1
|
Yu J, Moise AF, Sahany S, Prasanna V, Chua XR, Chen C, Hassim MEE, Lim G, Luo F, Kumar A, Liu P, Raavi PH. High-resolution dynamically downscaled projections of future extreme temperatures, heatwaves and exposure in Southeast Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 980:179501. [PMID: 40306085 DOI: 10.1016/j.scitotenv.2025.179501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/02/2025] [Accepted: 04/20/2025] [Indexed: 05/02/2025]
Abstract
Extreme heat and heatwaves driven by global warming pose escalating risks globally, particularly in Southeast Asia (SEA), home to 680 million people, with a high concentration in urban areas. This study made use of CMIP6-based convection-permitting dynamically downscaled simulations at 8 km resolution over SEA under the three Shared Socioeconomic Pathways (SSP) scenarios: SSP1-2.6, SSP2-4.5, and SSP5-8.5. Projected changes in daily maximum temperatures and key heat metrics including the frequency of hotter days, heatwaves, and cumulative heat intensity and exposure time were analyzed across the region, as well as for individual countries and cities, for the near future (2040-2059) and far future (2080-2099) relative to the historical baseline (1995-2014). Results indicate a substantial rise in daily maximum temperatures over SEA, with average increases of 1.0-2.1 °C by 2040-2059 and 1.1-4.0 °C by 2080-2099 across the three scenarios. The Mekong Delta, eastern Sumatra and southern Borneo are identified as hotspots with pronounced temperature increase. More frequent and prolonged heatwaves are also projected over SEA, with heatwave frequency and duration doubling around 2025 and 2040, respectively, across the three scenarios, and increasing fivefold around 2045 and 2070, respectively, under SSP5-8.5. Specifically, the Maritime Continent is projected to face a notably higher frequency of hotter days, establishing a new heat norm by the end of the century. Under SSP2-4.5 and SSP5-8.5, approximately 4 and 9 months/year, respectively, will be as hot as or hotter than the historical 5 % hottest days. Cities along the Strait of Malacca and on Java are expected to experience extreme heat with heightened cumulative intensity and longer durations. Mitigating emissions along a low-carbon pathway would provide substantial benefits for the Maritime Continent in the second half of the century, not only for human health but also for agriculture and ecosystems. This study provides the highest resolution and most updated projections of extreme heat over SEA to help inform targeted climate adaption strategies in this highly vulnerable region.
Collapse
Affiliation(s)
- Jianjun Yu
- Centre for Climate Research Singapore, Meteorological Service Singapore, National Environment Agency, Singapore.
| | - Aurel F Moise
- Centre for Climate Research Singapore, Meteorological Service Singapore, National Environment Agency, Singapore
| | - Sandeep Sahany
- Centre for Climate Research Singapore, Meteorological Service Singapore, National Environment Agency, Singapore
| | - Venkatraman Prasanna
- Centre for Climate Research Singapore, Meteorological Service Singapore, National Environment Agency, Singapore
| | - Xin Rong Chua
- Centre for Climate Research Singapore, Meteorological Service Singapore, National Environment Agency, Singapore
| | - Chen Chen
- Centre for Climate Research Singapore, Meteorological Service Singapore, National Environment Agency, Singapore
| | - Muhammad E E Hassim
- Centre for Climate Research Singapore, Meteorological Service Singapore, National Environment Agency, Singapore
| | - Gerald Lim
- Weather Services Division, Meteorological Service Singapore, National Environment Agency, Singapore
| | - Fei Luo
- Centre for Climate Research Singapore, Meteorological Service Singapore, National Environment Agency, Singapore
| | - Anupam Kumar
- Centre for Climate Research Singapore, Meteorological Service Singapore, National Environment Agency, Singapore
| | - Puyang Liu
- Department of the Built Environment, College of Design and Engineering, National University of Singapore, Singapore
| | - Pavan Harika Raavi
- Centre for Climate Research Singapore, Meteorological Service Singapore, National Environment Agency, Singapore
| |
Collapse
|
2
|
Han S, Van den Brink PJ, Declerck SAJ. Adapting to an increasingly stressful environment: Experimental evidence for 'micro-evolutionary priming'. J Anim Ecol 2025; 94:863-873. [PMID: 39972545 PMCID: PMC12056352 DOI: 10.1111/1365-2656.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
In many natural systems, animal populations are exposed to increasing levels of stress. Stress levels tend to fluctuate, and long-term increases in average stress levels are often accompanied by greater amplitudes of such fluctuations. Micro-evolutionary adaptation may allow populations to cope with gradually increasing stress levels but may not prevent their extirpation during acute stress events unless adaptation to low stress levels also increases their tolerance to acute stress. We tested this idea, here called 'micro-evolutionary priming', by exposing populations of the monogonont rotifer species Brachionus calyciflorus to four levels of copper stress (control, low, intermediate and high) during a multigenerational selection experiment. Subsequently, in a common garden experiment, we exposed randomly selected subsets of genotypes (clones) of each of these populations to low, intermediate and high copper levels and assessed their population growth performance across multiple generations. Compared to populations with an exposure history to copper, genotypes of control populations suffered strong growth reductions when exposed to intermediate and high levels of copper, mainly as a result of high mortality rates. Remarkably, when exposed to low copper levels, fitness differences between genotypes of control populations and populations adapted to these low levels were very small, whereas the latter strongly outperformed the former at intermediate and high copper levels. These results highlight the potentially strong but hitherto largely ignored impact of micro-evolutionary priming on the performance of populations in a changing environment. We discuss the potential consequences of micro-evolutionary priming for the persistence of populations and the spatial eco-evolutionary dynamics of metapopulations.
Collapse
Affiliation(s)
- Shuwen Han
- Department of Aquatic EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Paul J. Van den Brink
- Department of Aquatic Ecology and Water Quality ManagementWageningen UniversityWageningenThe Netherlands
| | - Steven A. J. Declerck
- Department of Aquatic EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Department of Biology, Laboratory of Aquatic Ecology, Evolution and ConservationKULeuvenLeuvenBelgium
| |
Collapse
|
3
|
Liang J, Qiu Y(L, Wang B, Shen X, Liu S. Impacts of heatwaves on electricity reliability: Evidence from power outage data in China. iScience 2025; 28:111855. [PMID: 39995880 PMCID: PMC11848798 DOI: 10.1016/j.isci.2025.111855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/12/2024] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
Heatwaves, driven by climate change, have increasingly challenged energy systems with increased demand and reduced supply, leading to power outages. This study empirically examines the impact of heatwaves on power outages, employing fixed-effects models and using high-frequency outage data from China (2019-2021). The results indicate that heatwaves increase the frequency of outages by 3.9%-4.0% and extend their duration by 7.9%-8.3%. Additionally, each degree of temperature rise increases outages by 0.1%, and an additional heatwave day raises outages by 0.5%. We also observed heterogeneity in outage impacts across different socio-demographic groups. Furthermore, projections under RCP2.6, RCP4.5, and RCP8.5 show that outages will increase by 5.2%-12.5% in 2030 and 7.4%-20.3% in 2050. These findings underscore the urgency of grid upgrades and provide insights for resource allocation to adaptation to climate change.
Collapse
Affiliation(s)
- Jing Liang
- School of Management, Harbin Institute of Technology, Harbin, China
| | - Yueming (Lucy) Qiu
- School of Public Policy, University of Maryland College Park, College Park, MD, USA
| | - Bo Wang
- School of Management and Economics, Beijing Institute of Technology, Beijing, China
| | - Xingchi Shen
- School of Environment, Yale University, New Haven, CT, USA
| | - Shangwei Liu
- School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| |
Collapse
|
4
|
Syed Mahbar SF, Kusaka H. Synergistic interactions between urban heat islands and heat waves in the Greater Kuala Lumpur and surrounding areas. INTERNATIONAL JOURNAL OF CLIMATOLOGY 2024; 44:4886-4906. [DOI: 10.1002/joc.8614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/28/2024] [Indexed: 01/05/2025]
Abstract
AbstractThe synergistic interactions between urban heat islands (UHI) and heat waves (HW) continue to be debated. Despite the expectations of UHI intensification during HW, several studies have demonstrated variations. Notably, there is a dearth of investigations concerning the UHI–HW synergy in tropical climate cities amidst the escalating trend of more frequent and severe HW in Southeast Asia. To address this gap, our study aimed to investigate the synergies between the UHI and HW phenomena in Greater Kuala Lumpur (GKL) and its surrounding areas. We employed the advanced research version 4.2.2 of the Weather Research and Forecasting (WRF) model, coupled with a single‐layer Urban Canopy Model (UCM), to examine the impact of UHI during two heat wave events in 2016 (Case 1) and 2020 (Case 2), against the periods immediately before and after these events, which we refer to as Pre‐Post HW (PPHW), in GKL. An elevated UHI intensity (UHII) was evident during the HW in both observations and simulations, with a noticeable distinction particularly observed in Case 1. During HW, observed data indicates average UHII peaks at 1.8°C (0100 LST (UTC+8)) and 1.7°C (1500 LST) in Cases 1 and 2, respectively. In contrast, those for PPHW days for Cases 1 and 2 are 1.5°C (0000 LST) and 1.2°C (0100 LST), respectively. The maximum observed heat loads are likely to occur at noon, reaching 2.3°C at 1600 LST in Case 1 and 3.7°C at 1500 LST in Case 2. LST stands for local standard time. Heat flux component analysis from the surface energy balance model confirmed the UHI–HW synergy. A notable difference in the Bowen Ratio between urban and rural areas highlights the effect of urbanisation on heat fluxes, potentially exacerbating urban discomfort during HW. Consistent across all measurement methods, the evidence indicates a clear and positive synergy between the UHI and HW in the GKL. This study can potentially deliver valuable insights, especially in urban planning, where the implications of weather events are substantial.
Collapse
Affiliation(s)
- Sharifah Faridah Syed Mahbar
- Graduate School of Life and Environmental Sciences University of Tsukuba Tsukuba Japan
- Malaysian Meteorological Department Petaling Jaya Malaysia
| | - Hiroyuki Kusaka
- Center for Computational Sciences University of Tsukuba Tsukuba Japan
| |
Collapse
|
5
|
Kamal ASMM, Fahim AKF, Shahid S. Changes in wet bulb globe temperature and risk to heat-related hazards in Bangladesh. Sci Rep 2024; 14:10417. [PMID: 38710893 DOI: 10.1038/s41598-024-61138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
The rise in temperatures and changes in other meteorological variables have exposed millions of people to health risks in Bangladesh, a densely populated, hot, and humid country. To better assess the threats climate change poses to human health, the wet bulb globe temperature (WBGT) is an important indicator of human heat stress. This study utilized high-resolution reanalysis data from the fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF ERA5) to analyze the spatiotemporal changes in outdoor WBGT across Bangladesh from 1979 to 2021, employing Liljegren's model. The study revealed an increase in the annual average WBGT by 0.08-0.5 °C per decade throughout the country, with a more pronounced rise in the southeast and northeast regions. Additionally, the number of days with WBGT levels associated with high and extreme risks of heat-related illnesses has shown an upward trend. Specifically, during the monsoon period (June to September), there has been an increase of 2-4 days per decade, and during the pre-monsoon period (March to May), an increase of 1-3 days per decade from 1979 to 2021. Furthermore, the results indicated that the escalation in WBGT has led to a five-fold increase in affected areas and a three-fold increase in days of high and extreme heat stress during the monsoon season in recent years compared to the earlier period. Trend and relative importance analyses of various meteorological variables demonstrated that air temperature is the primary driver behind Bangladesh's rising WBGT and related health risks, followed by specific humidity, wind speed, and solar radiation.
Collapse
Affiliation(s)
- A S M Maksud Kamal
- Department of Disaster Science and Climate Resilience, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Abul Kashem Faruki Fahim
- Department of Disaster Science and Climate Resilience, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shamsuddin Shahid
- Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| |
Collapse
|
6
|
Muhammad MKI, Hamed MM, Harun S, Sa'adi Z, Sammen SS, Al-Ansari N, Shahid S, Scholz M. Heatwaves in Peninsular Malaysia: a spatiotemporal analysis. Sci Rep 2024; 14:4255. [PMID: 38383678 PMCID: PMC10882015 DOI: 10.1038/s41598-024-53960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
One of the direct and unavoidable consequences of global warming-induced rising temperatures is the more recurrent and severe heatwaves. In recent years, even countries like Malaysia seldom had some mild to severe heatwaves. As the Earth's average temperature continues to rise, heatwaves in Malaysia will undoubtedly worsen in the future. It is crucial to characterize and monitor heat events across time to effectively prepare for and implement preventative actions to lessen heatwave's social and economic effects. This study proposes heatwave-related indices that take into account both daily maximum (Tmax) and daily lowest (Tmin) temperatures to evaluate shifts in heatwave features in Peninsular Malaysia (PM). Daily ERA5 temperature dataset with a geographical resolution of 0.25° for the period 1950-2022 was used to analyze the changes in the frequency and severity of heat waves across PM, while the LandScan gridded population data from 2000 to 2020 was used to calculate the affected population to the heatwaves. This study also utilized Sen's slope for trend analysis of heatwave characteristics, which separates multi-decadal oscillatory fluctuations from secular trends. The findings demonstrated that the geographical pattern of heatwaves in PM could be reconstructed if daily Tmax is more than the 95th percentile for 3 or more days. The data indicated that the southwest was more prone to severe heatwaves. The PM experienced more heatwaves after 2000 than before. Overall, the heatwave-affected area in PM has increased by 8.98 km2/decade and its duration by 1.54 days/decade. The highest population affected was located in the central south region of PM. These findings provide valuable insights into the heatwaves pattern and impact.
Collapse
Affiliation(s)
- Mohd Khairul Idlan Muhammad
- Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia.
| | - Mohammed Magdy Hamed
- Construction and Building Engineering Department, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport (AASTMT), B 2401 Smart Village, Giza, 12577, Egypt
| | - Sobri Harun
- Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia
| | - Zulfaqar Sa'adi
- Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, UTM, 81310, Skudai, Johor, Malaysia
| | - Saad Sh Sammen
- Department of Civil Engineering, College of Engineering, Diyala University, Baqubah, 32001, Iraq
| | - Nadhir Al-Ansari
- Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 97187, Lulea, Sweden
| | - Shamsuddin Shahid
- Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Miklas Scholz
- Innovation Management Department, Atene KOM, Invalidenstraße 91, 10115, Berlin, Germany.
- Department of Civil Engineering Science, Faculty of Engineering and the Built Environment, School of Civil Engineering, and the Built Environment, University of Johannesburg, Kingsway Campus, Aukland Park, PO Box 524, Johannesburg, 2006, South Africa.
- School of Science, Engineering and Environment, The University of Salford, Newton Building, Greater Manchester, M5 4WT, UK.
- Specialist Company According to Water Law, Kunststoff-Technik Adams, Schulstraße 7, 26931, Elsfleth, Germany.
- Nexus By Sweden, Skepparbacken 5, 722 11, Västerås, Sweden.
- Department of Town Planning, Engineering Networks and Systems, South Ural State University (National Research University), 76, Lenin Prospekt, Chelyabinsk, Russia, 454080.
| |
Collapse
|
7
|
Song X, Chen H, Chen T, Qin Z, Chen S, Yang N, Deng S. GRACE-based groundwater drought in the Indochina Peninsula during 1979-2020: Changing properties and possible teleconnection mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168423. [PMID: 37951249 DOI: 10.1016/j.scitotenv.2023.168423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Groundwater is very important for human productivity and daily life, hydrological cycle regulation, and ecosystem stability. However, due to the complex mechanisms of groundwater drought, the spatial and temporal variations of groundwater drought and its driving mechanisms are still not fully understood, especially in Indochina Peninsula. In this work, we used a reconstructed long-term terrestrial water storage dataset from the Gravity Recovery and Climate Experiment (GRACE) emission and a GRACE-based groundwater drought index to investigate the spatial and temporal characteristics of groundwater drought during 1979-2020 in the Indochina Peninsula. The possible teleconnection mechanisms between groundwater drought and the Indian Ocean Dipole (IOD), El Niño-Southern Oscillation (ENSO), and El Niño Modoki (ENSO_M) were also investigated using cross wavelet transform method. The results show that groundwater drought worsens significantly during 1979-2020, and becomes much more frequent and intensified after 2000 in the southern Indochina Peninsula. Both univariate and bivariate (logic 'or' and 'and') return periods for duration, severity, and peak of groundwater drought are short in the southern Indochina Peninsula, and thus the risk of groundwater drought is high. The IOD, ENSO, and ENSO_M can reduce the intensity of groundwater drought to a certain extent during the warm phases, but only ENSO_M tends to significantly exacerbate the intensity of groundwater drought during the cold phases in the southern Indochina Peninsula. The variations in groundwater drought are dominated by ENSO_M, and are also coupled influenced by the IOD and ENSO in the southern Indochina Peninsula. The results provide valuable information for the sustainable ecological environment and socioeconomic development, especially development of groundwater drought early warning and prediction models in the Indochina Peninsula.
Collapse
Affiliation(s)
- Xuanhua Song
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Nanning Normal University), Ministry of Education, Nanning 530001, China; School of Geography and Planning, Nanning Normal University, Nanning 530001, China
| | - Hao Chen
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Nanning Normal University), Ministry of Education, Nanning 530001, China; School of Geography and Planning, Nanning Normal University, Nanning 530001, China
| | - Tan Chen
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhihao Qin
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Nanning Normal University), Ministry of Education, Nanning 530001, China; School of Geography and Planning, Nanning Normal University, Nanning 530001, China
| | - Sheng Chen
- Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ni Yang
- School of Management Science and Engineering, Guangxi University of Finance and Economics, Nanning 530003, China
| | - Shulin Deng
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Nanning Normal University), Ministry of Education, Nanning 530001, China; School of Geography and Planning, Nanning Normal University, Nanning 530001, China.
| |
Collapse
|
8
|
Liu L, Qin X. Analysis of heatwaves based on the universal thermal climate index and apparent temperature over mainland Southeast Asia. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:2055-2068. [PMID: 37878089 DOI: 10.1007/s00484-023-02562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/18/2023] [Accepted: 09/30/2023] [Indexed: 10/26/2023]
Abstract
Heatwaves have caused significant damage to human health, infrastructure, and economies in recent decades, and the occurrences of heatwaves are becoming more frequent and severe across the globe under climate change. The previous studies on heatwaves have primarily focused on air temperature, neglecting other variables like wind speed, relative humidity, and radiation, which could lead to a serious underestimation of the adverse effects of heatwaves. To address this issue, this study proposed to the use of more sophisticated thermal indices, such as universal thermal climate index (UTCI) and apparent temperature (AT), to define heatwaves and carry out a comprehensive heatwave assessment over mainland southeast Asia (MSEA) from 1961 to 2020. The traditional temperature-based method was also compared. The results of the study demonstrate that the annual maximum temperature in heatwave days (HWA) and the annual average temperature in heatwave days (HWM) are significantly underestimated if only air temperature is considered. However, UTCI and AT tend to predict a lower frequency of yearly heatwave occurrences and shorter durations. Trend analysis indicates a general increase in heatwave occurrences across MSEA under all thermal indices in the past six decades, particularly in the last 30 years. This study's approach and findings provide a holistic view of heatwave characteristics based on thermal indices and highlight the risk of intensified heat stress during heatwaves in MSEA.
Collapse
Affiliation(s)
- Lilingjun Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaosheng Qin
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
9
|
Barteit S, Colmar D, Nellis S, Thu M, Watterson J, Gouwanda D, Bärnighausen T, Su TT. Developing Climate Change and Health Impact Monitoring with eHealth at the South East Asia Community Observatory and Health and Demographic Surveillance Site, Malaysia (CHIMES). Front Public Health 2023; 11:1153149. [PMID: 38125843 PMCID: PMC10732307 DOI: 10.3389/fpubh.2023.1153149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
Background Malaysia is projected to experience an increase in heat, rainfall, rainfall variability, dry spells, thunderstorms, and high winds due to climate change. This may lead to a rise in heat-related mortality, reduced nutritional security, and potential migration due to uninhabitable land. Currently, there is limited data regarding the health implications of climate change on the Malaysian populace, which hinders informed decision-making and interventions. Objective This study aims to assess the feasibility and reliability of using sensor-based devices to enhance climate change and health research within the SEACO health and demographic surveillance site (HDSS) in Malaysia. We will particularly focus on the effects of climate-sensitive diseases, emphasizing lung conditions like chronic obstructive pulmonary disease (COPD) and asthma. Methods In our mixed-methods approach, 120 participants (>18 years) from the SEACO HDSS in Segamat, Malaysia, will be engaged over three cycles, each lasting 3 weeks. Participants will use wearables to monitor heart rate, activity, and sleep. Indoor sensors will measure temperature in indoor living spaces, while 3D-printed weather stations will track indoor temperature and humidity. In each cycle, a minimum of 10 participants at high risk for COPD or asthma will be identified. Through interviews and questionnaires, we will evaluate the devices' reliability, the prevalence of climate-sensitive lung diseases, and their correlation with environmental factors, like heat and humidity. Results We anticipate that the sensor-based measurements will offer a comprehensive understanding of the interplay between climate-sensitive diseases and weather variables. The data is expected to reveal correlations between health impacts and weather exposures like heat. Participant feedback will offer perspectives on the usability and feasibility of these digital tools. Conclusion Our study within the SEACO HDSS in Malaysia will evaluate the potential of sensor-based digital technologies in monitoring the interplay between climate change and health, particularly for climate-sensitive diseases like COPD and asthma. The data generated will likely provide details on health profiles in relation to weather exposures. Feedback will indicate the acceptability of these tools for broader health surveillance. As climate change continues to impact global health, evaluating the potential of such digital technologies is crucial to understand its potential to inform policy and intervention strategies in vulnerable regions.
Collapse
Affiliation(s)
- Sandra Barteit
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| | - David Colmar
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Syahrul Nellis
- South East Asia Community Observatory (SEACO) and Global Public Health, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Min Thu
- South East Asia Community Observatory (SEACO) and Global Public Health, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Jessica Watterson
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Darwin Gouwanda
- School of Engineering (Mechanical), Monash University Malaysia, Bandar Sunway, Malaysia
| | - Till Bärnighausen
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, United States
- Harvard Center for Population and Development Studies, Harvard T.H. Chan School of Public Health, Cambridge, MA, United States
| | - Tin Tin Su
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
- South East Asia Community Observatory (SEACO) and Global Public Health, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
10
|
Yong KH, Teo YN, Azadbakht M, Phung H, Chu C. The Scorching Truth: Investigating the Impact of Heatwaves on Selangor's Elderly Hospitalisations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105910. [PMID: 37239636 DOI: 10.3390/ijerph20105910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Global climate change has contributed to the intensity, frequency, and duration of heatwave events. The association between heatwaves and elderly mortality is highly researched in developed countries. In contrast, heatwave impact on hospital admissions has been insufficiently studied worldwide due to data availability and sensitivity. In our opinion, the relationship between heatwaves and hospital admissions is worthwhile to explore as it could have a profound impact on healthcare systems. Therefore, we aimed to investigate the associations between heatwaves and hospitalisations for the elderly by age group in Selangor, Malaysia, from 2010 to 2020. We further explored the impact of heatwaves on the risks of cause-specific hospital admissions across age groups within the elderly. This study applied generalized additive models (GAMs) with the Poisson family and distributed lag models (DLMs) to estimate the effect of heatwaves on hospitalisations. According to the findings, there was no significant increase in hospitalisations for those aged 60 and older during heatwaves; however, a rise in mean apparent temperature (ATmean) by 1 °C significantly increased the risk of hospital admission by 12.9%. Heatwaves had no immediate effects on hospital admissions among elderly patients, but significant delay effects were identified for ATmean with a lag of 0-3 days. The hospital admission rates of the elderly groups started declining after a 5-day average following the heatwave event. Females were found to be relatively more vulnerable than males during heatwave periods. Consequently, these results can provide a reference to improve public health strategies to target elderly people who are at the greatest risk of hospitalisations due to heatwaves. Development of early heatwave and health warning systems for the elderly would assist with preventing and reducing health risks while also minimising the burden on the whole hospital system in Selangor, Malaysia.
Collapse
Affiliation(s)
- Kun Hing Yong
- School of Medicine and Dentistry, Griffith University, Brisbane, QLD 4111, Australia
| | - Yen Nee Teo
- Institute of Malaysian and International Studies, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mohsen Azadbakht
- Department of Infrastructure Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Hai Phung
- School of Medicine and Dentistry, Griffith University, Brisbane, QLD 4111, Australia
| | - Cordia Chu
- School of Medicine and Dentistry, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
11
|
Arsad FS, Hod R, Ahmad N, Ismail R, Mohamed N, Baharom M, Osman Y, Radi MFM, Tangang F. The Impact of Heatwaves on Mortality and Morbidity and the Associated Vulnerability Factors: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16356. [PMID: 36498428 PMCID: PMC9738283 DOI: 10.3390/ijerph192316356] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND This study aims to investigate the current impacts of extreme temperature and heatwaves on human health in terms of both mortality and morbidity. This systematic review analyzed the impact of heatwaves on mortality, morbidity, and the associated vulnerability factors, focusing on the sensitivity component. METHODS This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 flow checklist. Four databases (Scopus, Web of Science, EBSCOhost, PubMed) were searched for articles published from 2012 to 2022. Those eligible were evaluated using the Navigation Guide Systematic Review framework. RESULTS A total of 32 articles were included in the systematic review. Heatwave events increased mortality and morbidity incidence. Sociodemographic (elderly, children, male, female, low socioeconomic, low education), medical conditions (cardiopulmonary diseases, renal disease, diabetes, mental disease), and rural areas were crucial vulnerability factors. CONCLUSIONS While mortality and morbidity are critical aspects for measuring the impact of heatwaves on human health, the sensitivity in the context of sociodemographic, medical conditions, and locality posed a higher vulnerability to certain groups. Therefore, further research on climate change and health impacts on vulnerability may help stakeholders strategize effective plans to reduce the effect of heatwaves.
Collapse
Affiliation(s)
- Fadly Syah Arsad
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Rozita Hod
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Norfazilah Ahmad
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Rohaida Ismail
- Environmental Health Research Centre, Institute for Medical Research, Ministry of Health Malaysia, Shah Alam 40170, Malaysia
| | - Norlen Mohamed
- Environmental Health Unit, Disease Control Division, Ministry of Health Malaysia, Putrajaya 62590, Malaysia
| | - Mazni Baharom
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Yelmizaitun Osman
- Occupational and Environmental Health Unit, Kelantan State Health Department, Ministry of Health Malaysia, Kota Bharu 15590, Malaysia
| | - Mohd Firdaus Mohd Radi
- Surveillance Unit, Kedah State Health Department, Ministry of Health Malaysia, Alor Setar 05400, Malaysia
| | - Fredolin Tangang
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
12
|
Liang L, Yu L, Wang Z. Identifying the dominant impact factors and their contributions to heatwave events over mainland China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157527. [PMID: 35931164 DOI: 10.1016/j.scitotenv.2022.157527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/09/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
The heatwave frequency and intensity have significantly changed as the climate warms and human activities increase, which poses a potential risk to human society. However, the impact factors that determine the change of heatwave events remain unclear. Here, we estimated the heatwave events based on data from 2474 in-suit gauges during 1960-2018 at daily scale in China. Besides, we explored possible drivers and their contributions to the change of heatwave based on correlation analysis, multiple linear regression (MLR), and random forest (RF) in different subregions of China. The results show that the temporal changes of all heatwave metrics exhibit significant differences between the period 1960-1984 and the period 1985-2019. Spatially, the heatwave frequency and duration significant increase in the southern China (S), eastern arid region (EA), northeastern China (NE), Qinghai-Tibet region (QT) and western arid and semi-arid region (WAS). The occurrence of the first heatwave event in a year tends to be earlier in S, NE, EA, WAS, and QT than before. Based on the regression modelling and RF, human activities play an important role in heatwave intensity in all subregions of China. For heatwave frequency, urbanization generate a dominant influence in NE, EA, and QT, with relative contributions (RC) ranging from 32.8 % to 38.9 %. Long-term climate change exerts the dominant influence in C, N, and S. Moreover, the first day of the yearly heatwave event (HWT) in NE is significantly influenced by climate change, with RC of 33.9 % for temperature variation (TEM). Our findings could provide critical information for understanding the causes of heatwave across different regions of China in the context of rapid urbanization and climate change.
Collapse
Affiliation(s)
- Liaofeng Liang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101400, China
| | - Linfei Yu
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101400, China
| | - Zhonggen Wang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China.
| |
Collapse
|
13
|
Yang X, Zeng G, Iyakaremye V, Zhu B. Effects of different types of heat wave days on ozone pollution over Beijing-Tianjin-Hebei and its future projection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155762. [PMID: 35526634 DOI: 10.1016/j.scitotenv.2022.155762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
There are concerns that in the 21st century, global warming will lead to more frequent heat wave days (HWDs), which could amplify ozone pollution (OP). However, a recent study projected that future atmospheric circulation variations may benefit OP control in Beijing-Tianjin-Hebei (BTH). To investigate the possible reasons for this contradiction, this paper discussed the ozone amplification capacity between different HWD types and their future projections based on observations and Community Earth System Model Large Ensemble Simulations (CESM-LENS). Composite analysis shows that not all HWDs amplify the OP in BTH. The main factor determining whether HWDs aggravate OP is the accompanying circulation anomalies rather than the intensity of the HWDs. The HWDs that aggravate ozone pollution are usually accompanied by stable saddle-like circulation anomalies and atmospheric blocking (blocking HWDs), which weaken the meridional temperature gradient and strengthen atmospheric stability. In contrast, HWDs with wave-train circulation anomalies have a limited ability to exacerbate OP in BTH due to their weak atmospheric stability. We introduce the Ozone Weather Index (OWI) to discern the influence of meteorological conditions on OP and overcome the lack of ozone concentration data in CESM-LENS under RCP 8.5 scenario. The OWI shows a significant downward trend in the 21st century, which indicates that the summer mean atmospheric circulation variations are beneficial for OP control in BTH. However, the frequency of blocking HWDs, which could amplify OP, will increase significantly in the 21st century. By the end of the 21st century, the frequency of blocking HWDs will be three times more than that of the end of 20th century. These findings inform policymakers that it is imperative to consider the mean climate state and the risks associated with extreme events when formulating future ozone pollution control policies.
Collapse
Affiliation(s)
- Xiaoye Yang
- Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Gang Zeng
- Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Vedaste Iyakaremye
- Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Bin Zhu
- Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
14
|
Nasim N, El-Zein A, Thomas J. A review of rural and peri-urban sanitation infrastructure in South-East Asia and the Western Pacific: Highlighting regional inequalities and limited data. Int J Hyg Environ Health 2022; 244:113992. [PMID: 35752101 DOI: 10.1016/j.ijheh.2022.113992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/22/2022] [Accepted: 06/03/2022] [Indexed: 12/16/2022]
Abstract
Rural and peri-urban communities in developing countries rely on sanitation systems which are often unsafely managed. One of the major barriers to assess safely managed sanitation is a lack of data about the existing sanitation infrastructure and levels of containment safety. The aim was to review rural and peri-urban on-site sanitation studies in order to understand different infrastructure types, associated management practices and any impacts on human health. The scope was limited to South-East Asia and Western Pacific regions in order to better identify regional inequalities. Among the 155 reviewed articles, 73 studies (47%) linked sanitation infrastructure to poor human health. Nearly all articles reported latrine ownership (n = 149, 96%) while sanitation infrastructure types were covered less frequently (n = 104, 67%). In particular, there was a lack of published literature describing back-end characteristics (dimension and materials) (n = 12, 8%) and/or management practices (n = 4, 3%). This stems from a limited application of research methodologies that characterise sanitation infrastructure and faecal sludge management (containment, emptying and on-site treatment). Inequality between regions was prevalent with three quarters of the studies on latrine back-end infrastructure from Bangladesh and India in South-East Asia. A strategic research approach is needed to address the current knowledge gaps regarding sanitation infrastructure and safe faecal sludge management.
Collapse
Affiliation(s)
- Nabeela Nasim
- School of Civil Engineering, The University of Sydney, Australia.
| | - Abbas El-Zein
- School of Civil Engineering, The University of Sydney, Australia.
| | | |
Collapse
|
15
|
Conti A, Valente M, Paganini M, Farsoni M, Ragazzoni L, Barone-Adesi F. Knowledge Gaps and Research Priorities on the Health Effects of Heatwaves: A Systematic Review of Reviews. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19105887. [PMID: 35627424 PMCID: PMC9140727 DOI: 10.3390/ijerph19105887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023]
Abstract
Although extreme weather events have played a constant role in human history, heatwaves (HWs) have become more frequent and intense in the past decades, causing concern especially in light of the increasing evidence on climate change. Despite the increasing number of reviews suggesting a relationship between heat and health, these reviews focus primarily on mortality, neglecting other important aspects. This systematic review of reviews gathered the available evidence from research syntheses conducted on HWs and health. Following the PRISMA guidelines, 2232 records were retrieved, and 283 reviews were ultimately included. Information was extracted from the papers and categorized by topics. Quantitative data were extracted from meta-analyses and, when not available, evidence was collected from systematic reviews. Overall, 187 reviews were non-systematic, while 96 were systematic, of which 27 performed a meta-analysis. The majority evaluated mortality, morbidity, or vulnerability, while the other topics were scarcely addressed. The following main knowledge gaps were identified: lack of a universally accepted definition of HW; scarce evidence on the HW-mental health relationship; no meta-analyses assessing the risk perception of HWs; scarcity of studies evaluating the efficacy of adaptation strategies and interventions. Future efforts should meet these priorities to provide high-quality evidence to stakeholders.
Collapse
Affiliation(s)
- Andrea Conti
- CRIMEDIM—Center for Research and Training in Disaster Medicine, Humanitarian Aid and Global Health, Università del Piemonte Orientale, 28100 Novara, Italy; (M.V.); (M.P.); (F.B.-A.)
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
- Correspondence: (A.C.); (L.R.)
| | - Martina Valente
- CRIMEDIM—Center for Research and Training in Disaster Medicine, Humanitarian Aid and Global Health, Università del Piemonte Orientale, 28100 Novara, Italy; (M.V.); (M.P.); (F.B.-A.)
- Department of Sustainable Development and Ecological Transition, Università del Piemonte Orientale, 13100 Vercelli, Italy
| | - Matteo Paganini
- CRIMEDIM—Center for Research and Training in Disaster Medicine, Humanitarian Aid and Global Health, Università del Piemonte Orientale, 28100 Novara, Italy; (M.V.); (M.P.); (F.B.-A.)
| | - Marco Farsoni
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Luca Ragazzoni
- CRIMEDIM—Center for Research and Training in Disaster Medicine, Humanitarian Aid and Global Health, Università del Piemonte Orientale, 28100 Novara, Italy; (M.V.); (M.P.); (F.B.-A.)
- Department of Sustainable Development and Ecological Transition, Università del Piemonte Orientale, 13100 Vercelli, Italy
- Correspondence: (A.C.); (L.R.)
| | - Francesco Barone-Adesi
- CRIMEDIM—Center for Research and Training in Disaster Medicine, Humanitarian Aid and Global Health, Università del Piemonte Orientale, 28100 Novara, Italy; (M.V.); (M.P.); (F.B.-A.)
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
16
|
Sammad A, Luo H, Hu L, Zhu H, Wang Y. Transcriptome Reveals Granulosa Cells Coping through Redox, Inflammatory and Metabolic Mechanisms under Acute Heat Stress. Cells 2022; 11:1443. [PMID: 35563749 PMCID: PMC9105522 DOI: 10.3390/cells11091443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
Heat stress affects granulosa cells (GCs) and the ovarian follicular microenvironment, causing poor oocyte developmental competence and fertility. This study aimed to investigate the physical responses and global transcriptomic changes in bovine GCs to acute heat stress (43 °C for 2 h) in vitro. Heat-stressed GCs exhibited transient proliferation senescence and resumed proliferation at 48 h post-stress, while post-stress immediate culture-media change had a relatively positive effect on proliferation resumption. Increased accumulation of reactive oxygen species and apoptosis was observed in the heat-stress group. In spite of the upregulation of inflammatory (CYCS, TLR2, TLR4, IL6, etc.), pro-apoptotic (BAD, BAX, TNFSF9, MAP3K7, TNFRSF6B, FADD, TRADD, RIPK3, etc.) and caspase executioner genes (CASP3, CASP8, CASP9), antioxidants and anti-apoptotic genes (HMOX1, NOS2, CAT, SOD, BCL2L1, GPX4, etc.) were also upregulated in heat-stressed GCs. Progesterone and estrogen hormones, along with steroidogenic gene expression, declined significantly, in spite of the upregulation of genes involved in cholesterol synthesis. Out of 12,385 differentially expressed genes (DEGs), 330 significant DEGs (75 upregulated, 225 downregulated) were subjected to KEGG functional pathway annotation, gene ontology enrichment, STRING network analyses and manual querying of DEGs for meaningful molecular mechanisms. High inflammatory response was found to be responsible for oxidative-stress-mediated apoptosis of GCs and nodes towards the involvement of the NF-κB pathway and repression of the Nrf2 pathway. Downregulation of MDM4, TP53, PIDD1, PARP3, MAPK14 and MYC, and upregulation of STK26, STK33, TGFB2, CDKN1A and CDKN2A, at the interface of the MAPK and p53 signaling pathway, can be attributed to transient cellular senescence and apoptosis in GCs. The background working of the AMPK pathway through upregulation of AKT1, AMPK, SIRT1, PYGM, SLC2A4 and SERBP1 genes, and downregulation of PPARGCIA, IGF2, PPARA, SLC27A3, SLC16A3, TSC1/2, KCNJ2, KCNJ16, etc., evidence the repression of cellular transcriptional activity and energetic homeostasis modifications in response to heat stress. This study presents detailed responses of acute-heat-stressed GCs at physical, transcriptional and pathway levels and presents interesting insights into future studies regarding GC adaptation and their interaction with oocytes and the reproductive system at the ovarian level.
Collapse
Affiliation(s)
- Abdul Sammad
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China
| | - Hanpeng Luo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China
| | - Lirong Hu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yachun Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Effect of the Near-Future Climate Change under RCP8.5 on the Heat Stress and Associated Work Performance in Thailand. ATMOSPHERE 2022. [DOI: 10.3390/atmos13020325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increased heat stress affects well-being, comfort, and economic activities across the world. It also causes a significant decrease in work performance, as well as heat-related mortality. This study aims to investigate the impacts of the projected climate change scenario under RCP8.5 on heat stress and associated work performance in Thailand during the years 2020–2029. The model evaluation shows exceptional performance in the present-day simulation (1990–1999) of temperature and relative humidity, with R2 values ranging from 0.79 to 0.87; however, the modeled temperature and relative humidity are all underestimated when compared to observation data by −0.9 °C and −27%, respectively. The model results show that the temperature change will tend to increase by 0.62 °C per decade in the future. This could lead to an increase in the heat index by 2.57 °C if the temperature increases by up to 1.5 °C in Thailand. The effect of climate change is predicted to increase heat stress by 0.1 °C to 4 °C and to reduce work performance in the range of 4% to >10% across Thailand during the years 2020 and 2029.
Collapse
|
18
|
Chua PL, Ng CFS, Madaniyazi L, Seposo X, Salazar MA, Huber V, Hashizume M. Projecting Temperature-Attributable Mortality and Hospital Admissions due to Enteric Infections in the Philippines. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:27011. [PMID: 35188405 PMCID: PMC8860302 DOI: 10.1289/ehp9324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/29/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Enteric infections cause significant deaths, and global projection studies suggest that mortality from enteric infections will increase in the future with warmer climate. However, a major limitation of these projection studies is the use of risk estimates derived from nonmortality data to project excess enteric infection mortality associated with temperature because of the lack of studies that used actual deaths. OBJECTIVE We quantified the associations of daily temperature with both mortality and hospital admissions due to enteric infections in the Philippines. These associations were applied to projections under various climate and population change scenarios. METHODS We modeled nonlinear temperature associations of mortality and hospital admissions due to enteric infections in 17 administrative regions of the Philippines using a two-stage time-series approach. First, we quantified nonlinear temperature associations of enteric infections by fitting generalized linear models with distributed lag nonlinear models. Second, we combined regional estimates using a meta-regression model. We projected the excess future enteric infections due to nonoptimal temperatures using regional temperature-enteric infection associations under various combinations of climate change scenarios according to representative concentration pathways (RCPs) and population change scenarios according to shared socioeconomic pathways (SSPs) for 2010-2099. RESULTS Regional estimates for mortality and hospital admissions were significantly heterogeneous and had varying shapes in association with temperature. Generally, mortality risks were greater in high temperatures, whereas hospital admission risks were greater in low temperatures. Temperature-attributable excess deaths in 2090-2099 were projected to increase over 2010-2019 by as little as 1.3% [95% empirical confidence intervals (eCI): -3.1%, 6.5%] under a low greenhouse gas emission scenario (RCP 2.6) or as much as 25.5% (95% eCI: -3.5%, 48.2%) under a high greenhouse gas emission scenario (RCP 8.5). A moderate increase was projected for temperature-attributable excess hospital admissions, from 0.02% (95% eCI: -2.0%, 1.9%) under RCP 2.6 to 5.2% (95% eCI: -12.7%, 21.8%) under RCP 8.5 in the same period. High temperature-attributable deaths and hospital admissions due to enteric infections may occur under scenarios with high population growth in 2090-2099. DISCUSSION In the Philippines, futures with hotter temperatures and high population growth may lead to a greater increase in temperature-related excess deaths than hospital admissions due to enteric infections. Our results highlight the need to strengthen existing primary health care interventions for diarrhea and support health adaptation policies to help reduce future enteric infections. https://doi.org/10.1289/EHP9324.
Collapse
Affiliation(s)
- Paul L.C. Chua
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Alliance for Improving Health Outcomes, Inc., Quezon City, Philippines
| | - Chris Fook Sheng Ng
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Lina Madaniyazi
- Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Xerxes Seposo
- Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Miguel Antonio Salazar
- Alliance for Improving Health Outcomes, Inc., Quezon City, Philippines
- Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | - Veronika Huber
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Sevilla, Spain
| | - Masahiro Hashizume
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
19
|
Population Exposure to Compound Droughts and Heatwaves in the Observations and ERA5 Reanalysis Data in the Gan River Basin, China. LAND 2021. [DOI: 10.3390/land10101021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The frequency, duration, and magnitude of heatwaves and droughts are expected to increase in a warming climate, which can have profound impacts on the environment, society, and public health, and these may be severely affected specifically by compound droughts and heatwaves (CDHWs). On the basis of daily maximum temperature data and the one-month standardized precipitation evapotranspiration index (SPEI) from 1961 to 2018, the Gan River Basin (GRB) was taken as a case here to construct CDHW identification indicators and quantify the population exposure to CDHWs. We found that ERA5 reanalysis data performed well in overall simulating temperature, precipitation, one-month SPEI, heatwaves, and CDHWs in the GRB from 1961 to 2018. CDHWs during the period from 1997 to 2018 were slightly higher than that in 1961–1997. CDHWs were more likely to occur in the southern parts of the basin due to the relatively high values of drought–heatwave dependence indices. Atmospheric circulation analysis of the 2003 CDHW in the GRB showed a relatively long-lasting anomalous high pressure and anticyclonic circulation system, accompanied by the positive convective inhibition and surface net solar radiation anomalies. These circulating background fields eventually led to the exceptional 2003 CDHW occurrence in the GRB. The population exposure to CDHWs basically increased, especially for the moderate CDHWs in ERA5. The change in total exposure was mainly due to climate change. Compared with the period from 1989 to 1998, the contributions of the population change effect in 2009–2018 gradually increased with the increase in the CDHW magnitude both in the observations and ERA5 reanalysis data.
Collapse
|
20
|
Sun Y, Wang X, Zhu J, Chen L, Jia Y, Lawrence JM, Jiang LH, Xie X, Wu J. Using machine learning to examine street green space types at a high spatial resolution: Application in Los Angeles County on socioeconomic disparities in exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142734. [PMID: 36118158 DOI: 10.1016/j.scitotenv.2020.142734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Compared to commonly-used green space indicators from downward-facing satellite imagery, street view-based green space may capture different types of green space and represent how environments are perceived and experienced by people on the ground, which is important to elucidate the underlying mechanisms linking green space and health. OBJECTIVES This study aimed to evaluate machine learning models that can classify the type of vegetation (i.e., tree, low-lying vegetation, grass) from street view images; and to investigate the associations between street green space and socioeconomic (SES) factors, in Los Angeles County, California. METHODS SES variables were obtained from the CalEnviroScreen3.0 dataset. Microsoft Bing Maps images in conjunction with deep learning were used to measure total and types of street view green space, which were compared to normalized difference vegetation index (NDVI) as commonly-used satellite-based green space measure. Generalized linear mixed model was used to examine associations between green space and census tract SES, adjusting for population density and rural/urban status. RESULTS The accuracy of the deep learning model was high with 92.5% mean intersection over union. NDVI were moderately correlated with total street view-based green space and tree, and weakly correlated with low-lying vegetation and grass. Total and three types of green space showed significant negative associations with neighborhood SES. The percentage of total green space decreased by 2.62 [95% confidence interval (CI): -3.02, -2.21, p < 0.001] with each interquartile range increase in CalEnviroScreen3.0 score. Disadvantaged communities contained approximately 5% less average street green space than other communities. CONCLUSION Street view imagery coupled with deep learning approach can accurately and efficiently measure eye-level street green space and distinguish vegetation types. In Los Angeles County, disadvantaged communities had substantively less street green space. Governments and urban planners need to consider the type and visibility of street green space from pedestrian's perspective.
Collapse
Affiliation(s)
- Yi Sun
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA
| | - Xingzhi Wang
- School of Computer Science, Beijing Institute of Technology, Beijing, China
| | - Jiayin Zhu
- School of Management and Economics, Beijing Institute of Technology, Beijing, China
| | - Liangjian Chen
- Department of Computer Science, University of California, Irvine, CA, USA
| | - Yuhang Jia
- Testin AI Data, Beijing Yunce Information Technology Co., Ltd, China
| | - Jean M Lawrence
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Luo-Hua Jiang
- Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA
| | - Xiaohui Xie
- Department of Computer Science, University of California, Irvine, CA, USA
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA
| |
Collapse
|
21
|
Chua PLC, Ng CFS, Rivera AS, Salva EP, Salazar MA, Huber V, Hashizume M. Association between Ambient Temperature and Severe Diarrhoea in the National Capital Region, Philippines. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8191. [PMID: 34360484 PMCID: PMC8346076 DOI: 10.3390/ijerph18158191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Epidemiological studies have quantified the association between ambient temperature and diarrhoea. However, to our knowledge, no study has quantified the temperature association for severe diarrhoea cases. In this study, we quantified the association between mean temperature and two severe diarrhoea outcomes, which were mortality and hospital admissions accompanied with dehydration and/or co-morbidities. Using a 12-year dataset of three urban districts of the National Capital Region, Philippines, we modelled the non-linear association between weekly temperatures and weekly severe diarrhoea cases using a two-stage time series analysis. We computed the relative risks at the 95th (30.4 °C) and 5th percentiles (25.8 °C) of temperatures using minimum risk temperatures (MRTs) as the reference to quantify the association with high- and low-temperatures, respectively. The shapes of the cumulative associations were generally J-shaped with greater associations towards high temperatures. Mortality risks were found to increase by 53.3% [95% confidence interval (CI): 29.4%; 81.7%)] at 95th percentile of weekly mean temperatures compared with the MRT (28.2 °C). Similarly, the risk of hospitalised severe diarrhoea increased by 27.1% (95% CI: 0.7%; 60.4%) at 95th percentile in mean weekly temperatures compared with the MRT (28.6 °C). With the increased risk of severe diarrhoea cases under high ambient temperature, there may be a need to strengthen primary healthcare services and sustain the improvements made in water, sanitation, and hygiene, particularly in poor communities.
Collapse
Affiliation(s)
- Paul L. C. Chua
- Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, 1 Chome-12-4 Sakamoto, Nagasaki 852-8102, Japan; (C.F.S.N.); (M.H.)
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Alliance for Improving Health Outcomes, Inc., Rm. 406, Veria I Bldg., 62 West Avenue, Barangay West Triangle, Quezon City 1104, Philippines;
| | - Chris Fook Sheng Ng
- Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, 1 Chome-12-4 Sakamoto, Nagasaki 852-8102, Japan; (C.F.S.N.); (M.H.)
| | - Adovich S. Rivera
- Institute for Public Health and Management, Feinberg School of Medicine, Northwestern University, 633 N. St. Clair Street, 20th Floor, Chicago, IL 60611, USA;
| | - Eumelia P. Salva
- San Lazaro Hospital, Quiricada St., Santa Cruz, Manila 1003, Philippines;
| | - Miguel Antonio Salazar
- Alliance for Improving Health Outcomes, Inc., Rm. 406, Veria I Bldg., 62 West Avenue, Barangay West Triangle, Quezon City 1104, Philippines;
- Institute of Global Health, University of Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Veronika Huber
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Ctra Utrera km 1, 41013 Sevilla, Spain;
| | - Masahiro Hashizume
- Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, 1 Chome-12-4 Sakamoto, Nagasaki 852-8102, Japan; (C.F.S.N.); (M.H.)
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Guo H, Li X, Li W, Wu J, Wang S, Wei J. Climatic modification effects on the association between PM1 and lung cancer incidence in China. BMC Public Health 2021; 21:880. [PMID: 33962607 PMCID: PMC8106137 DOI: 10.1186/s12889-021-10912-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/16/2021] [Indexed: 01/15/2023] Open
Abstract
Background Nationwide studies that examine climatic modification effects on the association between air pollution and health outcome are limited in developing countries. Moreover, few studies focus on PM1 pollution despite its greater health effect. Objectives This study aims to determine the modification effects of climatic factors on the associations between PM1 and the incidence rates of lung cancer for males and females in China. Methods We conducted a nationwide analysis in 345 Chinese counties (districts) from 2014 to 2015. Mean air temperature and relative humidity over the study period were used as the proxies of climatic conditions. In terms of the multivariable linear regression model, we examined climatic modification effects in the stratified and combined datasets according to the three-category and binary divisions of climatic factors. Moreover, we performed three sensitivity analyses to test the robustness of climatic modification effects. Results We found a stronger association between PM1 and the incidence rate of male lung cancer in counties with high levels of air temperature or relative humidity. If there is a 10 μg/m3 shift in PM1, then the change in male incidence rate relative to its mean was higher by 4.39% (95% CI: 2.19, 6.58%) and 8.37% (95% CI: 5.18, 11.56%) in the middle and high temperature groups than in the low temperature group, respectively. The findings of climatic modification effects were robust in the three sensitivity analyses. No significant modification effect was discovered for female incidence rate. Conclusions Male residents in high temperature or humidity counties suffer from a larger effect of PM1 on the incidence rate of lung cancer in China. Future research on air pollution-related health impact assessment should consider the differential air pollution effects across different climatic conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-021-10912-8.
Collapse
Affiliation(s)
- Huagui Guo
- School of Architecture and Urban-rural Planning, Fuzhou University, Fuzhou, 350108, China
| | - Xin Li
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hongkong, China
| | - Weifeng Li
- Department of Urban Planning and Design, The University of Hong Kong, Hongkong, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, 518057, People's Republic of China
| | - Jiansheng Wu
- Key Laboratory for Urban Habitat Environmental Science and Technology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, People's Republic of China.,Key Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Siying Wang
- Department of Urban Planning and Design, The University of Hong Kong, Hongkong, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, 518057, People's Republic of China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA.
| |
Collapse
|