1
|
Yang L, Yang W, Li Q, Zhao Z, Zhou H, Wu P. Microplastics in Agricultural Soils: Sources, Fate, and Interactions with Other Contaminants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12548-12562. [PMID: 40377166 DOI: 10.1021/acs.jafc.5c03682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Microplastics (MPs) are recognized as emerging soil contaminants. However, the potential risks of MPs to agroecosystems have not been fully revealed, especially the compound toxic effects of MPs with co-existing organic or inorganic pollutants (OPs/IPs) in agricultural fields. In this study, we quantified the contributions of different agronomic practices to the sources of MPs in soil and highlighted the important influences of long-term tillage and fertilization on the migration and aging of MPs in agricultural fields. In addition, the antagonistic and synergistic interactions between MPs and OPs/IPs in soil were explored. We emphasized that the degree of adsorption of MPs and soil particles to OPs/IPs is a key determinant of the co-toxicity of those contaminants in soil. Finally, several directions for future research are proposed, and these knowledge gaps provide an important basis for understanding the contamination process of MPs in agricultural soils.
Collapse
Affiliation(s)
- Liyu Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wentao Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Qihang Li
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Zhenjie Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Pan Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Zhang W, Wang W, Yao Z, Zhang T, Jiao H, Wang H. Leaching-driven transformations of tire wear particles (TWPs): Uncovering the neglected environmental implications. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138529. [PMID: 40359750 DOI: 10.1016/j.jhazmat.2025.138529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025]
Abstract
Extensive research has been conducted on the leaching behavior and risks of the leachate of tire wear particles (TWPs) in aquatic environments. However, the leaching-driven transformations of TWPs and the subsequent environmental impacts have been largely overlooked. This work examines the changes in physicochemical properties of TWPs during leaching in several water bodies, thereby facilitating a more thorough assessment of the environmental impacts. The results revealed that the environmental behavior related properties of TWPs, including surface morphology, pores, contact angel, zeta potential, functional groups, and surface adsorption sites varied at different levels during leaching. The ionic strength and organic matter content of water body highly determine the above transformations. The carbon index (CI) and O/C ratio of TWPs increased by 55.40 % and 14.27 % after leached in the water for 30 days, while the adsorption capacity of the TWPs for tetracycline (TC) and oxytetracycline (OTC) decreased by 27 % and 24.63 %, respectively. Herein, the changes in the functional groups and polarity during leaching highly influenced the adsorption performance of leached-TWPs. This study provides novel insight into understanding the leaching behavior of TWPs in aquatic environments and highlights an urgent need to assess the environmental implications of leaching-driven transformations of TWPs.
Collapse
Affiliation(s)
- Wenlong Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Weixue Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Zhimin Yao
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Tengyue Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Huifeng Jiao
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China.
| |
Collapse
|
3
|
Dai H, Zhong Y, Xiang S, Dong S, Chen S. Biofilm colonization on non-degradable and degradable microplastics change the adsorption of Cu(II) and facilitate the dominance of pathogenic microbes. ENVIRONMENTAL RESEARCH 2025; 272:121169. [PMID: 39978626 DOI: 10.1016/j.envres.2025.121169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/22/2025]
Abstract
Microplastics (MPs) have become a global concern as they can accumulate pollutants in aquatic environments. In this research, Cu(II) and non-degradable (polyamide, PA), degradable (polylactic acid, PLA) MPs were employed to reveal the potential connection among different aged MPs and heavy metal pollutants. The aging processes of MPs induced alterations in the surface morphologies, led to an augmentation of the specific surface area, and formed more biofilm and oxygen-containing groups on the MPs surface. The Qe of PA and PLA MPs increased from 0.102 to 0.989 to 1.192 and 2.457 mg/g after aging, respectively. The analysis of site energy distribution further verified that the enhanced adsorption capacity resulted from more high-energy adsorption sites obtained during the aging processes of MPs. Moreover, pathogenic bacteria and resistant bacteria were accumulated on the surface of MPs regardless of the aging environment, and the abundance and diversity of pathogenic bacteria on the biofilm of the PA surface were greater than those on the PLA MPs. This research offers an insight into the mechanism underlying microbial colonization and adsorption in the relationship between MPs and Cu(II), which is beneficial for judging the enrichment of heavy metals on MPs within the aquatic environment.
Collapse
Affiliation(s)
- Huihui Dai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Sch Environm & Chem Engn, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yingying Zhong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Sch Environm & Chem Engn, Nanchang Hangkong University, Nanchang, 330063, China
| | - Shuyu Xiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Sch Environm & Chem Engn, Nanchang Hangkong University, Nanchang, 330063, China
| | - Shanshan Dong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Sch Environm & Chem Engn, Nanchang Hangkong University, Nanchang, 330063, China
| | - Suhua Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Sch Environm & Chem Engn, Nanchang Hangkong University, Nanchang, 330063, China.
| |
Collapse
|
4
|
Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F, Garcia BDG. Unraveling microplastic behavior in simulated digestion: Methods, insights, and standardization. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138340. [PMID: 40273860 DOI: 10.1016/j.jhazmat.2025.138340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Despite the rapid expansion of in vitro digestion studies on microplastics (MPs), the field remains fragmented due to inconsistent methodologies, varying analytical approaches, and a lack of standardized protocols. These discrepancies hinder cross-study comparisons, complicate risk assessments, and limit the applicability of in vitro models for understanding MP fate and pollutant interactions in the gastrointestinal environment. A comprehensive synthesis is needed to assess progress, identify research gaps, and establish a unified research direction. This review systematically evaluates 85 studies (2020-2024), consolidating key findings and methodological challenges. It examines disparities in digestion protocols, fluid compositions, and exposure conditions, assessing how factors such as pH, enzyme activity, residence time, and temperature shape MPs' behavior and physicochemical transformations. Key findings on bio-corona formation, structural modifications, contaminant bioaccessibility, and interactions with digestive enzymes are synthesized to provide a clearer picture of MP behavior during digestion. With the field remains dominated by studies on polystyrene and polyethylene MPs in human-based models, inconsistencies persist, highlighting the urgent need for standardized methodologies. By addressing these gaps, this review lays a critical foundation for improving reproducibility, advancing standardization efforts, and strengthening exposure assessments, ultimately enhancing our understanding of MP ingestion risks to human health.
Collapse
Affiliation(s)
- Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico; CIITEC - IPN. Centro de Investigación e Innovación Tecnológica, Cda. de Cecati s/n, Santa Catarina, Azcapotzalco, Ciudad de México 02250, Mexico.
| | - V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico.
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico
| | - Berenice Dafne Garcia Garcia
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico
| |
Collapse
|
5
|
Yang Z, Arakawa H. Converting carbonyl index values in microplastics studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 973:179182. [PMID: 40121911 DOI: 10.1016/j.scitotenv.2025.179182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
The variability in carbonyl index (CI) calculation methods among studies has made direct comparison of CI values challenging. To address this, we developed a CI conversion methodology that enables the unification of CI values across studies. Using spectra data from environmental microplastic samples, a polynomial regression model was developed to convert predictor CI values into a target CI. The optimal model order was determined through five-fold cross-validation, which also demonstrated the model's ability to explain 36 %-84 % of the variance depending on the predictor CI method. The developed model was further applied to convert average CI values from different studies in coastal regions around Japan. Results revealed that microplastics in the southeast coastal regions of Japan are more oxidized than those in the west coastal regions, likely due to differences in environmental exposure and retention time. The developed methodology is also adaptable to CI calculation methods not explicitly covered in this study.
Collapse
Affiliation(s)
- Zijiang Yang
- Faculty of Marine Resources and Environment, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan.
| | - Hisayuki Arakawa
- Faculty of Marine Resources and Environment, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan.
| |
Collapse
|
6
|
Li M, Zhao Z, Zhao Z, Li M. Review of Techniques for the Detection, Removal, and Transformation of Environmental Microplastics and Nanoplastics. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20560-20589. [PMID: 40152077 DOI: 10.1021/acsami.5c02306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Plastic residues have emerged as a significant challenge in the environmental sector. Microplastics, which are plastic fragments smaller than 5 mm, have the ability to disperse through the atmosphere, oceans, and land, posing a serious threat to human health by accumulating in the food chain. However, their minuscule size makes it difficult to effectively remove them from the environment using the current technologies. This work provides a comprehensive overview of recent advancements in microplastic detection and removal technologies. For detection methods, we discuss commonly used techniques such as microscopic analysis, thermal analysis, mass spectrometry, spectroscopic analysis, and energy spectrometry. We also emphasize the importance of integrating various analytical and data-processing techniques to achieve efficient and nondestructive detection of microplastics. In terms of removal strategies, we explored innovative methods and technologies for extracting microplastics from the environment. These include physical techniques like filtration, adsorption, and magnetic separation; chemical techniques such as coagulation-flocculation-sedimentation and photocatalytic conversion; and bioseparation methods such as activated sludge and biodegradation. We also highlight the promising potential for converting microplastic contaminants into high-value chemicals. Additionally, we identify current technical challenges and suggest future research directions for the detection and removal of microplastics. We advocate for the development of unified and standardized analytical methods to guide further research on the removal and transformation of microplastics.
Collapse
Affiliation(s)
- Miao Li
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongxing Zhao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhenxia Zhao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Min Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Huang J, Liu Y, Xie H, Liu X, Feng Y, Wang B. Soil nitrogen deficiency aggravated the aging of biodegradable microplastics in paddy soil under the input of organic substances with contrasting C/N ratios. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137176. [PMID: 39813929 DOI: 10.1016/j.jhazmat.2025.137176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
The application of organic substances to the agricultural field has effectively enhanced soil nutrient levels and crop yields. Biodegradable microplastics (bio-MPs), a pervasive emerging contaminant, may potentially impact the soil ecosystem through their aging process. Here, a 150-day dark incubation experiment was conducted to elucidate the disparities in the aging process of polylactic acid bio-MPs (PLA-MPs) in soils with contrasting C/N ratios of organic substances, as the mechanisms underlying this process remain unclear. The study found that PLA-MPs resulted in an increase in soil pH, nutrient levels, and organic carbon content in soil-straw system. Additionally, PLA-MPs significantly influenced bacterial community composition and microbial metabolic activity in soil-straw system. Notably, more pronounced aging features of PLA-MPs was observed in soil-straw system (lower soil nitrogen environment) compared to soil-fertilizer system (higher soil nitrogen environment). Under lower soil nitrogen conditions, microorganisms may accelerate the aging process of PLA-MPs due to their preference for readily available energy sources; conversely, under higher soil nitrogen conditions, the aging of PLA-MPs may be decelerated as microorganisms preferentially utilize substances with easily accessible energy sources. Our findings provide valuable insights into the interaction between PLA-MPs and soil amended with the organic substances of contrasting C/N ratios.
Collapse
Affiliation(s)
- Junxia Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yidan Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaobo Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
8
|
Meacci S, Corsi L, Santecchia E, Ruschioni S. Harnessing Electrostatic Forces: A Review of Bees as Bioindicators for Particulate Matter Detection. INSECTS 2025; 16:373. [PMID: 40332917 PMCID: PMC12027818 DOI: 10.3390/insects16040373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 05/08/2025]
Abstract
Bees (Hymenoptera, Anthophila) are widely recognized for their essential ecological roles, including pollination and biodiversity maintenance. Recently, their ability to collect environmental particulate matter through electrostatic forces has been explored for biomonitoring purposes. This review integrates knowledge on electrostatic pollen adhesion with emerging insights into particulate matter adhesion to bees, emphasizing their potential as bioindicators. The mechanisms of electrostatic adhesion, influenced by factors such as the physicochemical properties of particulate matter and bee morphology, are discussed in detail. Additionally, the study evaluates the adhesion efficiency of pollutants, including heavy metals, microplastics, nanoplastics, pathogens, pesticides, radionuclides, and volatile organic compounds. This multidisciplinary approach underscores the role of bees in advancing environmental monitoring methodologies and offers innovative tools for assessing ecosystem health while addressing the drivers of bee decline.
Collapse
Affiliation(s)
- Simone Meacci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (S.M.); (L.C.)
| | - Lorenzo Corsi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (S.M.); (L.C.)
| | - Eleonora Santecchia
- Department of Industrial Engineering and Mathematical Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Sara Ruschioni
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (S.M.); (L.C.)
| |
Collapse
|
9
|
Mostefaoui O, Iannuzzi Z, Lopez D, Mignot E, Lipeme-Kouyi G, Bayard R, Massardier-Nageotte V, Mourier B. Quantitative study of microplastic degradation in urban hydrosystems: Comparing in situ environmentally aged microplastics vs. artificially aged materials generated via accelerated photo-oxidation. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137087. [PMID: 39787857 DOI: 10.1016/j.jhazmat.2024.137087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/27/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
The degradation of plastic waste is a major research challenge due to the adverse impacts of microplastic weathering on the environment and ecosystems. As a major source of plastic contamination comes from urban hydrosystems, studying MP degradation prior to their environmental dissemination is crucial. Through a combination of field sampling and laboratory experiments, this study provides a thorough statistical degradation comparison analysis between polyethylene in situ environmentally aged microplastics and artificially aged films. In the laboratory, pristine nonadditivated low-density polyethylene films were exposed to controlled ultraviolet (UV) radiation to simulate aging for various durations. Firstly, the study aims to assess the representativeness of controlled UV degradation to mimic urban in situ MPs. The second goal is to identify polyethylene (PE) degradation characteristics in various environmental matrices such as stormwater, suspended solids and sediment samples from a stormwater detention basin in a large urban area in France. Artificially aged plastics exhibit distinct alterations in physical and chemical properties, corresponding solely to the abiotic degradation observed in situ. In contrast, environmental particles display notable markers of biotic chemical degradation and hydrolysis. Moreover, the degradation environment varies significantly: it is predominantly abiotic for MPs collected in stormwater samples, while it is largely biotic for MPs collected in sediment and suspended solid samples. Besides, MPs from stormwater and suspended solid samples show a higher degree of hydrolysis degradation. Finally, additional comparisons with common consumer materials, before and after use, show almost no signs of notable degradation compared to the environmentally and artificially aged materials considered in this study.
Collapse
Affiliation(s)
- Okba Mostefaoui
- INSA Lyon, CNRS, Ecole Centrale de Lyon, Universite Claude Bernard Lyon 1, LMFA, UMR5509, 69621, Villeurbanne France; Universite Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne Cédex, France
| | - Zoé Iannuzzi
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69518, Vaulx-en-Velin, France; INSA Lyon, DEEP, UR7429, Villeurbanne 69621, France.
| | - Diego Lopez
- INSA Lyon, CNRS, Ecole Centrale de Lyon, Universite Claude Bernard Lyon 1, LMFA, UMR5509, 69621, Villeurbanne France
| | - Emmanuel Mignot
- INSA Lyon, CNRS, Ecole Centrale de Lyon, Universite Claude Bernard Lyon 1, LMFA, UMR5509, 69621, Villeurbanne France
| | | | - Rémy Bayard
- INSA Lyon, DEEP, UR7429, Villeurbanne 69621, France
| | - Valérie Massardier-Nageotte
- Universite Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne Cédex, France
| | - Brice Mourier
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69518, Vaulx-en-Velin, France
| |
Collapse
|
10
|
Li M, Cao Y, Yang X, He J, Zhou H, Zhan J, Zhang X. Response of wastewater treatment performance and bacterial community to original and aged polyvinyl chloride microplastics in sequencing batch reactors. BIORESOURCE TECHNOLOGY 2025; 419:132044. [PMID: 39778683 DOI: 10.1016/j.biortech.2025.132044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Microplastics (MPs) are prevalent in wastewater treatment systems, and their behavior is further complicated after undergoing aging processes. This study explored the impact of original and aged polyvinyl chloride (PVC) MPs on wastewater treatment performance and bacterial communities. Results revealed that Fenton-aging treatment induced surface roughening of the MPs and altered their chemical properties. Prolonged exposure to original and aged PVC MPs severely inhibited the removal of chemical oxygen demand and NH4+-N, along with lower sludge concentrations. Additionally, PVC MPs increased the production of loosely-bound extracellular polymeric substances (EPS) and decreased protein levels in tightly-bound fractions. The presence of PVC MPs also shifted the bacterial community, reducing nitrogen removal bacteria while enriching EPS-forming bacteria. Furthermore, exposure to PVC MPs led to a decrease in the abundance of key genes involved in nitrogen metabolism. These findings offer insights into the effects of MPs, especially aged variants, on wastewater treatment processes.
Collapse
Affiliation(s)
- Menglong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Yizhen Cao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xiaojing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Jiawei He
- Ecological and Environmental Protection Service Center of Panjin, Panjin 124000, China
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xuwang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
11
|
Wu X, He F, Xu X, Wu L, Rong J, Lin S. Environmental Health and Safety Implications of the Interplay Between Microplastics and the Residing Biofilm. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:118-132. [PMID: 40012871 PMCID: PMC11851218 DOI: 10.1021/envhealth.4c00148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 02/28/2025]
Abstract
The increasing prevalence of microplastics in the environment has raised concerns about their potential environmental and health implications. Biofilms readily colonize microplastics upon their entry into the environment, altering their surface characteristics. While most studies have explored how biofilms influence the adsorption and transportation of other contaminants by microplastics, the reciprocal interplay between microplastics and biofilms and the resulting ecological risks remain understudied. This review comprehensively reviews the impact of microplastic properties on biofilm formation and composition, including the microbial community structure. We then explore the dynamic interactions between microplastics and biofilms, examining how biofilms alter the physicochemical properties, migration, and deposition of microplastics. Furthermore, we emphasize the potential of biofilm-colonized microplastics to influence the environmental fate of other pollutants. Lastly, we discuss how biofilm-microplastic interactions may modify the bioavailability, biotoxicity, and potential health implications of microplastics.
Collapse
Affiliation(s)
- Xiaohan Wu
- College
of Environmental Science and Engineering, Biomedical Multidisciplinary
Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological
Security, Shanghai 200092, China
| | - Fei He
- College
of Environmental Science and Engineering, Biomedical Multidisciplinary
Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological
Security, Shanghai 200092, China
| | - Xueran Xu
- College
of Environmental Science and Engineering, Biomedical Multidisciplinary
Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological
Security, Shanghai 200092, China
| | - Leilei Wu
- College
of Environmental Science and Engineering, Biomedical Multidisciplinary
Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological
Security, Shanghai 200092, China
| | - Jinyu Rong
- College
of Environmental Science and Engineering, Biomedical Multidisciplinary
Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological
Security, Shanghai 200092, China
| | - Sijie Lin
- College
of Environmental Science and Engineering, Biomedical Multidisciplinary
Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological
Security, Shanghai 200092, China
| |
Collapse
|
12
|
Zink L, Morris C, Wood CM. Pulse exposure to microplastics depolarizes the goldfish gill: Interactive effects of DOC and differential degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125434. [PMID: 39622408 DOI: 10.1016/j.envpol.2024.125434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Microplastics (MPs) are constantly degrading while moving through aquatic systems as a result of mechanical abrasion, thermal fluctuations, UV light, and chemical exposure. As such, fish may experience pulse exposures to differentially degraded plastics. This study addresses how pulse exposures, over the course of minutes, to differentially degraded microplastics alters a key ionoregulatory property of the goldfish gill. We used transepithelial potential (TEP) across the gills, a diffusion potential resulting from the differential permeability of cations versus anions, as a sensitive indicator of potential ionoregulatory effects. Virgin (non-degraded) MPs along with mechanically, UV, and thermally degraded plastics immediately depolarized the gills (less negative TEP), whereas chemically degraded MPs resulted in no change to TEP. To further explore the physicochemical interaction between the surface of the gill and MPs, combinations of MPs and a single source of dissolved organic carbon (DOC) were tested and revealed that the presence of DOC negated the effects of MPs at the gill regardless of whether DOC or MPs were introduced first. This study suggests that while MPs have the ability to cause ionoregulatory effects at the gill, the effects of ambient water quality, specifically the presence of DOC, are of greater influence.
Collapse
Affiliation(s)
- Lauren Zink
- Department of Zoology, University of British, Columbia, Canada.
| | - Carolyn Morris
- Department of Zoology, University of British, Columbia, Canada
| | - Chris M Wood
- Department of Zoology, University of British, Columbia, Canada
| |
Collapse
|
13
|
Baby MG, Gerritse J, Beltran-Sanahuja A, Wolter H, Rohais S, Romero-Sarmiento MF. Aging of plastics and microplastics in the environment: a review on influencing factors, quantification methods, challenges, and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1009-1042. [PMID: 39725849 DOI: 10.1007/s11356-024-35651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
The ubiquitous presence of fragmented plastic particles needs comprehensive understanding of its fate in the environment. The long-term persistence of microplastics (MPs) in the environment is a significant threat to the ecosystem. Even though various degradation mechanisms (physical, chemical, and biological) of commonly used plastics have been demonstrated, quantifying the degradation of MPs over time to predict the consequence of plastic littering and its persistence in the environment remains a challenge. Different advanced analytical techniques have been used to quantify the degradation of MPs by introducing various parameters such as bond indices, crystallinity, and carbon-oxygen ratio. However, a simple and widely accepted reliable methodology for comparing the environmental factors and their influence on the MP degradation has yet to be developed and validated. This paper reviews a section of relevant literature (n = 38) to synthesize an overview of methods implemented for the quantification of fragmentation and aging of MPs in natural and artificial environment. In addition, the inherent weakness and extrinsic factors affecting the degradation of MPs in the environment is discussed. Finally, it proposes challenges and future scope as guideline for research on MP degradation in the environment.
Collapse
Affiliation(s)
- Merin Grace Baby
- IFP Énergies Nouvelles (IFPEN), Direction Sciences de La Terre Et Technologies de L'Environnement, 1 Et 4 Avenue de Bois-Préau, 92852, Rueil-Malmaison Cedex, France.
| | - Jan Gerritse
- Deltares, Unit Subsurface and Groundwater Systems, Daltonlaan 600, 3584 BK, Utrecht, The Netherlands
| | - Ana Beltran-Sanahuja
- Analytical Chemistry, Nutrition & Food Sciences Department, University of Alicante, 03690, Alicante, Spain
| | - Helen Wolter
- The Ocean Cleanup, Coolsingel 6, 3011 AD, Rotterdam, The Netherlands
| | - Sébastien Rohais
- IFP Énergies Nouvelles (IFPEN), Direction Sciences de La Terre Et Technologies de L'Environnement, 1 Et 4 Avenue de Bois-Préau, 92852, Rueil-Malmaison Cedex, France
| | - Maria-Fernanda Romero-Sarmiento
- IFP Énergies Nouvelles (IFPEN), Direction Sciences de La Terre Et Technologies de L'Environnement, 1 Et 4 Avenue de Bois-Préau, 92852, Rueil-Malmaison Cedex, France
| |
Collapse
|
14
|
Masciarelli E, Casorri L, Di Luigi M, Beni C, Valentini M, Costantini E, Aielli L, Reale M. Microplastics in Agricultural Crops and Their Possible Impact on Farmers' Health: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 22:45. [PMID: 39857498 PMCID: PMC11765068 DOI: 10.3390/ijerph22010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025]
Abstract
The indiscriminate use of plastic products and their inappropriate management and disposal contribute to the increasing presence and accumulation of this material in all environmental zones. The chemical properties of plastics and their resistance to natural degradation lead over time to the production of microplastics (MPs) and nanoplastics, which are dispersed in soil, water, and air and can be absorbed by plants, including those grown for food. In agriculture, MPs can come from many sources (mulch film, tractor tires, compost, fertilizers, and pesticides). The possible effects of this type of pollution on living organisms, especially humans, increase the need to carry out studies to assess occupational exposure in agriculture. It would also be desirable to promote alternative materials to plastic and sustainable agronomic practices to protect the safety and health of agricultural workers.
Collapse
Affiliation(s)
- Eva Masciarelli
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, National Institute for Insurance Against Accidents at Work, Via R. Ferruzzi, 38/40, 00143 Rome, Italy; (E.M.); (L.C.)
| | - Laura Casorri
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, National Institute for Insurance Against Accidents at Work, Via R. Ferruzzi, 38/40, 00143 Rome, Italy; (E.M.); (L.C.)
| | - Marco Di Luigi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance Against Accidents at Work, Via di Fontana Candida, 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Claudio Beni
- Research Centre for Engineering and Agro-Food Processing, Council for Agricultural Research and Economics, Via della Pascolare, 16, Monterotondo, 00015 Rome, Italy;
| | - Massimiliano Valentini
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Via Ardeatina, 546, 00178 Rome, Italy;
| | - Erica Costantini
- Department Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (E.C.); (L.A.); (M.R.)
| | - Lisa Aielli
- Department Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (E.C.); (L.A.); (M.R.)
| | - Marcella Reale
- Department Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (E.C.); (L.A.); (M.R.)
| |
Collapse
|
15
|
Gao Y, Gao W, Liu Y, Zou D, Li Y, Lin Y, Zhao J. A comprehensive review of microplastic aging: Laboratory simulations, physicochemical properties, adsorption mechanisms, and environmental impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177427. [PMID: 39522785 DOI: 10.1016/j.scitotenv.2024.177427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
As a new type of ecological environment problem, microplastic pollution is a severe challenge faced by the world, and its threat and potential risk to the ecosystem have become a hot research spot in the current environmental field. Microplastics (MPs) in the natural environment will experience aging effect, aging will change the physical and chemical properties of MPs and affect the adsorption behavior. Recently reported characterization techniques of MPs and laboratory simulation of aging are reviewed. The aging mechanism between MPs and different pollutants and the intervention mechanism of environmental factors (MPs, pollutants and water quality environment) were revealed. In addition, to further understand the potential ecological toxicity of MPs after aging, the release and harm of additives during aging, produce the environmentally persistent free radicals, and the mechanism of reactive oxygen species (ROS) removal of pollutants adsorbed on the surface of MPs were summarized. Future research efforts should focus more on bridging the disparity between laboratory aging simulations and natural environmental conditions to enhance the authenticity and ecological relevance of such studies. The ROS production mechanism of MPs provides a reference direction for removing pollutants adsorbed by aged MPs.
Collapse
Affiliation(s)
- Yu Gao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China; Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Wei Gao
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuzhi Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jiefang Road 2519, Changchun 130021, China
| | - Donglei Zou
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jiefang Road 2519, Changchun 130021, China
| | - Yuan Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jiefang Road 2519, Changchun 130021, China
| | - Yingzi Lin
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China.
| | - Jun Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| |
Collapse
|
16
|
Rani-Borges B, Arena MVN, Gomes IN, Lins LHFDC, Cestaro LDSC, Pompêo M, Ando RA, Alves-Dos-Santos I, Toppa RH, Martines MR, Queiroz LG. More than just sweet: current insights into microplastics in honey products and a case study of Melipona quadrifasciata honey. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2132-2144. [PMID: 39072473 DOI: 10.1039/d4em00262h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Honey, traditionally known as a pure and natural substance, has become an unexpected reservoir for microplastic contamination. This study consisted of an experimental investigation to assess the occurrence of microplastics in honey produced by Melipona quadrifasciata, a native bee species in Brazil. Our investigation covers eight areas (one sample per area), including built and vegetated areas located in São Paulo city, Brazil, to understand the distribution of microplastics in these environments. Honey samples (10 mL) were collected using a syringe and sent to the laboratory for further analysis. Microplastics extracted from honey samples were characterized under a stereomicroscope to determine their size, color, and morphology. Also, the polymer type was determined by FTIR analysis. All honey samples (100%) showed microplastics. The predominant particles displayed a fiber shape with a size below 299 μm and a transparent color and were primarily composed of polypropylene. Their concentrations ranged from 0.1 to 2.6 particles per mL of honey, raising concerns about their potential impact on bee populations and human consumers. This study underscores the need for further research on the sources and implications of microplastic contamination in Melipona quadrifasciata honey, shedding light on the broader issue of environmental plastic pollution and its impact on pollinators.
Collapse
Affiliation(s)
- Bárbara Rani-Borges
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, USP, 05508-000 São Paulo, Brazil.
| | - Mariana Victorino Nicolosi Arena
- Department of Ecology, Institute of Biosciences, University of São Paulo, USP, 05508-090 São Paulo, Brazil
- Department of Environmental Sciences, Center for Studies in Landscape Ecology and Conservation, Federal University of São Carlos, UFSCar, 13565-905 Sorocaba, Brazil
| | - Ingrid Naiara Gomes
- Department of Genetics, Ecology, and Evolution, Center for Ecological Synthesis and Conservation, Federal University of Minas Gerais, UFMG, 31270-901 Belo Horizonte, Brazil
- Graduate Program in Ecology, Conservation, and Wildlife Management, Federal University of Minas Gerais, UFMG, 31270-910 Belo Horizonte, Brazil
| | | | | | - Marcelo Pompêo
- Department of Ecology, Institute of Biosciences, University of São Paulo, USP, 05508-090 São Paulo, Brazil
| | - Rômulo Augusto Ando
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, USP, 05508-000 São Paulo, Brazil.
| | - Isabel Alves-Dos-Santos
- Department of Ecology, Institute of Biosciences, University of São Paulo, USP, 05508-090 São Paulo, Brazil
| | - Rogério Hartung Toppa
- Department of Environmental Sciences, Center for Studies in Landscape Ecology and Conservation, Federal University of São Carlos, UFSCar, 13565-905 Sorocaba, Brazil
| | - Marcos Roberto Martines
- Department of Geography, Tourism, and Humanities, Federal University of São Carlos, UFSCar, 13565-905 Sorocaba, Brazil
| | - Lucas Gonçalves Queiroz
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, USP, 05508-000 São Paulo, Brazil.
| |
Collapse
|
17
|
Wang X, Tang S, Ding L, Qiu X, Zhang Z, Xu L, Liang X, Huang X, Guo X. Contribution of plastic solid components to volatile organic compounds formation during plastics combustion. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135977. [PMID: 39342857 DOI: 10.1016/j.jhazmat.2024.135977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/31/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The combustion of plastic waste releases volatile organic compounds (VOCs) that are harmful to human health. However, information on the micro-mechanisms of VOC formation remains lacking. Here, the study hypothesized and verified the relationship between VOC formation and solid component degradation during plastics combustion. The VOCs released during plastics combustion exhibit characteristics such as low carbon content (nc< 10), volatility (9 μg m-3 < log10C0 < 11 μg m-3), and medium oxidation degree (-1.5 < OSC¯ < -0.5). The dominant VOCs ketones/aldehydes/acids (33-43 %) may be attributed to the depolymerization of the polymer structure of plastics, the oxidation of C-O/CO groups, and the secondary cleavage of gaseous oxygen-containing macromolecules. The VOCs released from the combustion of polyethylene terephthalate (PET) and poly(butyleneadipate-co-terephthalate) (PBAT) contained more aromatics than polyethylene (PE) and polypropylene (PP). And the temperature response of aromatics released from PET and PBAT lagged other VOCs compared that of PP and PE. However, compared to biomass thermal conversion, combustion of plastics releases fewer aromatics and nitrogenous compounds. Collectively, this work shows that the formation mechanisms of VOCs contributed by the solid components during plastic combustion are similar for PET and PBAT due to their similar chemical structures. The proposed mechanism in this paper will provide insight into the control of contaminants during plastic combustion.
Collapse
Affiliation(s)
- Xinglei Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Simeng Tang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zhenming Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Xianfei Huang
- Guizhou Provincial Key Laboratory for Environment, Guizhou Normal University, Guiyang, Guizhou 550001, China.
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
18
|
Wang Q, Gu W, Chen H, Wang S, Hao Z. Molecular properties of dissolved organic matter leached from microplastics during photoaging process. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136154. [PMID: 39405688 DOI: 10.1016/j.jhazmat.2024.136154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 12/01/2024]
Abstract
The occurrence of dissolved organic matter (DOM) derived from microplastics (MPs) and its effect on aquatic systems has attracted great interest recently. However, the photoaging effect on the molecular structure of MP-derived DOM (MP-DOM) remains unclear. This paper presents the characteristics of DOM leached from three commercial MPs, i.e., polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET) under UV irradiation. With prolonged aging periods, the surface roughness and oxygen-containing groups on the surface of MPs increase as more DOM leachate is generated. Moreover, the dissolved organic carbon (DOC) content of the leached DOM from PET MPs varies from 0.52 mg/L to 2.25 mg/L, which is higher than PE and PP MPs, due to the larger increased surface reaction area and the cleavage of the benzene ring. According to the excitation-emission matrix and parallel factor analysis (EEM-PARAFAC), the plastic-derived protein/phenolic-like components (C1 and C3) in MP-DOM were changed into photo-induced humic-like components (C2), which were closely related to the intermediates during photo-oxidation. High-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis further identified that the highest proportion of antioxidants (24.8 %∼34.6 %) was contained in MP-DOM. Plasticizers, intermediate additives, and antimicrobial agents were also detected in DOM leachate. Correlation analysis identified that the composition of leached DOM was positively correlated with the surface roughness, the carbonyl index (CI), and the chemical groups of MPs. Moreover, a partial least square structural equation model (PLS-SEM) analysis further verified that the change of morphology and the chemical structure of MPs could affect the DOM structures and fractions directly. This study provides an in-depth understanding of the composition of MP-derived DOM during the aging process, as well as a comprehensive environmental impact assessment of MPs.
Collapse
Affiliation(s)
- Qiongjie Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China.
| | - Wanqing Gu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China.
| | - Huijuan Chen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China.
| | - Shurui Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China.
| | - Zijing Hao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China.
| |
Collapse
|
19
|
Zhong S, Li R, Tian Y, Wei Z, Zhang L, Chen Y, Zhou R, Zhang Q, Ru X. Integrative models for environmental forecasting of phthalate migration from microplastics in aquaculture environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136194. [PMID: 39447233 DOI: 10.1016/j.jhazmat.2024.136194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The pervasive utilization of plastic tools in aquaculture introduces significant volumes of microplastic fibers, presenting a consequential risk through the leaching of additives such as phthalates. This study scrutinizes the leaching dynamics of six prevalent phthalate esters (PAEs) from thirteen plastic aquaculture tools comprising polyethylene terephthalate (PET), polypropylene (PP), and polyethylene (PE), with ΣPAEs ranging from 0.24 to 4.26 mg g-1. Di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) emerged as predominant, marking significant environmental concern. Over a 30-day period, leaching quantities of Σ6PAEs from PET, PP, and PE fibers reached 36.65 μg g-1, 21.87 μg g-1 and 19.11 μg g-1, respectively, influenced by factors such as time, temperature, turbulence, and salinity. Notably, turbulence exerted the most pronounced effect, followed by temperature, with negligible influence from salinity. The kinetic models aligning with interface diffusion control was developed, predicting PAEs' leaching behavior with activation energies (Ea) indicative of the process's thermodynamic nature. The application of this model to real-world aquaculture waters forecasted significant risks, corroborating with empirical data and underscoring the pressing need for regulatory and mitigation strategies against PAEs contamination from aquaculture practices.
Collapse
Affiliation(s)
- Shan Zhong
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Ruiyue Li
- Beijing China Sciences Runyu Environmental Technology Co., Ltd, Beijing 100080, China
| | - Yaowen Tian
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zengxian Wei
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Lishan Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Yan Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Ruyue Zhou
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Qian Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xuan Ru
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
20
|
Omidoyin KC, Jho EH. Environmental occurrence and ecotoxicological risks of plastic leachates in aquatic and terrestrial environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176728. [PMID: 39383966 DOI: 10.1016/j.scitotenv.2024.176728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Plastic pollution poses a significant threat to environmental and human health, with microplastics widely distributed across various ecosystems. Although current ecotoxicological studies have primarily focused on the inherent toxicity of plastics in natural environments, the role of chemical additives leaching from plastics into the environment remains underexplored despite their significant contribution to the overall toxic potential of plastics. Existing systematic studies on plastic leachates have often examined isolated additive compounds, neglecting the ecotoxicological effects of multiple compounds present in plastic leachates. Additionally, most previous research has focused on aquatic environments, overlooking the leaching mechanisms and ecological risks to diverse species with various ecological roles in aquatic and terrestrial ecosystems. This oversight hinders comprehensive ecological risk assessments. This study addresses these research gaps by reviewing the environmental occurrence of plastic leachates and their ecotoxicological impacts on aquatic and terrestrial ecosystems. Key findings reveal the pervasive presence of plastic leachates in various environments, identifying common additives such as phthalates, polybrominated diphenyl ethers (PBDEs), bisphenol A (BPA), and nonylphenols (NPs). Ecotoxicologically, chemical additives leaching from plastics under specific environmental conditions can influence their bioavailability and subsequent uptake by organisms. This review proposes a novel ecotoxicity risk assessment framework that integrates chemical analysis, ecotoxicological testing, and exposure assessment, offering a comprehensive approach to evaluating the risks of plastic leachates. This underscores the importance of interdisciplinary research that combines advanced analytical techniques with ecotoxicological studies across diverse species and environmental conditions to enhance the understanding of the complex impacts of plastic leachates and inform future research and regulatory policies.
Collapse
Affiliation(s)
- Kehinde Caleb Omidoyin
- Department of Agricultural Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Eun Hea Jho
- Department of Agricultural Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Department of Agricultural and Biological Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Center of SEBIS (Strategic Solutions for Environmental Blindspots in the Interest of Society), 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
21
|
Men C, Xie Z, Li K, Xing X, Li Z, Zuo J. Single and combined effect of polyethylene microplastics (virgin and naturally aged) and cadmium on pakchoi (Brassica rapa subsp. chinensis) under different growth stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175602. [PMID: 39155006 DOI: 10.1016/j.scitotenv.2024.175602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
To protect agro-systems and food security, study on the effect of microplastics and heavy metals on edible plants is of great significance. Existing studies mostly used virgin microplastics to evaluate their effects on plants, effects of naturally aged microplastics and their combined effects with heavy metals are rarely explored. In this study, single and combined effect of polyethylene microplastics (PE, both virgin and naturally aged) and cadmium (Cd) on pakchoi under seedling and mature stages were analyzed from perspectives of growth inhibition, oxidative damage, nutrition content and soil enzyme activities. Results showed that inhibiting effects of naturally aged PE (PEa) on the growth of pakchoi were stronger than virgin PE (PEv), whereas co-contamination of PEa and Cd was less toxic than that of PEv and Cd. The co-contamination of PE and Cd could inhibit pakchoi dry biomass by over 85 %. Both single and combined contamination of PE and Cd promoted soil fluorescein diacetate hydrolase (FDA) activities, which were 1.11 to 2.04 times of that in control group. Soluble sugar contents under co-contamination of PEa and Cd were 14 % to 22 % higher than those in control group. PEa and PEv showed different effects on oxidative damage of pakchoi. Compared with PEv, catalase (CAT) activities were more sensitive with PEa, whereas PEa had lower effect on superoxide dismutase (SOD) activities. The response of pakchoi to PE and Cd changed with growth stage. Chlorophyll contents in pakchoi under seedling stage were generally higher than those under mature stage. For Cd contaminated soils, PE benefited pakchoi growth under seedling stage, i.e. antagonistic effect between Cd and PE but hindered their growth under mature stage, i.e. synergistic effect. The results unraveled here emphasized PE, especially PEa, could trigger negative effects on agro-systems, whereas PE could be beneficial for heavy metal contaminated agro-systems under specific situations.
Collapse
Affiliation(s)
- Cong Men
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenwen Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Chengdu Drainage Co., Ltd, Chengdu 610011, China
| | - Kaihe Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Xing
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
22
|
Yang YJ, Zhu MJ. Influences of bisphenol A on hydrogen production from food waste by thermophilic dark fermentation. ENVIRONMENTAL RESEARCH 2024; 260:119625. [PMID: 39019138 DOI: 10.1016/j.envres.2024.119625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/28/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
The extensive use of plastic products in food packaging and daily life makes them inevitably enter the treatment process of food waste (FW). Plasticizer as a new pollutant is threatening the dark fermentation of FW. Our study showed that bisphenol A (BPA) at > 250 mg/L had a significant inhibition on hydrogen production from FW by thermophilic dark fermentation. The endogenous ATP content and lactate dehydrogenase (LDH) release showed that high level of BPA not only inhibited the growth of hydrogen-producing consortium, but also led to cell death. In addition, BPA mainly affects the hydrogen-producing consortium by reducing cell membrane fluidity, damaging cell membrane integrity and reducing cell membrane potential, resulting in cell death. This study provides some new insights into the mechanism of the effect of BPA on hydrogen production from FW by thermophilic dark fermentation, and lays the foundation on the utilization of FW.
Collapse
Affiliation(s)
- Yong-Jun Yang
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, 510006, China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, 510006, China; The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities Under the Department of Education of Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, 844006, China.
| |
Collapse
|
23
|
Chu X, Tian Y, An R, Jiang M, Zhao W, Guo H, Zhao P. Interfacial interactions between colloidal polystyrene microplastics and Cu in aqueous solution and saturated porous media: Model fitting and mechanism analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122741. [PMID: 39368375 DOI: 10.1016/j.jenvman.2024.122741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Microplastic (MP) and heavy metal pollution have received much attention. Few researches have been carried out on the influence of the interaction between MPs and heavy metals on their transport in saturated porous media, which concerns their fate. Therefore, the interaction mechanisms between colloidal polystyrene microplastics (PSMPs) and Cu were first carried out by applying batch adsorption experiments. Subsequently, the transport and retention of PSMPs and Cu in saturated porous media was explored through column experiments. The interaction process between PSMPs and Cu was further investigated using density functional theory (DFT) calculations. Findings demonstrated that PSMPs had strong adsorption capacity for Cu ((60.07 ± 2.57) mg g-1 at pH 7 and ionic strength 0 M) and the adsorption process was chemically dominated, non-uniform, and endothermic. The O-containing functional groups on PSMP surfaces showed essential roles in Cu adsorption, and the adsorption process mainly contained electrostatic and complexation interactions. In column experiments, Cu could inhibit PSMP transport by the cation bridging effect and changing the electrical properties of glass beads, while PSMPs may facilitate Cu transport through the carrying effect. These findings confirmed that interfacial interactions between MPs and Cu could influence their transport in saturated porous media directly, providing great environmental significance.
Collapse
Affiliation(s)
- Xianxian Chu
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yimei Tian
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Ruopan An
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Menghan Jiang
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Weigao Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Hao Guo
- The Institute of Seawater Desalination and Multipurpose Utilization, Tianjin, 300192, China
| | - Peng Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
24
|
Huang J, Feng Y, Xie H, Liu X, Zhang Q, Wang B, Xing B. Biodegradable microplastics aging processes accelerated by returning straw in paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173930. [PMID: 38879027 DOI: 10.1016/j.scitotenv.2024.173930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/20/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
Biodegradable microplastics (MPs) have been released into agricultural soils and inevitably undergo various aging processes. Straw return is a popular agricultural management strategy in many countries. However, the effect of straw return on the aging process of biodegradable MPs in flooded paddy soil, which is crucial for studying the characteristics, fate, and environmental implications of biodegradable MPs, remains unclear. Here, we constructed a 180-day microcosm incubation to elucidate the aging mechanism of polylactic acid (PLA)-MPs in straw-enriched paddy soil. This study elucidated that the prominent aging characteristic of PLA-MPs occurred in the straw-enriched paddy soil, accompanied by increased chrominance (76.64-182.3 %), hydrophilicity (2.92-22.07 %), roughness (33.12-58.01 %), and biofilm formation (42.12-100.3 %) for the PLA-MPs, especially with 2 % (w/w) straw return treatment (P < 0.05). A 2 % straw return treatment has significantly impacted ester CO group changes in PLA-MPs, altered the MPs-attached soil bacterial communities composition, strengthened bacterial network structure, and increased soil proteinase K activity. The findings of this work demonstrated that flooded, straw-enriched paddy soil accelerated PLA-MPs aging affected by soil-water chemistry, soil microbe, and soil enzymatic. This study helps to deepen our understanding of the aging process of PLA-MPs in straw return paddy soil. ENVIRONMENTAL IMPLICATION: Microplastics (MPs) are emerging contaminants in the global soil and terrestrial ecosystems. Biodegradable MPs are more likely to be formed and released into agricultural soils during aging. Straw return is a popular agricultural management strategy in many countries. Considering the wide use of plastic film, sewage sludge, plastic-coated fertilizer, and organic fertilizer in agricultural ecosystems, it is crucial to pay attention to the aging process of biodegradable MPs in straw-enriched paddy soil, which has not been adequately emphasized. This aspect has been overlooked in previous studies and threatens ecosystems. This study demonstrated that straw-enriched paddy soil accelerated polylactic acid (PLA)-MPs aging influenced by the dissolved organic matter, microorganisms, and enzyme activity associated with straw decomposition.
Collapse
Affiliation(s)
- Junxia Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaobo Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qiang Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
25
|
Bhaumik S, Chakraborty P. Interactions between microplastics (MPs) and trace/toxic metals in marine environments: implications and insights-a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59681-59699. [PMID: 39365535 DOI: 10.1007/s11356-024-34960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/07/2024] [Indexed: 10/05/2024]
Abstract
Microplastics (MP) pollution is a pressing concern in today's marine environments. MPs can significantly affect marine ecosystems by altering nutrient and pollutant dynamics. This review analyses the existing literature to investigate interactions between MPs and micronutrients/pollutants, specifically trace and toxic metals in marine environments. It explores the adsorption of metals onto MP surfaces, emphasizing kinetics, isotherms, and underlying mechanisms of the process. The review highlights the potential consequences of MPs on the biogeochemical cycles of trace and toxic metals, emphasizing disruptions that could result in metal toxicity, metal limitations, reduced bioavailability, and adverse effects on primary productivity in marine ecosystems. It further underscores the need for future research to unravel the wide-ranging implications of MPs on trace and toxic metal cycling in marine ecosystems and their broader environmental impacts.
Collapse
Affiliation(s)
- Swastika Bhaumik
- Marine Trace Metal Biogeochemistry Laboratory, Centre for Ocean, River, Atmosphere and Land Sciences (CORAL), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Parthasarathi Chakraborty
- Marine Trace Metal Biogeochemistry Laboratory, Centre for Ocean, River, Atmosphere and Land Sciences (CORAL), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
26
|
Rede D, Vilarinho R, Moreira JA, Delerue-Matos C, Fernandes VC. Investigating the impact of microplastics on triphenyl phosphate adsorption in soil: Insights into environmental factors and soil properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173745. [PMID: 38844227 DOI: 10.1016/j.scitotenv.2024.173745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
Microplastics (MPs) pose significant environmental pollution problems owing to their diverse properties such as various shapes, sizes, compositions, surface features, and levels of degradation. Moreover, their interactions with toxic chemicals and aging processes add complexity to environmental research. This study investigated the adsorption of triphenyl phosphate (TPhP) in soil-only, MP-only, and soil-MP simulated environments under different conditions. The experiment involved three phases: initial exposure to a pH of 5.5 under fluorescent light, subsequent introduction of ultraviolet (UV) radiation, and pH adjustment to 4.0 and 7.0, while maintaining UV exposure, each lasting 7 days. The study found that environmental factors affected TPhP sorption capacity, with higher adsorption observed under UV radiation and acidic conditions. In contrast, the MP-only systems showed no clear trend for TPhP adsorption, suggesting kinetic limitations. When MPs were added to the soil, the adsorption dynamics were altered, with varying adsorption capacities observed for different MP polymers under different aging conditions. ATR-FTIR spectroscopy, micro-Raman spectroscopy, and water contact angle measurements suggested potential photooxidation processes and changes in the surface hydrophobicity of the MPs subjected to simulated environmental conditions. This study provides valuable insights into the interplay between soil properties, MP characteristics, and environmental factors in determining TPhP sorption dynamics in soil-MP environments.
Collapse
Affiliation(s)
- Diana Rede
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernandino de Almeida 431, 4249-015 Porto, Portugal; Departmento de Química e Bioquimica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169- 007 Porto, Portugal
| | - Rui Vilarinho
- Departmento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; IFIMUP-Instituto de Física dos Materiais Avançados, Nanotecnologia e Fotónica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Joaquim Agostinho Moreira
- Departmento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; IFIMUP-Instituto de Física dos Materiais Avançados, Nanotecnologia e Fotónica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernandino de Almeida 431, 4249-015 Porto, Portugal
| | - Virgínia Cruz Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernandino de Almeida 431, 4249-015 Porto, Portugal.
| |
Collapse
|
27
|
Saemi-Komsari M, Esmaeili HR, Keshavarzi B, Busquets R, Abbasi K, Birami FA, Masoumi A. Trophic transfer, bioaccumulation and translocation of microplastics in an international listed wetland on the Montreux record. ENVIRONMENTAL RESEARCH 2024; 257:119172. [PMID: 38768889 DOI: 10.1016/j.envres.2024.119172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
Microplastics (MPs) are concerning emerging pollutants. Here, MPs in four edible aquatic species of different trophic levels (between ∼2 and 4), including fish species Esox lucius (Esocidae: Esocinae); Cyprinus carpio (Cyprinidae: Cyprininae); and Luciobarbus caspius (Cyprinidae: Barbinae); and the swan mussel Anodonta cygnea (Unionidae), were assessed in the Anzali freshwater ecosystem. It is a listed wetland in the Montreux record. MPs were extracted from gastrointestinal tracts (GI), gills, muscles, and skin. All the studied fish and mussels (n = 33) had MPs. MP fibres, fragments and sheets were detected in every GI examined, however, fibres were the only type of MPs in skins, muscles and gills and were the most abundant MP. The MPs found in the fish and mussels were mainly made of nylon (35% of the total MPs), polypropylene-low density polyethylene (30%), and polycarbonate (25%). The average numbers of MPs found in every fish specimen, expressed per wet body mass, had a moderate negative correlation with the condition factor (K) (MP/g - K: Pearson correlation r = -0.413, p = 0.049), and there was no significant relation with the growth factor (b) (r = -0.376; p = 0.068). Importantly, Luciobarbus caspius (with trophic level 2.7-2.8) bioaccumulated MPs and presented a strong correlation between their MP contamination and age (r = 0.916 p < 0.05). Greater gill mass (or related factors) played an important role in the accumulation of MPs, and there was a strong correlation between these factors for Esox lucius and Cyprinus carpio (r = 0.876; r = 0.846; p < 0.05 respectively). The highest MP/g gills (1.91 ± 2.65) were in the filter feeder Anodonta cygnea inhabiting the benthic zone. Esox lucius (piscivorous, trophic level 4.1) was the most contaminated species overall (a total of 83 MPs in 8 individuals, with 0.92 MP/g fish), and their gills where MPs mainly accumulated. Cyprinus carpio was the most contaminated specimen (MPs in specimens), while the number of MPs per mass unit increased with the trophic level. Their feeding and ecological behavior in the aquatic habitat affected the level of accumulation. This work includes evidence of translocation of MPs within the aquatic organisms.
Collapse
Affiliation(s)
- Maryam Saemi-Komsari
- Ichthyology and Molecular Systematics Laboratory, Zoology Section, Biology Department, School of Science, Shiraz University, Shiraz, Iran
| | - Hamid Reza Esmaeili
- Ichthyology and Molecular Systematics Laboratory, Zoology Section, Biology Department, School of Science, Shiraz University, Shiraz, Iran.
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, Iran
| | - Rosa Busquets
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower St, Bloomsbury, London, WC1E 6BT, United Kingdom; Faculty of Health, Science, Social Care and Education, School of Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames, KT1 2EE, United Kingdom
| | - Keyvan Abbasi
- Inland Waters Aquaculture Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization, Bandar Anzali, Iran
| | - Farideh Amini Birami
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, Iran
| | - AmirHassan Masoumi
- Ichthyology and Molecular Systematics Laboratory, Zoology Section, Biology Department, School of Science, Shiraz University, Shiraz, Iran
| |
Collapse
|
28
|
Reyes MSS, Medina PMB. Leachates from plastics and bioplastics reduce lifespan, decrease locomotion, and induce neurotoxicity in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124428. [PMID: 38914198 DOI: 10.1016/j.envpol.2024.124428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Plastic pollution continuously accumulates in the environment and poses a global threat as it fragments into microplastics and nanoplastics that can harm ecosystems. To reduce the accumulation of microplastic and nanoplastic pollution, bioplastics made from biodegradable materials are promoted as a more sustainable alternative because it can degrade faster than plastics. However, plastics also leach out chemicals as they degrade and disintegrate, but the potential toxicity of these chemicals leaching out from plastics and especially bioplastics is poorly explored. Here, we determined the composition of leachates from plastics and bioplastics and tested their toxicity in Caenorhabditis elegans. LC-MS analysis of the leachates revealed that bioplastics leached a wider array of chemicals than their counterpart plastics. Toxicity testing in our study showed that the leachates from plastics and bioplastics reduced lifespan, decreased locomotion, and induced neurotoxicity in C. elegans. Leachates from bioplastics reduced C. elegans lifespan more compared to leachates from plastics: by 7%-31% for bioplastics and by 6%-15% for plastics. Leachates from plastics decreased locomotion in C. elegans more compared to leachates from bioplastics: by 8%-34% for plastics and by 11%-24% for bioplastics. No changes were observed in the ability of the C. elegans to respond to mechanical stimuli. The leachates induced neurotoxicity in the following neurons at varying trends: cholinergic neurons by 0%-53% for plastics and by 30%-42% for bioplastics, GABAergic neurons by 3%-29% for plastics and by 10%-23% for bioplastics, and glutamatergic neurons by 3%-11% for plastics and by 15%-29% for bioplastics. Overall, our study demonstrated that chemicals leaching out from plastics and bioplastics can be toxic, suggesting that both plastics and bioplastics pose ecotoxicological and human health risks.
Collapse
Affiliation(s)
- Michael Sigfrid S Reyes
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Ermita, Manila, 1000, Philippines
| | - Paul Mark B Medina
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Ermita, Manila, 1000, Philippines.
| |
Collapse
|
29
|
Song J, Meng Q, Song H, Ni X, Zhou H, Liu Y, Zhan J, Yi X. Combined toxicity of pristine or artificially aged tire wear particles and bisphenols to Tigriopus japonicus. CHEMOSPHERE 2024; 363:142894. [PMID: 39029709 DOI: 10.1016/j.chemosphere.2024.142894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Tire wear particles (TWPs) are considered an important component of microplastic pollution in the marine environment and occur together with a variety of aquatic pollutants, including frequently detected bisphenols. The adverse effects of TWPs or bisphenols on aquatic organisms have been widely reported. However, the combined toxicity of TWPs and bisphenols is still unknown. In this study, the combined toxicity of both pristine (p-) and aged TWPs (a-TWPs) and four bisphenols ((bisphenol A (BPA), bisphenol F (BPF), bisphenol S (BPS), and bisphenol AF (BPAF)) to Tigriopus japonicus was evaluated. TWPs increased the toxicity of BPA and BPF but decreased the toxicity of BPAF. For BPS, there was synergistic toxic effect in the presence of p-TWPs, but slightly antagonistic effect was observed in the presence of a-TWPs. This adsorption of BPAF by TWPs resulted in a reduction of its toxicity to the copepod. A-TWPs could release more Zn than p-TWPs, and the released Zn contributed to the synergistic effect of TWPs and BPA or BPF. The aggregation formed by TWPs in certain sizes (e.g., 90-110 μm) could cause intestinal damage and lipid peroxidation in T. japonicus. The synergistic effect of p-TWPs and BPS might be due to the aggregation size of the binary mixture. The results of the current study will be important to understand the combined toxic effect of TWPs and bisphenols and the potential toxic mechanisms of the binary mixture.
Collapse
Affiliation(s)
- Jinbo Song
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Qian Meng
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Hongyu Song
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Xiaoming Ni
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Hao Zhou
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Yang Liu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Jingjing Zhan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Xianliang Yi
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China.
| |
Collapse
|
30
|
Chen L, Tu M, Mao C, Wang J, Shao H, Wang H, Gu J, Xu G. Electron beam synergetic removal of microplastics and hexavalent chromium: Synergetic removal process and mechanism. CHEMOSPHERE 2024; 364:143093. [PMID: 39173834 DOI: 10.1016/j.chemosphere.2024.143093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Microplastics are ubiquitous in the environment and aged microplastics are highly susceptible to absorbing pollutants from the environment. In this study, electron beam was innovatively used to treat PVC composite Cr(VI) pollutants (Composite contaminant formed by polyvinyl chloride microplastics with the heavy metal hexavalent chromium). Experiments showed that electron beam was able to achieve synergistic removal of PVC composite Cr(VI) pollutants compared to degrading the pollutants alone. During the electron beam removal of PVC composite Cr(VI) pollutants, the reduction efficiency of Cr(VI) increased from 57% to 92%, Cl- concentration increased from 3.52 to 12.41 mg L-1, and TOC concentration increased from 16.72 to 26.60 mg L-1. The research confirmed that electron beam can effectively promote the aging degradation of PVC, alter the physicochemical properties of microplastics, and generate oxygen-containing functional groups on the surface of microplastics. Aged microplastics enhanced the adsorption capacity for Cr(VI) through electrostatic and chelation interactions, and the adsorption process followed second-order kinetics and the Freundlich model. Theoretical calculations and experiments demonstrated that PVC consumed oxidizing free radical through dechlorination and decarboxylation processes, generating inorganic ions and small organic molecules. These inorganic ions and small organic molecules further reacted with oxidizing free radical to produce reducing free radicals, facilitating the reduction of Cr(VI). Cr(VI) continuously consumed the educing free radicals to transform into Cr (Ⅲ), enhancing the system oxidative atmosphere and promoting the oxidation degradation of PVC. This study investigated the formation and synergistic removal processes of PVC composite pollutants, offering new insights for controlling microplastics composite pollution.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Mengxin Tu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Chengkai Mao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Jun Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Haiyang Shao
- School of Future Membrane Technology, Fuzhou University, Fuzhou, 350108, PR China.
| | - Hongyong Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Jianzhong Gu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China; Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai, 200444, PR China.
| |
Collapse
|
31
|
Ameen A, Stevenson ME, Kirschner AKT, Jakwerth S, Derx J, Blaschke AP. Fate and transport of fragmented and spherical microplastics in saturated gravel and quartz sand. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:727-742. [PMID: 39162095 DOI: 10.1002/jeq2.20618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Microplastics in urban runoff undergo rapid fragmentation and accumulate in the soil, potentially endangering shallow groundwater. To improve the understanding of microplastic transport in groundwater, column experiments were performed to compare the transport behavior of fragmented microplastics (FMPs ∼1-µm diameter) and spherical microplastics (SMPs ∼1-, 10-, and 20-µm diameter) in natural gravel (medium and fine) and quartz sand (coarse and medium). Polystyrene microspheres were physically abraded with glass beads to mimic the rapid fragmentation process. The experiments were conducted at a constant flow rate of 1.50 m day-1 by injecting two pore volumes of SMPs and FMPs. Key findings indicate that SMPs showed higher breakthrough, compared to FMPs in natural gravel, possibly due to size exclusion of the larger SMPs. Interestingly, FMPs exhibited higher breakthrough in quartz sand, likely due to tumbling and their tendency to align with flow paths, while both sizes (larger and smaller relative to FMPs) of SMPs exhibited higher removal in quartz sand. Therefore, an effect due to shape and size was observed.
Collapse
Affiliation(s)
- Ahmad Ameen
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| | - Margaret E Stevenson
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| | - Alexander K T Kirschner
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
- Institute for Hygiene and Applied Immunology, Water Microbiology, Medical University of Vienna, Vienna, Austria
- Division Water Quality & Health, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Stefan Jakwerth
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
- Institute for Hygiene and Applied Immunology, Water Microbiology, Medical University of Vienna, Vienna, Austria
| | - Julia Derx
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| | - Alfred P Blaschke
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| |
Collapse
|
32
|
Wang Q, Ge W, Shi R, He J, Li S, Zhu C, Zhang X, Shi M, Ni N, Wang N. Adsorption behavior and mechanism of different types of (aged) microplastics for napropamide in soils. CHEMOSPHERE 2024; 364:143211. [PMID: 39214413 DOI: 10.1016/j.chemosphere.2024.143211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The role of microplastics (MPs) as pollutant carriers and their influence on the fate of organic pollutants has received considerable attention. However, the impacts of MPs on the adsorption of amide herbicides in soil, have not been investigated. In this study, non-biodegradable (polyethylene, PEM) and biodegradable (polybutylene adipate terephthalate, PBATM) MPs were aged by exposure to one month of ultraviolet irradiation. The impacts of MPs on the adsorption of napropamide (Nap) in two agricultural soils (black soil [BS] and fluvo-aquic soil [CS]) were investigated through batch experiments. The findings suggested that the adsorption of Nap onto PEM was mainly governed by physical processes, while, chemical mechanisms, should not be overlooked on PBATM. With the addition of 0.2% MPs, the maximum adsorption capacity (Qm) and adsorption distribution coefficient (KF) of soil containing PEM (soil-PEM) were higher than that of soil-PBATM, however, the Qm and KF values of soil-PBATM for Nap were higher when the addition of MPs was 2%. After UV aging, the increased specific surface area of MPs led to an increased adhesion of soil particles. These were attributed to the different surface properties and concentrations of different (aged) MPs, resulting in differences in the inhibition effect by soil particles. The adhesion of soil particles was confirmed by X-ray photoelectron spectroscopy. Additionally, regardless of the addition of MPs, the Qm values of BS for Nap were higher than those for CS. In summary, MPs can alter the adsorption of Nap in soil, influencing both its mobility within the soil ecosystem and the environmental risk.
Collapse
Affiliation(s)
- Qing Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China
| | - Wenjie Ge
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China; Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Renyong Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, 210008, China
| | - Jian He
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Shuchang Li
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China; Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Changqing Zhu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Xiaohui Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Mali Shi
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ni Ni
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Na Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
33
|
Sampsonidis I, Michailidou K, Spritinoudi K, Dimitriadi A, Ainali NM, Bobori DC, Lambropoulou DA, Kyzas GZ, Bikiaris DN, Kalogiannis S. Genotoxicity and metabolic changes induced via ingestion of virgin and UV-aged polyethylene microplastics by the freshwater fish Perca fluviatilis. CHEMOSPHERE 2024; 362:142619. [PMID: 38880257 DOI: 10.1016/j.chemosphere.2024.142619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/27/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The present study aims to compare and assess the toxicity induced by aged (irradiated with ultraviolet radiation for 120 days) polyethylene microplastics (PE-MPs) in comparison to virgin (non-irradiated) ones, after feeding the freshwater fish Perca fluviatilis. To this end, MPs mediated genotoxicity was assessed by the investigation of micronucleus nuclear abnormalities frequency in fish blood, and the degree of DNA damage in the liver and muscle tissues, while metabolic alterations were also recorded in both tissues. Results showed that both virgin and aged PE-MPs induced signaling pathways leading to DNA damage and nuclear abnormalities, as well as metabolites changes in all tissues studied. Metabolic changes revealed that the metabolism of nucleic acids, energy, amino acids, and neurotransmitters was more disrupted in the liver and by aged PE-MPs compared to muscles. Fish fed with aged PE-MPs exhibited greater DNA damage, while blood cells of fish fed with virgin PE-MPs seemed to be more vulnerable to nuclear abnormalities in relation to those fed with aged PE-MPs. Moreover, aged PE-MPs induced more acute overall effects on the metabolic profiles of fish tissues, and initiated stronger stress responses, inflammation, and cellular damages in fish tissues in relation to virgin ones. Characterization of both virgin and aged MPs revealed that the latter exhibited lower crystallinity and melting point, more irregular shapes and higher moiety of oxygen and carbonyl groups, which could be attributed for their observed higher toxicity. The research outcomes provide significant insights for advancing toxicological investigations in this field.
Collapse
Affiliation(s)
- Ioannis Sampsonidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-57400, Thessaloniki, Greece
| | - Kostantina Michailidou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece; Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Kalliopi Spritinoudi
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece; Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | | | - Nina Maria Ainali
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece; Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Dimitra C Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-570 01, Thessaloniki, Greece
| | - George Z Kyzas
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala, GR-654 04, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-57400, Thessaloniki, Greece.
| |
Collapse
|
34
|
Matijaković Mlinarić N, Marušić K, Brkić AL, Marciuš M, Fabijanić TA, Tomašić N, Selmani A, Roblegg E, Kralj D, Stanić I, Njegić Džakula B, Kontrec J. Microplastics encapsulation in aragonite: efficiency, detection and insight into potential environmental impacts. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1116-1129. [PMID: 38623703 DOI: 10.1039/d4em00004h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Plastic pollution in aquatic ecosystems has become a significant problem especially microplastics which can encapsulate into the skeletons of organisms that produce calcium carbonates, such as foraminifera, molluscs and corals. The encapsulation of microplastics into precipitated aragonite, which in nature builds the coral skeleton, has not yet been studied. It is also not known how the dissolved organic matter, to which microplastics are constantly exposed in aquatic ecosystems, affects the encapsulation of microplastics into aragonite and how such microplastics affect the mechanical properties of aragonite. We performed aragonite precipitation experiments in artificial seawater in the presence of polystyrene (PS) and polyethylene (PE) microspheres, untreated and treated with humic acid (HA). The results showed that the efficiency of encapsulating PE and PE-HA microspheres in aragonite was higher than that for PS and PS-HA microspheres. The mechanical properties of resulting aragonite changed after the encapsulation of microplastic particles. A decrease in the hardness and indentation modulus of the aragonite samples was observed, and the most substantial effect occurred in the case of PE-HA microspheres encapsulation. These findings raise concerns about possible changes in the mechanical properties of the exoskeleton and endoskeleton of calcifying marine organisms such as corals and molluscs due to the incorporation of pristine microplastics and microplastics exposed to dissolved organic matter.
Collapse
Affiliation(s)
| | - Katarina Marušić
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | | | - Marijan Marciuš
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Tamara Aleksandrov Fabijanić
- The Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia
| | - Nenad Tomašić
- Department of Geology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Atiđa Selmani
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Eva Roblegg
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Damir Kralj
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Ivana Stanić
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Branka Njegić Džakula
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Jasminka Kontrec
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
35
|
Michailidou K, Palisidou C, Feidantsis K, Ainali NM, Kastrinaki G, Lambropoulou DA, Kyzas GZ, Bikiaris DN, Kaloyianni M, Bobori DC. Impact of aged and virgin polyethylene microplastics on multi end-points effects of freshwater fish tissues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174704. [PMID: 39002604 DOI: 10.1016/j.scitotenv.2024.174704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The buildup of plastic waste in aquatic environments presents serious threats to the environment, wildlife, and ultimately to humans. Specifically, microplastics (MPs) ingestion by aquatic animals leads to adverse physiological and toxicological effects. In addition, discarded MPs undergo aging and degradation processes which affect their morphological properties and chemical composition, enhancing the absorption of environmental pollutants. Under this prism, the present research was conducted to investigate and compare the impact of 'aged' versus pristine low-density polyethylene microplastics (PE-MPs) on various toxicity endpoints as biochemical and molecular parameters in the muscle tissue and liver of the freshwater fish species Perca fluviatilis. In parallel, the morphological, physicochemical, and structural changes occurred in "aged" PE-MPs, (after being exposed to UV radiation for 120 days) were studied, significantly illustrating signs of oxidation and crack propagation at the surface of the studied MPs. Fish were exposed to artificial diet reached with virgin and "aged" PE-MPs, sized 100-180 μm, at concentrations of 1 mg/g of dry food for a period of 15-days. Thereafter, liver and muscle tissues were analyzed in relation to multi oxidative parameters. Compared to the control group, the observed changes in the examined fish included increased activities of antioxidant enzymes, as superoxide dismutase, catalase and glutathione reductase, enhanced concentrations of malondialdehyde, protein carbonylation, HSP70 levels, elevated MAPK phosphorylation, induction of ubiquitin-proteins, as well as heightened levels of Bax/Bcl-2 proteins, caspases and differentiated levels of LC3 II/I, SQSTM1/p62. From the studied biomarkers, apoptosis, ubiquitin and hsp70 levels, showed a more sensitive response against the ingested MPs, followed by autophagy, p38MAPK levels, antioxidant enzymes, MDA and carbonylation levels. The effect of "aged" PE-MPs was more pronounced compared to that of the virgin ones. When evaluating the response of all oxidative stress biomarkers across the studied tissues, the liver demonstrates the highest response for the majority of the biomarkers against both virgin and "aged" PE-MPs. These findings strongly indicate that "aged" MPs activate the antioxidant defence mechanisms and impact the cellular well-being of the examined fish species.
Collapse
Affiliation(s)
- Kostantina Michailidou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Christina Palisidou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Department of Fisheries & Aquaculture, School of Agricultural Sciences, University of Patras, GR-26504, Mesolonghi, Greece.
| | - Nina Maria Ainali
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | | | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-570 01 Thessaloniki, Greece.
| | - George Z Kyzas
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala GR-654 04, Greece.
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Martha Kaloyianni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Dimitra C Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| |
Collapse
|
36
|
Zhao P, Wang X, Jiang H, Zhang B, Chen L, Zhao J, Teng J, Wang Q. Vertical distribution of microplastics in sediment columns along the coastline of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174685. [PMID: 38997042 DOI: 10.1016/j.scitotenv.2024.174685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
At present, there has been relatively less coverage of microplastics (MPs) pollution in sediment columns, especially across a large geographical span. This study collected sediment columns across 11 provinces along the coastline of China for MPs pollution investigation. The study found higher MPs diversity (Simpson diversity index) in sediment columns than in surface sediments, mostly comprising fiber MPs with dominant transparent and blue colors. Lower MPs pollution was noted in mangrove reserves, while estuarine and coastal areas showed higher pollution levels. Spearman correlation analysis shows that vertical of MPs abundance significantly decreased with depth at 6 of 11 sites. Large-sized MPs with diverse colors in deeper sediments (>40 cm) suggests that burial processes may render MPs more resistant to degradation. Our research highlights varied MPs distribution in coastal sediment, aiding future marine MPs pollution prediction and assessment.
Collapse
Affiliation(s)
- Peng Zhao
- School of Marine Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Xiaodan Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Hongyou Jiang
- Tianjin Marine Environment Monitoring Center, SOA, Tianjin 300457, PR China
| | - Bin Zhang
- School of Architecture and Civil Engineering of Xihua University, Chengdu 610039, PR China
| | - Liang Chen
- School of Architecture and Civil Engineering of Xihua University, Chengdu 610039, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
37
|
Barone GD, Rodríguez-Seijo A, Parati M, Johnston B, Erdem E, Cernava T, Zhu Z, Liu X, Axmann IM, Lindblad P, Radecka I. Harnessing photosynthetic microorganisms for enhanced bioremediation of microplastics: A comprehensive review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100407. [PMID: 38544950 PMCID: PMC10965471 DOI: 10.1016/j.ese.2024.100407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 11/11/2024]
Abstract
Mismanaged plastics, upon entering the environment, undergo degradation through physicochemical and/or biological processes. This process often results in the formation of microplastics (MPs), the most prevalent form of plastic debris (<1 mm). MPs pose severe threats to aquatic and terrestrial ecosystems, necessitating innovative strategies for effective remediation. Some photosynthetic microorganisms can degrade MPs but there lacks a comprehensive review. Here we examine the specific role of photoautotrophic microorganisms in water and soil environments for the biodegradation of plastics, focussing on their unique ability to grow persistently on diverse polymers under sunlight. Notably, these cells utilise light and CO2 to produce valuable compounds such as carbohydrates, lipids, and proteins, showcasing their multifaceted environmental benefits. We address key scientific questions surrounding the utilisation of photosynthetic microorganisms for MPs and nanoplastics (NPs) bioremediation, discussing potential engineering strategies for enhanced efficacy. Our review highlights the significance of alternative biomaterials and the exploration of strains expressing enzymes, such as polyethylene terephthalate (PET) hydrolases, in conjunction with microalgal and/or cyanobacterial metabolisms. Furthermore, we delve into the promising potential of photo-biocatalytic approaches, emphasising the coupling of plastic debris degradation with sunlight exposure. The integration of microalgal-bacterial consortia is explored for biotechnological applications against MPs and NPs pollution, showcasing the synergistic effects in wastewater treatment through the absorption of nitrogen, heavy metals, phosphorous, and carbon. In conclusion, this review provides a comprehensive overview of the current state of research on the use of photoautotrophic cells for plastic bioremediation. It underscores the need for continued investigation into the engineering of these microorganisms and the development of innovative approaches to tackle the global issue of plastic pollution in aquatic and terrestrial ecosystems.
Collapse
Affiliation(s)
| | - Andrés Rodríguez-Seijo
- Área de Edafoloxía, Departamento de Bioloxía Vexetal e Ciencia Do Solo, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain
- Agroecology and Food Institute (IAA), University of Vigo – Campus Auga, 32004, Ourense, Spain
| | - Mattia Parati
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
- FlexSea Ltd., London, EC2A4NE, United Kingdom
| | - Brian Johnston
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
| | - Elif Erdem
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, 8010, Graz, Austria
| | - Zhi Zhu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Xufeng Liu
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Ilka M. Axmann
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine, University Düsseldorf, D-40001, Düsseldorf, Germany
| | - Peter Lindblad
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Iza Radecka
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
| |
Collapse
|
38
|
Li Y, Neema P, Andrews S. Adsorption Behavior and Mechanisms of Trihalomethanes onto Virgin and Weathered Polyvinyl Chloride Microplastics. TOXICS 2024; 12:450. [PMID: 39058102 PMCID: PMC11281136 DOI: 10.3390/toxics12070450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024]
Abstract
Microplastics that adsorb various toxic contaminants in water may be transported into cells and organs, possibly posing toxicological risks in the aquatic environment. Disinfection byproducts (DBPs), which are ubiquitous in chlorinated drinking water and wastewater, may have some potential to sorb onto microplastics (MPs) through hydrophobic or electrostatic interactions. However, DBP adsorption on microplastics has not yet been closely examined. This work investigated the adsorption behavior of trihalomethanes (THMs)-a regulated and ubiquitous DBP class in chlorinated water-onto virgin and weathered polyvinyl chloride (PVC) microplastics, the most widely used plastic material in drinking water distribution and sewer systems. A comparative analysis of kinetic and isotherm test results indicated that the adsorption mechanisms mainly involved hydrophobic interactions from a combination of weak and strong physisorption behavior and possibly chemisorption. The adsorption coefficients from all the models examined suggested that the adsorption of THMs, and perhaps chemically similar DBPs, onto virgin PVC microplastics can be 10-20 µg g-1. However, the weathered PVC microplastics contained more polar functional groups, which led to a decreased hydrophobicity and reduced THM adsorption capacity by approximately 10%. These findings offer novel insights into the possible adsorption characteristics of disinfection byproducts (DBPs) onto microplastics and will assist in targeting more toxic DBPs for future investigations.
Collapse
Affiliation(s)
- Yi Li
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada; (P.N.); (S.A.)
| | | | | |
Collapse
|
39
|
Zhang L, Qin Z, Bai H, Xue M, Tang J. Photochemically induced aging of polystyrene nanoplastics and its impact on norfloxacin adsorption behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172511. [PMID: 38641106 DOI: 10.1016/j.scitotenv.2024.172511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/06/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
The co-occurrence of nanoplastics (NPs) and antibiotics in the environment is a growing concern for ecological safety. As NPs age in natural environments, their surface properties and morphology may change, potentially affecting their interactions with co-contaminants such as antibiotics. It is crucial to understand the effect of aging on NPs adsorption of antibiotics, but detailed studies on this topic are still scarce. The study utilized the photo-Fenton-like reaction to hasten the aging of polystyrene nanoplastics (PS-NPs). The impact of aging on the adsorption behavior of norfloxacin (NOR) was then systematically examined. The results showed a time-dependent rise in surface oxygen content and functional groups in aged PS-NPs. These modifications led to noticeable physical changes, including increased surface roughness, decreased particle size, and improved specific surface area. The physicochemical changes significantly increased the adsorption capacity of aged PS-NPs for norfloxacin. Aged PS-NPs showed 5.03 times higher adsorption compared to virgin PS-NPs. The adsorption mechanism analysis revealed that in addition to the electrostatic interactions, van der Waals force, hydrogen bonding, π-π* interactions and hydrophobic interactions observed with virgin PS-NPs, aged PS-NPs played a significant role in polar interactions and pore-filling mechanisms. The study highlights the potential for aging to worsen antibiotic risk in contaminated environments. This study not only enhances the comprehension of the environmental behavior of aged NPs but also provides a valuable basis for developing risk management strategies for contaminated areas.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, PR China.
| | - Zhi Qin
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, PR China
| | - He Bai
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, PR China
| | - Manyu Xue
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, PR China
| | - Jie Tang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, PR China
| |
Collapse
|
40
|
Yarahmadi A, Heidari S, Sepahvand P, Afkhami H, Kheradjoo H. Microplastics and environmental effects: investigating the effects of microplastics on aquatic habitats and their impact on human health. Front Public Health 2024; 12:1411389. [PMID: 38912266 PMCID: PMC11191580 DOI: 10.3389/fpubh.2024.1411389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024] Open
Abstract
Microplastics (MPs) are particles with a diameter of <5 mm. The disposal of plastic waste into the environment poses a significant and pressing issue concern globally. Growing worry has been expressed in recent years over the impact of MPs on both human health and the entire natural ecosystem. MPs impact the feeding and digestive capabilities of marine organisms, as well as hinder the development of plant roots and leaves. Numerous studies have shown that the majority of individuals consume substantial quantities of MPs either through their dietary intake or by inhaling them. MPs have been identified in various human biological samples, such as lungs, stool, placenta, sputum, breast milk, liver, and blood. MPs can cause various illnesses in humans, depending on how they enter the body. Healthy and sustainable ecosystems depend on the proper functioning of microbiota, however, MPs disrupt the balance of microbiota. Also, due to their high surface area compared to their volume and chemical characteristics, MPs act as pollutant absorbers in different environments. Multiple policies and initiatives exist at both the domestic and global levels to mitigate pollution caused by MPs. Various techniques are currently employed to remove MPs, such as biodegradation, filtration systems, incineration, landfill disposal, and recycling, among others. In this review, we will discuss the sources and types of MPs, the presence of MPs in different environments and food, the impact of MPs on human health and microbiota, mechanisms of pollutant adsorption on MPs, and the methods of removing MPs with algae and microbes.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | | | - Parisa Sepahvand
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
41
|
Cong S, Lan T, Wang Y, Zu L, Dong S, Zhang Z, Xu J. Titanium Dioxide and Calcium Sulfate Whiskers Are Used for the Preparation of High Performance Polypropylene and Reduce White Pollution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11056-11066. [PMID: 38739782 DOI: 10.1021/acs.langmuir.4c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The anti-aging agent TiO2-polyacrylonitrile (PAN) and the mechanical strengthening agent CSW-PAN were prepared by radical polymerization using rutile nano-titanium dioxide (TiO2) and anhydrous calcium sulfate whisker (CSW) as raw materials. The structures of TiO2-PAN and CSW-PAN were characterized using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Simultaneously, the mechanical properties, aging properties, and thermal stability of TiO2-PAN/CSW-PAN/polypropylene (PP) composites were studied, and the results showed that the surfaces of nano-titanium dioxide and calcium sulfate whiskers were successfully grafted with acrylonitrile. Owing to the introduction of new elements, such as acrylonitrile, nano-titanium dioxide and calcium sulfate whiskers have anti-aging properties. In comparison of the impact strength and tensile strength of TiO2-PAN/PP and TiO2-PAN/CSW-PAN/PP before aging, it can be proven that adding CSW-PAN can significantly enhance the mechanical properties of TiO2-PAN/CSW-PAN/PP. After 1000 h of aging, the tensile strength of the ternary composite TiO2-PAN/CSW-PAN/PP was 19.88 MPa when the addition amount of TiO2-PAN and CSW-PAN was 3%. Moreover, the impact strength of the ternary composite material TiO2-PAN/CSW-PAN/PP after 1000 h of aging is even better than that of non-aging pure PP materials, proving that the service life of improved PP products is extended, unnecessary waste and environmental pollution can be relieved, and the needs of specific engineering fields can be met.
Collapse
Affiliation(s)
- Shanshan Cong
- School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, People's Republic of China
- College of Materials Science and Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, People's Republic of China
| | - Tianyu Lan
- College of Materials Science and Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, People's Republic of China
- Northeast Petroleum University Applied Technology Research Institute, Northeast Petroleum University, Daqing, Heilongjiang 163318, People's Republic of China
- Colege of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polmeric Composition Material, Qiqihar University, Qiqihar, Heilongjiang 161006, People's Republic of China
| | - Yazhen Wang
- Colege of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polmeric Composition Material, Qiqihar University, Qiqihar, Heilongjiang 161006, People's Republic of China
| | - Liwu Zu
- Colege of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polmeric Composition Material, Qiqihar University, Qiqihar, Heilongjiang 161006, People's Republic of China
| | - Shaobo Dong
- Colege of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polmeric Composition Material, Qiqihar University, Qiqihar, Heilongjiang 161006, People's Republic of China
| | - Zuoyuan Zhang
- Colege of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polmeric Composition Material, Qiqihar University, Qiqihar, Heilongjiang 161006, People's Republic of China
| | - Jiahang Xu
- Engineering Geological Technology Group, Underground Operation Branch, Daqing Oilfeld Company, Daqing, Heilongjiang 163318, People's Republic of China
| |
Collapse
|
42
|
Jokar Z, Banavi N, Taghizadehfard S, Hassani F, Solimani R, Azarpira N, Dehghani H, Dezhgahi A, Sanati AM, Farjadfard S, Ramavandi B. Marine litter along the shores of the Persian Gulf, Iran. Heliyon 2024; 10:e30853. [PMID: 38765091 PMCID: PMC11101852 DOI: 10.1016/j.heliyon.2024.e30853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024] Open
Abstract
Plastic wastes -including cigarette butts (CBs)- are dangerous for marine ecosystems not only because they contain hazardous chemicals but also because they can finally turn into micro- or even nano-particles that may be ingested by micro- and macro-fauna. Even large pieces of plastics can trap animals. In this research, the pollution status of macroplastics (abundance, size, type, and colour) and cigarette butts (CBs, number/m2) on the northern coasts of the Persian Gulf has been investigated. A total of 19 stations were explored in Bushehr province (Iran), which covers a length equivalent to 160 km of the Persian Gulf coastline. Among the collected plastic waste (2992 items), disposable mugs were the most frequent (18 %). Plastics with sizes 5-15 cm were the most abundant, and the most common type of plastic was PET (P-value <0.05). The origin of most macroplastics was domestic (2269 items). According to the Index of Clean Coasts (ICC), most surveyed beaches were extremely dirty. The average number and density of CBs in this study were 220 and 2.45 items/m2, respectively. Household litter was the most abundant type of waste in the studied beaches, and this problem can be better managed by training and improving the waste disposal culture. In general, it is suggested that an integrated and enhanced management for fishing, sewage and surface water disposal, and sandy recreational beaches be implemented in Bushehr to control plastic waste.
Collapse
Affiliation(s)
- Zahra Jokar
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Nafiseh Banavi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Sara Taghizadehfard
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Fatemeh Hassani
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Rezvan Solimani
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Nahid Azarpira
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Hanieh Dehghani
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Atefeh Dezhgahi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Ali Mohammad Sanati
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Sima Farjadfard
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| |
Collapse
|
43
|
Wang J, Liu C, Cao Q, Li Y, Chen L, Qin Y, Wang T, Wang C. Enhanced biodegradation of microplastic and phthalic acid ester plasticizer: The role of gut microorganisms in black soldier fly larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171674. [PMID: 38479533 DOI: 10.1016/j.scitotenv.2024.171674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Hermetia illucens larvae are recognized for their ability to mitigate or eliminate contaminants by biodegradation. However, the biodegradation characteristics of microplastics and phthalic acid esters plasticizers, as well as the role of larval gut microorganisms, have remained largely unrevealed. Here, the degradation kinetics of plasticizers, and biodegradation characteristics of microplastics were examined. The role of larval gut microorganisms was investigated. For larval development, microplastics slowed larval growth significantly (P < 0.01), but the effect of plasticizer was not significant. The degradation kinetics of plasticizers were enhanced, resulting in an 8.11 to 20.41-fold decrease in degradation half-life and a 3.34 to 3.82-fold increase in final degradation efficiencies, compared to degradation without larval participation. The depolymerization and biodeterioration of microplastics were conspicuously evident, primarily through a weight loss of 17.63 %-25.52 %, variation of chemical composition and structure, bio-oxidation and bioerosion of microplastic surface. The synergistic effect driven by larval gut microorganisms, each with various functions, facilitated the biodegradation. Specifically, Ignatzschineria, Paenalcaligenes, Moheibacter, Morganella, Dysgonomonas, Stenotrophomonas, Bacteroides, Sphingobacterium, etc., appeared to be the key contributors, owing to their xenobiotic biodegradation and metabolism functions. These findings offered a new perspective on the potential for microplastics and plasticizers biodegradation, assisted by larval gut microbiota.
Collapse
Affiliation(s)
- Jiaqing Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Cuncheng Liu
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| | - Qingcheng Cao
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Yun Li
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Li Chen
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Yuanhang Qin
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Tielin Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| |
Collapse
|
44
|
Latwal M, Arora S, Murthy KSR. Data driven AI (artificial intelligence) detection furnish economic pathways for microplastics. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104365. [PMID: 38776560 DOI: 10.1016/j.jconhyd.2024.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Microplastics pollution is killing human life, contaminating our oceans, and lasting for longer in the environment than it is used. Microplastics have contaminated the geochemistry and turned the water system into trash barrel. Its detection in water is easy in comparison to soil and air so the attention of researchers is focused on it for now. Being very small in size, microplastics can easily cross the water filtration system and end up in the ocean or lakes and become the prospective challenge to aquatic life. This review piece provides the hot research theme and current advances in the field of microplastics and their eradication through the virtual world of artificial intelligence (AI) because Microplastics have confrontation with clean water tactics.
Collapse
Affiliation(s)
- Mamta Latwal
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, UK, India
| | - Shefali Arora
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, UK, India.
| | - K S R Murthy
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, UK, India
| |
Collapse
|
45
|
Peng X, Yang T, Guo S, Zhou J, Chen G, Zhu Z, Tan J. Revealing chemical release from plastic debris in animals' digestive systems using nontarget and suspect screening and simulating digestive fluids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123793. [PMID: 38513944 DOI: 10.1016/j.envpol.2024.123793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Plastic debris in the environment are not only pollutants but may also be important sources of a variety of contaminants. This work simulated kinetics and potential of chemical leaching from plastic debris in animals' digestive systems by incubating polyvinyl chloride (PVC) cord particles in artificial digestive fluids combined with nontarget and suspect screening based on UHPLC-Orbitrap HRMS. Impacts of particle size, aging, and digestive fluid were investigated to elucidate mechanisms of chemical leaching. Thousands of chemical features were screened in the leachates of PVC cord particles in the artificial digestive fluids, among which >60% were unknown. Bisphenol A (BPA) and bis(2-ethylhexyl) phthalate (DEHP) were the dominant identified CL1 compounds. Finer size and aging of the PVC particles and prolonged incubation time enhanced chemical release, resulting in greater numbers, higher levels, and more complexity in components of the released chemicals. The gastrointestinal fluid was more favorable for chemical leaching than the gastric fluid, with greater numbers and higher levels. Hundreds to thousands of chemical features were screened and filtered in the leachates of consumer plastic products, including food contact products (FCPs) in the artificial bird gastrointestinal fluid. In addition to BPA and DEHP, several novel bisphenol analogues were identified in the leachate of at least one FCP. The results revealed that once plastic debris are ingested by animals, hundreds to thousands of chemicals may be released into animals' digestive tracts in hours, posing potential synergistic risks of plastic debris and chemicals to plastic-ingesting animals. Future research should pay more attentions to identification, ecotoxicities, and environmental fate of vast amounts of unknown chemicals potentially released from plastics in order to gain full pictures of plastic pollution in the environment.
Collapse
Affiliation(s)
- Xianzhi Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Tao Yang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shang Guo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhou
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangshi Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zewen Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Tan
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, 510050, China
| |
Collapse
|
46
|
Parolini M, De Felice B, Gazzotti S, Sugni M, Ortenzi MA. Comparison of the potential toxicity induced by microplastics made of polyethylene terephthalate (PET) and polylactic acid (PLA) on the earthworm Eiseniafoetida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123868. [PMID: 38556148 DOI: 10.1016/j.envpol.2024.123868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/02/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
A growing number of studies have demonstrated that microplastic (MP) contamination is widespread in terrestrial ecosystems. A wide array of MPs made of conventional, fossil-based polymers differing in size and shape has been detected in soils worldwide. Recently, also MPs made of bioplastics have been found in soils, but there is a dearth of information concerning their toxicity on soil organisms. This study aimed at exploring the potential toxicity induced by the exposure for 28 days to irregular shaped and differently sized MPs made of a fossil-based (polyethylene terephthalate - PET) and a bioplastic (polylactic acid - PLA) polymer on the earthworm Eisenia foetida. Two amounts (1 g and 10 g/kg of soil, corresponding to 0.1% and 1% of soil weight) of both MP types were administered to the earthworms. A multi-level approach was used to investigate the MP-induced effects at sub-individual and individual level. Changes in the activity of antioxidant and detoxifying enzymes, as well as in lipid peroxidation levels, were investigated at specific time-points (i.e., 7, 14, 21 and 28 days) as sub-individual responses. Histological analyses were performed to assess effects at tissue level, while the change in digging activity was considered as a proxy of behavioral effects. Earthworms ingested MPs made of both the polymers. MPs made of PET did not induce any adverse effect at none of the biological levels. In contrast, MPs made of PLA caused the modulation of earthworms' oxidative status as showed by a bell-shaped activity of superoxide dismutase coupled with an increase in glutathione peroxidase activity. However, neither oxidative and tissue damage, nor behavioral alteration occurred. These findings suggest that the exposure to bio-based MPs can cause higher toxicity compared to fossil-based MPs.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy.
| | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Stefano Gazzotti
- Department of Chemistry, University of Milan, via Golgi 19, I-20133, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Marco Aldo Ortenzi
- Department of Chemistry, University of Milan, via Golgi 19, I-20133, Milan, Italy
| |
Collapse
|
47
|
Zhao Y, Chen H, Liang H, Zhao T, Ren B, Li Y, Liang H, Liu Y, Cao H, Cui N, Wei W. Combined toxic effects of polyethylene microplastics and lambda-cyhalothrin on gut of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116296. [PMID: 38593498 DOI: 10.1016/j.ecoenv.2024.116296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
Microplastics (MPs), which are prevalent and increasingly accumulating in aquatic environments. Other pollutants coexist with MPs in the water, such as pesticides, and may be carried or transferred to aquatic organisms, posing unpredictable ecological risks. This study sought to assess the adsorption of lambda-cyhalothrin (LCT) by virgin and aged polyethylene MPs (VPE and APE, respectively), and to examine their influence on LCT's toxicity in zebrafish, specifically regarding acute toxicity, oxidative stress, gut microbiota and immunity. The adsorption results showed that VPE and APE could adsorb LCT, with adsorption capacities of 34.4 mg∙g-1 and 39.0 mg∙g-1, respectively. Compared with LCT exposure alone, VPE and APE increased the acute toxicity of LCT to zebrafish. Additionally, exposure to LCT and PE-MPs alone can induce oxidative stress in the zebrafish gut, while combined exposure can exacerbate the oxidative stress response and intensify intestinal lipid peroxidation. Moreover, exposure to LCT or PE-MPs alone promotes inflammation, and combined exposure leads to downregulation of the myd88-nf-κb related gene expression, thus impacting intestinal immunity. Furthermore, exposure to APE increased LCT toxicity to zebrafish more than VPE. Meanwhile, exposure to PE-MPs and LCT alone or in combination has the potential to affect gut microbiota function and alter the abundance and diversity of the zebrafish gut flora. Collectively, the presence of PE-MPs may affect the toxicity of pesticides in zebrafish. The findings emphasize the importance of studying the interaction between MPs and pesticides in the aquatic environment.
Collapse
Affiliation(s)
- Yuexing Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Haiyue Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Tingting Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Bo Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yanhong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hanlin Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yu Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Huihui Cao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Naqi Cui
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Wei
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
48
|
Zhao E, Xiong X, Li X, Hu H, Wu C. Effect of Biofilm Forming on the Migration of Di(2-ethylhexyl)phthalate from PVC Plastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6326-6334. [PMID: 38551364 DOI: 10.1021/acs.est.3c09021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Plastic additives, represented by plasticizers, are important components of plastic pollution. Biofilms inevitably form on plastic surfaces when plastic enters the aqueous environment. However, little is known about the effect of biofilms on plastic surfaces on the release of additives therein. In this study, PVC plastics with different levels of di(2-ethylhexyl)phthalate (DEHP) content were investigated to study the effect of biofilm growth on DEHP release. The presence of biofilms promoted the migration of DEHP from PVC plastics to the external environment. Relative to biofilm-free controls, although the presence of surface biofilm resulted in 0.8 to 11.6 times lower DEHP concentrations in water, the concentrations of the degradation product, monoethylhexyl phthalate (MEHP) in water, were 2.3 to 57.3 times higher. When the total release amounts of DEHP in the biofilm and in the water were combined, they were increased by 0.6-73 times after biofilm growth. However, most of the released DEHP was adsorbed in the biofilms and was subsequently degraded. The results of this study suggest that the biofilm as a new interface between plastics and the surrounding environment can affect the transport and transformation of plastic additives in the environment through barrier, adsorption, and degradation. Future research endeavors should aim to explore the transport dynamics and fate of plastic additives under various biofilm compositions as well as evaluate the ecological risks associated with their enrichment by biofilms.
Collapse
Affiliation(s)
- E Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China
| | - Xiong Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
| | - Xin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
| | - Hongjuan Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
| |
Collapse
|
49
|
Lu J, Qiu Y, Zhang L, Wang J, Li C, Wang P, Ren L. Effects of Fe 3O 4 NMs based Fenton-like reactions on biodegradable plastic bags in compost: New insight into plastisphere community succession, co-composting efficiency and free radical in situ aging theory. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133689. [PMID: 38335609 DOI: 10.1016/j.jhazmat.2024.133689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Biodegradable plastic bags (BPBs), meant for eco-friendly, often inadequately degrade in compost, leading to microplastic pollution. In this study, the effect of Fenton-like reaction with Fe3O4 nanoparticles (NMs) on the plastisphere microorganisms' evolution and the BPBs' aging mechanism was revealed by co-composting of food waste with BPBs for 40 days. The establishment of the Fenton-like reaction was confirmed, with the addition of Fenton-like reagent treatments resulting in an increase of 57.67% and 37.75% in H2O2 levels during the composting, compared to the control group. Moreover, the structural characterization reveals that increasing oxygen content continuously generates reactive free radicals on the surface, leading to the formation of oxidative cavities. This process results in random chain-breaking, significantly reducing molecular weights by 39.27% and 38.81%, thus showcasing a deep-seated transformation in the plastic's molecular structure. Furthermore, the microbial network suggested that the Fenton-like reaction enriched plastisphere keystone species, thus accelerating the BPBs' aging. Additionally, the Fenton-like reaction improved compost maturity and reduced greenhouse gas emissions. These results reveal the bio-chemical mechanisms of BPBs aging and random chain-breaking by the Fenton-like reaction, under alternating oxidative/anoxic conditions of composting and provide a new insight to resolve the BPBs' pollutions.
Collapse
Affiliation(s)
- Jiaxin Lu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yizhan Qiu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Luxi Zhang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Jiancheng Wang
- Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province 256606, China
| | - Chunmei Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Pan Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Lianhai Ren
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
50
|
Gao J, Wang L, Wu WM, Luo J, Hou D. Microplastic generation from field-collected plastic gauze: Unveiling the aging processes. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133615. [PMID: 38325096 DOI: 10.1016/j.jhazmat.2024.133615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Accumulation of plastic debris in the environment is a matter of global concern. As plastic ages, it generates microplastic (MP) particles with high mobility. Understanding how MPs are generated is crucial to controlling this emerging contaminant. In this study, we utilized high-density polyethylene (HDPE) plastic gauze, collected from urban settings, as a representative example of plastic waste. The plastic gauze was subjected to various aging conditions, including freeze-thaw cycling, mechanical abrasion, and UV irradiation. Following aging, the plastic gauze was rinsed with water, and the number of generated MPs were quantified. It was found that aged plastic gauze generated up to 334 million MP particles per m2 (> 10 µm) during rinsing, a number two orders of magnitude higher than unaged plastic. Fragmentation occurred in two dimensions for bulk MPs of all morphotypes. However, specific aging approaches (i.e., mechanical abrasion and UV irradiation) generated spheres and fibers via pseudo-3D fragmentation. Additionally, changes in molecular weight, size distribution, and surface oxidation characteristics unveiled a complex pattern (i.e., irregular changes with exposure time). This complexity underscores the intricate nature of plastic debris aging processes in the environment.
Collapse
Affiliation(s)
- Jing Gao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA 94305-4020, USA
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, USA
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|