1
|
Prouteau L, Dévier MH, Angelier F, Chastel O, Brischoux F, Pardon P, Menach KL, Budzinski H. Biomonitoring of azole fungicides in free-living blackbird plasma using on-line solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry (SPE HPLC-MS/MS). J Chromatogr A 2025; 1748:465725. [PMID: 40112640 DOI: 10.1016/j.chroma.2025.465725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/20/2024] [Accepted: 01/24/2025] [Indexed: 03/22/2025]
Abstract
In this study, a rapid and sensitive method using on-line solid-phase extraction (SPE) coupled to liquid chromatography - tandem mass spectrometry (SPE HPLC-MS/MS) was developed to analyse 15 azole fungicides currently used in vineyards in blackbird plasma samples. The monitored fungicides included 13 triazoles (cyproconazole, difenoconazole, epoxiconazole, fenbuconazole, flusilazole, flutriafol, metconazole, penconazole, propiconazole, tebuconazole, tetraconazole, triadimefon, triadimenol) and 2 imidazoles (imazalil and prochloraz). After a rapid preparation step by protein precipitation with acetonitrile on 25 µL of plasma samples, final extracts diluted with Milli-Q water were analyzed by on-line SPE-LC-MS/MS in positive electrospray mode (ESI+) using the dynamic multi-reaction monitoring mode (dMRM). Following optimization, method validation was achieved through studies of linearity, sensitivity, accuracy, precision, and sample extract conservation. The limits of quantification (LOQs) obtained for a low volume of plasma (25 µL) ranged from 0.01 to 0.43 ng g-1 plasma, except for triadimenol (1.37 ng g-1). Finally, the validated method was successfully applied to 34 Eurasian blackbird plasma samples, with blackbirds from different habitats (city, forest, vineyards) submitted to contrasted azole pressures. Five of them were detected, tebuconazole and tetraconazole being the predominant ones. As expected, azoles concentrations were more elevated in blackbirds sampled in vineyards where most of these fungicides are used.
Collapse
Affiliation(s)
- Louise Prouteau
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, LPTC, F-33600 Pessac, France; Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372- CNRS-Université La Rochelle, Villiers-en-Bois F-79360, France
| | - Marie-Hélène Dévier
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, LPTC, F-33600 Pessac, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372- CNRS-Université La Rochelle, Villiers-en-Bois F-79360, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372- CNRS-Université La Rochelle, Villiers-en-Bois F-79360, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372- CNRS-Université La Rochelle, Villiers-en-Bois F-79360, France
| | - Patrick Pardon
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, LPTC, F-33600 Pessac, France
| | - Karyn Le Menach
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, LPTC, F-33600 Pessac, France
| | - Hélène Budzinski
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, LPTC, F-33600 Pessac, France.
| |
Collapse
|
2
|
Mamy L, Pesce S, Sanchez W, Aviron S, Bedos C, Berny P, Bertrand C, Betoulle S, Charles S, Chaumot A, Coeurdassier M, Coutellec MA, Crouzet O, Faburé J, Fritsch C, Gonzalez P, Hedde M, Leboulanger C, Margoum C, Mougin C, Munaron D, Nélieu S, Pelosi C, Rault M, Sucré E, Thomas M, Tournebize J, Leenhardt S. Impacts of neonicotinoids on biodiversity: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2794-2829. [PMID: 38036909 DOI: 10.1007/s11356-023-31032-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
Neonicotinoids are the most widely used class of insecticides in the world, but they have raised numerous concerns regarding their effects on biodiversity. Thus, the objective of this work was to do a critical review of the contamination of the environment (soil, water, air, biota) by neonicotinoids (acetamiprid, clothianidin, imidacloprid, thiacloprid, thiamethoxam) and of their impacts on terrestrial and aquatic biodiversity. Neonicotinoids are very frequently detected in soils and in freshwater, and they are also found in the air. They have only been recently monitored in coastal and marine environments, but some studies already reported the presence of imidacloprid and thiamethoxam in transitional or semi-enclosed ecosystems (lagoons, bays, and estuaries). The contamination of the environment leads to the exposure and to the contamination of non-target organisms and to negative effects on biodiversity. Direct impacts of neonicotinoids are mainly reported on terrestrial invertebrates (e.g., pollinators, natural enemies, earthworms) and vertebrates (e.g., birds) and on aquatic invertebrates (e.g., arthropods). Impacts on aquatic vertebrate populations and communities, as well as on microorganisms, are less documented. In addition to their toxicity to directly exposed organisms, neonicotinoid induce indirect effects via trophic cascades as demonstrated in several species (terrestrial and aquatic invertebrates). However, more data are needed to reach firmer conclusions and to get a clearer picture of such indirect effects. Finally, we identified specific knowledge gaps that need to be filled to better understand the effects of neonicotinoids on terrestrial, freshwater, and marine organisms, as well as on ecosystem services associated with these biotas.
Collapse
Affiliation(s)
- Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France.
| | | | | | | | - Carole Bedos
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Philippe Berny
- UR ICE Vetagro Sup, Campus Vétérinaire, 69280, Marcy‑L'Etoile, France
| | - Colette Bertrand
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Stéphane Betoulle
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, 51100, Reims, France
| | | | | | - Michael Coeurdassier
- Laboratoire Chrono-Environnement, UMR 6249 CNRS-Université de Franche-Comté, 25000, Besançon, France
| | - Marie-Agnès Coutellec
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, L'Institut Agro, Ifremer, 35042, Rennes, France
| | - Olivier Crouzet
- OFB, Direction de la Recherche et Appui Scientifique (DRAS), 78610, Auffargis, France
| | - Juliette Faburé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS-Université de Franche-Comté, 25000, Besançon, France
| | - Patrice Gonzalez
- CNRS, Bordeaux INP, EPOC, UMR 5805, Univ. Bordeaux, 33600, Pessac, France
| | - Mickael Hedde
- Eco&Sols, Univ. Montpellier, INRAE, IRD, CIRAD, Institut Agro Montpellier, 34060, Montpellier, France
| | | | | | - Christian Mougin
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | - Sylvie Nélieu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Céline Pelosi
- INRAE, Avignon Université, UMR EMMAH, 84000, Avignon, France
| | - Magali Rault
- Université d'Avignon, Université Aix-Marseille, CNRS, IRD, IMBE, Pôle Agrosciences, 84916, Avignon, France
| | - Elliott Sucré
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 34200, Sète, France
- Centre Universitaire de Formation Et de Recherche de Mayotte (CUFR), 97660, Dembeni, Mayotte, France
| | - Marielle Thomas
- Université de Lorraine, INRAE, UR AFPA, 54000, Nancy, France
| | | | | |
Collapse
|
3
|
Fritsch C, Berny P, Crouzet O, Le Perchec S, Coeurdassier M. Wildlife ecotoxicology of plant protection products: knowns and unknowns about the impacts of currently used pesticides on terrestrial vertebrate biodiversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2893-2955. [PMID: 38639904 DOI: 10.1007/s11356-024-33026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/17/2024] [Indexed: 04/20/2024]
Abstract
Agricultural practices are a major cause of the current loss of biodiversity. Among postwar agricultural intensification practices, the use of plant protection products (PPPs) might be one of the prominent drivers of the loss of wildlife diversity in agroecosystems. A collective scientific assessment was performed upon the request of the French Ministries responsible for the Environment, for Agriculture and for Research to review the impacts of PPPs on biodiversity and ecosystem services based on the scientific literature. While the effects of legacy banned PPPs on ecosystems and the underlying mechanisms are well documented, the impacts of current use pesticides (CUPs) on biodiversity have rarely been reviewed. Here, we provide an overview of the available knowledge related to the impacts of PPPs, including biopesticides, on terrestrial vertebrates (i.e. herptiles, birds including raptors, bats and small and large mammals). We focused essentially on CUPs and on endpoints at the subindividual, individual, population and community levels, which ultimately linked with effects on biodiversity. We address both direct toxic effects and indirect effects related to ecological processes and review the existing knowledge about wildlife exposure to PPPs. The effects of PPPs on ecological functions and ecosystem services are discussed, as are the aggravating or mitigating factors. Finally, a synthesis of knowns and unknowns is provided, and we identify priorities to fill gaps in knowledge and perspectives for research and wildlife conservation.
Collapse
Affiliation(s)
- Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université de Franche-Comté, 16 Route de Gray, F-25000, Besançon, France
| | - Philippe Berny
- UR-ICE, Vetagro Sup, Campus Vétérinaire, 69280, Marcy L'étoile, France
| | - Olivier Crouzet
- Direction de La Recherche Et de L'Appui Scientifique, Office Français de La Biodiversité, Site de St-Benoist, 78610, Auffargis, France
| | | | - Michael Coeurdassier
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université de Franche-Comté, 16 Route de Gray, F-25000, Besançon, France.
| |
Collapse
|
4
|
Humann-Guilleminot S, Binkowski ŁJ, Helfenstein F. Sex-specific effects of low-dose of acetamiprid on corticosterone levels but not on oxidative stress in House sparrows. ENVIRONMENTAL RESEARCH 2024; 262:119894. [PMID: 39218340 DOI: 10.1016/j.envres.2024.119894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Neonicotinoid insecticides are widely used in agriculture and have been linked to various detrimental physiological effects on wild birds. Despite this, the impact of acetamiprid - a less studied member of the neonicotinoid family - on the hypothalamic-pituitary-adrenal axis responsible for the hormonal regulation of the response to stress has rarely been examined in birds. In our study, we explored the effects of acetamiprid on feather levels of corticosterone, the major end product of the HPA, and blood oxidative status of House sparrows (Passer domesticus), following the ingestion of a low, field-realistic dose during two consecutive experiments in 2015 and 2016. We involved 112 birds in each experiment - 56 males and 56 females - that were administered a placebo or a dose of acetamiprid equivalent to 0.5% of the LD50 of the Zebra finch over the entire duration of the experiments, which lasted approximately three weeks. We measured corticosterone concentrations in feathers grown during an acclimation phase before ingestion and in newly grown feather after the experiment and assessed three oxidative stress markers in the blood. We found no impact of acetamiprid on oxidative stress markers. However, in 2015, male sparrows that ingested acetamiprid exhibited higher corticosterone levels in their feathers compared to those that received a placebo. No such difference was found in females. Interestingly, this effect was not observed in year 2016, which was characterised by less stressful conditions for the birds. These findings offer the first evidence of a potential effect of acetamiprid on corticosterone levels in a songbird, suggesting that ingesting this compound at very low dose may alter the endocrine physiology of the response to stress.
Collapse
Affiliation(s)
- Ségolène Humann-Guilleminot
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Faculty of Science, Radboud University, Nijmegen, the Netherlands; Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| | - Łukasz J Binkowski
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland; Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Poland
| | - Fabrice Helfenstein
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Pan Y, Niu Y, Fu Y, Wang S, Chang J, Liu W, Hao W, Yang L, Xu P. Central nervous system disturbances by thiamethoxam in Japanese quail (Coturnix japonica): In vivo, ex vivo, and in silico study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124768. [PMID: 39163946 DOI: 10.1016/j.envpol.2024.124768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
The neurotoxic effects of neonicotinoids (NEOs) have been widely reported in relation to the poisoning of wild birds, yet the underlying molecular mechanism has remained elusive. This study employed Japanese quails (Coturnix japonica) and primary quail embryonic neurons as in vivo and ex vivo models, respectively, to investigate the neurotoxic effects and mechanism of thiamethoxam (TMX), a representative neonicotinoid insecticide, at environmentally relevant concentrations. Following a 28-day exposure to TMX, metabolomic analysis of quail brain revealed TMX-induced changes in glutamatergic, GABA-ergic, and dopaminergic function. Subsequent ex vivo and in silico experimentation revealed that the activation of nicotinic acetylcholine receptors and calcium signaling, induced by clothianidin (CLO), the primary metabolite of TMX, served as upstream events for the alterations in neurotransmitter synthesis, metabolism, release, and uptake. Our findings propose that the disruption of the central nervous system, caused by environmentally significant concentrations of NEOs, may account for the avian poisoning events induced by NEOs.
Collapse
Affiliation(s)
- Yifan Pan
- Institute of Life Science and Green Development, College of Life Science, Hebei University, Baoding, 071002, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Yue Niu
- Institute of Life Science and Green Development, College of Life Science, Hebei University, Baoding, 071002, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Yongqi Fu
- Institute of Life Science and Green Development, College of Life Science, Hebei University, Baoding, 071002, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Shuaimeng Wang
- Institute of Life Science and Green Development, College of Life Science, Hebei University, Baoding, 071002, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Wentao Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Weiyu Hao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Lu Yang
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China.
| |
Collapse
|
6
|
Hahne J, Foudoulakis M, Kragten S, Sprenger D, Ristau K, Dietrich C, Wang M. Availability of pesticide-treated seeds on the soil surface in different crops and countries: A comprehensive data set reflecting modern agronomic practice. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1706-1714. [PMID: 38651969 DOI: 10.1002/ieam.4933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
For plant protection products applied as seed treatments, the risk to birds and mammals possibly feeding on such treated seeds needs to be addressed in the EU, in order to register these products for commercial use. For this purpose, the European Food Safety Food Authority (EFSA) has provided guidance on how to execute such a risk assessment. The risk assessment follows a tiered approach. In the Tier 1 risk assessment of the EFSA guidance (2023), it is assumed that birds or mammals have ad libitum access to treated seeds and exclusively feed on treated seeds. Due to this conservative assumption, the Tier I risk assessment typically indicates an unacceptable risk to birds and mammals and higher-tier refinements are required. One option for refinement is to use data on the availability of treated seeds on the soil surface directly after drilling. Published data on seed counts are, however, limited to a few countries and crops, and often these data are not contemporary, that is, do not reflect advances in sowing technology and current agronomic practice. To address this data gap, we provide recently generated data from industry field trials (the studies were conducted from 2000 to 2022, >70% between 2019 and 2022), covering 270 fields from seven countries (Austria, France, Germany, Hungary, Poland, Spain, UK) for spring and winter cereals, winter oilseed rape, and sunflower. This comprehensive data set realistically reflects modern agronomic practice and is thus suitable for consideration in a regulatory context for refining the risk assessment for birds and mammals. Integr Environ Assess Manag 2024;20:1706-1714. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Jörg Hahne
- Bayer AG, Crop Science Division, Environmental Safety, Monheim, Germany
| | | | - Steven Kragten
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire, UK
| | | | | | | | | |
Collapse
|
7
|
Fernández-Vizcaíno E, Mougeot F, Cabodevilla X, Fernández-Tizón M, Mateo R, Madeira MJ, Ortiz-Santaliestra ME. Diet and Spatial Ecology Influence Red-Legged Partridge Exposure to Pesticides Used as Seed Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14861-14870. [PMID: 37747849 PMCID: PMC10569034 DOI: 10.1021/acs.est.3c03905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Seed treatment with pesticides is an extended agricultural practice with a high risk to granivorous birds that consume those seeds. To characterize that risk, it is necessary to understand the ecological factors that determine the exposure chances of birds to treated seeds. We investigated how pesticide uptake by red-legged partridges was related to cultivated plant ingestion and to the use of recently sown fields. We analyzed pesticide residues in 144 fecal samples from 32 flocks and determined the plant diet composition using DNA metabarcoding. Habitat use was studied through the monitoring of 15 GPS-tagged partridges. We confirmed, through the analysis of seeds, that >80% of cereal fields from the area had seeds treated with triazole fungicides. Tebuconazole was detected in 16.6% of partridges' feces. During the sowing season, cultivated plants accounted for half of the plant diet, but no association was found between cultivated plant consumption and pesticide intake. GPS tracking revealed that tebuconazole was detected in feces when partridges had recently used sown fields, whereas nonexposed partridges showed no overlap with recently sown areas. Our results highlight the need to incorporate field ecology into the characterization of pesticide exposure to improve the efficacy of environmental risk assessment.
Collapse
Affiliation(s)
- Elena Fernández-Vizcaíno
- Instituto
de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13005, Spain
| | - François Mougeot
- Instituto
de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13005, Spain
| | - Xabier Cabodevilla
- Conservation
Biology Group, Landscape Dynamics and Biodiversity Program, Forest Science and Technology Centre of Catalonia
(CTFC), km 2, Solsona 25280, Spain
- Terrestrial
Ecology Group (TEG-UAM), Department of Ecology, Universidad Autónoma de Madrid, Calle Darwin 2, Madrid 28049, Spain
| | - Mario Fernández-Tizón
- Instituto
de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13005, Spain
| | - Rafael Mateo
- Instituto
de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13005, Spain
| | - María J. Madeira
- Department
of Zoology and Animal Cell Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Alava, Spain
| | - Manuel E. Ortiz-Santaliestra
- Instituto
de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13005, Spain
| |
Collapse
|
8
|
Poliserpi MB, Noya Abad T, De Gerónimo E, Aparicio V, Brodeur JC. Behavioral and physiological response of the passerine bird Agelaioides badius to seeds coated with imidacloprid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80293-80310. [PMID: 37294486 DOI: 10.1007/s11356-023-28074-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Neonicotinoids are globally used insecticides, and there are increasing evidence on their negative effects on birds. This study is aimed at characterizing the behavioral and physiological effects of the neonicotinoid imidacloprid (IMI) in a songbird. Adults of Agelaioides badius were exposed for 7 days to non-treated peeled millet and to peeled millet treated with nominal concentrations of 75 (IMI1) and 450 (IMI2) mg IMI/kg seed. On days 2 and 6 of the trial, the behavior of each bird was evaluated for 9 min by measuring the time spent on the floor, the perch, or the feeder. Daily millet consumption, initial and final body weight, and physiological, hematological, genotoxic, and biochemical parameters at the end of exposure were also measured. Activity was greatest on the floor, followed by the perch and the feeder. On the second day, birds exposed to IMI1and IMI2 remained mostly on the perch and the feeder, respectively. On the sixth day, a transition occurred to sectors of greater activity, consistent with the disappearance of the intoxication signs: birds from IMI1 and IMI2 increased their time on the floor and the perch, respectively. Control birds always remained most of the time on the floor. IMI2 birds significantly decreased their feed intake by 31% the first 3 days, compared to the other groups, and significantly decreased their body weight at the end of the exposure. From the set of hematological, genotoxic, and biochemical parameters, treated birds exhibited an alteration of glutathione-S-transferase activity (GST) in breast muscle; the minimal effects observed are probably related to the IMI administration regime. These results highlight that the consumption of less than 10% of the bird daily diet as IMI-treated seeds trigger effects at multiple levels that can impair bird survival.
Collapse
Affiliation(s)
- Maria Belen Poliserpi
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina.
| | - Tatiana Noya Abad
- Departamento de Química Biológica, IQUIBICEN, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Centro de Ciencias Naturales, Ambientales y Antropológicas (CCNAA), Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eduardo De Gerónimo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Estación Experimental Agropecuaria Balcarce (EEA Balcarce), Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional 226, Km. 73,5, Balcarce, Buenos Aires, Argentina
| | - Virginia Aparicio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Estación Experimental Agropecuaria Balcarce (EEA Balcarce), Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional 226, Km. 73,5, Balcarce, Buenos Aires, Argentina
| | - Julie Celine Brodeur
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
9
|
Anderson MJ, Valdiviezo A, Conway MH, Farrell C, Andringa RK, Janik A, Chiu WA, Rusyn I, Hamer SA. Imidacloprid exposure is detectable in over one third of wild bird samples from diverse Texas ecoregions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162723. [PMID: 36907393 PMCID: PMC10744339 DOI: 10.1016/j.scitotenv.2023.162723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Avian decline is occurring globally with neonicotinoid insecticides posed as a potentially contributing factor. Birds can be exposed to neonicotinoids through coated seeds, soil, water, and insects, and experimentally exposed birds show varied adverse effects including mortality and disruption of immune, reproductive, and migration physiology. However, few studies have characterized exposure in wild bird communities over time. We hypothesized that neonicotinoid exposure would vary temporally and based on avian ecological traits. Birds were banded and blood sampled at eight non-agricultural sites across four Texas counties. Plasma from 55 species across 17 avian families was analyzed for the presence of 7 neonicotinoids using high performance liquid chromatography-tandem mass spectrometry. Imidacloprid was detected in 36 % of samples (n = 294); this included quantifiable concentrations (12 %; 10.8-36,131 pg/mL) and concentrations that were below the limit of quantification (25 %). Additionally, two birds were exposed to imidacloprid, acetamiprid (18,971.3 and 6844 pg/mL) and thiacloprid (7022.2 and 17,367 pg/mL), whereas no bird tested positive for clothianidin, dinotefuran, nitenpyram, or thiamethoxam, likely reflecting higher limits of detection for all compounds compared to imidacloprid. Birds sampled in spring and fall had higher incidences of exposure than those sampled in summer or winter. Subadult birds had higher incidences of exposure than adult birds. Among the species for which we tested more than five samples, American robin (Turdus migratorius) and red-winged blackbird (Agelaius phoeniceus) had significantly higher incidences of exposure. We found no relationships between exposure and foraging guild or avian family, suggesting birds with diverse life histories and taxonomies are at risk. Of seven birds resampled over time, six showed neonicotinoid exposure at least once with three showing exposures at multiple time points, indicating continued exposure. This study provides exposure data to inform ecological risk assessment of neonicotinoids and avian conservation efforts.
Collapse
Affiliation(s)
- Meredith J Anderson
- Ecology and Evolutionary Biology Interdisciplinary Program, Texas A&M University, United States of America; Schubot Center for Avian Health, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States of America
| | - Alan Valdiviezo
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States of America
| | - Mark H Conway
- Master Bird Bander, Lower Rio Grande Valley, TX, United States of America
| | | | - R Keith Andringa
- Ecology and Evolutionary Biology Interdisciplinary Program, Texas A&M University, United States of America
| | - Amy Janik
- Schubot Center for Avian Health, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States of America
| | - Weihsueh A Chiu
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States of America
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States of America
| | - Sarah A Hamer
- Schubot Center for Avian Health, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States of America.
| |
Collapse
|
10
|
Addy-Orduna L, Mateo R. Field Availability and Avoidance of Imidacloprid-Treated Soybean Seeds and Cotyledons by Birds. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1049-1060. [PMID: 36848322 DOI: 10.1002/etc.5597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Treated seeds and their cotyledons can present a toxicological risk to seed-eating birds. To assess whether avoidance behavior limits exposure and consequently the risk to birds, three fields were sown with soybeans. Half of the surface of each field was sown with seeds treated with 42 g/100 kg seed of insecticide imidacloprid (T plot, treated) and the other half with seeds without imidacloprid (C plot, control). Unburied seeds were surveyed in C and T plots at 12 and 48 h post-sowing. Damaged seedlings were surveyed in C and T plots at 12 days post-sowing. The abundance and richness of birds was surveyed at the field level (without distinguishing between C and T plots) before, during, and after sowing, and 12 days post-sowing. Unburied seed density was higher in the headlands of the T plots than in the C plots, but did not differ between 12 and 48 h. The damage to cotyledons of seedlings was 15.4% higher in C plots than in T plots. The abundance and richness/ha of birds that eat seeds and cotyledons were lower after sowing, indicating a deterrent effect on birds by sowing imidacloprid-treated seeds. Although the variation in seed density over time does not allow solid conclusions to be drawn about the avoidance of seeds treated by birds, the seedling results suggest an aversive effect of imidacloprid-treated soybeans on birds. The dominant species was the eared dove (Zenaida auriculata), whose risk of acute poisoning by imidacloprid in soybean seeds and cotyledons was low, according to its toxicity exposure ratio, foraged area of concern, and foraged time of concern. Environ Toxicol Chem 2023;42:1049-1060. © 2023 SETAC.
Collapse
Affiliation(s)
- Laura Addy-Orduna
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Paraná, Paraná, Argentina
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos, CSIC-UCLM-JCCM, Ciudad Real, España
| |
Collapse
|
11
|
Fuentes E, Gaffard A, Rodrigues A, Millet M, Bretagnolle V, Moreau J, Monceau K. Neonicotinoids: Still present in farmland birds despite their ban. CHEMOSPHERE 2023; 321:138091. [PMID: 36775034 DOI: 10.1016/j.chemosphere.2023.138091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Neonicotinoids (neonics) are the most widely used insecticides worldwide and are considered to be of low risk to non-target organisms such as vertebrates. Further, they are reported to be rapidly excreted and metabolized, reducing their potential toxicity. Nevertheless, growing evidence of adverse effects of neonics on farmland bird species raise questions about the purported harmless nature of these pesticides. We attempted to search for pesticide residues in species of different trophic levels and at different life stages, by using multiple bird monitoring programs on a Long-Term Socio-Ecological Research (LTSER) platform. Three passerine birds-the blackbird (Turdus merula), cirl bunting (Emberiza cirlus), and common nightingale (Luscinia megarhynchos)-that feed on seeds and invertebrates were monitored during their reproductive period, and the grey partridge (Perdix perdix) that feeds on seeds was monitored during its wintering period. We also monitored chicks of an apex predator-the Montagu's harrier (Circus pygargus)-that preys mostly upon common voles but also upon insects. We found that the birds' blood samples showed presence of residues of five neonics: three banned since 2018 in France-clothianidin, thiacloprid, and thiamethoxam-and two-dinotefuran and nitenpyram-used for veterinary purposes only. While none of these neonics was detected in blackbirds, all were present in grey partridges. Clothianidin was detected in all species, except blackbirds. Concentrations of the three banned neonics were similar or higher than concentrations found in birds monitored elsewhere before the ban. These findings raise questions about the persistence of neonics within the environment and the mode of exposure to wild fauna. Future investigations on the sublethal effects of these neonics on life-history traits of these farmland birds may help in providing a better understanding of the effects of exposure of bird populations to these insecticides, and also to the consequent effect on human health.
Collapse
Affiliation(s)
- Elva Fuentes
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360 Villiers en Bois, France
| | - Agathe Gaffard
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360 Villiers en Bois, France
| | - Anaïs Rodrigues
- Université de Strasbourg, CNRS-UMR 7515, ICPEES, 67087 Strasbourg cedex 2, France
| | - Maurice Millet
- Université de Strasbourg, CNRS-UMR 7515, ICPEES, 67087 Strasbourg cedex 2, France
| | - Vincent Bretagnolle
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360 Villiers en Bois, France; LTSER "Zone Atelier Plaine & Val de Sèvre", CNRS, 79360 Villiers-en-Bois, France
| | - Jérôme Moreau
- UMR CNRS 6282 Biogéosciences, Équipe Écologie Évolutive, Université de Bourgogne-Franche-Comté, 21000 Dijon, France
| | - Karine Monceau
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360 Villiers en Bois, France.
| |
Collapse
|
12
|
Moore DRJ, Priest CD. ESASeedPARAM: A seed treatment model for threatened and endangered bird species in the United States. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:527-546. [PMID: 36181302 DOI: 10.1002/ieam.4693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The USEPA, National Marine Fisheries Service, and Fish and Wildlife Service are required to assess the risks of pesticides undergoing registration or reregistration to threatened and endangered (i.e., listed) species. Currently, the USEPA lacks a refined model to assess the risks of seed treatments to listed bird species. We developed the Endangered Species Assessment Seed Treatment Probabilistic Avian Risk Assessment Model (ESASeedPARAM) to incorporate species-specific diets, body weights, and food ingestion rates for potentially exposed listed bird species. The model also incorporates information on dissipation of seed residues after planting, and metabolism and elimination by birds during exposure. The ESASeedPARAM estimates hourly intake from ingestion of treated seeds for up to 50 days after planting. For each simulated bird, maximum retained dose (= body burden) and maximum rolling average total daily intake are estimated for acute and chronic exposure, respectively. The model is probabilistic and estimates exposure and risk for 20 birds on each of 1000 fields. The model accounts for interfield variation in the amount of waste grain on the soil surface in tilled, reduced till, and untilled fields. To estimate the fate of each bird from acute exposure, a random value is selected from the appropriate dose-response relationship and compared with the maximum retained dose. If acute exposure exceeds the randomly chosen effects value, mortality is assumed. For chronic risk, the most sensitive No Observed Adverse Effects Level (NOAEL) and Lowest Observed Adverse Effects Level (LOAEL) for an apical endpoint (survival, growth, reproduction) are compared with maximum rolling average total daily intake. In this article, we describe a case study conducted with the ESASeedPARAM for imidacloprid used as a seed treatment on wheat and soybean. Integr Environ Assess Manag 2023;19:527-546. © 2022 SETAC.
Collapse
|
13
|
Humann-Guilleminot S, Andreo L, Blatti E, Glauser G, Helfenstein F, Desprat J. Experimental evidence for clothianidin deposition in feathers of house sparrows after ingestion of sublethal doses treated seeds. CHEMOSPHERE 2023; 315:137724. [PMID: 36592842 DOI: 10.1016/j.chemosphere.2022.137724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Bird feathers are commonly used to assess environmental contamination by chemical pollutants. However, although neonicotinoid insecticides are widely applied worldwide, feathers have rarely been used to survey the contamination by neonicotinoids in birds. To investigate whether clothianidin, one compound of the neonicotinoid class, is deposited into birds' feathers, we conducted an experiment with 56 wild male and female house sparrows dispatched in 7 aviaries. During this experiment, house sparrows were fed with certified organic seeds treated with clothianidin at an estimated concentration of 0.25 μg/g BW per day and per individual. We collected blood samples and plucked four tail feathers at the onset of the experiment to confirm that no birds were previously exposed to clothianidin. 35 days later, we collected blood samples and the newly grown feathers. Before exposure, a small number of birds showed very low clothianidin concentrations in plasma and feathers. After exposure, the plasma and the newly grown feathers of all birds contained clothianidin. Clothianidin concentrations in feathers were similar in both sexes, but the plasma of males contained clothianidin at higher concentrations than that of females. Our results confirm that ingested clothianidin transits in the plasma and is deposited in feathers during their growth. They also suggest substantial individual variation in the amounts of clothianidin transiting in the plasma and being deposited in feathers that may reflect variation in metabolism and/or access to food in relation to sex, social hierarchy and group dynamics. Whether increasing levels of exposure translate linearly or non-linearly (e.g. saturation process) into increasing clothianidin concentrations in bird plasma and feathers remains to be investigated. To conclude, these results confirm the relevance of using feathers to biomonitor the presence of neonicotinoids, but the relationship between the level of exposure and the concentrations found in feathers remains to be established.
Collapse
Affiliation(s)
- S Humann-Guilleminot
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland; Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum D'Histoire Naturelle, CNRS, SU, EPHE, UA, 45 Rue Buffon, CP50, 75005, Paris, France.
| | - L Andreo
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - E Blatti
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland; Swiss Ornithological Institute, Sempach, Switzerland
| | - G Glauser
- Neuchâtel Platform of Analytical Chemistry, Faculty of Sciences, University of Neuchâtel, Neuchâtel, Switzerland
| | - F Helfenstein
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland; CTU-Insel Hospital, University of Bern, Bern, Switzerland
| | - J Desprat
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland; Swiss Ornithological Institute, Sempach, Switzerland
| |
Collapse
|
14
|
Roy CL, Chen D. High population prevalence of neonicotinoids in sharp-tailed grouse and greater prairie-chickens across an agricultural gradient during spring and fall. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159120. [PMID: 36183773 DOI: 10.1016/j.scitotenv.2022.159120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/29/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Neonicotinoids have been detected in many species of wild birds; however, few studies have quantified population-level exposure. We examined population-level exposure to 7 neonicotinoids in 2 species that use agricultural areas, sharp-tailed grouse (Tympanuchus phasianellus) and greater prairie-chickens (T. cupido). We sampled fecal pellets at leks in spring and collected livers from hunter-harvested birds in fall along an agricultural gradient throughout their respective ranges in Minnesota, USA. Most sharp-tailed grouse (93 %) and prairie-chicken (80 %) fecal pellets and livers (90 % and 76 %, respectively) had detectable concentrations of ≥1 neonicotinoid, with imidacloprid (IMI) and clothianidin (CLO) most commonly detected. Spring detections of IMI in both species increased with the proportion of a 2-km buffer in cultivation surrounding sampling locations and varied by year. A similar relationship with cultivation was not supported for CLO, which may reflect differences in the availability of seed types treated with IMI and CLO on the soil surface after planting. However, we also detected IMI and CLO from birds sampled in areas of low cultivation. Sharp-tailed grouse and prairie-chickens may select crop fields preferentially to forage, and thus have a higher risk of exposure than would be expected based only on the amount of cultivation. Year was important in models of IMI and CLO in both species and seasons, which likely reflects differences in planting and in the availability of natural foods among years. In contrast, the proportion of surrounding area in cultivation was not supported in models of fall neonicotinoid detections. Fewer crops are planted in the fall in Minnesota and grouse may be exposed through routes other than treated seeds. High detections, even in areas with little cultivation and during seasons with little planting, likely reflect prairie grouse selection of cultivated fields for food, but may also indicate that exposure risk extends beyond sites of application.
Collapse
Affiliation(s)
- Charlotte L Roy
- Minnesota Department of Natural Resources, 1201 East Highway 2, Grand Rapids, MN 55744, USA.
| | - Da Chen
- Cooperative Wildlife Research Laboratory, 251 Life Science II, Mail Code 6504, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
15
|
Fritsch C, Appenzeller B, Burkart L, Coeurdassier M, Scheifler R, Raoul F, Driget V, Powolny T, Gagnaison C, Rieffel D, Afonso E, Goydadin AC, Hardy EM, Palazzi P, Schaeffer C, Gaba S, Bretagnolle V, Bertrand C, Pelosi C. Pervasive exposure of wild small mammals to legacy and currently used pesticide mixtures in arable landscapes. Sci Rep 2022; 12:15904. [PMID: 36151261 PMCID: PMC9508241 DOI: 10.1038/s41598-022-19959-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022] Open
Abstract
Knowledge gaps regarding the potential role of pesticides in the loss of agricultural biodiversity worldwide and mixture-related issues hamper proper risk assessment of unintentional impacts of pesticides, rendering essential the monitoring of wildlife exposure to these compounds. Free-ranging mammal exposure to legacy (Banned and Restricted: BRPs) and currently used (CUPs) pesticides was investigated, testing the hypotheses of: (1) a background bioaccumulation for BRPs whereas a "hot-spot" pattern for CUPs, (2) different contamination profiles between carnivores and granivores/omnivores, and (3) the role of non-treated areas as refuges towards exposure to CUPs. Apodemus mice (omnivore) and Crocidura shrews (insectivore) were sampled over two French agricultural landscapes (n = 93). The concentrations of 140 parent chemicals and metabolites were screened in hair samples. A total of 112 compounds were detected, showing small mammal exposure to fungicides, herbicides and insecticides with 32 to 65 residues detected per individual (13-26 BRPs and 18-41 CUPs). Detection frequencies exceeded 75% of individuals for 13 BRPs and 25 CUPs. Concentrations above 10 ng/g were quantified for 7 BRPs and 29 CUPs (in 46% and 72% of individuals, respectively), and above 100 ng/g for 10 CUPs (in 22% of individuals). Contamination (number of compounds or concentrations) was overall higher in shrews than rodents and higher in animals captured in hedgerows and cereal crops than in grasslands, but did not differ significantly between conventional and organic farming. A general, ubiquitous contamination by legacy and current pesticides was shown, raising issues about exposure pathways and impacts on ecosystems. We propose a concept referred to as "biowidening", depicting an increase of compound diversity at higher trophic levels. This work suggests that wildlife exposure to pesticide mixtures is a rule rather than an exception, highlighting the need for consideration of the exposome concept and questioning appropriateness of current risk assessment and mitigation processes.
Collapse
Affiliation(s)
- Clémentine Fritsch
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France.
- LTSER "Zone Atelier Arc Jurassien", 25030, Besançon Cedex, France.
| | - Brice Appenzeller
- Department of Population Health, Luxembourg Institute of Health, 29 Rue Henri Koch, 4354, Esch-sur Alzette, Luxembourg
| | - Louisiane Burkart
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Michael Coeurdassier
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Renaud Scheifler
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Francis Raoul
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Vincent Driget
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Thibaut Powolny
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Candice Gagnaison
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Dominique Rieffel
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Eve Afonso
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Anne-Claude Goydadin
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Emilie M Hardy
- Department of Population Health, Luxembourg Institute of Health, 29 Rue Henri Koch, 4354, Esch-sur Alzette, Luxembourg
| | - Paul Palazzi
- Department of Population Health, Luxembourg Institute of Health, 29 Rue Henri Koch, 4354, Esch-sur Alzette, Luxembourg
| | - Charline Schaeffer
- Department of Population Health, Luxembourg Institute of Health, 29 Rue Henri Koch, 4354, Esch-sur Alzette, Luxembourg
| | - Sabrina Gaba
- UMR 7372 CEBC, CNRS-La Rochelle Université, USC INRAE, 405 Route de Prissé la Charrière, 79360, Villiers-en-Bois, France
- LTSER "Zone Atelier Plaine & Val De Sèvre", 79360, Beauvoir Sur Niort, France
| | - Vincent Bretagnolle
- UMR 7372 CEBC, CNRS-La Rochelle Université, USC INRAE, 405 Route de Prissé la Charrière, 79360, Villiers-en-Bois, France
- LTSER "Zone Atelier Plaine & Val De Sèvre", 79360, Beauvoir Sur Niort, France
| | - Colette Bertrand
- UMR 1402 EcoSys, INRAE-AgroParisTech-Université Paris-Saclay, RD 10 Route de St Cyr, 78026, Versailles Cedex, France
| | - Céline Pelosi
- UMR 1402 EcoSys, INRAE-AgroParisTech-Université Paris-Saclay, RD 10 Route de St Cyr, 78026, Versailles Cedex, France
- UMR EMMAH, INRAE-Avignon Université, 84000, Avignon, France
| |
Collapse
|
16
|
Distefano GG, Zangrando R, Basso M, Panzarin L, Gambaro A, Volpi Ghirardini A, Picone M. The ubiquity of neonicotinoid contamination: Residues in seabirds with different trophic habits. ENVIRONMENTAL RESEARCH 2022; 206:112637. [PMID: 34973939 DOI: 10.1016/j.envres.2021.112637] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Neonicotinoids are one of the most diffusely used classes of pesticides whose level of danger toward non-target invertebrate and vertebrate species has raised increasing concern in the last decades. Among vertebrates, birds are particularly susceptible to unintentional neonicotinoid poisoning since they can be exposed through different pathways, including ingestion of dressed seeds, sucking of contaminated pollen, ingestion of sprayed insects, predation on contaminated aquatic and terrestrial preys. In the present study, we investigated the possible exposure of seabirds by measuring the residues of five neonicotinoids (acetamiprid, clothianidin, imidacloprid, thiacloprid and thiamethoxam) in samples of pooled feathers collected from fledglings of the strictly piscivorous Sandwich tern (Thalasseus sandvicensis) and the mixotrophic species Mediterranean gull (Ichthyaetus melanocephalus). At least one neonicotinoid was quantified in all the Mediterranean gull samples (n = 11) and 89% of the analysed Sandwich tern samples (n = 36). The active principles with the highest quantification rates were imidacloprid (100% in Mediterranean gulls and 58% in Sandwich terns) and clothianidin (100% in Mediterranean gulls and 61% in Sandwich terns), while thiacloprid was the less frequently detected pesticide (<20% of samples in both species). Mean concentrations ± standard error for imidacloprid, clothianidin and thiamethoxam were 8.8 ± 1.4, 4.5 ± 0.19 and 0.16 ± 0.02 ng g-1 for the Mediterranean gull, and 5.8 ± 0.55, 0.60 ± 0.08 and 0.36 ± 0.03 ng g-1for the Sandwich tern, respectively. Our data evidenced the exposure of seabirds to neonicotinoids and the further need to investigate the extent of neonicotinoid contamination in non-agricultural ecosystems.
Collapse
Affiliation(s)
- Gabriele Giuseppe Distefano
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Roberta Zangrando
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170, Mestre, Venezia, Italy; Istituto di Scienze Polari (ISP), Consiglio Nazionale delle Ricerche, Via Torino 155, I-30170 Mestre, Venezia, Italy
| | | | - Lucio Panzarin
- Associazione Naturalistica Sandonatese, c/o Centro Didattico Naturalistico il Pendolino, via Romanziol 130, 30020, Noventa di Piave, Venezia, Italy
| | - Andrea Gambaro
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Annamaria Volpi Ghirardini
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Marco Picone
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170, Mestre, Venezia, Italy.
| |
Collapse
|
17
|
de Montaigu CT, Goulson D. Field evidence of UK wild bird exposure to fludioxonil and extrapolation to other pesticides used as seed treatments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22151-22162. [PMID: 34780016 PMCID: PMC8930954 DOI: 10.1007/s11356-021-17097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
We determine the exposure of wild birds to pesticides via consumption of fludioxonil-treated winter wheat seeds following autumn drilling. We recorded the density of seeds left on the soil surface, bird density, and consumption of pesticide-treated seed by birds using camera traps. We calculated the dose ingested by each bird species in a single feeding bout and if they ate treated seeds exclusively for 1 day. We extrapolated this for an additional 19 pesticides commonly used as seed treatments, assuming equal consumption rates. All three fields contained grains on the soil surface (mean 7.14 seeds/m2 on sowing day). In total, 1,374 granivorous birds spanning 18 different species were observed in the fields, with 11 species filmed eating the seeds. Fludioxonil appears to pose a low risk to birds, with <1.14% of the LD50 potentially ingested by a bird for a daily maximum amount of seeds. Analysis of the further 19 pesticides commonly used as seed dressings suggests that the neonicotinoid insecticides imidacloprid, clothianidin, and thiamethoxam represent the highest risk for granivorous birds. For example, chaffinch (Fringilla coelebs) could consume 63% of LD50 of imidacloprid in a single feeding bout, and 370% in a day. Further investigation is clearly required to determine whether seeds treated with these other pesticides are consumed as readily as those treated with fludioxonil, as if so this is likely to cause significant harm.
Collapse
Affiliation(s)
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Falmer, East Sussex, UK
| |
Collapse
|
18
|
Sabin LB, Mora MA. Ecological risk assessment of the effects of neonicotinoid insecticides on northern bobwhites (Colinus virginianus) in the South Texas Plains Ecoregion. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:488-499. [PMID: 34125478 DOI: 10.1002/ieam.4479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/21/2020] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Neonicotinoid insecticides are among the latest class of insecticides that can have harmful effects on birds. Approximately 30 000 kg of neonicotinoid insecticides are applied annually to 429 100 ha of row-crop fields within the South Texas Plains Ecoregion, Texas, USA. Various studies have demonstrated that treated seeds can be highly toxic to northern bobwhites, with the consumption of only 20 corn seeds causing a fatality. Similarly, other studies have indicated that neonicotinoid insecticides can reduce arthropod populations-a substantial prey base for northern bobwhites, especially during the breeding season-by approximately 60%. Our objective was to conduct an ecological risk assessment of neonicotinoid insecticides' impact on northern bobwhite (Colinus virginianus) populations in the South Texas Plains Ecoregion. We estimated that juvenile and adult northern bobwhites could intake from 7.32 to 27.0 mg/kg/day and from 10.0 to 37.5 mg/kg/day of neonicotinoid insecticides, respectively, which can cause adverse effects on growth, reproductive output, and long-term survival. Our study determined that the application of 30 000 kg of neonicotinoid insecticides annually in the South Texas Plains Ecoregion harms the region's northern bobwhite that are exposed to neonicotinoids. Integr Environ Assess Manag 2022;18:488-499. © 2021 SETAC.
Collapse
Affiliation(s)
| | - Miguel A Mora
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
19
|
Pan Y, Chang J, Wan B, Liu Z, Yang L, Xie Y, Hao W, Li J, Xu P. Integrative analysis of transcriptomics and metabolomics reveals the hepatotoxic mechanism of thiamethoxam on male Coturnix japonica. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118460. [PMID: 34748890 DOI: 10.1016/j.envpol.2021.118460] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Thiamethoxam (TMX), a representative neonicotinoids, is widely used for seed coating. The consumption of TMX-coated seeds posed threat to birds during crop sowing. The hepatotoxicity of TMX has been reported in mammals, however, no clear evidence showed TMX-induced toxic effects on bird liver. In this study, male Japanese quails (Coturnix japonica) were exposed to 20 or 200 mg/kg TMX-treated bird feed for 28 days. Results showed that Clothianidin (CLO), a TMX metabolite preferred to accumulate in quail plasma and liver, and inflammatory cell infiltration was found in quail livers. Oxidative stress-related biological processes were significantly enriched in both TMX treatment groups through transcriptomics analysis. Moreover, integrative analysis of transcriptomics and metabolomics indicated ferroptosis and DNA damage was implicated in hepatotoxicity caused by high- and low-concentration of TMX exposure, respectively. High-dose TMX treatment decreased CAT activity and GSH concentration and increased expression of the ferroptosis-related gene. In addition, the up-regulation of 8-OHdG concentration and DNA repair-related genes expression demonstrated low-dose TMX triggered oxidative DNA damage. The present results highlight the toxicity of TMX to bird livers and contribute to a better understanding of the TMX toxic mechanism in birds.
Collapse
Affiliation(s)
- Yifan Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Bin Wan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Zijun Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Lu Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Yun Xie
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, 100176, China
| | - Weiyu Hao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Jianzhong Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China.
| |
Collapse
|
20
|
Poliserpi MB, Cristos D, Pérez-Iglesias JM, Brodeur JC. Tissue distribution and sublethal effects of imidacloprid in the South American grayish baywing (Agelaioides badius). CHEMOSPHERE 2021; 284:131327. [PMID: 34216921 DOI: 10.1016/j.chemosphere.2021.131327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The neonicotinoids are globally used insecticides, which have been shown to cause negative impacts on birds. The current study aimed to evaluate the distribution of the neonicotinoid imidacloprid (IMI) in the tissues of a songbird and identify related physiological effects. Adults of the grayish baywing (Agelaioides baduis) were administered with a single dose of 35 mg IMI/kg, and the IMI concentration was evaluated in liver, kidney and plasma at 4, 12, 24, and 48 h after dosing. At the same time points, effects on hematological, genetic and enzymatic parameters were assessed. Results showed that IMI was absorbed before 4 h, and eliminated at 48 h, in every tissue, and the highest concentrations were detected in plasma. Baywings showed intoxication signs and reduced mobility within the first 5 min post-dosing. Hematological parameters: red blood cells, packed cell volume, hemoglobin, and their derived indices exhibited a transient elevation 24 h after dosing, which coincided with maximum concentrations of IMI in the tissues. No effects were observed on the genotoxicity parameters evaluated: micronuclei and comet assay. Treated birds exhibited an alteration of cholinesterases activity in the muscle and plasma, and of glutathione-S-transferase (GST) activity in the plasma, brain, liver, and muscle. Based on the results obtained, the combined detection of IMI and inhibition of GST activity in the plasma is suggested as a non-lethal biomarker of IMI exposure in wild birds. As efficient field monitoring depends on the availability of proven biomarkers, the current study provides valuable tools for bird conservation in agroecosystems.
Collapse
Affiliation(s)
- María Belén Poliserpi
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina.
| | - Diego Cristos
- Instituto Tecnología de Alimentos, Centro de Investigación de Agroindustria (CIA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Juan Manuel Pérez-Iglesias
- INQUISAL, Universidad Nacional de San Luis, San Luis, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Julie Céline Brodeur
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
21
|
Poliserpi MB, Cristos DS, Brodeur JC. Imidacloprid seed coating poses a risk of acute toxicity to small farmland birds: A weight-of-evidence analysis using data from the grayish baywing Agelaioides badius. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142957. [PMID: 33498114 DOI: 10.1016/j.scitotenv.2020.142957] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 06/12/2023]
Abstract
The aim of this study was to estimate the risk posed by imidacloprid (IMI) seed coating to passerine birds of the Pampa Region of Argentina using data specifically generated with the grayish baywing (Agelaioides badius). Median lethal dose (LD50) of the IMI-based formulation tested was 57.11 mg IMI/kg body weight (bw), with intoxication signs starting from 20.6 mg IMI/kg bw. The feed intake rate (FIR) was estimated experimentally as 4.895 g/day per bird, representing 12.43% of bw. It was calculated that the ingestion of 7-10% of the FIR as treated seeds would be enough to achieve the LD50 for sorghum, corn, sunflower, and alfalfa, whereas consumption of 31 and 54% of FIR was necessary for oat and wheat, respectively. Based on spill data values available in the literature, it was calculated that, for most crops, a baywing would have to forage an area of field corresponding to less than 60 m2 to obtain the number of seeds required to reach the LD50. It was also shown that this number of seeds is coherent with the amount of seeds ingested in a bout. In a pilot study, all grayish baywings fed with millet seeds treated with 3 g IMI/kg died within three to five days of exposure. In Tier I risk assessment, the trigger value was achieved for all crops except soybean and a weight-of-evidence risk assessment was performed. All lines of evidence examined are consistent with the view that grayish baywings, and probably other small farmland birds, are exposed to a risk of acute toxicity and mortality under both worst-case and mixed-ration exposure scenarios. The possible impacts on bird species calls for an urgent reconsideration of IMI seed coating practices currently approved in the Pampa Region of Argentina and the various parts of the world where this practice is still in use.
Collapse
Affiliation(s)
- María Belén Poliserpi
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina.
| | - Diego Sebastián Cristos
- Instituto de Tecnología de Alimentos, Centro de Investigación de Agroindustria (CIA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Julie Céline Brodeur
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
22
|
Lopez-Antia A, Ortiz-Santaliestra ME, Mougeot F, Camarero PR, Mateo R. Birds feeding on tebuconazole treated seeds have reduced breeding output. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116292. [PMID: 33388683 DOI: 10.1016/j.envpol.2020.116292] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Drilled seeds are an important food resource for many farmland birds but may pose a serious risk when treated with pesticides. Most compounds currently used as seed treatment in the EU have low acute toxicity but may still affect birds in a sub-chronic or chronic way, especially considering that the sowing season lasts several weeks or months, resulting in a long exposure period for birds. Tebuconazole is a triazole fungicide widely used in agriculture but its toxicity to birds remains largely unknown. Our aim was to test if a realistic scenario of exposure to tebuconazole treated seeds affected the survival and subsequent reproduction of the red-legged partridge (Alectoris rufa). We fed captive partridges with wheat seeds treated with 0%, 20% or 100% of tebuconazole application rate during 25 days in late winter (i.e. tebuconazole dietary doses were approximately 0.2 and 1.1 mg/kg bw/day). We studied treatment effects on the physiology (i.e. body weight, biochemistry, immunology, oxidative stress, coloration) and reproduction of partridges. Exposed birds did not reduce food consumption but presented reduced plasmatic concentrations of lipids (triglycerides at both exposure doses, cholesterol at high dose) and proteins (high dose). The coloration of the eye ring was also reduced in the low dose group. Exposure ended 60 days before the first egg was laid, but still affected reproductive output: hatching rate was reduced by 23% and brood size was 1.5 times smaller in the high dose group compared with controls. No significant reproductive effects were found in the low dose group. Our results point to the need to study the potential endocrine disruption mechanism of this fungicide with lagged effects on reproduction. Risk assessments for tebuconazole use as seed treatment should be revised in light of these reported effects on bird reproduction.
Collapse
Affiliation(s)
- Ana Lopez-Antia
- Behavioural Ecology and Ecophysiology Group (BECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain.
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| |
Collapse
|
23
|
Badry A, Schenke D, Treu G, Krone O. Linking landscape composition and biological factors with exposure levels of rodenticides and agrochemicals in avian apex predators from Germany. ENVIRONMENTAL RESEARCH 2021; 193:110602. [PMID: 33307088 DOI: 10.1016/j.envres.2020.110602] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 05/15/2023]
Abstract
Intensification of agricultural practices has resulted in a substantial decline of Europe's farmland bird populations. Together with increasing urbanisation, chemical pollution arising from these land uses is a recognised threat to wildlife. Raptors are known to be particularly sensitive to pollutants that biomagnify and are thus frequently used sentinels for pollution in food webs. The current study focussed on anticoagulant rodenticides (ARs) but also considered selected medicinal products (MPs) and frequently used plant protection products (PPPs). We analysed livers of raptor species from agricultural and urban habitats in Germany, namely red kites (MIML; Milvus milvus), northern goshawks (ACGE; Accipiter gentilis) and Eurasian sparrowhawks (ACNI; Accipiter nisus) as well as white-tailed sea eagles (HAAL; Haliaeetus albicilla) and ospreys (PAHA; Pandion haliaetus) to account for potential aquatic exposures. Landscape composition was quantified using geographic information systems. The highest detection of ARs occurred in ACGE (81.3%; n = 48), closely followed by MIML (80.5%; n = 41), HAAL (38.3%; n = 60) and ACNI (13%; n = 23), whereas no ARs were found in PAHA (n = 13). Generalized linear models demonstrated (1) an increased probability for adults to be exposed to ARs with increasing urbanisation, and (2) that species-specific traits were responsible for the extent of exposure. For MPs, we found ibuprofen in 14.9% and fluoroquinolones in 2.3% in individuals that were found dead. Among 30 investigated PPPs, dimethoate (and its metabolite omethoate) and thiacloprid were detected in two MIML each. We assumed that the levels of dimethoate were a consequence of deliberate poisoning. AR and insecticide poisoning were considered to represent a threat to red kites and may ultimately contribute to reported decreased survival rates. Overall, our study suggests that urban raptors are at greatest risk for AR exposure and that exposures may not be limited to terrestrial food webs.
Collapse
Affiliation(s)
- Alexander Badry
- Leibniz Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
| | - Detlef Schenke
- Julius Kühn-Institut, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Straße19, 14195, Berlin, Germany
| | - Gabriele Treu
- Umweltbundesamt, Department Chemicals, Wörlitzer Platz 1, 06844, Dessau-Roßlau, Germany
| | - Oliver Krone
- Leibniz Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| |
Collapse
|
24
|
Roy CL, Coy PL. Wildlife consumption of neonicotinoid-treated seeds at simulated seed spills. ENVIRONMENTAL RESEARCH 2020; 190:109830. [PMID: 32862016 DOI: 10.1016/j.envres.2020.109830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The most likely route of exposure to high concentrations of neonicotinoids capable of producing lethal or sublethal effects in birds and mammals is consumption of treated seeds. We placed trail cameras at simulated seed spills to document wildlife consuming treated seeds during the spring planting season. We simulated 4 types of spills, corn treated with 2 concentrations of clothiandin (0.50 or 0.25 mg/seed), corn treated with thiamethoxam (0.25 mg/seed), and soybean treated with imidacloprid (0.15 mg/seed). We documented 16 species of birds and 14 species of mammals eating neonicotinoid-treated seeds at spills. Of these, we quantified consumption of treated seeds by 12 species of birds and 13 species of mammals. Birds and mammals did not consume enough seeds to exceed published LD50s in related taxa, but most species did consume enough seeds to reach or exceed thresholds for sublethal effects based on currently available studies. Birds and mammals did not increase the amount of seeds consumed over time, as would be expected if responsive to the concentration of neonicotinoids on seeds, but more birds and mammals consumed seeds over time, as a proportion of the number at spills each day. More birds also consumed seeds after a soaking rain event, which likely reduced the amount of treatment on the seeds. Importantly, wildlife are consuming seeds while neonicotinoids are still concentrated on seeds. Our findings indicate that previously held assumptions about the safety of neonicotinoid seed treatments for vertebrate wildlife need to be revisited.
Collapse
Affiliation(s)
- Charlotte L Roy
- Minnesota Department of Natural Resources, Grand Rapids, MN, 55744, USA.
| | - Pamela L Coy
- Minnesota Department of Natural Resources, Grand Rapids, MN, 55744, USA.
| |
Collapse
|