of Grassland Science Shanxi Agricultural University Taigu China
| | - Anita C. Risch
- Swiss Federal Institute for Forest Snow, and Landscape Research WSL, Community Ecology, Zuercherstrasse 111 Birmensdorf Switzerland
| | - Yuan Liu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China
| | - Yang Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences Beijing China
- University of the Chinese Academy of Sciences Beijing China
| | - Lei Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences Beijing China
- University of the Chinese Academy of Sciences Beijing China
| | - Xiaohui Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences Beijing China
- University of the Chinese Academy of Sciences Beijing China
| | - Nianpeng He
- University of the Chinese Academy of Sciences Beijing China
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences Beijing China
- University of the Chinese Academy of Sciences Beijing China
| | - Jianhui Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences Beijing China
- University of the Chinese Academy of Sciences Beijing China
| |
Collapse
|
23
|
Luo L, Guo M, Wang E, Yin C, Wang Y, He H, Zhao C. Effects of mycorrhiza and hyphae on the response of soil microbial community to warming in eastern Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155498. [PMID: 35523342 DOI: 10.1016/j.scitotenv.2022.155498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
The effects of mycorrhiza and its external hyphae on the response of soil microbes to global warming remain unclear. This study investigates the role of mycorrhiza and its hyphae in regulating soil microbial community under warming by examining the microbial biomass and composition in the ingrowth cores of arbuscular mycorrhiza (AM) plant, Fargesia nitida, and ectomycorrhiza (ECM) plant, Picea asperata, with/without mycorrhiza/hyphae and experimental warming. The results showed that warming significantly increased the biomass of all soil microbes (by 19.89%-137.48%) and altered the microbial composition in both plant plots without mycorrhiza/hyphae. However, this effect was weakened in the presence of mycorrhiza or hyphae. In F. nitida plots, warming did not significantly affect biomass and composition of most soil microbial groups when mycorrhiza or hyphae were present. In P. asperata plots, warming significantly increased the total and ECM fungi (ECMF) biomass in the presence of hyphae (p < 0.05) and the total, Gn, and AM fungi (AMF) biomass in the presence of mycorrhiza (p < 0.05). Meanwhile, the response of enzyme activities to warming was also altered with mycorrhiza or hyphae. Additionally, soil microbial community composition was mainly influenced by soil available phosphorus (avaP), while enzyme activities depended on soil avaP, dissolved organic carbon (DOC), and nitrate concentrations. Our results indicate that mycorrhiza and its hyphae are essential in regulating the response of microbes to warming.
Collapse
Affiliation(s)
- Lin Luo
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China; CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Min Guo
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Entao Wang
- Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico 11340, Mexico
| | - Chunying Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China
| | - Yanjie Wang
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Heliang He
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China; College of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644007, China
| | - Chunzhang Zhao
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China.
| |
Collapse
|
24
|
Feyissa A, Gurmesa GA, Yang F, Long C, Zhang Q, Cheng X. Soil enzyme activity and stoichiometry in secondary grasslands along a climatic gradient of subtropical China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154019. [PMID: 35192834 DOI: 10.1016/j.scitotenv.2022.154019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/01/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Soil extracellular enzymes plays key roles in ecosystem carbon (C), nitrogen (N), and phosphorus (P) cycling, and are very sensitive to climatic, plant, and edaphic factors. However, the interactive effects of these factors on soil enzyme activities at large spatial scales remain unclear. Here, we investigated the spatial pattern of the activities of five soil hydrolyzing enzymes [β-D-cellobiohydrolase (CB), β-1,4-glucosidase (BG), β-1,4-N-acetyl-glucosaminidase (NAG), L-leucine aminopeptidase (LAP), and acid phosphatase (AP)], and their C:N:P acquisition ratios in relation to plant inputs and edaphic properties across a 600-km climatic gradient in secondary grasslands of subtropical China. The activities of CB, BG, and NAG decreased while that of LAP increased with the increasing mean annual temperature (MAT). The activities of all enzymes did not significantly vary with the mean annual precipitation (MAP). We found that the activities of BG, NAG, and AP were predominately dependent on plant N contents, while the soil LAP activity was tightly related to soil recalcitrant C and N contents. In contrast, the ecoenzymatic C:nutrient (N and P) acquisition ratios increased with increasing MAP and decreasing MAT, primarily due to the increase in plant input at warmer and wetter sites. In addition to climates, plant C inputs, C use efficiency, soil pH, soil organic C, soil C:P, and N:P ratios explained 79% and 72% of the overall variation in ecoenzymatic C:nutrient and P:N acquisition ratios, respectively. The pattern of ecoenzymatic C:N:P acquisition ratios also revealed unexpected N limitation in subtropical grasslands. Overall, our study highlighted the importance of climate in controlling soil biological C, N, and P acquisition activities through its direct and indirect effects on plant inputs and soil edaphic factors, thereby providing useful information for better understanding and predictions of soil C and nutrient cycling in grassland ecosystems at regional scales.
Collapse
Affiliation(s)
- Adugna Feyissa
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; College of Agriculture and Veterinary Sciences, Ambo University, Ambo, Ethiopia
| | - Geshere Abdisa Gurmesa
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Fan Yang
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Chunyan Long
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Qian Zhang
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Xiaoli Cheng
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China.
| |
Collapse
|
25
|
Leyrer V, Patulla M, Hartung J, Marhan S, Poll C. Long-term manipulation of mean climatic conditions alters drought effects on C- and N-cycling in an arable soil. GLOBAL CHANGE BIOLOGY 2022; 28:3974-3990. [PMID: 35320598 DOI: 10.1111/gcb.16173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Climate is changing and predicted future scenarios include both changes in long-term mean climatic conditions and intensification of extreme events such as drought. Drought can have a major impact on soil functional processes; soil microorganisms, key to these processes, depend on water and temperature dynamics. Consequently, feedback mechanisms regarding microbially mediated carbon and nitrogen cycling in soils may be affected. There are indications that microbial exposure to increasingly unfavorable environmental conditions influences their stress responses. Here, the long-term field experiment Hohenheim Climate Change (HoCC) provided a research platform to explore how microbial exposure to long-term reduced water availability and soil warming modifies microbially driven soil processes, especially gas fluxes from soil, both during drought and after rewetting. The HoCC experiment is an agroecosystem in which the soil microbiome has been exposed to reduced annual mean precipitation and elevated temperature since 2008. Treatment levels were chosen based on a realistic future climate scenario. In June 2019, we exposed this system to a drought period of four weeks. We found that even after 11 years, warming remained a driver of CO2 and N2 O fluxes across the different soil moisture conditions in our drought experiment. Importantly, however, microbial exposure to long-term reduced water availability limited the stimulatory effect of warming on gas fluxes during drought and after rewetting. Our results were neither related to a legacy effect within overall microbial biomass carbon levels nor a shift towards enhanced fungal abundance. We found no indications that extracellular enzyme activities or microbial substrate availability explained the gas flux dynamics observed in our drought experiment. Our study indicates that soil warming promotes gaseous C and N loss even under extreme drought conditions. We suspect, however, that a shift in microbial function following long-term water limitation can hamper the enhancing effect of warming on soil gas fluxes.
Collapse
Affiliation(s)
- Vinzent Leyrer
- Soil Biology Department, Institute of Soil Science and Land Evaluation, University of Hohenheim, Germany
| | - Marina Patulla
- Soil Biology Department, Institute of Soil Science and Land Evaluation, University of Hohenheim, Germany
| | - Jens Hartung
- Biostatistics Department, Institute of Crop Science, University of Hohenheim, Germany
| | - Sven Marhan
- Soil Biology Department, Institute of Soil Science and Land Evaluation, University of Hohenheim, Germany
| | - Christian Poll
- Soil Biology Department, Institute of Soil Science and Land Evaluation, University of Hohenheim, Germany
| |
Collapse
|
26
|
Hassan W, Li Y, Saba T, Wu J, Bashir S, Bashir S, Gatasheh MK, Diao ZH, Chen Z. Temperature responsiveness of soil carbon fractions, microbes, extracellular enzymes and CO 2 emission: mitigating role of texture. PeerJ 2022; 10:e13151. [PMID: 35539011 PMCID: PMC9080434 DOI: 10.7717/peerj.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 03/01/2022] [Indexed: 01/12/2023] Open
Abstract
The interaction of warming and soil texture on responsiveness of the key soil processes i.e. organic carbon (C) fractions, soil microbes, extracellular enzymes and CO2 emissions remains largely unknown. Global warming raises the relevant question of how different soil processes will respond in near future, and what will be the likely regulatory role of texture? To bridge this gap, this work applied the laboratory incubation method to investigate the effects of temperature changes (10-50 °C) on dynamics of labile, recalcitrant and stable C fractions, soil microbes, microbial biomass, activities of extracellular enzymes and CO2 emissions in sandy and clayey textured soils. The role of texture (sandy and clayey) in the mitigation of temperature effect was also investigated. The results revealed that the temperature sensitivity of C fractions and extracellular enzymes was in the order recalcitrant C fractions > stable C fractions > labile C fractions and oxidative enzymes > hydrolytic enzymes. While temperature sensitivity of soil microbes and biomass was in the order bacteria > actinomycetes > fungi ≈ microbial biomass C (MBC) > microbial biomass N (MBN) > microbial biomass N (MBP). Conversely, the temperature effect and sensitivity of all key soil processes including CO2 emissions were significantly (P < 0.05) higher in sandy than clayey textured soil. Results confirmed that under the scenario of global warming and climate change, soils which are sandy in nature are more susceptible to temperature increase and prone to become the CO2-C sources. It was revealed that clayey texture played an important role in mitigating and easing off the undue temperature influence, hence, the sensitivity of key soil processes.
Collapse
Affiliation(s)
- Waseem Hassan
- Landwirtschaftlich-Gärtnerischen, Humboldt-Universität zu Berlin, Berlin, Germany,Institute of Environment and Sustainable Development in Agriculture/Laboratory for Agricultural Environment, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu’e Li
- Institute of Environment and Sustainable Development in Agriculture/Laboratory for Agricultural Environment, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tahseen Saba
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jianshuang Wu
- Institute of Environment and Sustainable Development in Agriculture/Laboratory for Agricultural Environment, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Safdar Bashir
- Department of Soil and Environmental Sciences, Ghazi University, Dera Ghazi Khan, Dera Ghazi Khan, Pakistan
| | - Saqib Bashir
- Department of Soil and Environmental Sciences, Ghazi University, Dera Ghazi Khan, Dera Ghazi Khan, Pakistan
| | - Mansour K. Gatasheh
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zeng-Hui Diao
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, Praha-Suchdol, Prague, Czech Republic
| |
Collapse
|
27
|
Jia T, Liang X, Guo T, Wu T, Chai B. Bacterial community succession and influencing factors for Imperata cylindrica litter decomposition in a copper tailings area of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152908. [PMID: 34999068 DOI: 10.1016/j.scitotenv.2021.152908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Litter decomposition is a critical component of the ecological nutritional transformation process. In a copper mining area, the litter from Imperata cylindrica is the major indicator for restoring heavy metal-polluted copper mining lands. Large amounts of litter are generated at the end of the plant growing season during the process of vegetation restoration in copper mining areas, and the microbial dynamics play an important role in soil nutrient turnover during the decomposition of litter. Investigating the characteristics and interactions of bacterial communities during litter decomposition will clarify the driving mechanisms of organic matter and nutrient cycling in copper mining areas that harbor contaminated soils. Here, we report the results of an in situ decomposition experiment that lasted for a total of 460 days from three of the 16 copper mining subdams with heavy metal pollution and different phytoremediation histories (e.g., 50, 22 and 5 years) to explore the bacterial communities as the driving factors of litter decomposition. The total carbon contents of the litter decreased by 62.6% and 71.5% in the decomposition process at those sites with phytoremediation histories of 50 and 22 years (S516 and S536), respectively, but decreased by only 25.8% at the site with a phytoremediation history of 5 years (S560). The optimal C/N ratios in the three different restoration stages varied and were 65.5, 86.7 and 39.3 in S516, S536, S560, respectively. Litter decomposition enriched the heavy metal contents such as cadmium, copper (Cu), lead and zinc (P < 0.05) in litter. Proteobacteria and Actinobacteriota were the dominant bacterial phyla during the different litter decomposition stages, which accounted for 91.66% of the relative abundances in the bacterial communities. Moreover, the role of Friedmanniella, which had the highest betweenness centrality (BC) value, was critical in sustaining both the structure and function of the bacterial communities during the early decomposition stage. However, Quadrisphaera, with the maximum BC value (1074.8), became the dominant genus as litter decomposition progressed. The most crucial factors that affected the litter bacterial communities were the litter pH and copper contents. The obtained results will be helpful to provide a further understanding of litter decomposition mechanisms and will provide a scientific basis for improving the effectiveness of material circulation and nutrient transformation in degraded copper mining ecosystems.
Collapse
Affiliation(s)
- Tong Jia
- Shanxi Laboratory for Yellow River, Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
| | - Xiaoxia Liang
- Shanxi Laboratory for Yellow River, Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Tingyan Guo
- Shanxi Laboratory for Yellow River, Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Tihang Wu
- Department of Biology, Georgia Southern University, Statesboro, GA 30460-8042, USA
| | - Baofeng Chai
- Shanxi Laboratory for Yellow River, Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
28
|
Li Y, Ma J, Yu Y, Li Y, Shen X, Huo S, Xia X. Effects of multiple global change factors on soil microbial richness, diversity and functional gene abundances: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152737. [PMID: 34998753 DOI: 10.1016/j.scitotenv.2021.152737] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Soil microbial richness, diversity, and functional gene abundance are crucial factors affecting belowground ecosystem functions; however, there is still a lack of systematic understanding of their responses to global change. Here, we conducted a worldwide meta-analysis using 1071 observation data concerning the effects of global change factors (GCFs), including warming (W), increased precipitation (PPT+), decreased precipitation (PPT-), elevated CO2 concentration (eCO2), and nitrogen deposition (N), to evaluate their individual, combined, and interactive effects on soil microbial properties across different groups and ecosystems. Across the dataset, eCO2 increased microbial richness and diversity by 40.5% and 4.6%, respectively; warming and N addition decreased the abundance of denitrification functional genes (nirS, nirK, and nozS); N addition had a greater impact on soil C-cycling functional genes than on N-cycling ones. Long-term precipitation change was conducive to the increase in soil microbial richness, and fungal richness change was more sensitive than bacterial richness, but the sensitivity of bacteria richness to N addition was positively correlated with experimental duration. Soil microbial richness, diversity, and functional gene abundances could be significantly affected by individual or multiple GCF changes, and their interactions are mainly additive. W×eCO2 on microbial diversity, and N×PPT+ and W×N on N-cycling functional gene abundance showed synergistic interactions. Based on the limitations of the collected data and the findings, we suggest designing experiments with multiple GCFs and long experimental durations and incorporating the effects and interactions of multiple drivers into ecosystem models to accurately predict future soil microbial properties and functions under future global changes.
Collapse
Affiliation(s)
- Yuqian Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, PR China.
| | - Junwei Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, PR China.
| | - Yi Yu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, PR China
| | - Yijia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, PR China.
| | - Xinyi Shen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, PR China
| | - Shouliang Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, PR China.
| |
Collapse
|
29
|
Fanin N, Mooshammer M, Sauvadet M, Meng C, Alvarez G, Bernard L, Bertrand I, Blagodatskaya E, Bon L, Fontaine S, Niu S, Lashermes G, Maxwell TL, Weintraub M, Wingate L, Moorhead D, Nottingham A. Soil enzymes in response to climate warming: mechanisms and feedbacks. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Nicolas Fanin
- INRAE Bordeaux Sciences Agro UMR 1391 ISPA 71 avenue Edouard Bourlaux, CS 20032 F33882 Villenave‐d’Ornon cedex France
| | - Maria Mooshammer
- Department of Environmental Science, Policy, and Management University of California Berkeley Berkeley CA USA
| | - Marie Sauvadet
- CIRAD UPR GECO F97285 Le Lamentin, Martinique France
- CIRAD, GECO Univ Montpellier Montpellier France
| | - Cheng Meng
- Key Laboratory of Ecosystem Network Observation and Modeling Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing 100101 China
| | - Gaël Alvarez
- INRAE Université Clermont Auvergne VetAgro Sup UMR Ecosystème Prairial 63000 Clermont Ferrand France
| | - Laëtitia Bernard
- INRAE IRD, CIRAD Institut Agro Univ Montpellier UMR Eco&Sols Montpellier France
| | - Isabelle Bertrand
- INRAE IRD, CIRAD Institut Agro Univ Montpellier UMR Eco&Sols Montpellier France
| | - Evgenia Blagodatskaya
- Department of Soil Ecology Helmholtz Centre for Environmental Research – UFZ Halle, Saale Germany
- Agro‐Technological Institute RUDN University Moscow Russia
| | - Lucie Bon
- INRAE Bordeaux Sciences Agro UMR 1391 ISPA 71 avenue Edouard Bourlaux, CS 20032 F33882 Villenave‐d’Ornon cedex France
| | - Sébastien Fontaine
- INRAE Université Clermont Auvergne VetAgro Sup UMR Ecosystème Prairial 63000 Clermont Ferrand France
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing 100101 China
| | - Gwenaelle Lashermes
- INRAE Université de Reims Champagne‐Ardenne UMR A 614 FARE 51097 Reims France
| | - Tania L. Maxwell
- INRAE Bordeaux Sciences Agro UMR 1391 ISPA 71 avenue Edouard Bourlaux, CS 20032 F33882 Villenave‐d’Ornon cedex France
| | | | - Lisa Wingate
- INRAE Bordeaux Sciences Agro UMR 1391 ISPA 71 avenue Edouard Bourlaux, CS 20032 F33882 Villenave‐d’Ornon cedex France
| | - Daryl Moorhead
- Department of Environmental Sciences University of Toledo 2801 W. Bancroft St Toledo Ohio 43606‐3390 USA
| | | |
Collapse
|
30
|
Wang H, Li J, Chen H, Liu H, Nie M. Enzymic moderations of bacterial and fungal communities on short- and long-term warming impacts on soil organic carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150197. [PMID: 34798739 DOI: 10.1016/j.scitotenv.2021.150197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Microbial communities play critical roles in soil carbon-warming feedback, but our understanding of their linkages to soil carbon (C) pools in response to short- and long-term warming is deficient. Here, by conducting a meta-analysis of 150 studies, we show that short-term (<5 years) warming mainly affects soil labile carbon (LC) pools by changing bacterial community structure, while long-term (≥5 years) warming promotes the decomposition of recalcitrant C (RC) pools by increasing fungal biomass and decreasing actinobacterial biomass. Specifically, under short-term warming, significant increases in actinobacterial biomass (+15.9%) and the G+/G- ratio (+8.0%) were accompanied by an increase in carbon-degrading enzyme activities and a decrease in LC (-5.9%). Under long-term warming, the fungal biomass (+20.4%) and related POX (phenol oxidase) activity (+34.9%) increased significantly, while actinobacterial biomass (-20.1%), RC (-18.8%) and SOC (-6.7%) decreased. Meanwhile, we observed that warming impacts on soil microbial communities can be predicted by ecosystem type, the magnitude of warming, pH and elevation. Latitude and warming duration contributed the most to explaining the responses of LC and RC, respectively, across studies. Given that RC accounts for a substantial fraction of global soil C pools, the decline in RC pools greatly contributes to soil C degradation. Our findings suggest that different microbial groups may mediate the temporal dynamics of the decomposition of different soil C components and highlight that incorporating the temporal responses of soil microorganisms will improve predictions of the long-term dynamics of soil C pools in a warmer world.
Collapse
Affiliation(s)
- Hui Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Jinquan Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongyang Chen
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Hao Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
31
|
Yang L, Niu S, Tian D, Zhang C, Liu W, Yu Z, Yan T, Yang W, Zhao X, Wang J. A global synthesis reveals increases in soil greenhouse gas emissions under forest thinning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150225. [PMID: 34798746 DOI: 10.1016/j.scitotenv.2021.150225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/22/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Forest thinning is a major forest management practice worldwide and may lead to profound alterations in the fluxes of soil greenhouse gases (GHGs). However, the global patterns and underlying mechanisms of soil GHG fluxes in response to forest thinning remain poorly understood. Here, we conducted a global meta-analysis of 106 studies to assess the effects of forest thinning on soil GHG fluxes and the underpinning mechanisms. The results showed that forest thinning significantly increased soil CO2 emission (mean lnRR: 0.07, 95% CI: 0.03-0.11), N2O emission (mean lnRR: 0.39, 95% CI: 0.16-0.61) and decreased CH4 uptake (mean Hedges' d: 0.98, 95% CI: 0.32-1.64). Furthermore, the negative response of soil CH4 uptake was amplified by thinning intensity, and the positive response of soil N2O emission decreased with recovery time after thinning. The response of soil CO2 emission was mainly correlated with changes in fine root biomass and soil nitrogen content, and the response of soil CH4 uptake was related to the changes in soil moisture and litterfall. Moreover, the response of soil N2O emission was associated with changes in soil temperature and soil nitrate nitrogen content. Thinning also increased the total balance of the three greenhouse gas fluxes in combination, which decreased with recovery time. Our findings highlight that thinning significantly increases soil GHG emissions, which is crucial to understanding and predicting ecosystem-climate feedbacks in managed forests.
Collapse
Affiliation(s)
- Lu Yang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunyu Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Weiguo Liu
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Zhen Yu
- Institute of Ecology, Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tao Yan
- Key Laboratory of Grassland and Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Wen Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiuhai Zhao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
32
|
Bebber DP. The gap between atmospheric nitrogen deposition experiments and reality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149774. [PMID: 34470727 DOI: 10.1016/j.scitotenv.2021.149774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic activities have dramatically altered the global nitrogen (N) cycle. Atmospheric N deposition, primarily from combustion of biomass and fossil fuels, has caused acidification of precipitation and freshwater, and triggered intense research into ecosystem responses to this pollutant. Experimental simulations of N deposition have been the main scientific tool to understand ecosystem responses, revealing dramatic impacts on soil microbes, plants, and higher trophic levels. However, comparison of the experimental treatments applied in the vast majority of studies with observational and modelled N deposition reveals a wide gulf between research and reality. While the majority of experimental treatments exceed 100 kg N ha-1 y-1, global median land surface deposition rates are around 1 kg N ha-1 y-1 and only exceed 10 kg N ha-1 y-1 in certain regions, primarily in industrialized areas of Europe and Asia and particularly in forests. Experimental N deposition treatments are in fact similar to mineral fertilizer application rates in agriculture. Some ecological guilds, such as saprotrophic fungi, are highly sensitive to N and respond differently to low and high N availability. In addition, very high levels of N application cause changes in soil chemistry, such as acidification, meaning that unrealistic experimental treatments are unlikely to reveal true ecosystem responses to N. Hence, despite decades of research, past experiments can tell us little about how the biosphere has responded to anthropogenic N deposition. A new approach is required to improve our understanding of this important phenomenon. First, characterization of N response functions using observed N deposition gradients. Second, application of experimental N addition gradients at realistic levels over long periods to detect cumulative effects. Third, application of non-linear meta-regressions to detect non-linear responses in meta-analyses of experimental studies.
Collapse
Affiliation(s)
- Daniel P Bebber
- Department of Biosciences, University of Exeter, Exeter, UK.
| |
Collapse
|
33
|
Wang F, Tang J, Li Z, Xiang J, Wang L, Tian L, Jiang L, Luo Y, Hou E, Shao X. Warming reduces the production of a major annual forage crop on the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149211. [PMID: 34375235 DOI: 10.1016/j.scitotenv.2021.149211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/03/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Climate warming has been proposed to increase primary production of natural grasslands in cold regions. However, how climate warming affects the production of artificial pastures in cold regions remains unknown. To address this question, we used open-top chambers to simulate warming in a major artificial pasture (forage oat) on the cold Tibetan Plateau for three consecutive years. Surprisingly, climate warming decreased aboveground and belowground biomass production by 23.1%-44.8% and 35.0%-46.5%, respectively, without a significant impact on their ratio. The adverse effects on biomass production could be attributed to the adverse effects of high-temperatures on leaf photosynthesis through increases in water vapor pressure deficit (by 0.05-0.10 kPa), damages to the leaf oxidant system, as indicated by a 46.6% increase in leaf malondialdehyde content, as well as reductions in growth duration (by 4.7-6.7 days). The adverse effects were also related to exacerbated phosphorus limitation, as indicated by decreases in soil available phosphorus and plant phosphorus concentrations by 31.9%-40.7% and 14.3%-49.4%, respectively, and increases in the plant nitrogen: phosphorus ratio by 19.2%-108.3%. The decrease in soil available phosphorus concentration could be attributed to reductions in soil phosphatase activities (by 9.6%-18.5%). The findings of this study suggest an urgent need to advance agronomic techniques and cultivate more resilient forage genotypes to meet the increasing demand of forage for feeding livestock and to reduce grazing damage to natural grasslands on the warming-sensitive Tibetan Plateau.
Collapse
Affiliation(s)
- Fuqiang Wang
- College of Resources and Environmental Sciences, Key Laboratory of Biodiversity and Organic Agricultural, China Agricultural University, Beijing, China
| | - Jiwang Tang
- College of Resources and Environmental Sciences, Key Laboratory of Biodiversity and Organic Agricultural, China Agricultural University, Beijing, China
| | - Zhaolei Li
- College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jie Xiang
- College of Resources and Environmental Sciences, Key Laboratory of Biodiversity and Organic Agricultural, China Agricultural University, Beijing, China
| | - Liwei Wang
- College of Resources and Environmental Sciences, Key Laboratory of Biodiversity and Organic Agricultural, China Agricultural University, Beijing, China
| | - Li Tian
- College of Resources and Environmental Sciences, Key Laboratory of Biodiversity and Organic Agricultural, China Agricultural University, Beijing, China
| | - Lifen Jiang
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, USA
| | - Yiqi Luo
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, USA
| | - Enqing Hou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Xiaoming Shao
- College of Resources and Environmental Sciences, Key Laboratory of Biodiversity and Organic Agricultural, China Agricultural University, Beijing, China; Engineering and Technology Research Center for Prataculture on the Xizang Plateau, Lhasa, China.
| |
Collapse
|
34
|
Xie H, Li J, Zhang Y, Xu X, Wang L, Ouyang Z. Evaluation of coastal farming under salinization and optimized fertilization strategies in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149038. [PMID: 34298367 DOI: 10.1016/j.scitotenv.2021.149038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/10/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen (N) application and salinity are key factors influencing crop yield and net economic benefit in coastal saline-alkali soils. Integrated analysis and optimization of the benefits of wheat-corn cropping under different nitrogen applications in saline soils could provide lay the scientific basis for sustainable development of agriculture in coastal farmlands. A total of 571 pair-reviewed literature data on two-factor cross-over trials, involving soil salinity and nitrogen application, were integratively analyzed. Based on multi-objective optimization of crop yield, agronomic and net economic benefits, and soil nitrate residue in coastal saline-alkali soils, area-specific nitrogen application strategies were developed. The results showed that increasing the N application rate under 1.8-2.9‰ salinity can increase crop yield and economic benefits. The net economic benefit of crops was negative under 3.5‰ salinity. Above that threshold of 3.5‰, it is not suitable for planting food crops. Consequently, it is necessary to strengthen the management of saline-alkali soils. While the application rate of 2.78 × 108 kg N in winter wheat/summer corn cropping ensured environmental protection, farmers preferred 3.08 × 108 kg of nitrogen dose. These were respectively 40.4% and 33.9% lower than the traditional dose and with relatively higher benefits too.
Collapse
Affiliation(s)
- Hanyou Xie
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yitao Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbo Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; UN Environment-International Ecosystem Management Partnership (UNEP-IEMP), Beijing 100101, China
| | - Lingqing Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhu Ouyang
- Yellow River Delta Modern Agricultural Engineering Laboratory, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
35
|
Bayranvand M, Akbarinia M, Salehi Jouzani G, Gharechahi J, Baldrian P. Distribution of Soil Extracellular Enzymatic, Microbial, and Biological Functions in the C and N-Cycle Pathways Along a Forest Altitudinal Gradient. Front Microbiol 2021; 12:660603. [PMID: 34539590 PMCID: PMC8447401 DOI: 10.3389/fmicb.2021.660603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/23/2021] [Indexed: 11/23/2022] Open
Abstract
The diverse chemical, biological, and microbial properties of litter and organic matter (OM) in forest soil along an altitudinal gradient are potentially important for nutrient cycling. In the present study, we sought to evaluate soil chemical, biological, microbial, and enzymatic characteristics at four altitude levels (0, 500, 1,000, and 1,500 m) in northern Iran to characterize nutrient cycling in forest soils. The results showed that carbon (C) and nitrogen (N) turnover changed with altitude along with microbial properties and enzyme activity. At the lowest altitude with mixed forest and no beech trees, the higher content of N in litter and soil, higher pH and microbial biomass nitrogen (MBN), and the greater activities of aminopeptidases affected soil N cycling. At elevations above 1,000 m, where beech is the dominant tree species, the higher activities of cellobiohydrolase, arylsulfatase, β-xylosidase, β-galactosidase, endoglucanase, endoxylanase, and manganese peroxidase (MnP) coincided with higher basal respiration (BR), substrate-induced respiration (SIR), and microbial biomass carbon (MBC) and thus favored conditions for microbial entropy and C turnover. The low N content and high C/N ratio at 500-m altitude were associated with the lowest microbial and enzyme activities. Our results support the view that the plain forest with mixed trees (without beech) had higher litter quality and soil fertility, while forest dominated by beech trees had the potential to store higher C and can potentially better mitigate global warming.
Collapse
Affiliation(s)
- Mohammad Bayranvand
- Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran.,Laboratory of Environmental Microbiology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| | - Moslem Akbarinia
- Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gholamreza Salehi Jouzani
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Javad Gharechahi
- Human Genetics Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
36
|
Long-term warming and nitrogen fertilization affect C-, N- and P-acquiring hydrolase and oxidase activities in winter wheat monocropping soil. Sci Rep 2021; 11:18542. [PMID: 34535700 PMCID: PMC8448830 DOI: 10.1038/s41598-021-97231-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
The enzymatic activities and ratios are critical indicators for organic matter decomposition and provide potentially positive feedback to carbon (C) loss under global warming. For agricultural soils under climate change, the effect of long-term warming on the activities of oxidases and hydrolases targeting C, nitrogen (N) and phosphorus (P) and their ratios is unclear, as well as whether and to what extend the response is modulated by long-term fertilization. A 9-year field experiment in the North China Plain, including an untreated control, warming, N fertilization, and combined (WN) treatment plots, compared the factorial effect of warming and fertilization. Long-term warming interacted with fertilization to stimulate the highest activities of C, N, and P hydrolases. Activities of C and P hydrolase increased from 8 to 69% by N fertilization, 9 to 53% by warming, and 28 to 130% by WN treatment compared to control, whereas the activities of oxidase increased from 4 to 16% in the WN soils. Both the warming and the WN treatments significantly increased the enzymatic C:N ratio from 0.06 to 0.16 and the vector length from 0.04 to 0.12 compared to the control soil, indicating higher energy and resource limitation for the soil microorganisms. Compared to WN, the warming induced similar ratio of oxidase to C hydrolase, showing a comparable ability of different microbial communities to utilize lignin substrates. The relationship analyses showed mineralization of organic N to mediate the decomposition of lignin and enzyme ratio in the long-term warming soil, while N and P hydrolases cooperatively benefited to induce more oxidase productions in the soil subject to both warming and N fertilization. We conclude that coupled resource limitations induced microbial acclimation to long-term warming in the agricultural soils experiencing high N fertilizer inputs.
Collapse
|
37
|
D'Alò F, Odriozola I, Baldrian P, Zucconi L, Ripa C, Cannone N, Malfasi F, Brancaleoni L, Onofri S. Microbial activity in alpine soils under climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147012. [PMID: 33872894 DOI: 10.1016/j.scitotenv.2021.147012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/05/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Soil enzymatic activity was assessed in the Stelvio Pass area (Italian Central Alps) aiming to define the possible effects of climate change on microbial functioning. Two sites at two different elevations were chosen, a subalpine (2239 m) and an alpine belt (2604-2624 m), with mean annual air temperature differing by almost 3 °C, coherent with the worst future warming scenario (RCP 8.5) by 2100. The lower altitude site may represent a proxy of the potential future situation at higher altitude after the upward shift of subalpine vegetation due to climate change. Additionally, hexagonal open top chambers (OTCs) were installed at the upper site, to passively increase by about 2 °C the summer inner temperature to simulate short term effects of warming before the vegetation shift takes place. Soil physicochemical properties and the bacterial and fungal abundances of the above samples were also considered. The subalpine soils showed a higher microbial activity, especially for hydrolytic enzymes, higher carbon, ammonium and hydrogen (p < 0.001) contents, and a slightly higher PO4 content (p < 0.05) than alpine soils. Bacterial abundance was higher than fungal abundance, both for alpine and subalpine soils. On the other hand, the short term effect, which increased the mean soil temperature during the peak of the growing season in the OTC, showed to induce scarcely significant differences for edaphic parameters and microbial biomass content among the warmed and control plots. Using the manipulative warming experiments, we demonstrated that warming is able to change the enzyme activity starting from colder and higher altitude sites, known to be more vulnerable to the rising temperatures associated with climate change. Although five-years of experimental warming does not allow us to make bold conclusions, it appeared that warming-induced upwards vegetation shift might induce more substantial changes in enzymatic activities than the short-term effects, in the present vegetation context.
Collapse
Affiliation(s)
- Federica D'Alò
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy.
| | - Iñaki Odriozola
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Praha 4, Czech Republic.
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Praha 4, Czech Republic.
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy.
| | - Caterina Ripa
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy.
| | - Nicoletta Cannone
- Department of Science and High Technology, Insubria University, Via Valleggio 11, 21100 Como, CO, Italy.
| | - Francesco Malfasi
- Department of Science and High Technology, Insubria University, Via Valleggio 11, 21100 Como, CO, Italy.
| | - Lisa Brancaleoni
- Botanical Garden, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy.
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy.
| |
Collapse
|
38
|
Zuo Y, Zhang H, Li J, Yao X, Chen X, Zeng H, Wang W. The effect of soil depth on temperature sensitivity of extracellular enzyme activity decreased with elevation: Evidence from mountain grassland belts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146136. [PMID: 33684769 DOI: 10.1016/j.scitotenv.2021.146136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Temperature sensitivity of soil extracellular enzyme activity (EEA), indicated by the temperature coefficient Q10, is used to predict the effect of temperature on soil carbon (C), nitrogen (N), and phosphorus (P) cycling. At present, we lack understanding of elevation and soil depth variations in Q10 of EEA. Here, we measured the Q10 of three enzymes participating in C- (β-1,4-glucosidase, BG), N- (leucine aminopeptidase, LAP), and P- (acid phosphatase, AP) cycling along a vertical grassland belt of China. Soils from five depths (0-10, 10-20, 20-40, 40-60, and 60-100 cm) were sampled from three elevations (low, <1000 m; middle, 1000-2000 m; high, 2000-3000 m) and incubated at four temperatures (5, 15, 25, 35 °C). The average Q10 of soil EEA ranged from 0.97 to 1.11 and the Q10 of LAP was higher than that of BG and AP. Generally, the Q10 of BG and LAP both increased from low to middle elevation and then decreased, while the Q10 of AP was stable. Moreover, the effect of soil depth on Q10 of EEA was weakened from low elevation to high elevation, and the factors driving Q10 of soil EEA changed with elevation. This study improved the understanding of the vertical pattern of Q10 of soil EEA in water-limited ecosystems, and highlighted that elevation could regulate the effect of soil depth on Q10 of EEA.
Collapse
Affiliation(s)
- Yiping Zuo
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China; Peking University Shenzhen Graduate School, Shenzhen University Town, Shenzhen 518055, China
| | - Hongjin Zhang
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Jianping Li
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Xiaodong Yao
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China; Peking University Shenzhen Graduate School, Shenzhen University Town, Shenzhen 518055, China
| | - Xinyue Chen
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Hui Zeng
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China; Peking University Shenzhen Graduate School, Shenzhen University Town, Shenzhen 518055, China
| | - Wei Wang
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China.
| |
Collapse
|
39
|
Zuccarini P, Asensio D, Ogaya R, Sardans J, Peñuelas J. Effects of seasonal and decadal warming on soil enzymatic activity in a P-deficient Mediterranean shrubland. GLOBAL CHANGE BIOLOGY 2020; 26:3698-3714. [PMID: 32159881 DOI: 10.1111/gcb.15077] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/26/2020] [Indexed: 05/26/2023]
Abstract
Soil enzymes are central in the response of terrestrial ecosystems to climate change, and their study can be crucial for the models' implementation. We investigated for 1 year the effects of warming and seasonality on the potential activities of five soil extracellular enzymes and their relationships with soil moisture, phosphorus (P) concentration, and other soil parameters in a P-limited Mediterranean semiarid shrubland. The site was continuously subjected to warming since 1999, and we compared data from this study to analogous data from 2004. Warming uniformly increased all enzymes activities, but only when a sufficient amount of soil water was available. Seasonality unevenly altered enzyme activities, thus affecting enzymatic stoichiometry. P deficiency affected enzymatic stoichiometry, favoring the activities of the phosphatases. The effect of warming was stronger in 2014 than 2004, excluding the hypothesis of acclimation of rhizospheric responses to higher temperatures and suggesting that further increases in extracellular enzymatic activities are to be expected if sufficient water is available. Climatic warming will likely generally stimulate soil enzymatic activities and accelerate nutrient mineralization and similar ecological processes such as the production and degradation of biomass and changes in community composition, but which will be limited by water availability, especially in Mediterranean soils in summer. Winters in such ecosystems will benefit from a general increase in activity and production, but biological activity could even decrease in summer, potentially leading to a negative overall balance of nutrient mineralization. This study suggests that a general increase in activity due to warming could lead to faster mineralization of soil organic matter and water consumption in colder climates, until one of these factors in turn becomes limiting. Such trade-offs between water and temperature in relation with enzyme activity should be considered in biogeochemical models.
Collapse
Affiliation(s)
- Paolo Zuccarini
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Vallès, Spain
| | - Dolores Asensio
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Vallès, Spain
| | - Romà Ogaya
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Vallès, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Vallès, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Vallès, Spain
| |
Collapse
|