1
|
Li Z, Zhou Y, Lv L, Long Y, Dong M, Xiao Q, Jia X, Ju D, Sun X, Huang F, Cai M, Zhang J, Yu Z, Zheng L. Host-mediated environmental microbiome recruitment by black soldier fly (Hermetia illucens) enhances waste biotransformation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 204:114886. [PMID: 40413912 DOI: 10.1016/j.wasman.2025.114886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/16/2025] [Accepted: 05/11/2025] [Indexed: 05/27/2025]
Abstract
The black soldier fly larvae (BSFL) have demonstrated the ability to convert organic waste into high-quality proteins, lipids, and chitin on an industrial scale. This study aimed to examine the influence of exogenous microbes on the growth and development of BSFL by comparing Germ-free and normal BSFL that were reared on different substrates. Furthermore, the research evaluated the effects of microbes associated with the eggs. The results demonstrated that BSFL actively recruited specific functional microbes from their environment to facilitate growth and developmental processes. These recruited exogenous microbial consortia, originating from artificial substrates, kitchen waste, chicken manure, and egg-carrying microbiota, significantly enhanced Germ-free BSFL performance through improved larval viability, increased material conversion efficiency, elevated average body weight, and reduced pupal stage duration compared to Germ-free groups. The isolation and functional validation of intestinal microbiota identified Enterococcus, Bacillus, and Lactobacillus as core taxa for consortium formulation. This synthetic microbial community exhibited robust growth-promoting effects on BSFL, with maximal efficacy observed in chicken manure bioconversion systems, achieving 72.1 %, 193.6 % and 439.59 % enhancements in larval survival, biomass accumulation and feed conversion rate, respectively, alongside a 62.4 % reduction in prepupal development time compared to non-inoculated controls. Mechanistic analysis revealed a host-driven microbial recruitment strategy wherein BSFL selectively enriched functional symbionts to optimize environmental adaptation. These mutualistic interactions enhanced larval niche specialization and waste metabolic capacity, demonstrating scalable potential for circular waste valorization and sustainable bioremediation protocols.
Collapse
Affiliation(s)
- Zhe Li
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Yuchen Zhou
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Lin Lv
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Yinguang Long
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Mengyao Dong
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Qi Xiao
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Xianyue Jia
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Dechen Ju
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Xiaowen Sun
- School of Life Sciences, Jianghan University, Wuhan, PR China
| | - Feng Huang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Minmin Cai
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Jibin Zhang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Ziniu Yu
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Longyu Zheng
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China.
| |
Collapse
|
2
|
Wang D, Tang YT, He J, Robinson D, Yang W. A mini-review for identifying future directions in modelling heating values for sustainable waste management. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2025; 43:540-554. [PMID: 39279247 DOI: 10.1177/0734242x241271042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Global estimations suggest energy content within municipal solid waste (MSW) is underutilized, compromising efforts to reduce fossil CO2 emissions and missing the opportunities for pursuing circular economy in energy consumption. The energy content of the MSW, represented by heating values (HVs), is a major determinant for the suitability of incinerating the waste for energy and managing waste flows. Literature reveals limitations in traditional statistical HV modelling approaches, which assume a linear and additive relationship between physiochemical properties of MSW samples and their HVs, as well as overlook the impact of non-combustible substances in MSW mixtures on energy harvest. Artificial intelligence (AI)-based models show promise but pose challenges in interpretation based on established combustion theories. From the variable selection perspectives, using MSW physical composition categories as explanatory variables neglects intra-category variations in energy contents while applying environmental or socio-economic factors emerges to address waste composition changes as society develops. The article contributes by showing to professionals and modellers that leveraging AI technology and incorporating societal and environmental factors are meaningful directions for advancing HV prediction in waste management. These approaches promise more precise evaluations of incinerating waste for energy and enhancing sustainable waste management practices.
Collapse
Affiliation(s)
- Dan Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang, China
| | - Yu-Ting Tang
- School of Geographical Sciences, University of Nottingham Ningbo China, Ningbo, Zhejiang, China
| | - Jun He
- International Doctoral Innovation Centre, Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, Zhejiang, China
| | - Darren Robinson
- School of Architecture, University of Sheffield, Sheffield, UK
| | - Wanqin Yang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang, China
| |
Collapse
|
3
|
Etefa HF, Dejene FB. Applications of Green Carbon Dots in Personalized Diagnostics for Precision Medicine. Int J Mol Sci 2025; 26:2846. [PMID: 40243410 PMCID: PMC11988419 DOI: 10.3390/ijms26072846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 04/18/2025] Open
Abstract
Green carbon dots (GCDs) have emerged as a revolutionary tool in precision medicine, offering transformative capabilities for personalized diagnostics and therapeutic strategies. Their unique optical and biocompatible properties make them ideal for non-invasive imaging, real-time monitoring, and integration with genomics, proteomics, and bioinformatics, enabling accurate diagnosis and tailored treatments based on patients' genetic and molecular profiles. This study explores the potential of GCDs in advancing individualized patient care by examining their applications in precision medicine. It evaluates their utility in non-invasive diagnostic imaging, targeted therapy delivery, and the formulation of personalized treatment plans, emphasizing their interaction with advanced genomic, proteomic, and bioinformatics platforms. GCDs demonstrated exceptional versatility in enabling precise diagnostics and delivering targeted therapies. Their integration with cutting-edge technologies showed significant promise in crafting personalized treatment strategies, enhancing their functionality and effectiveness in real-time monitoring and patient-specific applications. The findings underscore the pivotal role of GCDs in reshaping healthcare by advancing precision medicine and improving patient outcomes. The ongoing development and integration of GCDs with emerging technologies promise to further enhance their capabilities, paving the way for more effective, individualized medical care.
Collapse
Affiliation(s)
- Habtamu F. Etefa
- Department of Chemical and Physics Science, Walter Sisulu University, Private Bag X-1, Mthatha 5117, South Africa;
| | | |
Collapse
|
4
|
Wu L, Tong Q, Cao X, Zhang D, Yang F, Lin H, Fan Q. Dual-Locked Near-Infrared Fluorescent Probe for Real-Time Imaging of Hydrogen Sulfide/Matrix Metallopeptidase-2 In Vivo. ACS NANO 2025; 19:7294-7305. [PMID: 39939146 DOI: 10.1021/acsnano.4c17799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Hydrogen sulfide (H2S) and matrix metallopeptidase 2 (MMP-2) are inextricably linked in the occurrence and development of diseases and the treatment of diseases. However, most of the activatable imaging probes currently developed are single-locked probes that do not simultaneously detect H2S and MMP-2 levels at disease sites and severely hinder the real-time and accurate analysis of the dynamic relationship between the two interrelated biomarkers. Herein, we report a dual-locked H2S/MMP-2-activatable near-infrared (NIR) fluorescent imaging probe through a dual-Förster resonance energy transfer (FRET) mechanism that specifically detects tumors or acute lung injury (ALI) and establishes the dynamic relationship between the H2S level and MMP-2 expression. Initially, the fluorescence of the probe is turned off due to energy transfer from methylene blue (MB) to both the cationic electrochromic material (dicationic 1,1,4,4-tetraarylbutadiene, EM 12+) and quencher QSY21. Upon reaction with H2S/MMP-2 in tumors or ALI, the NIR fluorescence of the probe is activated, enabling accurate real-time imaging of tumors or ALI. Additionally, this probe precisely tracks the effects of exogenous H2S in tumors or glucocorticoids for the treatment of ALI on MMP-2 expression, providing a powerful molecular imaging tool for early prediction of treatment outcomes in tumors and ALI.
Collapse
Affiliation(s)
- Luyan Wu
- State Key Laboratory of Flexible Electronics (LoFE), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qiang Tong
- State Key Laboratory of Flexible Electronics (LoFE), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xiang Cao
- State Key Laboratory of Flexible Electronics (LoFE), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Dingguo Zhang
- State Key Laboratory of Flexible Electronics (LoFE), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Fangqi Yang
- State Key Laboratory of Flexible Electronics (LoFE), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Huihui Lin
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science Technology and Research (A*STAR), Singapore 627833, Singapore
| | - Quli Fan
- State Key Laboratory of Flexible Electronics (LoFE), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
5
|
Jemli M, Karray F, Mansour L, Loukil S, Bouhdida R, Yadav KK, Sayadi S. Wastewater biotreatment and bioaugmentation for remediation of contaminated sites at an oil recycling plant. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:139-159. [PMID: 39882919 DOI: 10.2166/wst.2024.364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/08/2024] [Indexed: 01/31/2025]
Abstract
This work focused on the biotreatment of wastewater and contaminated soil in a used oil recycling plant located in Bizerte. A continuous stirred tank reactor (CSTR) and a trickling filter (TF) were used to treat stripped and collected wastewater, respectively. The CSTR was started up and stabilized for 90 days. Over the following 170 days, the operational organic loading rates of the TF and the CSTR were around 1,200 and 3,000 g chemical oxygen demand (COD) m-3 day-1, respectively. The treatment efficiency was 94% for total petroleum hydrocarbons (TPHs), 89.5% for COD, 83.34% for biological oxygen demand (BOD5), and 91.25% for phenol. Treated industrial wastewater from the TF was used for bioaugmentation (BA) of contaminated soil. The assessment of the soil took 24 weeks to complete. The effectiveness of the soil BA strategy was confirmed by monitoring phenolic compounds, aliphatic and polycyclic aromatic hydrocarbons, heavy metals, and germination index. The biodegradation rate of contaminants was improved and the time required for their removal was reduced. The soil bacterial communities were dominated by species of the genera Mycobacterium, Proteiniphilum, Nocardioides, Luteimicrobium, and Azospirillum, which were identified as hydrocarbon and phenol-degrading bacteria.
Collapse
Affiliation(s)
- Meryem Jemli
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Lamjed Mansour
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451 Riyadh, Saudi Arabia E-mail:
| | - Slim Loukil
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Rihab Bouhdida
- The Tunisian Company of Lubricants SOTULUB, Industrial Zone, 7021 Zarzouna, Bizerte, Tunisia
| | - Krishna Kumar Yadav
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India
| | - Sami Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
6
|
Barbhuiya S, Das BB, Adak D. A comprehensive review on integrating sustainable practices and circular economy principles in concrete industry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122702. [PMID: 39366229 DOI: 10.1016/j.jenvman.2024.122702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
This comprehensive review explores the integration of circular economy principles into the concrete industry, emphasizing their role in enhancing sustainability and resource efficiency. It covers the fundamental concepts of circular economy and examines the application of Life Cycle Assessment (LCA) in evaluating the environmental impacts of concrete production. The review highlights innovative strategies for recycling, reuse, waste reduction, and resource optimisation, showcasing how these approaches can transform concrete production practices. It also addresses the policy considerations, economic implications, and societal impacts associated with adopting circular economy practices. Furthermore, the review investigates recent technological advancements in circular concrete production, including self-healing concrete and 3D printing. By summarizing these findings and offering practical recommendations, the review aims to support the industry in transitioning towards more sustainable practices. This detailed analysis provides valuable insights into the benefits and challenges of circular economy adoption, helping stakeholders make informed decisions for a greener concrete sector.
Collapse
Affiliation(s)
- Salim Barbhuiya
- Department of Engineering and Construction, University of East London, UK.
| | | | - Dibyendu Adak
- Department of Civil Engineering, NIT Meghalaya, Shillong, India
| |
Collapse
|
7
|
Choudhury AR, Singh N, Lalwani J, Srinivasan H, Palani SG. Enhancing biomethanation performance through co-digestion of diverse organic wastes: a comprehensive study on substrate optimization, inoculum selection, and microbial community analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34622-34646. [PMID: 38709410 DOI: 10.1007/s11356-024-33557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
A blend of organic municipal solid waste, slaughterhouse waste, fecal sludge, and landfill leachate was selected in different mixing ratios to formulate the best substrate mixture for biomethanation. Individual substrates were characterized, and the mixing ratio was optimized with the help of a response surface methodology tool to a value of 1:1:1:1 (with a C/N ratio of 28±0.769 and total volatile fatty acid (VFA) concentration of 2500±10.53 mg/L) to improve the overall biomethanation. The optimized blend (C/N ratio: 28.6, VFA: 2538 mg/L) was characterized for physicochemical, biological, and microbial properties and subjected to anaerobic digestion in lab-scale reactors of 1000 mL capacity with and without the addition of inoculum. The biogas yield of individual substrates and blends was ascertained separately. The observed cumulative biogas yield over 21 days from the non-inoculated substrates varied between 142±1.95 mL (24.6±0.3 ml/gVS) and 1974.5±21.72 mL (270.4±3.1 ml/gVS). In comparison, the addition of external inoculation at a 5% rate (w/w) of the substrate uplifted the minimum and maximum cumulative gas yield values to 203±9.9 mL (35.0±1.6 mL/gVS) and 3394±13.4 mL (315.3±1.2 mL/gVS), respectively. The inoculum procured from the Defence Research and Development Organisation (DRDO) was screened in advance, considering factors such as maximizing VFA production and consumption rate, biogas yield, and digestate quality. A similar outcome regarding biogas yield and digestate quality was observed for the equivalent blend. The cumulative gas yield increased from 2673±14.5 mL (373.7±2.2 mL/gVS) to 4284±111.02 mL (391.47±20.02 mL/gVS) over 21 days post-application of a similar dosage of DRDO inoculum. The 16S rRNA genomic analysis revealed that the predominant bacterial population belonged to the phylum Firmicutes, with the majority falling within the orders Clostridiales and Lactobacillales. Ultimately, the study advocates the potential of the blend mentioned above for biomethanation and concomitant enrichment of both biogas yield and digestate quality.
Collapse
Affiliation(s)
- Atun Roy Choudhury
- Cube Bio Energy Pvt. Ltd., Madhapur, Hyderabad, Telangana, 500081, India
- Department of Biological Sciences, Birla Institute of Technology and Science, Hyderabad Campus, Pilani, Telangana, 500078, India
| | - Neha Singh
- Unison I3X Private Limited, Plot No. 23, Maruti Industrial Area, Sector-18, Gurgaon, Haryana, 122015, India
- The K.R.T. Arts, B.H. Commerce & A.M. Science College, Savitribai Phule Pune University, Gangapur Rd, Shivaji Nagar, Nashik, Maharashtra, 422002, India
| | - Jitesh Lalwani
- School of Business, Woxsen University, Hyderabad, Telangana, 502345, India
| | - Hemapriya Srinivasan
- Department of Biological Sciences, Birla Institute of Technology and Science, Hyderabad Campus, Pilani, Telangana, 500078, India
| | - Sankar Ganesh Palani
- Department of Biological Sciences, Birla Institute of Technology and Science, Hyderabad Campus, Pilani, Telangana, 500078, India.
| |
Collapse
|
8
|
Herrera-Franco G, Merchán-Sanmartín B, Caicedo-Potosí J, Bitar JB, Berrezueta E, Carrión-Mero P. A systematic review of coastal zone integrated waste management for sustainability strategies. ENVIRONMENTAL RESEARCH 2024; 245:117968. [PMID: 38151154 DOI: 10.1016/j.envres.2023.117968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Coastal areas stand out because of their rich biodiversity and high tourist potential due to their privileged geographical position. However, one of the main problems in these areas is the generation of waste and its management, which must consider technical and sustainable criteria. This work aims to conduct a systematic review of the scientific literature on integrated solid waste management (ISWM) by considering scientific publications on the scientific basis for the proposal of sustainability strategies in the context of use and efficiency. The overall method comprises i) Search strategy, merging and processing of the databases (Scopus and Web of Science); ii) Evolution of coastal zone waste management; iii) Systematic reviews on coastal landfills and ISWM in the context of the circular economy; and iv) Quantitative synthesis in integrated waste management. The results show 282 studies focused on coastal landfills and 59 papers on ISWM with the application of circular economy criteria. Systematic reviews allowed for the definition of criteria for the selection of favorable sites, such as i) sites far from the coastline, ii) impermeable soils at their base to avoid contamination of aquifers, iii) use of remote sensing and geographic information system tools for continuous monitoring, iv) mitigation of possible contamination of ecosystems, v) planning the possibility of restoration (reforestation) and protection of the environment. In coastal zones, it is necessary to apply the ISWM approach to avoid landfill flooding and protect the marine environment, reducing rubbish and waste on beaches and oceans. Therefore, applying the circular economy in ISWM is critical to sustainability in coastal environments, with the planet's natural processes and variations due to climate change.
Collapse
Affiliation(s)
- Gricelda Herrera-Franco
- Facultad de Ciencias de la Ingeniería, Universidad Estatal Península de Santa Elena, La Libertad, 240204, Ecuador.
| | - Bethy Merchán-Sanmartín
- Geo-Recursos y Aplicaciones GIGA, Escuela Superior Politécnica del Litoral (ESPOL), P.O. Box 09-01-5863, Guayaquil, Ecuador; Facultad de Ingeniería en Ciencias de la Tierra, Escuela Superior Politécnica del Litoral (ESPOL), P.O. Box 09-01-5863, Guayaquil, Ecuador; Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), Escuela Superior Politécnica del Litoral (ESPOL), P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Jhon Caicedo-Potosí
- Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), Escuela Superior Politécnica del Litoral (ESPOL), P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Josué Briones Bitar
- Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), Escuela Superior Politécnica del Litoral (ESPOL), P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Edgar Berrezueta
- Spanish Geological Survey (CN IGME, CSIC), Matemático Pedrayes 25., 33005, Oviedo, Spain
| | - Paúl Carrión-Mero
- Facultad de Ingeniería en Ciencias de la Tierra, Escuela Superior Politécnica del Litoral (ESPOL), P.O. Box 09-01-5863, Guayaquil, Ecuador; Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), Escuela Superior Politécnica del Litoral (ESPOL), P.O. Box 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
9
|
Poonia K, Singh P, Ahamad T, Le QV, Phan Quang HH, Thakur S, Mishra AK, Selvasembian R, Hussain CM, Nguyen VH, Raizada P. Sustainability, performance, and production perspectives of waste-derived functional carbon nanomaterials towards a sustainable environment: A review. CHEMOSPHERE 2024; 352:141419. [PMID: 38360410 DOI: 10.1016/j.chemosphere.2024.141419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/21/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
The survival of humanity is severely threatened by the massive accumulation of waste in the ecosystem. One plausible solution for the management and upcycling of waste is conversing waste at the molecular level and deriving carbon-based nanomaterial. The field of carbon nanomaterials with distinctive properties, such as exceptionally large surface areas, good thermal and chemical stability, and improved propagation of charge carriers, remains a significant area of research. The study demonstrates recent developments in high-value carbon-based photocatalysts synthesis from various waste precursors, including zoonotic, phytogenic, polyolefinic, electronic, and biomedical, highlighting the progression as photocatalysts and adsorbents for wastewater treatment and water splitting applications. This review highpoints the benefits of using waste as a precursor to support sustainability and circular economy and the risks associated with their use. Finally, we support that a sustainable society will eventually be realized by exploring present obstacles and potential steps for creating superior carbon-based nanomaterials in the future.
Collapse
Affiliation(s)
- Komal Poonia
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh- 8, 173229, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh- 8, 173229, India
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Huy Hoang Phan Quang
- Faculty of Biology and Environment, Ho Chi Minh City University of Industry and Trade (HUIT), 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Viet Nam
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Ajay Kumar Mishra
- Department of Chemistry, Durban University of Technology, Steve Biko Road, Durban, 4001, South Africa
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Van-Huy Nguyen
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh- 8, 173229, India.
| |
Collapse
|
10
|
Qin S, Zhang D, Wang J, Liang M, Chen W, Zhang T, Lu X, Li L, Wu X, Zan F. In-situ sulfite treatment promotes solid reduction during aerobic digestion of waste activated sludge: Feasibility for small-scale wastewater treatment plants. BIORESOURCE TECHNOLOGY 2024; 394:130224. [PMID: 38122993 DOI: 10.1016/j.biortech.2023.130224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Aerobic digestion remains the preferred choice for small-scale wastewater treatment plants (WWTPs) in some developing countries, largely due to economic viability and operational simplicity. The escalating production of waste activated sludge (WAS) has prompted small-scale WWTPs to improve efficiency. To address this issue, this study employed an in-situ sulfite treatment as a non-intrusive method to augment aerobic digestion. With sulfite-enhanced solubilization and hydrolysis, a 3.6-fold increase in degradation was achieved. Both sludge dewatering properties and pathogens inactivation were improved. Microbial community analysis revealed a preferential enrichment of Actinobacteriota and Firmicutes during sulfite treatment. The desktop scaling-up estimation suggests that implementing this treatment yielded operational cost savings exceeding 40 %. In summary, in-situ sulfite treatment offers a cost-effective strategy for WAS management in small-scale WWTPs.
Collapse
Affiliation(s)
- Shichan Qin
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dandan Zhang
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China; School of Urban Construction, Department of Water and Wastewater Engineering and Hubei Experimental Teaching Demonstration Center, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jiale Wang
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muxiang Liang
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Chen
- School of Urban Construction, Department of Water and Wastewater Engineering and Hubei Experimental Teaching Demonstration Center, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Tiantian Zhang
- Changjiang Eco-environmental Protection Group Co., Ltd, Wuhan, China
| | - Xiejuan Lu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liangbin Li
- Changjiang Eco-environmental Protection Group Co., Ltd, Wuhan, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
11
|
Velvizhi G, Jacqueline PJ, Shetti NP, K L, Mohanakrishna G, Aminabhavi TM. Emerging trends and advances in valorization of lignocellulosic biomass to biofuels. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118527. [PMID: 37429092 DOI: 10.1016/j.jenvman.2023.118527] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023]
Abstract
Sustainable technologies pave the way to address future energy demand by converting lignocellulosic biomass into fuels, carbon-neutral materials, and chemicals which might replace fossil fuels. Thermochemical and biochemical technologies are conventional methods that convert biomass into value-added products. To enhance biofuel production, the existing technologies should be upgraded using advanced processes. In this regard, the present review explores the advanced technologies of thermochemical processes such as plasma technology, hydrothermal treatment, microwave-based processing, microbial-catalyzed electrochemical systems, etc. Advanced biochemical technologies such as synthetic metabolic engineering and genomic engineering have led to the development of an effective strategy to produce biofuels. The microwave-plasma-based technique increases the biofuel conversion efficiency by 97% and the genetic engineering strains increase the sugar production by 40%, inferring that the advanced technologies enhances the efficiency. So understanding these processes leads to low-carbon technologies which can solve the global issues on energy security, the greenhouse gases emission, and global warming.
Collapse
Affiliation(s)
- G Velvizhi
- CO(2) Research and Green Technology Centre, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India.
| | - P Jennita Jacqueline
- CO(2) Research and Green Technology Centre, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India; School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, Karnataka, India
| | - Latha K
- Department of Mathematics, Easwari Engineering College, Chennai, 600 089, Tamil Nadu, India
| | - Gunda Mohanakrishna
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, Karnataka, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, Karnataka, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248 007, India.
| |
Collapse
|
12
|
Wang X, Hou Y, Ge S, Hou Y, Wu Z, Chen Z, Gao R, Du H. Nickel Sulfide/Hierarchical Porous Carbon from Spent Residue Hydrocracking Catalyst as Electrocatalyst for the Oxygen Evolution Reaction. Chempluschem 2023; 88:e202300323. [PMID: 37726945 DOI: 10.1002/cplu.202300323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Indexed: 09/21/2023]
Abstract
Spent residue slurry-phase hydrocracking catalyst coated with coke have been classified as hazardous solid waste, presenting serious economic and environmental issues to refiners. Herein, the spent catalysts with a nickel sulfide nanoparticle/coke hierarchical structure (NiSX /C) from our previous work were used to prepare nickel sulfide/hierarchical porous carbon (NiSX /HPC) for the oxygen evolution reaction (OER) through the method of carbonization, activation, and sulfurization. The results indicate that the NiSX /C converts into Ni/HPC after carbonization and activation, and then transform into NiSX /HPC by sulfurization. The optimized NiSX /HPC-8 possesses the crystal phase of NiS2 , and the high specific surface area of 1134.9 m2 g-1 with the hierarchical micro-mesoporous structure. Besides, NiSX /HPC-8 achieves a low overpotential of 236 mV at 10 mA cm-2 , a low Tafel slope of 64.1 mV dec-1 , and excellent stability. This work provides a viable method for upcycling spent catalysts to re-constructed OER catalysts with high catalytic performance and durability.
Collapse
Affiliation(s)
- Xinhao Wang
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, 266071, Shandong, P. R. China
| | - Yunhui Hou
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, 266071, Shandong, P. R. China
| | - Shaohui Ge
- Key Laboratory of Clean Fuel, Petrochemical Research Institute CNPC, Beijing, 102209, P. R. China
| | - Yuandong Hou
- Key Laboratory of Clean Fuel, Petrochemical Research Institute CNPC, Beijing, 102209, P. R. China
| | - Zhijie Wu
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum, Beijing, 102249, P. R. China
| | - Zhaojun Chen
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, 266071, Shandong, P. R. China
| | - Ruitong Gao
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, 266071, Shandong, P. R. China
| | - Hui Du
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, 266071, Shandong, P. R. China
| |
Collapse
|
13
|
Ding S, Tukker A, Ward H. Opportunities and risks of internet of things (IoT) technologies for circular business models: A literature review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117662. [PMID: 36913854 DOI: 10.1016/j.jenvman.2023.117662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
In recent years, circular business models (CBM) have become an inevitable requirement to foster improvements in environmental performance. However, the current literature rarely discusses the link between Internet of Things (IoT) and CBM. This paper first identifies four IoT capabilities including monitoring, tracking, optimization and design evolution for improving CBM performance based on the ReSOLVE framework. In a second step, a systematic literature review using the PRISMA approach analyzes how these capabilities contribute to 6 R and CBM through the CBM-6R and CBM-IoT cross-section heatmaps and relationship frameworks, followed by assessing the quantitative impacts of IoT on potential energy saving in CBM. Finally, challenges are analyzed for the realization of IoT-enabled CBM. The results show that the assessments of Loop and Optimize business models dominate current studies. IoT plays a significant role in these business models respectively through tracking, monitoring and optimization capabilities. While (quantitative) case studies for Virtualize, Exchange and Regenerate CBM are substantially needed. IoT holds the potential to reduce energy consumption by around 20-30% for referenced applications in the literature. However, the IoT hardware, software and protocol energy consumption, interoperability, security and financial investment might become main obstacles for the wider use of IoT in CBM.
Collapse
Affiliation(s)
- Suiting Ding
- Institute of Environmental Sciences (CML), Department of Industrial Ecology, Leiden University, the Netherlands.
| | - Arnold Tukker
- Institute of Environmental Sciences (CML), Department of Industrial Ecology, Leiden University, the Netherlands; The Netherlands Organization for Applied Scientific Research TNO, the Netherlands; 2022-2023 Fellow, Paris Institute of Advanced Sciences, Paris, France
| | - Hauke Ward
- Institute of Environmental Sciences (CML), Department of Industrial Ecology, Leiden University, the Netherlands; Mercator Research Institute on Global Commons and Climate Change, Germany
| |
Collapse
|
14
|
Ubando AT, Chen WH, Hurt DA, Conversion A, Rajendran S, Lin SL. Biohydrogen in a circular bioeconomy: A critical review. BIORESOURCE TECHNOLOGY 2022; 366:128168. [PMID: 36283666 DOI: 10.1016/j.biortech.2022.128168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen produced from biomass feedstocks is considered an effective solution in moving toward a decarbonized economy. Biohydrogen is a clean energy source that has gained global attention for adoption as it promises to mitigate climate change and human environmental damage. Through the circular economy framework, sustainable biohydrogen production with other bioproducts while addressing issues such as waste management is possible. This study presents a comprehensive review of the various biomass feedstocks and processing technologies associated with biohydrogen generation, as well as the possible integration of existing industries into a circular bioeconomy framework. The currently standing challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Aristotle T Ubando
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Thermomechanical Laboratory, De La Salle University, Laguna Campus, LTI Spine Road, Laguna Blvd, Biñan, Laguna 4024, Philippines; Center for Engineering and Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan.
| | - Dennis A Hurt
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Ariel Conversion
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Thermomechanical Laboratory, De La Salle University, Laguna Campus, LTI Spine Road, Laguna Blvd, Biñan, Laguna 4024, Philippines
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Sheng-Lun Lin
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
15
|
Ezzahra Yatim F, Boumanchar I, Srhir B, Chhiti Y, Jama C, Ezzahrae M'hamdi Alaoui F. Waste-to-energy as a tool of circular economy: Prediction of higher heating value of biomass by artificial neural network (ANN) and multivariate linear regression (MLR). WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 153:293-303. [PMID: 36174430 DOI: 10.1016/j.wasman.2022.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Circular economy is a global trend as a promising strategy for the sustainable use of natural resources. In this context, waste-to-energy presents an effective solution to respond to the ever-increasing waste generation and energy demand duality. However, waste diversity makes their management a serious challenge. Among their categories, biomass waste valorization is an attractive solution energy regarding its low cost and raw materials availability. Nevertheless, the knowledge of biomass waste characteristics, such as composition and energy content, is a necessity. In this research, new models are developed to estimate biomass wastes higher heating value (HHV) based on the ultimate analysis using linear regression and artificial neural network (ANN). The quality-measure of the two models for new dataset was evaluated with statistical metrics such as coefficient of correlation (R), root mean squared error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE). The methods developed in this work provided attractive accuracies comparing to other literature models. Additionally, it is found that the ANN, as machine learning method, is the best model for biomass HHV prediction (R = 0.75377, RMSE = 1.17527, MAE = 0.93315 and MAPE = 5.73%). Therefore, obtained results can be widely employed to design and optimize the reactors of combustion. In fact, the developed ANN software is a simple and accurate tool for HHV estimation based on ultimate analysis. Indeed, ANN is one of the most applicable and widely used software in the field of waste-to-energy.
Collapse
Affiliation(s)
- Fatima Ezzahra Yatim
- Energy Laboratory, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Imane Boumanchar
- Physical Chemistry of Materials Laboratory, Hassan II University, Faculty of Sciences Ben M'sik, Casablanca, Morocco
| | - Bousalham Srhir
- Advanced Materials and Process Engineering Laboratory, National School of Chemistry, Ibn Tofail University, Kénitra, Morocco
| | - Younes Chhiti
- Advanced Materials and Process Engineering Laboratory, National School of Chemistry, Ibn Tofail University, Kénitra, Morocco; Green Tech Institute (GTI), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | | | | |
Collapse
|
16
|
Kumar V, Sharma N, Umesh M, Selvaraj M, Al-Shehri BM, Chakraborty P, Duhan L, Sharma S, Pasrija R, Awasthi MK, Lakkaboyana SR, Andler R, Bhatnagar A, Maitra SS. Emerging challenges for the agro-industrial food waste utilization: A review on food waste biorefinery. BIORESOURCE TECHNOLOGY 2022; 362:127790. [PMID: 35973569 DOI: 10.1016/j.biortech.2022.127790] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 05/27/2023]
Abstract
Modernization and industrialization has undoubtedly revolutionized the food and agro-industrial sector leading to the drastic increase in their productivity and marketing thereby accelerating the amount of agro-industrial food waste generated. In the past few decades the potential of these agro-industrial food waste to serve as bio refineries for the extraction of commercially viable products like organic acids, biochemical and biofuels was largely discussed and explored over the conventional method of disposing in landfills. The sustainable development of such strategies largely depends on understanding the techno economic challenges and planning for future strategies to overcome these hurdles. This review work presents a comprehensive outlook on the complex nature of agro-industrial food waste and pretreatment methods for their valorization into commercially viable products along with the challenges in the commercialization of food waste bio refineries that need critical attention to popularize the concept of circular bio economy.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Community Medicine, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Neha Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, Karnataka, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Badria M Al-Shehri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Pritha Chakraborty
- School of Allied Healthcare and Sciences, Jain (Deemed To Be) University, Bengaluru, Karnataka, India
| | - Lucky Duhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Shivali Sharma
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Punjab, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Siva Ramakrishna Lakkaboyana
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, India
| | - Rodrigo Andler
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | | |
Collapse
|
17
|
Kala K, Bolia NB, Sushil. Analysis of informal waste management using system dynamic modelling. Heliyon 2022; 8:e09993. [PMID: 35991994 PMCID: PMC9389189 DOI: 10.1016/j.heliyon.2022.e09993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/30/2021] [Accepted: 07/13/2022] [Indexed: 12/02/2022] Open
Abstract
The informal sector is the backbone for sustainable waste management in a high population density country such as India. Moreover, the operations of the value chain of informal waste management provide direct or indirect benefits for the environment and human resource development. Unfortunately this sector has always been regarded as a fraudulent activity that sustains without paying taxes, creates unjust competition, and weakens unions and the regulatory structure of the government. These perceptions often lead India to pursue a policy that intentionally or inadvertently amounts to retributive measures. However, the alarming increase in the rate of waste generation has coerced the governments of several countries to incorporate the indispensable informal sector in their policy initiatives. Accordingly, this paper presents a pioneering system dynamics based model (using STELLA Architect software) to analyse the impact of the recent policies and decision strategies on the effectiveness of the informal waste management sector. The paper explores the case of Delhi, India to illustrate the model and provides valuable insights into the urban waste management process. The results of the model demonstrate that significant economic and environmental benefits can be realized by leveraging the natural strengths of the informal sector. Further, it is shown that efficient implementation of policies related to informal waste management can reduce the recyclable waste in the landfills dumped by municipal corporations or otherwise to zero. Also, waste recycling capacity can be increased from 39 percent to 100 percent by strengthening IRC (informal recycling coefficient, introduced in this paper) in a span of 30 years. This increase will have positive impact on land usage, environment degradation and operation cost used in the formal waste collection.
Collapse
Affiliation(s)
- Kaveri Kala
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Nomesh B. Bolia
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sushil
- Department of Management Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
18
|
Hasija V, Patial S, Kumar A, Singh P, Ahamad T, Khan AAP, Raizada P, Hussain CM. Environmental impact of COVID-19 Vaccine waste: A perspective on potential role of natural and biodegradable materials. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:107894. [PMID: 35578627 PMCID: PMC9093085 DOI: 10.1016/j.jece.2022.107894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 05/29/2023]
Abstract
The mass immunization is the prioritised post-pandemic phase offering preventive countermeasure for COVID-19 pandemic. However, it is crucial to tackle the environmental impact of COVID-19 vaccine waste for sustainable vaccination management because a prolonged immunisation campaign is expected. As the pace of vaccine production, distribution and mass vaccination has been expedited, there is a simultaneous rise in plastic derived vaccine waste including syringes, needles, used/unused vaccine vials, vaccine packaging, and protective gear (surgical facemasks, gloves, face shields, etc). Henceforth, in view of the repercussions of heaping plastic waste in the environment, this article provides a perspective on the usage of synthetic and natural materials as potential substituents for vaccination tools. The biodegradable polymeric gums such as cellulose, gellan, pectin, etc. have been successfully applied for the fabrication of surgical facemasks. The highly suggestive practice is replacement of conventional polypropylene based plastics with bioplastics or paper for vaccine packaging. The usage of biodegradable bio-plastics as packaging material along with environmentally friendly face masks can help to achieve the zero waste approach. The discussion in the article significantly highlights the necessity of opting sustainable solutions of disinfecting and substituting vaccination tools for an environment friendly ongoing vaccination campaign.
Collapse
Affiliation(s)
- Vasudha Hasija
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Shilpa Patial
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Abhinandan Kumar
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Aftab Aslam Parwaz Khan
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, N.J 07102, USA
| |
Collapse
|
19
|
Awasthi SK, Sarsaiya S, Kumar V, Chaturvedi P, Sindhu R, Binod P, Zhang Z, Pandey A, Awasthi MK. Processing of municipal solid waste resources for a circular economy in China: An overview. FUEL 2022; 317:123478. [DOI: 10.1016/j.fuel.2022.123478] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
20
|
Lee SM, Cho DH, Jung HJ, Kim B, Kim SH, Bhatia SK, Gurav R, Jeon JM, Yoon JJ, Kim W, Choi KY, Yang YH. Finding of novel polyhydroxybutyrate producer Loktanella sp. SM43 capable of balanced utilization of glucose and xylose from lignocellulosic biomass. Int J Biol Macromol 2022; 208:809-818. [PMID: 35364206 DOI: 10.1016/j.ijbiomac.2022.03.155] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/05/2022]
Abstract
Polyhydroxybutyrate (PHB) is a potential substitute for plastics derived from fossil fuels, owing to its biodegradable and biocompatible properties. Lignocellulosic biomass could be used to reduce PHB production costs; however, the co-utilization of sugars, such as glucose and xylose, without catabolite repression is a difficult problem to be solved. Here, we selected a novel Loktanella sp. SM43 from a marine environment and optimized the conditions for PHB production. Loktanella sp. SM43 showed high PHB production (66.5% content) from glucose. When glucose and xylose were used together, this strain showed high utilization of both substrates compared to other high PHB-producers such as Halomonas sp. and Cupriavidus necator, which showed glucose preference. Loktanella sp. SM43 showed high growth and PHB production with lignocellulosic hydrolysates. When pine tree hydrolysates were used, PHB production was the highest at 3.66 ± 0.01 g/L, followed by Miscanthus (3.46 ± 0.09 g/L) and barley straw hydrolysate (3.36 ± 0.36 g/L). Overall, these results reveal the potential of Loktanella sp. SM43 to produce PHB using various lignocellulosic hydrolysates as feedstock and the first systematic study for PHB production with Loktanella sp. The approach of screening novel strains is a strategy to overcome co-utilization of sugars without genetic engineering.
Collapse
Affiliation(s)
- Sun Mi Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea
| | - Do-Hyun Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea
| | - Hee Ju Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea
| | - Byungchan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Republic of Korea
| | - Wooseong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea.
| |
Collapse
|
21
|
Bai L, Garcia FJS, Mishra AR. Adoption of the sustainable circular supply chain under disruptions risk in manufacturing industry using an integrated fuzzy decision-making approach. OPERATIONS MANAGEMENT RESEARCH 2022. [DOI: 10.1007/s12063-022-00267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Mohammad A, Singh DN, Podlasek A, Osinski P, Koda E. Leachate characteristics: Potential indicators for monitoring various phases of municipal solid waste decomposition in a bioreactor landfill. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114683. [PMID: 35180441 DOI: 10.1016/j.jenvman.2022.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Leachate is a contaminated liquid generated during the bio-chemical decomposition processes of municipal solid waste (MSW) that occurred at semi-solid or solid-state in a bioreactor landfill (BLF). Conceptually, leachate from a BLF is analogous to the urine generated in the 'human body', on which the medical practitioners rely to diagnose and remediate ailments. In line with this practice, to monitor the complex MSW decomposition processes, prolonged investigations were performed to establish the temporal variation of different chemical parameters (such as pH, electrical conductivity, chemical oxygen demand, organic- and inorganic carbon, nitrate- and ammonium-nitrogen, sugars and volatile fatty acids) of the leachate collected from different cells (age≈ 6-48 months) of a fully functional BLF in Mumbai, India. Furthermore, to understand the effect of the climate, MSW composition and landfill operating conditions on the rate of the decomposition process, chemical parameters of the leachate obtained from a landfill located in the central part of Poland were compared with the BLF. The study reveals that the chemical parameters, except for the pH, evince a rapid reduction with time and attain a constant value, which indicates the 'stabilized MSW'. Also, native microorganisms that are an integral part of MSW consume volatile fatty acids within a year in the BLF, which facilitate the rapid transformation of the decomposition process from acidogenesis and acetogenesis to the methanogenesis phase. It is worth iterating here that based on the long-term field study, a convenient and efficient methodology, which is currently missing from the literature, has been established to understand the kinetics of different phases of anaerobic decomposition. This study would be very helpful to the landfill operators, who are interested in accelerating MSW decomposition by augmenting leachate properties.
Collapse
Affiliation(s)
- Arif Mohammad
- Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Devendra Narain Singh
- Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Anna Podlasek
- Institute of Civil Engineering, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland.
| | - Piotr Osinski
- Institute of Civil Engineering, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland.
| | - Eugeniusz Koda
- Institute of Civil Engineering, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland.
| |
Collapse
|
23
|
Di Domenico Ziero H, Ampese LC, Sganzerla WG, Torres-Mayanga PC, Timko MT, Mussatto SI, Forster-Carneiro T. Subcritical water hydrolysis of poultry feathers for amino acids production. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Fei F, Shen N, De Clercq D, Luo J. Redesign of urban biowaste sustainable management system based on industrial ecology concept: A case study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148425. [PMID: 34182457 DOI: 10.1016/j.scitotenv.2021.148425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Urban biowaste, which refers to the organic fraction of municipal solid waste (MSW), is a predominant type of waste in low- and middle-income countries. Therefore, the sustainable management of urban biowaste is a key problem in solid waste management (SWM). However, treatment technologies usually come with secondary pollution and by-products that need further treatment, which would limit the economic and environmental benefits of the waste management system. The concept of industrial ecology has the potential to be introduced into the waste management field to solve this problem. Based on a practical case study of a city in eastern China, this paper conducted a complete urban biowaste treatment system planning exercise using concepts in industrial ecology. The establishment of the new system has significant economic, environmental and social benefits. The total output value of the project would reach 342 million yuan in 2025, corresponding to 945,000 tons of solid wastes consumed every year, which would significantly reduce the environmental pollution caused by solid waste. More than 700 jobs could also be created. In addition, the establishment of an urban biowaste sustainable management system requires the joint effort of enterprise, government and the public, which in turn requires innovation in business models and management policies. Therefore, a special management committee should be established to promote collaboration among stakeholders, and an online platform that enables end-to-end process supervision covering the entire system, including emergency management mechanisms, needs to be established to ensure the long-term stable operation of various treatment facilities. The results of this paper show that synergies among technologies should be promoted to provide systemic benefit, and that the infrastructure for pollution control should be shared to ensure high utilization.
Collapse
Affiliation(s)
- Fan Fei
- College of Public Administration, Huazhong University of Science and Technology, Wuhan 430074, China; State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 10084, China.
| | - Neng Shen
- School of Economics and management, Fuzhou University, Fuzhou 350108, China.
| | - Djavan De Clercq
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 10084, China.
| | - Jing Luo
- Resource & Environment Industry Department, China International Engineering Consulting Corporation, Beijing 10084, China.
| |
Collapse
|
25
|
Varjani S, Shah AV, Vyas S, Srivastava VK. Processes and prospects on valorizing solid waste for the production of valuable products employing bio-routes: A systematic review. CHEMOSPHERE 2021; 282:130954. [PMID: 34082315 DOI: 10.1016/j.chemosphere.2021.130954] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Humanity is struggling against a major problem for a proper management of generated municipal solid waste. The collected waste causes natural issues like uncontrollable emission of greenhouse gases and others. Even though, escalation of waste results in minimizing the areas accessible for disposing the waste. Creating awareness in the society to use organic products like biofuels, biofertilizers and biogas is a need of an hour. Biochemical processes such as composting, vermicomposting, anaerobic digestion, and landfilling play important role in valorizing biomass and solid waste for production of biofuels, biosurfactants and biopolymer. This paper covers the details of biomass and solid waste characteristics and its composition. It is also focused to provide updated information about reutilization of biomass for value creation. Technologies and products obtained through bio-routes are discussed in current review paper together with the integrated system of solid waste management. It also covers challenges, innovations and perspectives in this field.
Collapse
Affiliation(s)
- Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India; Sankalchand Patel Vidyadham, Sankalchand Patel University, Visnagar, 384 315, Gujarat, India.
| | - Anil V Shah
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India; Sankalchand Patel Vidyadham, Sankalchand Patel University, Visnagar, 384 315, Gujarat, India
| | - Shaili Vyas
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India; Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat, 382015, India
| | - Vijay Kumar Srivastava
- Sankalchand Patel Vidyadham, Sankalchand Patel University, Visnagar, 384 315, Gujarat, India
| |
Collapse
|
26
|
Green Transition: The Frontier of the Digicircular Economy Evidenced from a Systematic Literature Review. SUSTAINABILITY 2021. [DOI: 10.3390/su131911068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Today, the issue of economic circularity is certainly not a new concept. It represents an essential issue in any production system since it is an alternative to the current production and consumption model. The importance of the topic is confirmed worldwide. However, there is still a “circularity gap” that can be bridged in the short and medium term, probably with the use of innovative and digital technologies. In fact, many researchers agree that the sustainable future can be achieved in the long term thanks to digital technologies (i.e., IoT, artificial intelligence, quantum computing etc.) which, thanks to their speed of calculation, are able to identify the right solutions at the right time. The challenge, therefore, will be to develop innovative technologies and tools for the efficient use of resources in industries for sustainable production. Thus, the aim of this study is to define the current state of the art and future research developments in this very promising field. To achieve this goal, the integration of a “set” of tools, based on the AHP method and the PRISMA protocol, is proposed. The results aim to be a guideline for decision makers and researchers interested in this topic.
Collapse
|
27
|
Das AK, Islam MN, Billah MM, Sarker A. COVID-19 pandemic and healthcare solid waste management strategy - A mini-review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146220. [PMID: 33711590 PMCID: PMC7932852 DOI: 10.1016/j.scitotenv.2021.146220] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 05/09/2023]
Abstract
Healthcare waste comprises the waste generated by healthcare facilities, medical laboratories and biomedical research facilities. Improper treatment of this waste poses serious risks of disease transmission to waste pickers, waste workers, health workers, patients, and the community in general through exposure to infectious agents. Poor management of the waste emits harmful and deleterious contaminants into society. However, contamination of highly contagious agents such as the COVID-19 virus has created enormous instability in healthcare waste handling and subsequent recycling because of the volume of the waste generated and its contagious nature. Several countries have adopted safety measures to combat this contamination and manage healthcare waste; however, these measures are insufficient and vary depending on the context of the country. In addition, the WHO has set out guidelines for management of healthcare waste. These guidelines are helping to manage the highly contagious healthcare waste resulting from the current pandemic. Proper healthcare waste management may add value by reducing the spread of the COVID-19 virus and increasing the recyclability of materials instead of sending them to landfill. Disinfecting and sorting out healthcare waste facilitates sustainable management and allows their utilization for valuable purposes. This review discusses the different healthcare solid waste management strategies practiced in different countries, the challenges faced during this management, and the possible solutions for overcoming these challenges. It also provides useful insights into healthcare solid waste management scenarios during the COVID-19 pandemic and a possible way forward.
Collapse
Affiliation(s)
- Atanu Kumar Das
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden.
| | - Md Nazrul Islam
- Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Asim Sarker
- Umeå International School of Public Health, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
28
|
Enhancement of Methanogenic Activity in Volumetrically Undersized Reactor by Mesophilic Co-Digestion of Sewage Sludge and Aqueous Residue. SUSTAINABILITY 2021. [DOI: 10.3390/su13147728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To date, energy recovery from biological sewage sludge (BSS) by anaerobic digestion has been very popular. However, it can often happen that anaerobic reactors are volumetrically undersized, thus reducing performance in terms of biogas production. A continuous-flow pilot-scale plant was used to investigate, for the first time, the effects of mesophilic anaerobic co-digestion (MACoD) of sewage sludge and aqueous residue (AR) from a biosolids treatment plant (BTP) on methanogenic activity under low hydraulic retention time (HRT) conditions (to simulate the undersizing of the reactor). The results showed that the digestate is always more rapidly biodegradable than the matrices fed, while particulate COD hydrolyzed (12 ± 1.3%) is independent of the quantity of AR dosed. Feeding over 35% of soluble OLR, the total VFAs in the system strongly decreased, despite the low HRT. In correspondence with higher dosages of AR, the percentage of CH4 increased up to 77–78% and the CO2 CH4−1 ratio decreased to 0.25 ± 0.2. Specific methane production increased from 0.09 ± 0.01 m3CH4 kgCODremoved−1 with BSS alone to 0.28 ± 0.01 m3CH4CH4 kgCODremoved−1 in the case of BSS co-digested with AR. Moreover, co-digestion with AR from a BTP allowed continuous specific methanogenic activity to be enhanced from 1.76 ± 0.02 m3CH4 tVSS−1 d−1 to 6.48 ± 0.88 m3CH4 tVSS−1 d−1. Therefore, the MACoD of BSS and AR from a BTP could be a good solution to enhance methanogenic activity in a volumetrically undersized anaerobic digester with reduced HRT.
Collapse
|
29
|
Das AK, Islam MN, Billah MM, Sarker A. COVID-19 and municipal solid waste (MSW) management: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28993-29008. [PMID: 33877522 PMCID: PMC8055481 DOI: 10.1007/s11356-021-13914-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/08/2021] [Indexed: 04/15/2023]
Abstract
Municipal solid waste (MSW) represents an inevitable by-product of human activity and a major crisis for communities across the globe. In recent times, the recycling of MSW has drawn attention as the process can add value through resources from the recovered waste materials and facilitates the process of circular economy. However, during the unprecedented coronavirus (COVID-19) outbreak, the risk of infection with the highly contagious virus has proven detrimental to the continuation of MSW as a valuable resource. The volume of waste, especially household waste, is higher; face masks, PPE (personal protective equipment), and hazardous materials such as batteries and empty chlorine bottles are examples of extra waste that have arisen during the pandemic. Various countries have set up initiatives for MSW management, including safety measurements for employees in the MSW management sector. The use of disinfectant prior to sorting waste, as well as storing waste for 9 days, may help to inactivate the COVID-19 virus, ensuring an appropriate safety level for MSW management. This work aimed at studying different MSW management strategies, specific challenges, and possible solutions for better understanding for those involved in waste management, in addition to providing a possible management strategy during and post-COVID-19 pandemic.
Collapse
Affiliation(s)
- Atanu Kumar Das
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden.
| | - Md Nazrul Islam
- Forestry and Wood Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Asim Sarker
- Umeå International School of Public Health, Umeå University, SE-90187, Umeå, Sweden
| |
Collapse
|
30
|
Systematic Review of Life Cycle Assessment and Life Cycle Cost Analysis for Pavement and a Case Study. SUSTAINABILITY 2021. [DOI: 10.3390/su13084377] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Development of the pavement network systems, which is inevitable due to the rapid economic growth, has increasingly become a topic of significant concern because of the severe environmental impacts of road expansion. For achieving the sustainable development goals (SDGs), the policies and actions towards the pavements’ life cycle assessment (LCA) and life cycle cost analysis (LCCA) must be carefully assessed. Consequently, the purpose of this review is to present an overview of LCA and LCCA used in pavement engineering and management. Through the quality control of PRISMA, fifty-five most relevant documents were extracted for a thorough investigation. The state of the art review reveals that a limited number of the papers considered environmental impacts of the pavements. Consequently, to assess the environmental impact cost, a conceptual framework was developed to better consider the LCA and LCCA on various aspects of the pavement projects including the sustainability aspects. Besides, a case study was given to validate the literature review towards proposing a novel framework for the incorporation of environmental impact cost.
Collapse
|
31
|
Adeleye AT, Akande AA, Odoh CK, Philip M, Fidelis TT, Amos PI, Banjoko OO. Efficient synthesis of bio-based activated carbon (AC) for catalytic systems: A green and sustainable approach. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.01.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Circular Economy and Internet of Things: Mapping Science of Case Studies in Manufacturing Industry. SUSTAINABILITY 2021. [DOI: 10.3390/su13063299] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study investigates the “Internet of things” (IoT) and “Circular Economy” (CE) relationship in the current scientific literature focused on case studies or use cases on manufacturing context. To the best of our knowledge, this study is the first to map the science centered on “case studies” with respect to the “IoT” and “CE” connection, contributing to fill the gap of the subject that is already relevant to the scientific community and practitioners. The research methodology consists of developing a bibliometric study, employing PRISMA process, whose data is obtained from the Web of Science database. The VOSviewer was the computer program selected for the bibliometric analysis. The Web of Science (WoS) analysis tool supports VOSviewer. The papers were analyzed according to network analysis principles. The qualitative content analysis complements these results. The results show the high-frequency keywords and topics associated with the theme “IoT and CE”; the most cited papers; the intellectual structure of “IoT and CE”; the new emerging themes in scientific research; and social networks among the researchers. The paper’s contribution is the results of the bibliometric analysis and a better understanding of the relationship of “IoT” and “CE” by the “case studies” addressed in the empirical investigations.
Collapse
|
33
|
Tehrim A, Dai M, Wu X, Umair MM, Ali I, Amjed MA, Rong R, Javaid SF, Peng C. Citric acid modified waste cigarette filters for adsorptive removal of methylene blue dye from aqueous solution. J Appl Polym Sci 2021. [DOI: 10.1002/app.50655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aafia Tehrim
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education College of Environmental Science and Engineering, Ocean University of China Qingdao China
- School of Environmental and Chemical Engineering Zhaoqing University Zhaoqing China
| | - Min Dai
- School of Environmental and Chemical Engineering Zhaoqing University Zhaoqing China
- Sunwater Environmental Science & Technology Co. Ltd Rizhao China
| | - Xiange Wu
- School of Environmental and Chemical Engineering Zhaoqing University Zhaoqing China
| | - Malik Muhammad Umair
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian China
| | - Imran Ali
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education College of Environmental Science and Engineering, Ocean University of China Qingdao China
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen China
| | - Muhammad Ahsan Amjed
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education College of Environmental Science and Engineering, Ocean University of China Qingdao China
| | - Rong Rong
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education College of Environmental Science and Engineering, Ocean University of China Qingdao China
| | - Sheikh Fahad Javaid
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education College of Environmental Science and Engineering, Ocean University of China Qingdao China
| | - Changsheng Peng
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education College of Environmental Science and Engineering, Ocean University of China Qingdao China
- School of Environmental and Chemical Engineering Zhaoqing University Zhaoqing China
| |
Collapse
|
34
|
Kurniawan TA, Avtar R, Singh D, Xue W, Dzarfan Othman MH, Hwang GH, Iswanto I, Albadarin AB, Kern AO. Reforming MSWM in Sukunan (Yogjakarta, Indonesia): A case-study of applying a zero-waste approach based on circular economy paradigm. JOURNAL OF CLEANER PRODUCTION 2021; 284:124775. [PMID: 33106733 PMCID: PMC7578704 DOI: 10.1016/j.jclepro.2020.124775] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 05/04/2023]
Abstract
Over the past years, Indonesia, the world's fourth most populous country, has confronted environmental problems due to uncontrolled generation of municipal solid waste (MSW). While the integrated solid waste management (ISWM) represents a critical strategy for Indonesia to control its production, it is also recognized that economic approaches also need to be promoted to address the waste problem concertedly. In this case study, empirical approaches are developed to understand how a volume-based waste fee could be incorporated into MSW collection services and how to apply a zero-waste approach in Indonesia by adapting resource recovery initiatives, adapted from Germany's mature experiences in integrating the CE paradigm into the latter's MSWM practices. Currently, Sukunan village (Yogyakarta, Indonesia) promotes waste reduction at sources in the framework of community-based solid waste management (CBSWM) by mobilizing the local community for waste separation (organic and non-organic) and waste recycling. As a result, about 0.2 million Mt of CO2-eq emissions was avoided annually from local landfills. The economic benefits of recycling activities by the village's community also resulted in 30% reduction of the waste generated. This CBSWM scheme not only saves the government budget on waste collection, transport and disposal, but also extends the lifetime of local landfills as the final disposal sites. By integrating the CE paradigm into its MSWM practices through the implementation of economic instruments and adherence to the rule of law in the same way as Germany does, Indonesia could make positive changes to its environmental policy and regulation of MSW. A sound MSWM in Indonesia could play important roles in promoting the effectiveness of urban development with resource recovery approaches to facilitate its transition towards a CE nationwide in the long-term.
Collapse
Affiliation(s)
- Tonni Agustiono Kurniawan
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
- Faculty of Social Work, Health and Nursing, Ravensburg-Weingarten University of Applied Sciences, Weingarten, 88216, Germany
| | - Ram Avtar
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0 810, Japan
| | - Deepak Singh
- Department of Geography and Resource Management, Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong SAR, China
| | - Wenchao Xue
- Department of Energy, Environment, and Climate Change, School of Environment, Resources and Development (SERD), Asian Institute of Technology (AIT), Pathumthani, 12120, Thailand
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Goh Hui Hwang
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, China
| | | | - Ahmad B Albadarin
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Axel Olaf Kern
- Faculty of Social Work, Health and Nursing, Ravensburg-Weingarten University of Applied Sciences, Weingarten, 88216, Germany
| |
Collapse
|
35
|
Al-Jabri H, Das P, Thaher M, Khan S, AbdulQuadir M. Potential utilization of waste nitrogen fertilizer from a fertilizer industry using marine microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142532. [PMID: 33035988 DOI: 10.1016/j.scitotenv.2020.142532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/13/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the feasibility of microalgal biomass production using waste nitrogen fertilizers (WNFs) generated by the Qatar Fertiliser Company (QAFCO). From the plant, three types of WNFs (WNF1, WNF2, and WNF3) were collected; WNF1 and WNF2 had high solubility (e.g., 1000 g/L) whereas WNF3 had low solubility (65 g/L). For a lower dosage (i.e., 100 mg N/L) of these WNFs, >98% of nitrogen was soluble in water for WNF1 and WNF2; however, 52 mg N/L was soluble for WNF3. Nitrogen content in these wastes was 44, 43, and 39% for WNF1, WNF2, and WNF3, respectively. As these WNFs were used as the sole nitrogen source to grow Tetraselmis sp., Picochlorum sp., and Synechococcus sp., Tetraselmis sp. could utilize all the three WNFs more efficiently than other two strains. The biomass yield of Tetraselmis sp. in a 100,000 L raceway pond was 0.58 g/L and 0.67 g/L for mixed WNFs (all WNF in equal ratio) and urea, respectively. The metabolite profiles of Tetraselmis sp. biomass grown using mixed WNFs were very similar to the biomass obtained from urea-added culture - suggesting that WNFs produced Tetraselmis sp. biomass could be used as animal feed ingredients. Life cycle impact assessment (LCIA) was conducted for six potential scenarios, using the data from the outdoor cultivation. The production of Tetraselmis sp. biomass in QAFCO premises using its WNFs, flue gas, and waste heat could not only eliminate the consequences of landfilling WNFs but also would improve the energy, cost, and environmental burdens of microalgal biomass production.
Collapse
Affiliation(s)
- Hareb Al-Jabri
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Probir Das
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Mahmoud Thaher
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Shoyeb Khan
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Mohammad AbdulQuadir
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
36
|
Gaeta GL, Ghinoi S, Silvestri F, Tassinari M. Innovation in the solid waste management industry: Integrating neoclassical and complexity theory perspectives. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:50-58. [PMID: 33279826 DOI: 10.1016/j.wasman.2020.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/28/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Often considered a traditional labour intensive activity, in recent years, the solid waste management (SWM) industry has been largely interested in innovation. Nonetheless, the analysis of innovations in the SW industry is frequently confined to process innovation in the disposal segment, neglecting other kinds of innovation - such as product innovation and organizational innovation - in other segments. While several economic theoretical frameworks have been developed for interpreting eco-innovation in general, a specific analysis of innovation in each segment of SWM is still missing, despite the specificities of this sector. To fill this gap, this paper shows how complexity theory can be profitably used to integrate the more traditional neoclassical approach, offering a comprehensive theoretical framework to analyse innovation in the SWM industry from both a market and firm perspective (the neoclassical approach) and from a social perspective (the complexity theory framework). Four main typologies of the SW market system, exhibiting different kinds of innovation, are outlined: (i) a "traditional" landfill-oriented system; (ii) a modern "waste-to-energy" incinerator-oriented system; (iii) a "light recycling" system with integrated solutions and a selection performance that is lower than 50%; and (iv) a "hard recycling" system.
Collapse
Affiliation(s)
- G L Gaeta
- Department of Human and Social Sciences, University of Naples L'Orientale, Italy
| | - S Ghinoi
- Department of Economics and Management, University of Helsinki, Finland; Department of International Business and Economics, University of Greenwich, UK
| | - F Silvestri
- Department of Communication Science and Economics, University of Modena and Reggio Emilia, Italy; eco&eco Ltd., Italy.
| | - M Tassinari
- Department of Law, University of Macerata, Italy
| |
Collapse
|
37
|
Yaashikaa PR, Kumar PS, Saravanan A, Varjani S, Ramamurthy R. Bioconversion of municipal solid waste into bio-based products: A review on valorisation and sustainable approach for circular bioeconomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141312. [PMID: 32814288 DOI: 10.1016/j.scitotenv.2020.141312] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Municipal solid waste management is one of the major issues throughout the world. Inappropriate management of municipal solid waste (MSW) can pose a major hazard. Anaerobic processing of MSW followed by methane and biogas generation is one of the numerous sustainable energy source options. Compared with other technologies applicable for the treatment of MSW, factors like economic aspects, energy savings, and ecological advantages make anaerobic processing an attractive choice. This review discusses the framework for evaluating conversion of municipal solid waste to energy and waste derived bioeconomy in order to address the sustainable development goals. Further, this review will provide an innovative work foundation to improve the accuracy of structuring, quality control, and pre-treatment for the ideal treatment of different segments of MSW to achieve a sustainable circular bioeconomy. The increasing advancements in three essential conversion pathways, in particular the thermochemical, biochemical, and physiochemical conversion methods, are assessed. Generation of wastes should be limited and resource utilization must be minimised to make total progress in a circular bioeconomy.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603 110, Tamil Nadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603 110, Tamil Nadu, India; SSN-Centre for Radiation, Environmental Science and Technology (SSN-CREST), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, Tamil Nadu, India.
| | - A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602 105, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India.
| | - Racchana Ramamurthy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603 110, Tamil Nadu, India; Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, PO Box 3015, 2601, DA, Delft, the Netherlands
| |
Collapse
|
38
|
Environmental and Socioeconomic Impacts of Urban Waste Recycling as Part of Circular Economy. The Case of Cuenca (Ecuador). SUSTAINABILITY 2020. [DOI: 10.3390/su12083406] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urban mining by recyclers represents a positive environmental impact as well as being part of the waste management chain. This paper analyzes the contribution of waste pickers in the city of Cuenca in Ecuador and the conditions of their activity. This research has a two-fold objective. First, it calculates the reduction of greenhouse gas emissions resulting from the substitution of virgin raw material in the production process by using recycled urban waste. The second objective is to conduct a socioeconomic analysis of the workers involved in the urban waste sector. Cuenca (Ecuador) is the main city used for this case study, thanks to the accessibility of a rich database built from the survey conducted by the NGO Alliance for Development. The information contained in this survey facilitates the identification of potential consumers of the waste industry. This study uses Clean Development Mechanism methodology. Finally, this work proposes a theoretical model for solid waste management, applied to the city, following the principles of the circular economy.
Collapse
|