1
|
Lan M, Gao K, Qin Z, Li Z, Meng R, Wei L, Chen B, Yu X, Xu L, Wang Y, Yu K. Coral microbiome in estuary coral community of Pearl River Estuary: insights into variation in coral holobiont adaptability to low-salinity conditions. BMC Microbiol 2025; 25:278. [PMID: 40335917 PMCID: PMC12060303 DOI: 10.1186/s12866-025-04013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Low salinity is a crucial environmental stressor that affects estuarine coral ecosystems considerably. However, few studies have focused on the effects of low-salinity conditions on coral-associated microorganisms and the adaptability of coral holobionts. METHODS We explored the community structure of coral symbiotic Symbiodiniaceae and associated bacteria in low-salinity conditions using samples of six coral species from the Pearl River Estuary and analyzed the adaptability of coral holobionts in estuaries. RESULTS The symbiotic Symbiodiniaceae of all six studied coral species were dominated by Cladocopium, but, the Symbiodiniaceae subclades differed among these coral species. Some coral species (e.g., Acropora solitaryensis) had a high diversity of symbiotic Symbiodiniaceae but low Symbiodiniaceae density, with different adaptability to low-salinity stress in the Pearl River Estuary. Other coral species (e.g., Plesiastrea versipora) potentially increased their resistance by associating with specific Symbiodiniaceae subclades and with high Symbiodiniaceae density under low-salinity stress. The microbiome associated with the coral species were dominated by Proteobacteria, Chloroflexi, and Bacteroidetes; however, its diversity and composition varied among coral species. Some coral species (e.g., Acropora solitaryensis) had a high diversity of associated bacteria, with different adaptability owing to low-salinity stress. Other coral species (e.g., Plesiastrea versipora) potentially increased their resistance by having minority bacterial dominance under low-salinity stress. CONCLUSIONS High Symbiodiniaceae density and high bacterial diversity may be conducive to increase the tolerance of coral holobiont to low-salinity environments. Different coral species have distinct ways of adapting to low-salinity stress, and this difference is mainly through the dynamic regulation of the coral microbiome by corals.
Collapse
Affiliation(s)
- Mengling Lan
- Guangxi Laboratory On the Study of Coral Reefs in the South China SeaCoral Reef Research Center of ChinaSchool of Marine Sciences, Guangxi University, Nanning, China
| | - Kaixiang Gao
- Guangxi Laboratory On the Study of Coral Reefs in the South China SeaCoral Reef Research Center of ChinaSchool of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory On the Study of Coral Reefs in the South China SeaCoral Reef Research Center of ChinaSchool of Marine Sciences, Guangxi University, Nanning, China.
| | - Zhanhong Li
- Guangxi Laboratory On the Study of Coral Reefs in the South China SeaCoral Reef Research Center of ChinaSchool of Marine Sciences, Guangxi University, Nanning, China
| | - Ru Meng
- Guangxi Laboratory On the Study of Coral Reefs in the South China SeaCoral Reef Research Center of ChinaSchool of Marine Sciences, Guangxi University, Nanning, China
| | - Lifei Wei
- Guangxi Laboratory On the Study of Coral Reefs in the South China SeaCoral Reef Research Center of ChinaSchool of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory On the Study of Coral Reefs in the South China SeaCoral Reef Research Center of ChinaSchool of Marine Sciences, Guangxi University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory On the Study of Coral Reefs in the South China SeaCoral Reef Research Center of ChinaSchool of Marine Sciences, Guangxi University, Nanning, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| | - Yongzhi Wang
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| | - Kefu Yu
- Guangxi Laboratory On the Study of Coral Reefs in the South China SeaCoral Reef Research Center of ChinaSchool of Marine Sciences, Guangxi University, Nanning, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| |
Collapse
|
2
|
Sajid S, Xiao B, Zhang G, Zhang Z, Chen L, Fang JKH, Lu Y, Cai L. Increased sulfate-reducing bacteria can drive microbial dysbiosis in bleached corals. J Appl Microbiol 2025; 136:lxaf043. [PMID: 39993925 DOI: 10.1093/jambio/lxaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
AIMS Coral bleaching occurs when coral colonies lose their Symbiodiniaceae partner and turn pale or white. Although this event is generally temperature-induced, there is also the possibility of holobiont microbial infection and dysbiosis. To address this issue, this study was conducted to investigate the diversity and composition of Symbiodiniaceae and bacteria in healthy and bleached colonies of Porites lutea collected from eastern Shenzhen. METHODS AND RESULTS Internal transcribed spacer 2 and 16S amplicon sequencing analysis were used to explore the diversity and composition of Symbiodiniaceae and bacteria in healthy and bleached colonies of P. lutea. Bacterial diversity and richness were significantly higher in bleached colonies than in healthy colonies (P < 0.05), whereas the diversity and richness of Symbiodiniaceae showed no significant changes. The bleaching event exerted a more significant impact on Symbiodiniaceae composition, which differed between healthy and bleached colonies (PERMANOVA, F = 8.246, P < 0.05). In terms of composition, Clade C (Cladocopium) was the predominant Symbiodiniaceae, whereas subclade C116 and C2r were significantly less abundant in bleached colonies than in healthy colonies (P < 0.05). The phyla Bacteroidetes, Acidobacteria, and Actinobacteria were significantly more abundant in bleached colonies than in healthy colonies (P < 0.05). The sulfate-reducing bacteria (SRB) Desulfobulbus and Desulfobacter at the genus level and Desulfobacterales and Desulfuromonadales at the order level were significantly more abundant in bleached colonies than in healthy colonies (P < 0.05). The co-occurrence patterns of Symbiodiniaceae and bacteria revealed a negative correlation of Desulfofaba, Desulfovibrio, Desulfarculus, and Desulfobulbus with Endozoicomonas, a very common symbiotic bacterial genus found in corals. CONCLUSION Coral bleaching may be associated with significant shifts in microbial communities, including increased SRB abundance, which may disrupt microbial balance and contribute to bleaching.
Collapse
Affiliation(s)
- Sumbal Sajid
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| | - Guoqiang Zhang
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| | - Zongyao Zhang
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| | - Lin Cai
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| |
Collapse
|
3
|
Hussain A, Hari Krishna Kumar S, Kumar AA, Prathiviraj R, Renjith K, Seghal Kiran G, Selvin J. Delineating the emergence of thermally tolerant Symbiodiniaceae genotypes across the dominant coral species of a turbid reef: Adaptation and resilience strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178255. [PMID: 39824087 DOI: 10.1016/j.scitotenv.2024.178255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025]
Abstract
Climate change-induced rise in sea surface temperatures has led to an increase in the frequency and severity of coral bleaching events, ultimately leading to the deterioration of coral reefs, globally. However, the reef-building corals have an inherent capacity to acclimatize to thermal stress on pre-exposure to high temperatures by altering their endosymbiotic Symbiodiniaceae community composition towards a thermal tolerant composition. This reorganisation may become an important tool in coral's resilience to rapid environmental change. Therefore, it is crucial to delineate the Symbiodiniaceae community in our reef to predict their resilience capacity. Our study aims to analyse the symbiont community associated with common reef corals in a heat-stressed, marginal turbid reef of Palk Bay, India. We employed next-generation sequencing-based high-resolution analyses of internal transcribed spacer two (ITS2) amplicons within the SymPortal framework to examine the diversity and organization of Symbiodiniaceae communities. The results revealed a dominance of heat-tolerant Durusdinium (D1-D4) and Cladocopium (C15) across coral species (Acropora cytherea, Acropora digitifera, Favites abdita, and Porites lobata) and reef environment (seawater, and reef sediment), with the presence of 18 ITS2 type profiles in our samples. To our knowledge, this is the first comprehensive study to delineate Symbiodiniaceae communities at fine scale resolution (ITS2 type profile) from scleractinian corals in India, establishing a baseline for future research in a marginal reef ecosystem. Several studies have highlighted the importance turbid reefs as prospective climate refugia under the future threat of climate change. Therefore, this study is crucial for researchers, scientists, stakeholders, and policymakers to identify reef sites and coral species with resilience capacity for devising future reef restoration and management strategies.
Collapse
Affiliation(s)
- Afreen Hussain
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry 605014, India
| | - S Hari Krishna Kumar
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Ashish Ashwin Kumar
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry 605014, India
| | | | - Kalyani Renjith
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry 605014, India
| | - George Seghal Kiran
- Department of Food Science and Technology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry 605014, India.
| |
Collapse
|
4
|
Li J, Li W, Huang Y, Bu H, Zhang K, Lin S. Phosphorus limitation intensifies heat-stress effects on the potential mutualistic capacity in the coral-derived Symbiodinium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173912. [PMID: 38871329 DOI: 10.1016/j.scitotenv.2024.173912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/08/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
Coral reef ecosystems have been severely ravaged by global warming and eutrophication. Eutrophication often originates from nitrogen (N) overloading that creates stoichiometric phosphorus (P) limitation, which can be aggravated by sea surface temperature rises that enhances stratification. However, how P-limitation interacts with thermal stress to impact coral-Symbiodiniaceae mutualism is poorly understood and underexplored. Here, we investigated the effect of P-limitation (P-depleted vs. P-replete) superimposed on heat stress (31 °C vs. 25 °C) on a Symbiodinium strain newly isolated from the coral host by a 14-day incubation experiment. The heat and P-limitation co-stress induced an increase in alkaline phosphatase activity and reppressed cell division, photosynthetic efficiency, and expression of N uptake and assimilation genes. Moreover, P limitation intensified downregulation of carbon fixation (light and dark reaction) and metabolism (glycolysis) pathways in heat stressed Symbiodinium. Notably, co-stress elicited a marked transcriptional downregulation of genes encoding photosynthates transporters and microbe-associated molecular patterns, potentially undermining the mutualism potential. This work sheds light on the interactive effects of P-limitation and heat stress on coral symbionts, indicating that nutrient imbalance in the coral reef ecosystem can intensify heat-stress effects on the mutualistic capacity of Symbiodiniaceae.
Collapse
Affiliation(s)
- Jiashun Li
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, State Key Laboratory of Marine Environmental Science, and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Wenzhe Li
- State Key Laboratory of Marine Resource Utilization in the South China Sea and School of Marine Biology and Fisheries, Hainan University, Haikou, China
| | - Yulin Huang
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, State Key Laboratory of Marine Environmental Science, and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hailu Bu
- State Key Laboratory of Marine Resource Utilization in the South China Sea and School of Marine Biology and Fisheries, Hainan University, Haikou, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea and School of Marine Biology and Fisheries, Hainan University, Haikou, China.
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA.
| |
Collapse
|
5
|
Taha A, Zoubi A, Ettaqy A, El-Mderssa M, Belaqziz M, Fokar M, Hamdali H, Zine-El-Abidine A, Boukcim H, Abbas Y. Environmental drivers of Euphorbia resinifera seed germination and seedling establishment for conservation purpose. BRAZ J BIOL 2024; 84:e281196. [PMID: 39319978 DOI: 10.1590/1519-6984.281196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/25/2024] [Indexed: 09/26/2024] Open
Abstract
Euphorbia resinifera O. Berg is a prickly, leafless and succulent, Moroccan endemic shrub. Field data indicate that the plant faces many challenges related to its natural regeneration and its gradual decline that can lead to a probability of extinction, at least in some areas. Successful seed germination and survival of E. resinifera seedlings during the dry period is one of the main obstacles encountered in establishing natural seedlings. With this in mind, 3080 seeds of two morphotypes of E. resinifera (M1 and M2) were harvested in the Atlas of Beni Mellal to study their germinative potential and determine suitable conditions for growth and development of the seedlings. In the laboratory, five temperatures (10 °, 15 °C, 18 °C, 25 °C, and 35 °C) and two photoperiods (12 h light/12 h dark and 24 h dark) were tested. Whereas in field research, two factors were considered: the availability of water and the type of substrate (clay, peat, and limestone). Results show a maximum germination rate of around 52% for M2 at 15 °C and 48% for M1 at 18 °C. The Monitoring of plant seedling establishment and growth revealed a high vulnerability to prolonged periods of drought. However, consolidated soil is more conducive to seedling establishment. For this species, it is therefore essential to conserve the habitat within the karst geosystem. Furthermore, the variability of this species' morphotypes and their growth form architecture shows a tendency to favor the dwarf, cushion-shaped morphotype, which is the most widespread in the study area.
Collapse
Affiliation(s)
- A Taha
- Sultan Moulay Slimane University, Polydisciplinary Faculty, Polyvalent Team in Research and Development, Beni Mellal, Morocco
- Sultan Moulay Slimane University, Faculty of Sciences and Technologies, Ecology and Sustainable Development Team, Mghila campus, Beni Mellal, Morocco
| | - A Zoubi
- Sultan Moulay Slimane University, Faculty of Sciences and Technologies, Ecology and Sustainable Development Team, Mghila campus, Beni Mellal, Morocco
| | - A Ettaqy
- Sultan Moulay Slimane University, Faculty of Sciences and Technologies, Ecology and Sustainable Development Team, Mghila campus, Beni Mellal, Morocco
| | - M El-Mderssa
- Sultan Moulay Slimane University, Polydisciplinary Faculty, Polyvalent Team in Research and Development, Beni Mellal, Morocco
| | - M Belaqziz
- Cadi Ayyad University, Water, Biodiversity and Climate Change Lab, Marrakech, Morocco
| | - M Fokar
- Texas Tech University, Center for Biotechnology and Genomics, Lubbock, Texas, USA
| | - H Hamdali
- University of Sultan Moulay Slimane, Faculty of Sciences and Technology, Laboratory of Agro-Industrial and Medical Biotechnologies, Beni, Mellal, Morocco
| | | | - H Boukcim
- Valorhiz, Montferrier sur Lez, Montpellier, France
| | - Y Abbas
- Sultan Moulay Slimane University, Polydisciplinary Faculty, Polyvalent Team in Research and Development, Beni Mellal, Morocco
| |
Collapse
|
6
|
Bai C, Wang Q, Xu J, Zhang H, Huang Y, Cai L, Zheng X, Yang M. Impact of Nutrient Enrichment on Community Structure and Co-Occurrence Networks of Coral Symbiotic Microbiota in Duncanopsammia peltata: Zooxanthellae, Bacteria, and Archaea. Microorganisms 2024; 12:1540. [PMID: 39203380 PMCID: PMC11356306 DOI: 10.3390/microorganisms12081540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Symbiotic microorganisms in reef-building corals, including algae, bacteria, archaea, fungi, and viruses, play critical roles in the adaptation of coral hosts to adverse environmental conditions. However, their adaptation and functional relationships in nutrient-rich environments have yet to be fully explored. This study investigated Duncanopsammia peltata and the surrounding seawater and sediments from protected and non-protected areas in the summer and winter in Dongshan Bay. High-throughput sequencing was used to characterize community changes, co-occurrence patterns, and factors influencing symbiotic coral microorganisms (zooxanthellae, bacteria, and archaea) in different environments. The results showed that nutrient enrichment in the protected and non-protected areas was the greatest in December, followed by the non-protected area in August. In contrast, the August protected area had the lowest nutrient enrichment. Significant differences were found in the composition of the bacterial and archaeal communities in seawater and sediments from different regions. Among the coral symbiotic microorganisms, the main dominant species of zooxanthellae is the C1 subspecies (42.22-56.35%). The dominant phyla of bacteria were Proteobacteria, Cyanobacteria, Firmicutes, and Bacteroidota. Only in the August protected area did a large number (41.98%) of SAR324_cladeMarine_group_B exist. The August protected and non-protected areas and December protected and non-protected areas contained beneficial bacteria as biomarkers. They were Nisaea, Spiroplasma, Endozoicomonas, and Bacillus. No pathogenic bacteria appeared in the protected area in August. The dominant phylum in Archaea was Crenarchaeota. These symbiotic coral microorganisms' relative abundances and compositions vary with environmental changes. The enrichment of dissolved inorganic nitrogen in environmental media is a key factor affecting the composition of coral microbial communities. Co-occurrence analysis showed that nutrient enrichment under anthropogenic disturbances enhanced the interactions between coral symbiotic microorganisms. These findings improve our understanding of the adaptations of coral holobionts to various nutritional environments.
Collapse
Affiliation(s)
- Chuanzhu Bai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (C.B.); (Y.H.)
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Qifang Wang
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Jinyan Xu
- Fujian Key Laboratory of Island Monitoring and Ecological Development (Island Research Center, MNR), Pingtan 350400, China;
| | - Han Zhang
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Yuxin Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (C.B.); (Y.H.)
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Ling Cai
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
- Observation and Research Station of Island and Coastal Ecosystems in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen 361005, China
| | - Xinqing Zheng
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
- Observation and Research Station of Island and Coastal Ecosystems in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen 361005, China
- Fujian Provincial Station for Field Observation and Research of Island and Coastal Zone, Zhangzhou 363216, China
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (C.B.); (Y.H.)
| |
Collapse
|
7
|
Primov KD, Burdick DR, Lemer S, Forsman ZH, Combosch DJ. Genomic data reveals habitat partitioning in massive Porites on Guam, Micronesia. Sci Rep 2024; 14:17107. [PMID: 39048606 PMCID: PMC11269739 DOI: 10.1038/s41598-024-67992-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Corals in marginal reef habitats generally exhibit less bleaching and associated mortality compared to nearby corals in more pristine reef environments. It is unclear, however, if these differences are due to environmental differences, including turbidity, or genomic differences between the coral hosts in these different environments. One particularly interesting case is in the coral genus Porites, which contains numerous morphologically similar massive Porites species inhabiting a wide range of reef habitats, from turbid river deltas and stagnant back reefs to high-energy fore reefs. Here, we generate ddRAD data for 172 Porites corals from river delta and adjacent (<0.5 km) fore reef populations on Guam to assess the extent of genetic differentiation among massive Porites corals in these two contrasting environments and throughout the island. Phylogenetic and population genomic analyses consistently identify seven different clades of massive Porites, with the two largest clades predominantly inhabiting either river deltas or fore reefs, respectively. No population structure was detected in the two largest clades, and Cladocopium was the dominant symbiont genus in all clades and environments. The perceived bleaching resilience of corals in marginal reefs may therefore be attributed to interspecific differences between morphologically similar species, in addition to potentially mediating environmental differences. Marginal reef environments may therefore not provide a suitable refuge for many reef corals in a heating world, but instead host additional cryptic coral diversity.
Collapse
Affiliation(s)
- Karim D Primov
- University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA.
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - David R Burdick
- University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA
| | - Sarah Lemer
- University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA
| | - Zac H Forsman
- King Abdullah University of Science and Technology, 23955, Thuwal, Saudi Arabia
| | - David J Combosch
- University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA
| |
Collapse
|
8
|
Chen B, Wei Y, Yu K, Liang Y, Yu X, Liao Z, Qin Z, Xu L, Bao Z. The microbiome dynamics and interaction of endosymbiotic Symbiodiniaceae and fungi are associated with thermal bleaching susceptibility of coral holobionts. Appl Environ Microbiol 2024; 90:e0193923. [PMID: 38445866 PMCID: PMC11022545 DOI: 10.1128/aem.01939-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/19/2024] [Indexed: 03/07/2024] Open
Abstract
The thermal bleaching percentage of coral holobionts shows interspecific differences under heat-stress conditions, which are closely related to the coral-associated microbiome. However, the ecological effects of community dynamics and interactions between Symbiodiniaceae and fungi on coral thermal bleaching susceptibility remain unclear. In this study, we analyzed the diversity, community structure, functions, and potential interaction of Symbiodiniaceae and fungi among 18 coral species from a high thermal bleaching risk atoll using next-generation sequencing. The results showed that heat-tolerant C3u sub-clade and Durusdinium dominated the Symbiodiniaceae community of corals and that there were no core amplicon sequence variants in the coral-associated fungal community. Fungal richness and the abundance of confirmed functional animal-plant pathogens were significantly positively correlated with the coral thermal bleaching percentage. Fungal indicators, including Didymellaceae, Chaetomiaceae, Schizophyllum, and Colletotrichum, were identified in corals. Each coral species had a complex Symbiodiniaceae-fungi interaction network (SFIN), which was driven by the dominant Symbiodiniaceae sub-clades. The SFINs of coral holobionts with low thermal bleaching susceptibility exhibited low complexity and high betweenness centrality. These results indicate that the extra heat tolerance of coral in Huangyan Island may be linked to the high abundance of heat-tolerant Symbiodiniaceae. Fungal communities have high interspecific flexibility, and the increase of fungal diversity and pathogen abundance was correlated with higher thermal bleaching susceptibility of corals. Moreover, fungal indicators were associated with the degrees of coral thermal bleaching susceptibility, including both high and intermediate levels. The topological properties of SFINs suggest that heat-tolerant coral have limited fungal parasitism and strong microbial network resilience.IMPORTANCEGlobal warming and enhanced marine heatwaves have led to a rapid decline in coral reef ecosystems worldwide. Several studies have focused on the impact of coral-associated microbiomes on thermal bleaching susceptibility in corals; however, the ecological functions and interactions between Symbiodiniaceae and fungi remain unclear. We investigated the microbiome dynamics and potential interactions of Symbiodiniaceae and fungi among 18 coral species in Huangyan Island. Our study found that the Symbiodiniaceae community of corals was mainly composed of heat-tolerant C3u sub-clade and Durusdinium. The increase in fungal diversity and pathogen abundance has close associations with higher coral thermal bleaching susceptibility. We first constructed an interaction network between Symbiodiniaceae and fungi in corals, which indicated that restricting fungal parasitism and strong interaction network resilience would promote heat acclimatization of corals. Accordingly, this study provides insights into the role of microorganisms and their interaction as drivers of interspecific differences in coral thermal bleaching.
Collapse
Affiliation(s)
- Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Yuxin Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yanting Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Key Laboratory of Environmental Change and Resource Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| | - Zeming Bao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
9
|
Wei Y, Chen B, Yu K, Liao Z, Yu X, Qin Z, Bao Z, Xu L, Wang Y. Evolutionary radiation and microbial community dynamics shape the thermal tolerance of Fungiidae in the southern South China Sea. Microbiol Spectr 2024; 12:e0243623. [PMID: 38174936 PMCID: PMC10845974 DOI: 10.1128/spectrum.02436-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Fungiidae have shown increased thermal adaptability in coral reef ecosystems under global warming. This study analyzes the evolutionary divergence and microbial communities of Fungiidae in the Sanjiao Reef of the southern South China Sea and explores the impact of coral evolution radiation and microbial dynamics on the heat tolerance of Fungiidae. The results found that Cycloseris was an ancient branch of Fungiidae, dating back approximately 147.8953 Mya, and Fungiidae differentiated into two ancestral clades (clades I and II) before 107.0312 Ma. Fungiidae exhibited specific symbioses with the Cladocopium C27 sub-clade. Notably, the Cladocopium C1 sub-clade has a high relative abundance in clade I, whereas the heat-tolerant Cladocopium C40 and C3u sub-clades subdominante in clade II. Regarding bacterial communities, Cycloseris costulata, the earliest divergent species, had higher bacterial β-diversity, while the latest divergent species, Lithophyllon scabra, displayed lower bacterial α-diversity and higher community stability. Beneficial bacteria dominante Fungiidae's bacterial community (54%). The co-occurrence network revealed that microbial networks in clade II exhibited lower complexity and greater resilience than those in clade I. Our study highlights that host evolutionary radiation and microbial communities shaped Fungiidae's thermal tolerance. The variability in subdominant Symbiodiniaceae populations may contribute to interspecific differences in thermal tolerance along the evolutionary branches of Fungiidae. The presence of abundant beneficial bacteria may further enhance the thermal ability of the Fungiidae. Furthermore, the later divergent species of Fungiidae have stronger heat tolerance, possibly driven by the increased regulation ability of the host on the bacterial community, greater microbial community stability, and interaction network resistance.IMPORTANCECoral reefs are facing significant threats due to global warming. The heat tolerance of coral holobionts depends on both the coral host and its microbiome. However, the association between coral evolutionary radiation and interspecific differences in microbial communities remains unclear. In this study, we investigated the role of evolutionary radiation and microbial community dynamics in shaping the thermal acclimation potential of Fungiidae in the Sanjiao Reef of the southern South China Sea. The study's results suggest that evolutionary radiation enhances the thermal tolerance of Fungiidae. Fungiidae species that have diverged more recently have exhibited a higher presence of heat-tolerant Symbiodiniaceae taxa, more stable bacterial communities, and a robust and resilient microbial interaction network, improving the thermal adaptability of Fungiidae. In summary, this study provides new insights into the thermal adaptation patterns of corals under global warming conditions.
Collapse
Affiliation(s)
- Yuxin Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Zhiheng Liao
- Key Laboratory of Environmental Change and Resource Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zeming Bao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| | - Yongzhi Wang
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| |
Collapse
|
10
|
Chen B, Yu K, Fu L, Wei Y, Liang J, Liao Z, Qin Z, Yu X, Deng C, Han M, Ma H. The diversity, community dynamics, and interactions of the microbiome in the world's deepest blue hole: insights into extreme environmental response patterns and tolerance of marine microorganisms. Microbiol Spectr 2023; 11:e0053123. [PMID: 37861344 PMCID: PMC10883803 DOI: 10.1128/spectrum.00531-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE This study comprehensively examined the community dynamics, functional profiles, and interactions of the microbiome in the world's deepest blue hole. The findings revealed a positive correlation between the α-diversities of Symbiodiniaceae and archaea, indicating the potential reliance of Symbiodiniaceae on archaea in an extreme environment resulting from a partial niche overlap. The negative association between the α-diversity and β-diversity of the bacterial community suggested that the change rule of the bacterial community was consistent with the Anna Karenina effects. The core microbiome comprised nine microbial taxa, highlighting their remarkable tolerance and adaptability to sharp environmental gradient variations. Bacteria and archaea played significant roles in carbon, nitrogen, and sulfur cycles, while fungi contributed to carbon metabolism. This study advanced our understanding of the community dynamics, response patterns, and resilience of microorganisms populating the world's deepest blue hole, thereby facilitating further ecological and evolutional exploration of microbiomes in diverse extreme environments.
Collapse
Affiliation(s)
- Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) , Zhuhai, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) , Zhuhai, China
| | - Liang Fu
- Sansha Track Ocean Coral Reef Conservation Research Institute Co. Ltd. , Qionghai, China
| | - Yuxin Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
- Key Laboratory of Environmental Change and Resource Use in Beibu Gulf, Ministry of Education, Nanning Normal University , Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Chuanqi Deng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Honglin Ma
- Key Laboratory of Environmental Change and Resource Use in Beibu Gulf, Ministry of Education, Nanning Normal University , Nanning, China
| |
Collapse
|
11
|
Huang W, Chen Y, Wu Q, Feng Y, Wang Y, Lu Z, Chen J, Chen B, Xiao Z, Meng L, Huang X, Wang Y, Yu K. Reduced genetic diversity and restricted gene flow of broadcast-spawning coral Galaxea fascicularis in the South China Sea reveals potential degradation under environmental change. MARINE POLLUTION BULLETIN 2023; 193:115147. [PMID: 37331272 DOI: 10.1016/j.marpolbul.2023.115147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/20/2023]
Abstract
Under the dual effects of climate change and anthropogenic activities, coral reefs in the South China Sea (SCS) are at serious risk of degradation. Galaxea fascicularis is a widely distributed species in the SCS, and the study of its genetics, survival, and adaptability is conducive to further understanding the future characteristics of coral reefs in the SCS. In this study, 146 G. fascicularis samples were selected from 9 survey stations across 12 latitudes in the SCS, and 8 pairs of microsatellite markers were used to characterize their genetic diversity and structure. The results showed moderate genetic diversity index values (Ar = 3.444-4.147, He = 0.634-0.782, Ho = 0.367-0.586). The AMOVA results and pairwise FST values showed a moderate level of genetic differentiation (ΦST = 0.119, P < 0.05) among G. fascicularis populations in the SCS, whereas its genetic structure showed high genetic differentiation (FST = 0.062-0.225) among relatively high-latitude populations (n = 3) and low genetic differentiation (FST = 0.012-0.064) in low-latitude populations (n = 6). The living environment of relatively high-latitude populations is disturbed by high-intensity human activities, leading to the specialization of local populations. Mantel test results showed a significant positive correlation between genetic differentiation among G. fascicularis populations and sea surface temperature (SST) variance (R2 = 0.4885; Mantel test, p = 0.010 < 0.05) in addition to geographical distance (R2 = 0.1134; Mantel, test p = 0.040 < 0.05), indicating that SST and geographical isolation were primary factors affecting the genetic structure of this species in the SCS. The lower genetic diversity and limited gene flow of G. fascicularis indicate limited genetic adaptation, and corresponding vulnerability may be more pronounced under future environmental changes. These findings provide a theoretical basis for the conservation and restoration of coral reefs in the SCS.
Collapse
Affiliation(s)
- Wen Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yinmin Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Qian Wu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yi Feng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yonggang Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zhiying Lu
- The Ocean College, Hainan University, Haikou 570228, China
| | - Jinlian Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zunyong Xiao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Linqing Meng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yan Wang
- The Ocean College, Hainan University, Haikou 570228, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| |
Collapse
|
12
|
Hernández Elizárraga VH, Olguín-López N, Hernández-Matehuala R, Caballero-Pérez J, Ibarra-Alvarado C, Rojas-Molina A. Transcriptomic differences between bleached and unbleached hydrozoan Millepora complanata following the 2015-2016 ENSO in the Mexican Caribbean. PeerJ 2023; 11:e14626. [PMID: 36691486 PMCID: PMC9864129 DOI: 10.7717/peerj.14626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/02/2022] [Indexed: 01/19/2023] Open
Abstract
The 2015-2016 El Niño-southern oscillation or "ENSO" caused many M. complanata colonies that live in the Mexican Caribbean to experience extensive bleaching. The purpose of this work was to analyze the effect of bleaching on the cellular response of M. complanata, employing a transcriptomic approach with RNA-seq. As expected, bleached specimens contained a significantly lower chlorophyll content than unbleached hydrocorals. The presence of algae of the genera Durusdinium and Cladocopium was only found in tissues of unbleached M. complanata, which could be associated to the greater resistance that these colonies exhibited during bleaching. We found that 299 genes were differentially expressed in M. complanata bleached colonies following the 2015-2016 ENSO in the Mexican Caribbean. The differential expression analysis of bleached M. complanata specimens evidenced enriched terms for functional categories, such as ribosome, RNA polymerase and basal transcription factors, chaperone, oxidoreductase, among others. Our results suggest that the heat-shock response mechanisms displayed by M. complanata include: an up-regulation of endogenous antioxidant defenses; a higher expression of heat stress response genes; up-regulation of transcription-related genes, higher expression of genes associated to transport processes, inter alia. This study constitutes the first differential gene expression analysis of the molecular response of a reef-forming hydrozoan during bleaching.
Collapse
Affiliation(s)
| | - Norma Olguín-López
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, México
| | - Rosalina Hernández-Matehuala
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, México
| | | | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, México
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, México
| |
Collapse
|
13
|
Symbiont genotype influences holobiont response to increased temperature. Sci Rep 2022; 12:18394. [PMID: 36319835 PMCID: PMC9626619 DOI: 10.1038/s41598-022-23244-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
As coral reefs face warming oceans and increased coral bleaching, a whitening of the coral due to loss of microalgal endosymbionts, the possibility of evolutionary rescue offers some hope for reef persistence. In tightly linked mutualisms, evolutionary rescue may occur through evolution of the host and/or endosymbionts. Many obligate mutualisms are composed of relatively small, fast-growing symbionts with greater potential to evolve on ecologically relevant time scales than their relatively large, slower growing hosts. Numerous jellyfish species harbor closely related endosymbiont taxa to other cnidarian species such as coral, and are commonly used as a model system for investigating cnidarian mutualisms. We examined the potential for adaptation of the upside-down jellyfish Cassiopea xamachana to increased temperature via evolution of its microalgal endosymbiont, Symbiodinium microadriaticum. We quantified trait variation among five algal genotypes in response to three temperatures (26 °C, 30 °C, and 32 °C) and fitness of hosts infected with each genotype. All genotypes showed positive growth rates at each temperature, but rates of respiration and photosynthesis decreased with increased temperature. Responses varied among genotypes but were unrelated to genetic similarity. The effect of temperature on asexual reproduction and the timing of development in the host also depended on the genotype of the symbiont. Natural selection could favor different algal genotypes at different temperatures, affecting host fitness. This eco-evolutionary interaction may be a critical component of understanding species resilience in increasingly stressful environments.
Collapse
|
14
|
Lee LK, Leaw CP, Lee LC, Lim ZF, Hii KS, Chan AA, Gu H, Lim PT. Molecular diversity and assemblages of coral symbionts (Symbiodiniaceae) in diverse scleractinian coral species. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105706. [PMID: 35872442 DOI: 10.1016/j.marenvres.2022.105706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The scleractinian coral-associated symbiotic algae Symbiodiniaceae plays an important role in bleaching tolerance and coral resilience. In this study, coral-associated Symbiodiniaceae communities of 14 reef sites of Perhentian and Redang Islands Marine Parks (Malaysia, South China Sea) were characterized using the high-throughput next-generation amplicon sequencing on the ITS2 rDNA marker to inventory the Symbiodiniaceae diversity from a healthy tropical reef system and to generate a baseline for future studies. A total of 64 coral-Symbiodiniaceae associations were characterized in 18 genera (10 families) of scleractinian corals using the SymPortal analytical framework. The results revealed the predominance of Symbiodiniaceae genera Cladocopium (average 82%) and Durusdinium (18%), while Symbiodinium, Breviolum, Fugacium, and Gerakladium were found as minor groups (<0.01%). Of the 39 Cladocopium and Durusdinium major ITS2 sequences, 14 were considered dominant/sub-dominant, with C3u as the predominant type (63.3%), followed by D1 (15%), C27 (10.1%), and C15 (6.9%). A total of 19 and 13 Cladocopium and Durusdinium ITS2-type profiles were detected across the coral species, respectively. Symbiodiniaceae diversity and richness recorded in this study were higher when compared to other reefs in the proximity. With the increasing coral-Symbiodiniaceae associations archived, the database would provide a baseline to assess the changes of Symbiodiniaceae communities in the coral hosts and to explore the potential adaptive roles of this coral-algal association.
Collapse
Affiliation(s)
- Li Keat Lee
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia.
| | - Li Chuen Lee
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Zhen Fei Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Kieng Soon Hii
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Albert Apollo Chan
- Marine Park and Resource Management Division, Department of Fisheries, Ministry of Agriculture, 62628, Putrajaya, Malaysia
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia.
| |
Collapse
|
15
|
Jandang S, Viyakarn V, Yoshioka Y, Shinzato C, Chavanich S. The seasonal investigation of Symbiodiniaceae in broadcast spawning, Acropora humilis and brooding, Pocillopora cf. damicornis corals. PeerJ 2022; 10:e13114. [PMID: 35722256 PMCID: PMC9205303 DOI: 10.7717/peerj.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/23/2022] [Indexed: 01/12/2023] Open
Abstract
The density and diversity of Symbiodiniaceae associated with corals can be influenced by seasonal changes . This study provided the first annual investigation of Symbiodiniaceae density and diversity associated with Acropora humilis and Pocillopora cf. damicornis corals in the Gulf of Thailand using both zooxanthellae cell count and next-generation sequencing (ITS-1, ITS-2 regions) techniques, respectively. The results from this study indicated that zooxanthellae cell densities in both coral species differ significantly. The number of zooxanthellae was negatively correlated with the physical environment variable (light intensity). The diversity within A. humilis consisted of two genera, Cladocopium (Cspc_C3: 56.39%, C3w: 33.62%, C93type1: 4.42% and Cspf: 3.59%) and a small amount of Durusdinium (D1: 1.03%) whereas P. cf. damicornis was found to be 100% associated with Durusdinium (D1: 95.58%, D6: 1.01% and D10: 2.7%) suggesting that each coral species may select their appropriate genus/species of Symbiodiniaceae in response to local environmental stressors. The results of this study provided some information on the coral-Symbiodiniaceae relationship between seasons, which may be applied to predict the potential adaptation of corals in localized reef environments.
Collapse
Affiliation(s)
- Suppakarn Jandang
- Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Voranop Viyakarn
- Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand,Aquatic Resources Research Institute, Chulalongkorn University, Bangkok, Thailand
| | - Yuki Yoshioka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Suchana Chavanich
- Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand,Aquatic Resources Research Institute, Chulalongkorn University, Bangkok, Thailand,Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
16
|
Li M, Huang W, Wu Q, Feng Y, Chen Y, Yu K, Chen B, Yang E, Meng L, Huang X, Wang X. High genetic differentiation and moderate genetic diversity of the degenerative branching coral Pocillopora verrucosa in the tropical South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153076. [PMID: 35038534 DOI: 10.1016/j.scitotenv.2022.153076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Global warming is causing rapid degradation of coral reefs, among which branching corals are degrading the fastest. An assessment of coral genetic diversity and adaptive potential provides a basis for coral reef protection. In this study, we selected the branching coral Pocillopora verrucosa, a widely distributed species in the tropical South China Sea (SCS), to carry out population genetic studies. To analyze the genetic diversity and structure of 319 P. verrucosa samples from 10 populations in 4 SCS regions, twelve pairs of microsatellite primers and two nuclear markers, ITS and β-tub, were selected. Microsatellite marker results showed moderate genetic diversity for P. verrucosa in the SCS, but relatively low diversity in Dazhou Island and Yongxing Island. The haplotype network showed that P. verrucosa in the SCS was derived from two ancestors, which may be linked to geographical isolation in the Pleistocene glacial period. AMOVA (ΦST = 0.3375) and FST pairwise analysis results based on β-tub showed that the populations were highly differentiated, with most FST values (21/45) > 0.25. Yongxing and Qilianyu Islands populations were significantly different from those in the Xisha area. Mantel test results showed that genetic differentiation among P. verrucosa populations was significantly and positively correlated with both mean sea surface temperature (SST) and SST variance, and was not correlated with distance, chlorophyll-a, or turbidity. The reproductive mode of brooding planulae was an important factor contributing to high genetic differentiation among populations. The moderate genetic diversity of SCS P. verrucosa indicates that this population has a certain genetic potential in the context of global changes, but the high genetic differentiation between populations increases the risk of local degradation or extinction. This study provides a theoretical basis for the protection and restoration of SCS coral reefs.
Collapse
Affiliation(s)
- Ming Li
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Forestry College, Guangxi University, Nanning 530004, China
| | - Wen Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Qian Wu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yi Feng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yinmin Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519080, China.
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Enguang Yang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Linqing Meng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xin Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Gunagxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Beihai 536000, China
| |
Collapse
|
17
|
Dougan KE, González-Pech RA, Stephens TG, Shah S, Chen Y, Ragan MA, Bhattacharya D, Chan CX. Genome-powered classification of microbial eukaryotes: focus on coral algal symbionts. Trends Microbiol 2022; 30:831-840. [DOI: 10.1016/j.tim.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 12/20/2022]
|
18
|
Yu X, Yu K, Liao Z, Chen B, Deng C, Yu J, Yao Q, Qin Z, Liang J. Seasonal fluctuations in symbiotic bacteria and their role in environmental adaptation of the scleractinian coral Acropora pruinosa in high-latitude coral reef area of the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148438. [PMID: 34153755 DOI: 10.1016/j.scitotenv.2021.148438] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Coral-associated bacterial communities are paramount for coral ecosystems and holobiont health. However, the role of symbiotic bacteria in the adaptation of high-latitude corals to seasonal fluctuations remains underexplored. Therefore, we used 16S rRNA-based high-throughput sequencing to analyze the symbiotic bacterial diversity, composition, and core bacterial community in high-latitude coral and explored the seasonal fluctuation characteristics of symbiotic bacterial communities. We found that bacterial richness and α-diversity changed significantly across different seasons. Additionally, the community structure recombined seasonally, with different dominant bacterial phyla and genera in different seasons. However, the symbiotic bacterial community structures of Acropora pruinosa in winter and spring were similar. Proteobacteria were the dominant bacteria in spring, autumn, and winter. In summer, the dominant bacterial taxa were Bacteroidota and Proteobacteria. Ralstonia was the dominant bacterial genus in spring and winter, whereas in autumn, BD1-7_clade was dominant. Linear discriminant analysis effect size identified 20 abundant genera between the different groups. Core microbiome analysis revealed that 12 core bacterial operational taxonomic units were associated with A. pruinosa in all seasons, seven of which varied with the seasons, changing between dominant and rare. Distance-based redundancy and variation partitioning analyses revealed that sea surface temperature was the major contributor of variation in the microbial community structure. We hypothesized that the high diversity and abundance of symbiotic bacteria and the increase in Prosthecochloris abundance in coral in summer can help A. pruinosa maintain its physiological functions, ameliorating the negative physiological effects of the decrease in Symbiodiniaceae density under high-temperature stress. Thus, the rapid reorganization of the symbiotic bacterial community structure and core microflora in different seasons may allow the corals to adapt to large seasonal environmental fluctuations. In conclusion, seasonal variation of bacteria plays an important role in coral adaptation to large environmental fluctuations.
Collapse
Affiliation(s)
- Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China.
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Chuanqi Deng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiaoyang Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Qiucui Yao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
19
|
Chen B, Yu K, Liao Z, Yu X, Qin Z, Liang J, Wang G, Wu Q, Jiang L. Microbiome community and complexity indicate environmental gradient acclimatisation and potential microbial interaction of endemic coral holobionts in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142690. [PMID: 33071127 DOI: 10.1016/j.scitotenv.2020.142690] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/31/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Regional acclimatisation and microbial interactions significantly influence the resilience of reef-building corals facing anthropogenic climate change, allowing them to adapt to environmental stresses. However, the connections between community structure and microbial interactions of the endemic coral microbiome and holobiont acclimatisation remain unclear. Herein, we used generation sequencing of internal transcribed spacer (ITS2) and 16S rRNA genes to investigate the microbiome composition (Symbiodiniaceae and bacteria) and associated potential interactions of endemic dominant coral holobionts (Pocillopora verrucosa and Turbinaria peltata) in the South China Sea (SCS). We found that shifts in Symbiodiniaceae and bacterial communities of P. verrucosa were associated with latitudinal gradient and climate zone changes, respectively. The C1 sub-clade consistently dominated the Symbiodiniaceae community in T. peltata; yet, the bacterial community structure was spatially heterogeneous. The relative abundance of the core microbiome among P. verrucosa holobionts was reduced in the biogeographical transition zone, while bacterial taxa associated with anthropogenic activity (Escherichia coli and Sphingomonas) were identified in the core microbiomes. Symbiodiniaceae and bacteria potentially interact in microbial co-occurrence networks. Further, increased bacterial, and Symbiodiniaceae α-diversity was associated with increased and decreased network complexity, respectively. Hence, Symbiodiniaceae and bacteria demonstrated different flexibility in latitudinal or climatic environmental regimes, which correlated with holobiont acclimatisation. Core microbiome analysis has indicated that the function of core bacterial microbiota might have changed in distinct environmental regimes, implying potential human activity in the coral habitats. Increased bacterial α diversity may lead to a decline in the stability of coral-microorganism symbioses, whereas rare Symbiodiniaceae may help to retain symbioses. Cladocopium, γ-proteobacteria, while α-proteobacteria may have been the primary drivers in the Symbiodiniaceae-bacterial interactions (SBIs). Our study highlights the association between microbiome shift in distinct environmental regimes and holobiont acclimatisation, while providing insights into the impact of SBIs on holobiont health and acclimatisation during climate change.
Collapse
Affiliation(s)
- Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China.
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Guanghua Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Qian Wu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Leilei Jiang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
20
|
Wang J, Chen J, Wang S, Li F, Fu C, Wang Y. Monoclonal Culture and Characterization of Symbiodiniaceae C1 Strain From the Scleractinian Coral Galaxea fascicularis. Front Physiol 2021; 11:621111. [PMID: 33536938 PMCID: PMC7848188 DOI: 10.3389/fphys.2020.621111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/31/2020] [Indexed: 11/13/2022] Open
Abstract
The symbiosis between cnidarian hosts and photosynthetic dinoflagellates of the family Symbiodiniaceae (i.e., zooxanthellae) provides the energy foundation of coral reef ecosystems in oligotrophic waters. The structure of symbiont biota and the dominant species of algal symbiont partly shape the environmental adaptability of coral symbiotes. In this study, the algal symbiont cells were isolated from the tentacles of Galaxea fascicularis, a hermatypic coral with obvious differentiation in heat resistance, and were cultured in vitro with an improved L1 medium. An algal monoclonal cell line was established using separated algal culture drops and soft agar plating method, and named by GF19C1 as it was identified as Cladocopium sp. C1 (Symbiodiniaceae) based on its ITS1, ITS2, and the non-coding region of the plastid psbA minicircle (psbAncr) sequences. Most GF19C1 cells were at the coccoid stage of the gymnodinioid, their markedly thickened (ca. two times) cell wall suggests that they developed into vegetative cysts and have sexual and asexual reproductive potential. The average diameter of GF19C1 cells decreased significantly, probably due to the increasing mitotic rate. The chloroplasts volume density of GF19C1 was significantly lower than that of their symbiotic congeners, while the surface area density of thylakoids relative to volumes of chloroplasts was not significantly changed. The volume fraction of vacuoles increased by nearly fivefold, but there was no significant change in mitochondria and accumulation bodies. Light-temperature orthogonal experiments showed that, GF19C1 growth preferred the temperature 25 ± 1°C (at which it is maintained post-isolation) rather than 28 ± 1°C under the light intensity of 42 ± 2 or 62 ± 2 μmol photons m–2 s–1, indicating an inertia for temperature adaptation. The optimum salinity for GF19C1 growth ranged between 28–32 ppt. The monoclonal culture techniques established in this study were critical to clarify the physiological and ecological characteristics of various algal symbiont species, and will be instrumental to further reveal the roles of algal symbionts in the adaptive differentiation of coral-zooxanthellae holobionts in future studies.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Marine Sciences, Hainan University, Haikou, China
| | - Jiaqi Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Marine Sciences, Hainan University, Haikou, China
| | - Shaoyu Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Marine Sciences, Hainan University, Haikou, China
| | - Fuyu Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Marine Sciences, Hainan University, Haikou, China
| | - Chengchong Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Marine Sciences, Hainan University, Haikou, China
| | - Yan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Marine Sciences, Hainan University, Haikou, China
| |
Collapse
|
21
|
Davies SW, Moreland KN, Wham DC, Kanke MR, Matz MV. Cladocopium community divergence in two Acropora coral hosts across multiple spatial scales. Mol Ecol 2020; 29:4559-4572. [PMID: 33002237 DOI: 10.1111/mec.15668] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022]
Abstract
Many broadly-dispersing corals acquire their algal symbionts (Symbiodiniaceae) "horizontally" from their environment upon recruitment. Horizontal transmission could promote coral fitness across diverse environments provided that corals can associate with divergent algae across their range and that these symbionts exhibit reduced dispersal potential. Here we quantified community divergence of Cladocopium algal symbionts in two coral host species (Acropora hyacinthus, Acropora digitifera) across two spatial scales (reefs on the same island, and between islands) across the Micronesian archipelago using microsatellites. We find that both hosts associated with a variety of multilocus genotypes (MLG) within two genetically distinct Cladocopium lineages (C40, C21), confirming that Acropora coral hosts associate with a range of Cladocopium symbionts across this region. Both C40 and C21 included multiple asexual lineages bearing identical MLGs, many of which spanned host species, reef sites within islands, and even different islands. Both C40 and C21 exhibited moderate host specialization and divergence across islands. In addition, within every island, algal symbiont communities were significantly clustered by both host species and reef site, highlighting that coral-associated Cladocopium communities are structured across small spatial scales and within hosts on the same reef. This is in stark contrast to their coral hosts, which never exhibited significant genetic divergence between reefs on the same island. These results support the view that horizontal transmission could improve local fitness for broadly dispersing Acropora coral species.
Collapse
Affiliation(s)
- Sarah W Davies
- Department of Biology, Boston University, Boston, MA, USA.,Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kelsey N Moreland
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Drew C Wham
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Matt R Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Mikhail V Matz
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|