1
|
Beyer J, Ellingsen KE, Yoccoz NG, Buhl-Mortensen P, Bakke T. Environmental effects monitoring of offshore oil and gas activities on the Norwegian continental shelf: A review. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107166. [PMID: 40345121 DOI: 10.1016/j.marenvres.2025.107166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 01/24/2025] [Accepted: 04/18/2025] [Indexed: 05/11/2025]
Abstract
This review examines the evolution and findings of Norway's offshore environmental monitoring (OEM) program over the past five decades. The program targets soft sediments, water column organisms, and deep-water epifauna across the Norwegian Continental Shelf (NCS) to assess the impacts of offshore oil and gas activities. The program is required by Norwegian authorities and financed by oil and gas companies operating on the NCS. Initially prompted by widespread effects from oil-contaminated drill cuttings (OBM-DC) discharges, the first sediment quality monitoring came in 1973, and grew into a regional sediment quality monitoring program in 1995. A ban on discharge of OBM cuttings on the NCS was implemented in 1993, and the following years saw a clear reduction in areas with impacted sediments. Currently, significant contamination and macrofauna disturbances are typically confined within 250-500 m of DC discharge points. In the 1990s, concerns over increasing produced water (PW) discharges led to development of effect monitoring in the water column, with focus on fish and mussels as bioindicators. These in situ effect surveys have shown localized impacts near PW outlets. Other fish surveys have revealed elevated DNA adduct levels in demersal fish (haddock) in several areas on the NCS, but the causality of this phenomenon remains unclear. Deep-water petroleum exploration has necessitated visual surveys to map protected benthic epifauna communities, such as corals and sponges, though the methodology's suitability for assessing biological impact is uncertain. Future recommendations include redesigning sediment surveys to address combined stressors from the petroleum industry, fisheries, and climate change, adopting recent methodological and statistical advancements, and improving integration across program elements. This review describes how the offshore monitoring on the NCS has evolved in response to changing environmental concerns, regulations and industrial practices, providing insights for enhancing ecological protection in offshore petroleum activities.
Collapse
Affiliation(s)
- Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579, Oslo, Norway; University of Oslo, Department of Biosciences, NO-0316, Oslo, Norway.
| | - Kari E Ellingsen
- Norwegian Institute for Nature Research (NINA), Fram Centre, 9296, Tromsø, Norway
| | - Nigel G Yoccoz
- Norwegian Institute for Nature Research (NINA), Fram Centre, 9296, Tromsø, Norway; Arctic University of Norway (UiT), 9296, Tromsø, Norway
| | - Pål Buhl-Mortensen
- Institute of Marine Research (IMR), Nordnesgaten 50, 5005, Bergen, Norway
| | - Torgeir Bakke
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579, Oslo, Norway
| |
Collapse
|
2
|
Jepsen JU, Arneberg P, Ims RA, Siwertsson A, Yoccoz NG, Fauchald P, Pedersen ÅØ, van der Meeren GI, von Quillfeldt CH. Panel-based assessment of ecosystem condition as a platform for adaptive and knowledge driven management. ENVIRONMENTAL MANAGEMENT 2024; 74:1020-1036. [PMID: 39271533 PMCID: PMC11438735 DOI: 10.1007/s00267-024-02042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Ecosystems are subjected to increasing exposure to multiple anthropogenic drivers. This has led to the development of national and international accounting systems describing the condition of ecosystems, often based on few, highly aggregated indicators. Such accounting systems would benefit from a stronger theoretical and empirical underpinning of ecosystem dynamics. Operational tools for ecosystem management require understanding of natural ecosystem dynamics, consideration of uncertainty at all levels, means for quantifying driver-response relationships behind observed and anticipated future trajectories of change, and an efficient and transparent synthesis to inform knowledge-driven decision processes. There is hence a gap between highly aggregated indicator-based accounting tools and the need for explicit understanding and assessment of the links between multiple drivers and ecosystem condition as a foundation for informed and adaptive ecosystem management. We describe here an approach termed PAEC (Panel-based Assessment of Ecosystem Condition) for combining quantitative and qualitative elements of evidence and uncertainties into an integrated assessment of ecosystem condition at spatial scales relevant to management and monitoring. The PAEC protocol is founded on explicit predictions, termed phenomena, of how components of ecosystem structure and functions are changing as a result of acting drivers. The protocol tests these predictions with observations and combines these tests to assess the change in the condition of the ecosystem as a whole. PAEC includes explicit, quantitative or qualitative, assessments of uncertainty at different levels and integrates these in the final assessment. As proofs-of-concept we summarize the application of the PAEC protocol to a marine and a terrestrial ecosystem in Norway.
Collapse
Affiliation(s)
- Jane U Jepsen
- Norwegian Institute for Nature Research, Department of Arctic Ecology, Fram Centre, 9296, Tromsø, Norway.
| | - Per Arneberg
- Institute of Marine Research, Department of Ecosystem Processes, Fram Centre, 9296, Tromsø, Norway
| | - Rolf A Ims
- UiT The Arctic University of Norway, Department of Arctic and Marine Biology, 9037, Tromsø, Norway
| | - Anna Siwertsson
- Institute of Marine Research, Department of Ecosystem Processes, Fram Centre, 9296, Tromsø, Norway
- Akvaplan-niva, Fram Centre, 9296, Tromsø, Norway
| | - Nigel G Yoccoz
- UiT The Arctic University of Norway, Department of Arctic and Marine Biology, 9037, Tromsø, Norway
| | - Per Fauchald
- Norwegian Institute for Nature Research, Department of Arctic Ecology, Fram Centre, 9296, Tromsø, Norway
| | | | - Gro I van der Meeren
- Institute of Marine Research, Department of Ecosystem Processes, 5392, Storebø, Norway
| | | |
Collapse
|
3
|
Frazão Santos C, Agardy T, Crowder LB, Day JC, Himes-Cornell A, Pinsky ML, Reimer JM, Gissi E. Ocean Planning and Conservation in the Age of Climate Change: A Roundtable Discussion. Integr Org Biol 2024; 6:obae037. [PMID: 39440138 PMCID: PMC11495413 DOI: 10.1093/iob/obae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Over recent years, recognition of the need to develop climate-smart marine spatial planning (MSP) has gained momentum globally. In this roundtable discussion, we use a question-and-answer format to leverage diverse perspectives and voices involved in the study of sustainable MSP and marine conservation under global environmental and social change. We intend this dialogue to serve as a stepping stone toward developing ocean planning initiatives that are sustainable, equitable, and climate-resilient around the globe.
Collapse
Affiliation(s)
- C Frazão Santos
- Department of Animal Biology, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- MARE–Marine and Environmental Sciences Center/ARNET–Aquatic Research Network, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK
| | - T Agardy
- Sound Seas, Bethesda, MD 20816, USA
| | - L B Crowder
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93959, USA
| | - J C Day
- College of Science & Engineering, James Cook University, Townsville, QLD 4815, Australia
| | - A Himes-Cornell
- Fisheries and Aquaculture Division, Food and Aquaculture Organization of the United Nations, 00153 Rome, Italy
| | - M L Pinsky
- Department of Ecology & Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - J M Reimer
- Department of Geography, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
- Marine Planning & Conservation, Fisheries and Oceans Canada, Ottawa, ON K1A 0E6, Canada
| | - E Gissi
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93959, USA
- National Research Council, Institute of Marine Sciences, 30122 Venice, Italy
- National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
4
|
Lai L, Zhang S, Li L, Zhu D. Effects of human inequality and urbanization on ecological well-being performance: A System-GMM analysis. Heliyon 2024; 10:e34040. [PMID: 39071720 PMCID: PMC11283162 DOI: 10.1016/j.heliyon.2024.e34040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Enhancing the efficiency with which ecological consumption is transformed into human well-being is a necessary condition for achieving sustainable development. However, the current literature lacks systematic methods and applications for scientifically assessing Ecological Well-being Performance (EWP). How to value and index EWP is crucial to improve EWP. This study combines the Human Development Index (HDI), Life Satisfaction (LS), and Ecological Footprint (EF) to construct a new Index of Ecological Well-being Performance (IEWP). Meanwhile, human inequality and urbanization are two common and profound socio-economic phenomena with potential impacts on EWP. Therefore, this study uses panel data for 129 countries from 2010 to 2021 and applies the System-GMM approach to explore the impact of human inequality, urbanization, and the interaction between these two factors on EWP. Our results show that EWP has a cumulative effect in the long run. Human inequality has a negative effect on EWP, while the effect of urbanization is positive. Compared to developed countries, the negative impact of human inequality and the positive impact of urbanization are more pronounced in emerging and developing countries. This paper further reveals that the interaction term inhibits EWP, which indicates that urbanization exacerbates the negative effect of human inequality and that human inequality weakens the positive effect of urbanization. This paper contributes to understanding how human inequality and urbanization affect sustainable development from the perspective of EWP.
Collapse
Affiliation(s)
- Liuliu Lai
- School of Economics and Management, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Shuai Zhang
- College of Design and Innovation, Tongji University, Shanghai, 200092, China
| | - Lilian Li
- School of Economics, Jiangxi University of Finance and Economics, Nanchang, 330013, China
| | - Dajian Zhu
- School of Economics and Management, Tongji University, Shanghai, 200092, China
| |
Collapse
|
5
|
Kraan C, Haslob H, Probst WN, Stelzenmüller V, Rehren J, Neumann H. Thresholds of seascape fauna composition along gradients of human pressures and natural conditions to inform marine spatial planning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169940. [PMID: 38199351 DOI: 10.1016/j.scitotenv.2024.169940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Knowledge about the cumulative impacts of anthropogenic activities and environmental conditions on marine ecosystems is incomplete and details are lacking. Compositional community changes can occur along gradients, and community data can be used to assess the state of community resilience against combined impacts of variables representing human pressures and environmental conditions. Here we use a machine learning approach, i.e., Gradient Forest, to identify explanatory variable thresholds and select relevant epibenthic fauna and demersal fish species, which can be used to inform an integrated management of multiple human pressures and conservation planning in the southern North Sea. We show that a broad selection of anthropogenic and environmental variables, such as natural disturbance of the seafloor and euphotic depth, determined community composition thresholds of 67 epibenthic fauna and 39 demersal fish species along environmental conditions and human pressure gradients in the southern North Sea between 2010 and 2020. This has the potential to inform resilience assessments under the Marine Strategy Framework Directive to promote and retain a good environmental status of marine ecosystems.
Collapse
Affiliation(s)
- Casper Kraan
- Thünen Institute of Sea Fisheries, Herwigstraße 31, 27572 Bremerhaven, Germany.
| | - Holger Haslob
- Thünen Institute of Sea Fisheries, Herwigstraße 31, 27572 Bremerhaven, Germany
| | - Wolfgang N Probst
- Thünen Institute of Sea Fisheries, Herwigstraße 31, 27572 Bremerhaven, Germany
| | | | - Jennifer Rehren
- Thünen Institute of Sea Fisheries, Herwigstraße 31, 27572 Bremerhaven, Germany
| | - Hermann Neumann
- Thünen Institute of Sea Fisheries, Herwigstraße 31, 27572 Bremerhaven, Germany
| |
Collapse
|
6
|
Stelzenmüller V, Rehren J, Örey S, Lemmen C, Krishna S, Hasenbein M, Püts M, Probst WN, Diekmann R, Scheffran J, Bos OG, Wirtz K. Framing future trajectories of human activities in the German North Sea to inform cumulative effects assessments and marine spatial planning. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119507. [PMID: 37956520 DOI: 10.1016/j.jenvman.2023.119507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/02/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
The global industrialization of seascapes and climate change leads to an increased risk of severe impacts on marine ecosystem functioning. While broad scale spatio-temporal assessments of human pressures on marine ecosystems become more available, future trajectories of human activities at regional and local scales remain often speculative. Here we introduce a stepwise process to integrate bottom-up and expert-driven approaches for scenario development to inform cumulative effects assessments and related marine spatial planning (MSP). Following this guidance, we developed optimistic, realistic, and pessimistic scenarios for major human pressures in the German North Sea such as bottom trawling, offshore wind, nutrient discharge, and aggregate extraction. The forecasts comprise quantitative estimates in relation to spatial footprint, intensity, and technological advancements of those pressures for the years 2030 and 2060. Using network analyses, we assessed interactions of the current and future trajectories of pressures thereby accounting for climate change and the growing need for marine conservation. Our results show that future scenarios of spatial distributions could be developed for activities that are spatially refined and included in the current MSP process. Further our detailed analyses of interdependencies of development components revealed that forecasts regarding specific targets and intensities of human activities depend also strongly on future technological advances. For fisheries and nutrient discharge estimates were less certain due to critical socio-ecological interactions in the marine and terrestrial realm. Overall, our approach unraveled such trade-offs and sources of uncertainties. Yet, our quantitative predictive scenarios were built under a sustainability narrative on a profound knowledge of interactions with other sectors and components in and outside the management boundaries. We advocate that they enable a better preparedness for future changes of cumulative pressure on marine ecosystems.
Collapse
Affiliation(s)
- V Stelzenmüller
- Thünen Institute of Sea Fisheries, Herwigstraße 31, 27572, Bremerhaven, Germany.
| | - J Rehren
- Thünen Institute of Sea Fisheries, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - S Örey
- Thünen Institute of Sea Fisheries, Herwigstraße 31, 27572, Bremerhaven, Germany; Hochschule Bremerhaven, An der Karlstadt 8, 27568, Bremerhaven, Germany
| | - C Lemmen
- Helmholtz-Center Hereon, Institute of Coastal Systems, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - S Krishna
- Helmholtz-Center Hereon, Institute of Coastal Systems, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - M Hasenbein
- Federal Maritime and Hydrographic Agency, Hamburg, Germany
| | - M Püts
- Thünen Institute of Sea Fisheries, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - W N Probst
- Thünen Institute of Sea Fisheries, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - R Diekmann
- Hochschule Bremerhaven, An der Karlstadt 8, 27568, Bremerhaven, Germany
| | - J Scheffran
- Institute of Geography, Universität Hamburg, Germany
| | - O G Bos
- Wageningen Marine Research, Ankerpark 27, 1781 AG, Den Helder, the Netherlands
| | - K Wirtz
- Helmholtz-Center Hereon, Institute of Coastal Systems, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| |
Collapse
|
7
|
Jarvis L, Rosenfeld J, Gonzalez-Espinosa PC, Enders EC. A process framework for integrating stressor-response functions into cumulative effects models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167456. [PMID: 37839475 DOI: 10.1016/j.scitotenv.2023.167456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
Stressor-response (SR) functions quantify ecological responses to natural environmental variation or anthropogenic stressors. They are also core drivers of cumulative effects (CE) models, which are increasingly recognized as essential management tools to grapple with the diffuse footprint of human impacts. Here, we provide a process framework for the identification, development, and integration of SR functions into CE models, and highlight their consequential properties, behaviour, criteria for selecting appropriate stressors and responses, and general approaches for deriving them. Management objectives (and causal effect pathways) will determine the ultimate stressor and target response variables of interest (i.e., individual growth/survival, population size, community structure, ecosystem processes), but data availability will constrain whether proxies need to be used for the target stressor or response variables. Available data and confidence in underlying mechanisms will determine whether empirical or mechanistic (theoretical) SR functions are optimal. Uncertainty in underlying SR functions is often the primary source of error in CE modelling, and monitoring outcomes through adaptive management to iteratively refine parameterization of SR functions is a key element of model application. Dealing with stressor interactions is an additional challenge, and in the absence of known or suspected interaction mechanisms, controlling main effects should remain the primary focus. Indicators of suspected interaction presence (i.e., much larger or smaller responses to stressor reduction than expected during monitoring) should be confirmed through adaptive management cycles or targeted stressor manipulations. Where possible, management decisions should selectively take advantage of interactions to strategically mitigate stressor impacts (i.e., by using antagonisms to suppress stressor impacts, and by using synergisms to efficiently reduce them).
Collapse
Affiliation(s)
- Lauren Jarvis
- Fisheries and Oceans Canada, Ontario & Prairie Region, Freshwater Institute, 501 University Avenue, Winnipeg, MB R3T 2N6, Canada.
| | - Jordan Rosenfeld
- UBC Institute for the Oceans and Fisheries, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada; B.C. Ministry of Environment, Vancouver, BC, Canada.
| | - Pedro C Gonzalez-Espinosa
- Nippon Foundation Ocean Nexus, Simon Fraser University, School of Resource and Environmental Management, Technology and Science Complex 1, 643A Science Rd, Burnaby, BC V5A 1S6, Canada
| | - Eva C Enders
- Institut National de la Recherche Scientifique, Eau Terre Environnement Research Centre, 490 de la Couronne Street, Quebec City, QC G1K 9A9, Canada.
| |
Collapse
|
8
|
Rees MJ, Knott NA, Astles KL, Swadling DS, West GJ, Ferguson AM, Delamont J, Gibson PT, Neilson J, Birch GF, Glasby TM. Cumulative effects of multiple stressors impact an endangered seagrass population and fish communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166706. [PMID: 37659560 DOI: 10.1016/j.scitotenv.2023.166706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Coastal ecosystems are becoming increasingly threatened by human activities and there is growing appreciation that management must consider the impacts of multiple stressors. Cumulative effects assessments (CEAs) have become a popular tool for identifying the distribution and intensity of multiple human stressors in coastal ecosystems. Few studies, however, have demonstrated strong correlations between CEAs and change in ecosystem condition, questioning its management use. Here, we apply a CEA to the endangered seagrass Posidonia australis in Pittwater, NSW, Australia, using spatial data on known stressors to seagrass related to foreshore development, water quality, vessel traffic and fishing. We tested how well cumulative effects scores explained changes in P. australis extent measured between 2005 and 2019 using high-resolution aerial imagery. A negative correlation between P. australis and estimated cumulative effects scores was observed (R2 = 22 %), and we identified a threshold of cumulative effects above which losses of P. australis became more likely. Using baited remote underwater video, we surveyed fishes over P. australis and non-vegetated sediments to infer and quantify how impacts of cumulative effects to P. australis extent would flow on to fish assemblages. P. australis contained a distinct assemblage of fish, and on non-vegetated sediments the abundance of sparids, which are of importance to fisheries, increased with closer proximity to P. australis. Our results demonstrate the negative impact of multiple stressors on P. australis and the consequences for fish biodiversity and fisheries production across much of the estuary. Management actions aimed at reducing or limiting cumulative effects to low and moderate levels will help conserve P. australis and its associated fish biodiversity and productivity.
Collapse
Affiliation(s)
- Matthew J Rees
- New South Wales Department of Primary Industries, Marine Ecosystems, Fisheries Research, 4 Woollamia Road, Huskisson, NSW, 2540, Australia.
| | - Nathan A Knott
- New South Wales Department of Primary Industries, Marine Ecosystems, Fisheries Research, 4 Woollamia Road, Huskisson, NSW, 2540, Australia
| | - Karen L Astles
- New South Wales Department of Primary Industries, Fisheries Research, P.O. Box 5106, Wollongong 2520, Australia
| | - Daniel S Swadling
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Locked Bag 1, New South Wales, 2315 Nelson Bay, Australia
| | - Greg J West
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Locked Bag 1, New South Wales, 2315 Nelson Bay, Australia
| | - Adrian M Ferguson
- New South Wales Department of Primary Industries, Marine Ecosystems, Fisheries Research, 4 Woollamia Road, Huskisson, NSW, 2540, Australia
| | - Jason Delamont
- New South Wales Department of Primary Industries, Marine Ecosystems, Fisheries Research, 4 Woollamia Road, Huskisson, NSW, 2540, Australia
| | - Peter T Gibson
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Locked Bag 1, New South Wales, 2315 Nelson Bay, Australia
| | - Joseph Neilson
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Locked Bag 1, New South Wales, 2315 Nelson Bay, Australia
| | - Gavin F Birch
- Geocoastal Research Group, School of Geosciences, The University of Sydney, New South Wales, 2006, Australia
| | - Tim M Glasby
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Locked Bag 1, New South Wales, 2315 Nelson Bay, Australia
| |
Collapse
|
9
|
Hasselman DJ, Hemery LG, Copping AE, Fulton EA, Fox J, Gill AB, Polagye B. 'Scaling up' our understanding of environmental effects of marine renewable energy development from single devices to large-scale commercial arrays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166801. [PMID: 37669708 DOI: 10.1016/j.scitotenv.2023.166801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/08/2023] [Accepted: 09/02/2023] [Indexed: 09/07/2023]
Abstract
Global expansion of marine renewable energy (MRE) technologies is needed to help address the impacts of climate change, to ensure a sustainable transition from carbon-based energy sources, and to meet national energy security needs using locally-generated electricity. However, the MRE sector has yet to realize its full potential due to the limited scale of device deployments (i.e., single devices or small demonstration-scale arrays), and is hampered by various factors including uncertainty about environmental effects and how the magnitude of these effects scale with an increasing number of devices. This paper seeks to expand our understanding of the environmental effects of MRE arrays using existing frameworks and through the adaptation and application of cumulative environmental effects terminology to key stressor-receptor interactions. This approach facilitates the development of generalized concepts for the scaling of environmental effects for key stressor-receptor interactions, identifying high priority risks and revealing knowledge gaps that require investigation to aid expansion of the MRE sector. Results suggest that effects of collision risk for an array may be additive, antagonistic, or synergistic, but are likely dependent on array location and configuration. Effects of underwater noise are likely additive as additional devices are deployed in an array, while the effects of electromagnetic fields may be dominant, additive, or antagonistic. Changes to benthic habitats are likely additive, but may be dependent on array configuration and could be antagonistic or synergistic at the ecosystem scale. Effects of displacement, entanglement, and changes to oceanographic systems for arrays are less certain because little information is available about effects at the current scale of MRE development.
Collapse
Affiliation(s)
| | - Lenaïg G Hemery
- Pacific Northwest National Laboratory, Coastal Sciences Division, Sequim, WA, USA
| | - Andrea E Copping
- Pacific Northwest National Laboratory, Coastal Sciences Division, Seattle, WA, USA
| | - Elizabeth A Fulton
- CSIRO Environment, Hobart, TAS, Australia; Centre for Marine Socioecology, University Tasmania, Hobart, TAS, Australia
| | | | - Andrew B Gill
- The Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, Suffolk, UK
| | - Brian Polagye
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Yu Z, Wang J, Tan Z, Luo Y. Impact of climate change on SARS-CoV-2 epidemic in China. PLoS One 2023; 18:e0285179. [PMID: 37498956 PMCID: PMC10374073 DOI: 10.1371/journal.pone.0285179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/16/2023] [Indexed: 07/29/2023] Open
Abstract
The outbreak and prevalence of SARS-CoV-2 have severely affected social security. Physical isolation is an effective control that affects the short-term human-to-human transmission of the epidemic, although weather presents a long-term effect. Understanding the effect of weather on the outbreak allow it to be contained at the earliest possible. China is selected as the study area, and six weather factors that receive the most attention from January 20, 2020 to April 30, 2020 are selected to investigate the correlation between weather and SARS-CoV-2 to provide a theoretical basis for long-term epidemic prevention and control. The results show that (1) the average growth rate (GR) of SARS-CoV-2 in each province is logarithmically distributed with a mean value of 5.15%. The GR of the southeastern region is higher than that of the northwestern region, which is consistent with the Hu Line. (2) The specific humidity, 2-m temperature (T), ultraviolet (UV) radiation, and wind speed (WS) adversely affect the GR. By contrast, the total precipitation (TP) and surface pressure (SP) promote the GR. (3) For every 1 unit increase in UV radiation, the GR decreases by 0.30% in 11 days, and the UV radiation in China is higher than that worldwide (0.92% higher per day). Higher population aggregation and urbanization directly affect the epidemic, and weather is an indirect factor.
Collapse
Affiliation(s)
- Zhenyu Yu
- School of Geography and Remote Sensing, Guangzhou University, Guangdong, China
- Innovation Center for Remote Sensing Big Data Intelligent Applications, Guangzhou University, Guangdong, China
| | - Jinnian Wang
- School of Geography and Remote Sensing, Guangzhou University, Guangdong, China
- Innovation Center for Remote Sensing Big Data Intelligent Applications, Guangzhou University, Guangdong, China
| | - Zixuan Tan
- School of Geography and Remote Sensing, Guangzhou University, Guangdong, China
- Innovation Center for Remote Sensing Big Data Intelligent Applications, Guangzhou University, Guangdong, China
| | - Yiyun Luo
- School of Geography and Remote Sensing, Guangzhou University, Guangdong, China
- Innovation Center for Remote Sensing Big Data Intelligent Applications, Guangzhou University, Guangdong, China
| |
Collapse
|
11
|
Ma C, Stelzenmüller V, Rehren J, Yu J, Zhang Z, Zheng H, Lin L, Yang HC, Jin Y. A risk-based approach to cumulative effects assessment for large marine ecosystems to support transboundary marine spatial planning: A case study of the yellow sea. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118165. [PMID: 37201394 DOI: 10.1016/j.jenvman.2023.118165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Cumulative effects assessment (CEA) should be conducted at ecologically meaningful scales such as large marine ecosystems to halt further ocean degradation caused by anthropogenic pressures and facilitate ecosystem-based management such as transboundary marine spatial planning (MSP). However, few studies exist at large marine ecosystems scale, especially in the West Pacific seas, where countries have different MSP processes yet transboundary cooperation is paramount. Thus, a step-wise CEA would be informative to help bordering countries set a common goal. Building on the risk-based CEA framework, we decomposed CEA into risk identification and spatially-explicit risk analysis and applied it to the Yellow Sea Large Marine Ecosystem (YSLME), aiming to understand the most influential cause-effect pathways and risk distribution pattern. The results showed that (1) seven human activities including port, mariculture, fishing, industry and urban development, shipping, energy, and coastal defence, and three pressures including physical loss of seabed, input of hazardous substances, nitrogen, and phosphorus enrichment were the leading causes of environmental problems in the YSLME; (2) benthic organisms, fishes, algae, tidal flats, seabirds, and marine mammals were the most vulnerable ecosystem components on which cumulative effects acted; (3) areas with relatively high risk mainly concentrated on nearshore zones, especially Shandong, Liaoning, and northern Jiangsu, while coastal bays of South Korea also witnessed high risk; (4) certain risks could be observed in the transboundary area, of which the causes were the pervasive fishing, shipping, and sinking of pollutants in this area due to the cyclonic circulation and fine-grained sediments. In future transboundary cooperation on MSP, risk criteria and evaluation of existing management measures should be incorporated to determine whether the identified risk has exceeded the acceptable level and identify the next step of cooperation. Our study presents an example of CEA at large marine ecosystems scale and provides a reference to other large marine ecosystems in the West Pacific and elsewhere.
Collapse
Affiliation(s)
- Chen Ma
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, China; Thünen Institute of Sea Fisheries, Bremerhaven, 27572, Germany
| | | | - Jennifer Rehren
- Thünen Institute of Sea Fisheries, Bremerhaven, 27572, Germany
| | - Jing Yu
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, China; Institute of Marine Development, Ocean University of China, Qingdao, 266100, China.
| | - Zhiwei Zhang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266001, China.
| | - Hao Zheng
- College of Environmental Sciences and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Lu Lin
- School of Economics and Management, China University of Petroleum, Beijing, 102249, China
| | - Hee-Cheol Yang
- Ocean Law and Policy Institute, Korea Institute of Ocean Science & Technology, Busan, 49111, South Korea
| | - Yinhuan Jin
- Ocean Law and Policy Institute, Korea Institute of Ocean Science & Technology, Busan, 49111, South Korea
| |
Collapse
|
12
|
Simeoni C, Furlan E, Pham HV, Critto A, de Juan S, Trégarot E, Cornet CC, Meesters E, Fonseca C, Botelho AZ, Krause T, N'Guetta A, Cordova FE, Failler P, Marcomini A. Evaluating the combined effect of climate and anthropogenic stressors on marine coastal ecosystems: Insights from a systematic review of cumulative impact assessment approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160687. [PMID: 36473660 DOI: 10.1016/j.scitotenv.2022.160687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Cumulative impacts increasingly threaten marine and coastal ecosystems. To address this issue, the research community has invested efforts on designing and testing different methodological approaches and tools that apply cumulative impact appraisal schemes for a sound evaluation of the complex interactions and dynamics among multiple pressures affecting marine and coastal ecosystems. Through an iterative scientometric and systematic literature review, this paper provides the state of the art of cumulative impact assessment approaches and applications. It gives a specific attention to cutting-edge approaches that explore and model inter-relations among climatic and anthropogenic pressures, vulnerability and resilience of marine and coastal ecosystems to these pressures, and the resulting changes in ecosystem services flow. Despite recent advances in computer sciences and the rising availability of big data for environmental monitoring and management, this literature review evidenced that the implementation of advanced complex system methods for cumulative risk assessment remains limited. Moreover, experts have only recently started integrating ecosystem services flow into cumulative impact appraisal frameworks, but more as a general assessment endpoint within the overall evaluation process (e.g. changes in the bundle of ecosystem services against cumulative impacts). The review also highlights a lack of integrated approaches and complex tools able to frame, explain, and model spatio-temporal dynamics of marine and coastal ecosystems' response to multiple pressures, as required under relevant EU legislation (e.g., Water Framework and Marine Strategy Framework Directives). Progress in understanding cumulative impacts, exploiting the functionalities of more sophisticated machine learning-based approaches (e.g., big data integration), will support decision-makers in the achievement of environmental and sustainability objectives.
Collapse
Affiliation(s)
- Christian Simeoni
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, I-30170 Venice, Italy; Centro Euro-Mediterraneo sui Cambiamenti Climatici and Università Ca' Foscari Venezia, CMCC@Ca'Foscari - Edificio Porta dell'Innovazione, 2nd floor - Via della Libertà, 12 - 30175 Venice, Italy
| | - Elisa Furlan
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, I-30170 Venice, Italy; Centro Euro-Mediterraneo sui Cambiamenti Climatici and Università Ca' Foscari Venezia, CMCC@Ca'Foscari - Edificio Porta dell'Innovazione, 2nd floor - Via della Libertà, 12 - 30175 Venice, Italy
| | - Hung Vuong Pham
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, I-30170 Venice, Italy; Centro Euro-Mediterraneo sui Cambiamenti Climatici and Università Ca' Foscari Venezia, CMCC@Ca'Foscari - Edificio Porta dell'Innovazione, 2nd floor - Via della Libertà, 12 - 30175 Venice, Italy
| | - Andrea Critto
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, I-30170 Venice, Italy; Centro Euro-Mediterraneo sui Cambiamenti Climatici and Università Ca' Foscari Venezia, CMCC@Ca'Foscari - Edificio Porta dell'Innovazione, 2nd floor - Via della Libertà, 12 - 30175 Venice, Italy.
| | - Silvia de Juan
- Instituto Mediterraneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Miquel Marques 21, Esporles, Islas Baleares, Spain
| | - Ewan Trégarot
- Centre for Blue Governance, Portsmouth Business School, University of Portsmouth, Richmond Building, Portland Street, Portsmouth PO1 3DE, UK
| | - Cindy C Cornet
- Centre for Blue Governance, Portsmouth Business School, University of Portsmouth, Richmond Building, Portland Street, Portsmouth PO1 3DE, UK
| | - Erik Meesters
- Wageningen Marine Research, Wageningen University and Research, 1781, AG, Den Helder, the Netherlands; Aquatic Ecology and Water Quality Management, Wageningen University and Research, 6700, AA, Wageningen, the Netherlands
| | - Catarina Fonseca
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE - Global Change and Sustainability Institute, Faculty of Sciences and Technology, University of the Azores, Rua da Mãe de Deus, 9500-321, Ponta Delgada, Portugal; CICS.NOVA - Interdisciplinary Centre of Social Sciences, Faculty of Social Sciences and Humanities (FCSH/NOVA), Avenida de Berna 26-C, Lisboa 1069-061, Portugal
| | - Andrea Zita Botelho
- Faculty of Sciences and Technology, University of the Azores, Ponta Delgada, Portugal; CIBIO (CIBIO - Research Centre in Biodiversity and Genetic Resources, InBio Associate Laboratory, Ponta Delgada, Portugal
| | - Torsten Krause
- Lund University Centre for Sustainability Studies, P.O. Box 170, 221-00 Lund, Sweden
| | - Alicia N'Guetta
- Lund University Centre for Sustainability Studies, P.O. Box 170, 221-00 Lund, Sweden
| | | | - Pierre Failler
- Centre for Blue Governance, Portsmouth Business School, University of Portsmouth, Richmond Building, Portland Street, Portsmouth PO1 3DE, UK
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, I-30170 Venice, Italy; Centro Euro-Mediterraneo sui Cambiamenti Climatici and Università Ca' Foscari Venezia, CMCC@Ca'Foscari - Edificio Porta dell'Innovazione, 2nd floor - Via della Libertà, 12 - 30175 Venice, Italy
| |
Collapse
|
13
|
Rullens V, Stephenson F, Hewitt JE, Clark DE, Pilditch CA, Thrush SF, Ellis JI. The impact of cumulative stressor effects on uncertainty and ecological risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156877. [PMID: 35752242 DOI: 10.1016/j.scitotenv.2022.156877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/29/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
To enable environmental management actions to be more effectively prioritized, cumulative effects between multiple stressors need to be accounted for in risk-assessment frameworks. Ecological risk and uncertainty are generally high when multiple stressors occur. In the face of high uncertainty, transparent communication is essential to inform decision-making. The impact of stressor interactions on risk and uncertainty was assessed using generalized linear models for additive and multiplicative effect of six anthropogenic stressors on the abundance of estuarine macrofauna across New Zealand. Models that accounted for multiplicative stressor interactions demonstrated that non-additive effects dominated, had increased explanatory power (6 to 73 % relative increase between models), and thereby reduced the risk of unexpected ecological responses to stress. Secondly, 3D-plots provide important insights in the direction, magnitude and gradients of change, and aid transparency and communication of complex stressor effects. Notably, small changes in a stressor can cause a disproportionally steep gradient of change for a synergistic effect where the tolerance to stressors are lost, and would invoke precautionary management. 3D-plots were able to clearly identify directional shifts where the nature of the interaction changed from antagonistic to synergistic along increasing stressor gradients. For example, increased nitrogen load and exposure caused a shift from positive to negative effect on the abundance of a deposit-feeding polychaete (Magelona). Assessments relying on model coefficient estimates, which provide one effect term, could not capture the complexities observed in 3D-plots and are at risk of mis-identifying interaction types. Finally, visualising model uncertainty demonstrated that although error terms were higher for multiplicative models, they better captured the uncertainty caused by data availability. Together, the steep gradients of change identified in 3D-plots and the higher uncertainty in model predictions in multiplicative models urges more conservative limits to be set for management that account for risk and uncertainty in multiple stressor effects.
Collapse
Affiliation(s)
- Vera Rullens
- School of Science, University of Waikato, Hamilton, New Zealand.
| | - Fabrice Stephenson
- School of Science, University of Waikato, Hamilton, New Zealand; National Institute for Water and Atmospheric research, Hamilton, New Zealand
| | - Judi E Hewitt
- National Institute for Water and Atmospheric research, Hamilton, New Zealand; Department of Statistics, University of Auckland, Auckland, New Zealand
| | | | | | - Simon F Thrush
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Joanne I Ellis
- School of Science, University of Waikato, Tauranga, New Zealand
| |
Collapse
|
14
|
Maldonado AD, Galparsoro I, Mandiola G, de Santiago I, Garnier R, Pouso S, Borja Á, Menchaca I, Marina D, Zubiate L, Bald J. A Bayesian Network model to identify suitable areas for offshore wave energy farms, in the framework of ecosystem approach to marine spatial planning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156037. [PMID: 35598669 DOI: 10.1016/j.scitotenv.2022.156037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
The production of energy from waves is gaining attention. In its expansion strategy, technical, environmental and socioeconomic aspects should be taken into account to identify suitable areas for development of wave energy projects. In this research we provide a novel approach for suitable site identification for wave energy farms. To achieve this objective, we (i) developed a conceptual framework, considering technical, environmental and conflicts for space aspects that play a role on the development of those projects, and (ii) it was operationalized in a Bayesian Network, by building a spatially explicit model adopting the Spanish and Portuguese Economic Exclusive Zones as case study. The model results indicate that 1723 km2 and 17,409 km2 are highly suitable or suitable for the development of wave energy projects (i.e. low potential conflicts with other activities and low ecological risk). Suitable areas account for a total of 2.5 TWh∙m-1 energy resource. These areas are placed between 82 and 111 m water depth, 18-30 km to the nearest port, 21-29 km to the nearest electrical substation onshore, with 143-170 MWh m-1 mean annual energy resource and having 124-150 of good weather windows per year for construction and maintenance work. The approach proposed supports scientists, managers and industry, reducing uncertainties during the consenting process, by identifying the most relevant technical, environmental and socioeconomic factors when authorising wave energy projects. The model and the suitability maps produced can be used during site identification processes, informing Strategic Environmental Assessment and ecosystem approach to marine spatial planning.
Collapse
Affiliation(s)
- Ana D Maldonado
- AZTI, Marine Research Division, Basque Research and Technology Alliance (BRTA), Herrera Kaia Portualdea z/g, 20110 Pasaia, Spain; Department of Mathematics, University of Almería, Carretera Sacramento s/n, 04120 La Cañada, Almería, Spain
| | - Ibon Galparsoro
- AZTI, Marine Research Division, Basque Research and Technology Alliance (BRTA), Herrera Kaia Portualdea z/g, 20110 Pasaia, Spain.
| | - Gotzon Mandiola
- AZTI, Marine Research Division, Basque Research and Technology Alliance (BRTA), Herrera Kaia Portualdea z/g, 20110 Pasaia, Spain
| | - Iñaki de Santiago
- AZTI, Marine Research Division, Basque Research and Technology Alliance (BRTA), Herrera Kaia Portualdea z/g, 20110 Pasaia, Spain
| | - Roland Garnier
- AZTI, Marine Research Division, Basque Research and Technology Alliance (BRTA), Herrera Kaia Portualdea z/g, 20110 Pasaia, Spain
| | - Sarai Pouso
- AZTI, Marine Research Division, Basque Research and Technology Alliance (BRTA), Herrera Kaia Portualdea z/g, 20110 Pasaia, Spain
| | - Ángel Borja
- AZTI, Marine Research Division, Basque Research and Technology Alliance (BRTA), Herrera Kaia Portualdea z/g, 20110 Pasaia, Spain; King Abdulaziz University, Faculty of Marine Sciences, Jeddah, Saudi Arabia
| | - Iratxe Menchaca
- AZTI, Marine Research Division, Basque Research and Technology Alliance (BRTA), Herrera Kaia Portualdea z/g, 20110 Pasaia, Spain
| | - Dorleta Marina
- BiMEP, Biscay Marine Energy Platform, C/Atalaia n°2, bajo, 48620, Bizkaia, Spain
| | - Laura Zubiate
- BiMEP, Biscay Marine Energy Platform, C/Atalaia n°2, bajo, 48620, Bizkaia, Spain
| | - Juan Bald
- AZTI, Marine Research Division, Basque Research and Technology Alliance (BRTA), Herrera Kaia Portualdea z/g, 20110 Pasaia, Spain
| |
Collapse
|
15
|
Antwi EK, Boakye-Danquah J, Owusu-Banahene W, Webster K, Dabros A, Wiebe P, Mayor SJ, Westwood A, Mansuy N, Setiawati MD, Yohuno Apronti PT, Bill K, Kwaku A, Kosuta S, Sarfo AK. A Global review of cumulative effects assessments of disturbances on forest ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115277. [PMID: 35751228 DOI: 10.1016/j.jenvman.2022.115277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
This paper reviews trends in the academic literature on cumulative effects assessment (CEA) of disturbance on forest ecosystems to advance research in the broader context of impact assessments. Disturbance is any distinct spatiotemporal event that disrupts the structure and composition of an ecosystem affecting resource availability. We developed a Python package to automate search term selection, write search strategies, reduce bias and improve the efficient and effective selection of articles from academic databases and grey literature. We identified 148 peer-reviewed literature published between 1986 and 2022 and conducted an inductive and deductive thematic analysis of the results. Our findings revealed that CEA studies are concentrated in the global north, with most publications from authors affiliated with government agencies in the USA and Canada. Methodological and analytical approaches are less interdisciplinary but mainly quantitative and expert-driven, involving modeling the impacts of disturbances on biophysical valued components. Furthermore, the assessment of socioeconomic valued components, including the effects of disturbance on Indigenous wellbeing connected to forests, has received less attention. Even though there is a high preference for regional assessment, challenges with data access, quality, and analysis, especially baseline data over long periods, are hampering effective CEA. Few articles examined CEA - policy/management nexus. Of the few studies, challenges such as the inadequate implementation of CEA mitigation strategies due to policy drawbacks and resource constraints, the high cost of monitoring multiple indicators, and poor connections between scenarios/modeling and management actions were paramount. Future CEA research is needed to broaden our understanding of how multiple disturbance affects forests in the global south and coupled social and ecological systems and their implications for sustainable forest management.
Collapse
Affiliation(s)
- Effah Kwabena Antwi
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. East, Sault Ste. Marie, ON P6A 2E5, Canada.
| | - John Boakye-Danquah
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada
| | | | - Kara Webster
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. East, Sault Ste. Marie, ON P6A 2E5, Canada
| | - Anna Dabros
- Natural Resources Canada, Canadian Forest Service Northern Forestry Centre, Edmonton, Canada
| | - Philip Wiebe
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. East, Sault Ste. Marie, ON P6A 2E5, Canada
| | - Stephen J Mayor
- Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry, Ontario Forest Research Institute, Sault Ste. Marie, Ontario, Canada
| | - Alana Westwood
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Canada
| | - Nicolas Mansuy
- Natural Resources Canada, Canadian Forest Service Northern Forestry Centre, Edmonton, Canada
| | | | | | - Kristen Bill
- Wilfrid Laurier University, Department of Biology, Waterloo, Ontario, Canada
| | - Adu Kwaku
- Sophia University, Global Environmental Studies, Tokyo, Japan
| | - Sonja Kosuta
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. East, Sault Ste. Marie, ON P6A 2E5, Canada
| | | |
Collapse
|
16
|
Rullens V, Townsend M, Lohrer AM, Stephenson F, Pilditch CA. Who is contributing where? Predicting ecosystem service multifunctionality for shellfish species through ecological principles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152147. [PMID: 34864024 DOI: 10.1016/j.scitotenv.2021.152147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
A key challenge in environmental management is determining how to manage multiple ecosystem services (ES) simultaneously, to ensure efficient and sustainable use of the environment and its resources. In marine environments, the spatial assessment of ES is lagging as a result of data-scarcity and modelling complexity. Applying mechanistic models to link ecological processes with ecosystem functions and services to assess areas of high ES potential can bridge this gap and accommodate assessments of functional differences between service providers. Here, we applied an ecosystem principles approach to assess ES potential for food provision, water quality regulation, nitrogen removal, and sediment stabilisation, provided by two estuarine bivalves (Austrovenus stutchburyi and Paphies australis) that differ in habitat association (broad and narrow distributions), to gain insight into the utility of these models for local-scale management. Maps of individual ES displayed differing patterns related to habitat associations of the species providing them, with variation in the quantities of services being delivered and locations of importance. Areas of importance for the provision of multiple services (number of services provided and their combined intensity per species) were assessed using hotspot analyses, which suggested that areas of high shellfish density at the harbour entrances were important for ES multifunctionality. A targeted management approach that includes environmental context, rather than a focus solely on the protection of high-density shellfish areas, is required to sustain the provision of individual ES.
Collapse
Affiliation(s)
- Vera Rullens
- School of Science, University of Waikato, Hamilton, New Zealand.
| | | | - Andrew M Lohrer
- National Institute of Water and Atmospheric Research, Hamilton, New Zealand
| | - Fabrice Stephenson
- National Institute of Water and Atmospheric Research, Hamilton, New Zealand
| | | |
Collapse
|
17
|
|
18
|
Stephenson F, Hewitt JE, Torres LG, Mouton TL, Brough T, Goetz KT, Lundquist CJ, MacDiarmid AB, Ellis J, Constantine R. Cetacean conservation planning in a global diversity hotspot: dealing with uncertainty and data deficiencies. Ecosphere 2021. [DOI: 10.1002/ecs2.3633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - Judi E. Hewitt
- National Institute of Water and Atmosphere (NIWA) Hamilton New Zealand
- Department of Statistics University of Auckland Auckland New Zealand
| | - Leigh G. Torres
- Department of Fisheries and Wildlife Marine Mammal Institute Oregon State University Newport Oregon USA
| | - Théophile L. Mouton
- Marine Biodiversity Exploitation, and Conservation (MARBEC) UMR IRD‐CNRS‐UM‐IFREMER 9190 Université de Montpellier Montpellier34095France
| | - Tom Brough
- National Institute of Water and Atmosphere (NIWA) Hamilton New Zealand
| | - Kimberly T. Goetz
- National Oceanic and Atmospheric Administration National Marine Fisheries Service Marine Mammal Laboratory Alaska Fisheries Science Center Seattle Alaska USA
- National Institute of Water and Atmosphere (NIWA) Wellington New Zealand
| | - Carolyn J. Lundquist
- National Institute of Water and Atmosphere (NIWA) Hamilton New Zealand
- Institute of Marine Science University of Auckland Auckland New Zealand
| | | | - Joanne Ellis
- School of Science University of Waikato Tauranga New Zealand
| | - Rochelle Constantine
- Institute of Marine Science University of Auckland Auckland New Zealand
- School of Biological Sciences University of Auckland Auckland New Zealand
| |
Collapse
|
19
|
Carlucci R, Manea E, Ricci P, Cipriano G, Fanizza C, Maglietta R, Gissi E. Managing multiple pressures for cetaceans' conservation with an Ecosystem-Based Marine Spatial Planning approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112240. [PMID: 33740744 DOI: 10.1016/j.jenvman.2021.112240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Despite the recognized important ecological role that cetaceans play in the marine environment, their protection is still scarcely enforced in the Mediterranean Sea even though this area is strongly threatened by local human pressures and climate change. The piecemeal of knowledge related to cetaceans' ecology and distribution in the basin undermines the capacity of addressing cetaceans' protection and identifying effective conservation strategies. In this study, an Ecosystem-Based Marine Spatial Planning (EB-MSP) approach is applied to assess human pressures on cetaceans and guide the designation of a conservation area in the Gulf of Taranto, Northern Ionian Sea (Central-eastern Mediterranean Sea). The Gulf of Taranto hosts different cetacean species that accomplish important phases of their life in the area. Despite this fact, the gulf does not fall within any area-based management tools (ABMTs) for cetacean conservation. We pin down the Gulf of Taranto being eligible for the designation of diverse ABMTs for conservation, both legally and non-legally binding. Through a risk-based approach, this study explores the cause-effect relationships that link any human activities and pressures exerted in the study area to potential effects on cetaceans, by identifying major drivers of potential impacts. These were found to be underwater noise, marine litter, ship collision, and competition and disturbance on preys. We draw some recommendations based on different sources of available knowledge produced so far in the area (i.e., empirical evidence, scientific and grey literature, and expert judgement) to boost cetaceans' conservation. Finally, we stress the need of sectoral coordination for the management of human activities by applying an EB-MSP approach and valuing the establishment of an ABMT in the Gulf of Taranto.
Collapse
Affiliation(s)
- Roberto Carlucci
- Department of Biology, University of Bari, Via Orabona 4, 70125, Bari, Italy; CoNISMa, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Elisabetta Manea
- Institute of Marine Sciences, National Research Council, ISMAR-CNR, Arsenale, Tesa 104, Castello 2737/F, 30122, Venice, Italy.
| | - Pasquale Ricci
- Department of Biology, University of Bari, Via Orabona 4, 70125, Bari, Italy; CoNISMa, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Giulia Cipriano
- Department of Biology, University of Bari, Via Orabona 4, 70125, Bari, Italy; CoNISMa, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Carmelo Fanizza
- Jonian Dolphin Conservation, Viale Virgilio 102, 74121, Taranto, Italy
| | - Rosalia Maglietta
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing, National Research Council, Via Amendola 122 D/O, 70126, Bari, Italy
| | - Elena Gissi
- Institute of Marine Sciences, National Research Council, ISMAR-CNR, Arsenale, Tesa 104, Castello 2737/F, 30122, Venice, Italy; University Iuav of Venice, Tolentini, Santa Croce 191, 30135, Venice, Italy
| |
Collapse
|
20
|
Gissi E, Manea E, Mazaris AD, Fraschetti S, Almpanidou V, Bevilacqua S, Coll M, Guarnieri G, Lloret-Lloret E, Pascual M, Petza D, Rilov G, Schonwald M, Stelzenmüller V, Katsanevakis S. A review of the combined effects of climate change and other local human stressors on the marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142564. [PMID: 33035971 DOI: 10.1016/j.scitotenv.2020.142564] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Climate change (CC) is a key, global driver of change of marine ecosystems. At local and regional scales, other local human stressors (LS) can interact with CC and modify its effects on marine ecosystems. Understanding the response of the marine environment to the combined effects of CC and LS is crucial to inform marine ecosystem-based management and planning, yet our knowledge of the potential effects of such interactions is fragmented. At a global scale, we explored how cumulative effect assessments (CEAs) have addressed CC in the marine realm and discuss progress and shortcomings of current approaches. For this we conducted a systematic review on how CEAs investigated at different levels of biological organization ecological responses, functional aspects, and the combined effect of CC and HS. Globally, the effects of 52 LS and of 27 CC-related stressors on the marine environment have been studied in combination, such as industrial fisheries with change in temperature, or sea level rise with artisanal fisheries, marine litter, change in sediment load and introduced alien species. CC generally intensified the effects of LS at species level. At trophic groups and ecosystem levels, the effects of CC either intensified or mitigated the effects of other HS depending on the trophic groups or the environmental conditions involved, thus suggesting that the combined effects of CC and LS are context-dependent and vary among and within ecosystems. Our results highlight that large-scale assessments on the spatial interaction and combined effects of CC and LS remain limited. More importantly, our results strengthen the urgent need of CEAs to capture local-scale effects of stressors that can exacerbate climate-induced changes. Ultimately, this will allow identifying management measures that aid counteracting CC effects at relevant scales.
Collapse
Affiliation(s)
- Elena Gissi
- IUAV University of Venice, Tolentini 191, Santa Croce, 30135 Venice, Italy.
| | - Elisabetta Manea
- IUAV University of Venice, Tolentini 191, Santa Croce, 30135 Venice, Italy
| | - Antonios D Mazaris
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Simonetta Fraschetti
- Università Federico II di Napoli, Napoli, Italy; Consorzio Universitario per le Scienze del Mare, P.le Flaminio 9, 00196 Rome, Italy; Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Vasiliki Almpanidou
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stanislao Bevilacqua
- Department of Life Sciences, University of Trieste, Trieste, Italy; Consorzio Universitario per le Scienze del Mare, P.le Flaminio 9, 00196 Rome, Italy
| | - Marta Coll
- Institute of Marine Science, ICM-CSIC, Passeig Marítim de la Barceloneta, no 37-49, 08003 Barcelona, Spain; Ecopath International Initiative, Barcelona, Spain
| | - Giuseppe Guarnieri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy; Consorzio Universitario per le Scienze del Mare, P.le Flaminio 9, 00196 Rome, Italy
| | - Elena Lloret-Lloret
- Institute of Marine Science, ICM-CSIC, Passeig Marítim de la Barceloneta, no 37-49, 08003 Barcelona, Spain; Ecopath International Initiative, Barcelona, Spain
| | - Marta Pascual
- Basque Centre for Climate Change (BC3), Edificio Sede N°1 Planta 1/Parque Científico UPV-EHU, Barrio Sarriena, s/n, 48940 Leioa, Bizkaia, Spain
| | - Dimitra Petza
- Department of Marine Sciences, University of the Aegean, University Hill, 81100 Mytilene, Greece; Directorate for Fisheries Policy & Fishery Resources Utilisation, Directorate General for Fisheries, Ministry of Rural Development & Food, 150 Syggrou Avenue, 17671 Athens, Greece
| | - Gil Rilov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Haifa 31080, Israel
| | - Maura Schonwald
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Haifa 31080, Israel
| | | | - Stelios Katsanevakis
- Department of Marine Sciences, University of the Aegean, University Hill, 81100 Mytilene, Greece
| |
Collapse
|
21
|
Schupp MF, Kafas A, Buck BH, Krause G, Onyango V, Stelzenmüller V, Davies I, Scott BE. Fishing within offshore wind farms in the North Sea: Stakeholder perspectives for multi-use from Scotland and Germany. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111762. [PMID: 33341727 DOI: 10.1016/j.jenvman.2020.111762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Offshore wind power generation requires large areas of sea to accommodate its activities, with increasing claims for exclusive access. As a result, pressure is placed on other established maritime uses, such as commercial fisheries. The latter sector has often been taking a back seat in the thrust to move energy production offshore, thus leading to disagreements and conflicts among the different stakeholder groups. In recognition of the latter, there has been a growing international interest in exploring the combination of multiple maritime activities in the same area (multi-use; MU), including the re-instatement of fishing activities within, or in close proximity to, offshore wind farms (OWFs). We summarise local stakeholder perspectives from two sub-national case studies (East coast of Scotland and Germany's North Sea EEZ) to scope the feasibility of combining multiple uses of the sea, such as offshore wind farms and commercial fisheries. We combined a desk-based review with 15 semi-structured qualitative interviews with key knowledge holders from both industries, regulators, and academia to aggregate key results. Drivers, barriers and resulting effects (positive and negative) for potential multi-use of fisheries and OWFs are listed and ranked (57 factors in total). Factors are of economic, social, policy, legal, and technical nature. To date, in both case study areas, the offshore wind industry has shown little interest in multi-use solutions, unless clear added value is demonstrated and no risks to their operations are involved. In contrast, the commercial fishing sector is proactive towards multi-use projects and acts as a driving force for MU developments. We provide a range of management recommendations, based on stakeholder input, to support progress towards robust decision making in relation to multi-use solutions, including required policy and regulatory framework improvements, good practice guidance, empirical studies, capacity building of stakeholders and improvements of the consultation process. Our findings represent a comprehensive depiction of the current state and key stakeholder aspirations for multi-use solutions combining fisheries and OWFs. We believe that the pathways towards robust decision making in relation to multi-use solutions suggested here are transferable to other international locations.
Collapse
Affiliation(s)
- Maximilian Felix Schupp
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany; University of Dundee, School of Social Sciences, Architecture and Urban Planning Department, Dundee, DD1 4HN, Scotland, UK.
| | - Andronikos Kafas
- Marine Scotland Science, 375 Victoria Road, Aberdeen, AB11 9DB, Scotland, UK; School of Biological Sciences, University of Aberdeen, Tillydrone Ave, Aberdeen, AB24 2TZ, UK
| | - Bela H Buck
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany; University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568 Bremerhaven, Germany
| | - Gesche Krause
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Vincent Onyango
- University of Dundee, School of Social Sciences, Architecture and Urban Planning Department, Dundee, DD1 4HN, Scotland, UK
| | | | - Ian Davies
- Marine Scotland Science, 375 Victoria Road, Aberdeen, AB11 9DB, Scotland, UK
| | - Beth E Scott
- School of Biological Sciences, University of Aberdeen, Tillydrone Ave, Aberdeen, AB24 2TZ, UK
| |
Collapse
|
22
|
Ecosystem-Based MSP for Enhanced Fisheries Sustainability: An Example from the Northern Adriatic (Chioggia—Venice and Rovigo, Italy). SUSTAINABILITY 2021. [DOI: 10.3390/su13031211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Human pressures on marine ecosystems significantly increased during last decades. Among the intense anthropic activities, industrial fisheries have caused the alteration of habitats, the reduction of biodiversity and the main fish stocks. The aim of this research, carried out in the Adriatic Sea, was to test a repeatable Marine Spatial Planning framework aimed at enhancing fisheries sustainability through the application of Decision Support Tools and the composition of a catalog of possible measures. The use of these tools proved very useful to identify possible criticalities and facilitate an effective exchange with fisheries stakeholders, local authorities, and fishermen, whose involvement was an indispensable step in the process. Tool-based analyses allowed to assess the spatial footprint of a range of anthropogenic pressures from human activities (e.g., fisheries, maritime traffic, and aquaculture). Within this multi-pressure scenario, special attention was paid to fishing-related disturbances and potential conflicts across different fishing métier and with other sectors. Specifically, results highlighted the spatial features of the major fishing pressures (e.g., abrasion from trawling) affecting essential fish habitats, marine mammals and turtles in the study area. A portfolio of possible management measures is identified for the study area. It provides clear evidence that, in order to mitigate emerging conflicts and cumulative impacts, it is necessary to combine and integrate different types of measures: spatial measures modulated over time, monitoring and control, actions to fill knowledge gaps, concertation—involvement—co-management actions, improvement of governance systems, actions to support innovation in the sector, etc. Given the complex set of measures discussed, this work can provide a useful contribution to the management of fisheries both at local and regional level, fostering the transition to sustainable fisheries.
Collapse
|
23
|
Stelzenmüller V, Cormier R, Gee K, Shucksmith R, Gubbins M, Yates KL, Morf A, Nic Aonghusa C, Mikkelsen E, Tweddle JF, Pecceu E, Kannen A, Clarke SA. Evaluation of marine spatial planning requires fit for purpose monitoring strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111545. [PMID: 33202370 DOI: 10.1016/j.jenvman.2020.111545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/16/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Marine spatial planning (MSP) has rapidly become the most widely used integrated, place-based management approach in the marine environment. Monitoring and evaluation of MSP is key to inform best practices, adaptive management and plan iteration. While standardised evaluation frameworks cannot be readily applied, accounting for evaluation essentials such as the definition of evaluation objectives, indicators and stakeholder engagement of stakeholders is a prerequisite for meaningful evaluation outcomes. By way of a literature review and eleven practical MSP case studies, we analysed present day trends in evaluation approaches and unravelled the adoption of evaluation essentials for three categories for monitoring and evaluation for plan making, plan outcomes, and policy implementation. We found that at a global scale the focus of MSP evaluation has shifted over the past decade from evaluating predominantly plan outcomes towards the evaluation of plan making. Independent of the scope of the evaluation, evaluation approaches varied greatly from formal and structured processes, building for instance on MSP goals and objectives, to informal processes based on stakeholder interviews. We noted a trend in the adoption of formalised approaches where MSP evaluations have increasingly become linked to MSP policy goals and objectives. However, the enhanced use of MSP objectives and indicators did not result in a more straightforward reporting of outcomes, e.g. such as the achievement of specific MSP objectives. Overall, we found weak linkages between defined MSP objectives, indicators and available monitoring data. While the apparent shift towards a focus on objectives is promising, we highlight the need of fit-for-purpose monitoring data to enable effective evaluation of those objectives. Hence, effective MSP and adaptive management processes require customised and concurrent monitoring and evaluation strategies and procedures. We argue that evaluation processes would also benefit from a better understanding of the general environmental, socio-economic and socio-cultural effects of MSP. Therefore, to understand better environmental effects of MSP, we praise that forthcoming MSP processes need to deepen the understanding and considerations of cause-effect pathways between human activities and changes of ecosystem state through the adoption of targeted cumulative effects assessments.
Collapse
Affiliation(s)
- V Stelzenmüller
- Thünen Institute of Sea Fisheries, Herwigstraße 31, Bremerhaven, 27572, Germany.
| | - R Cormier
- Helmholtz-Zentrum Geesthacht, Institute for Coastal Research, Max-Planck-Straße 1, Geesthacht, 21502, Germany
| | - K Gee
- Helmholtz-Zentrum Geesthacht, Institute for Coastal Research, Max-Planck-Straße 1, Geesthacht, 21502, Germany
| | - R Shucksmith
- NAFC Marine Centre UHI, Scalloway, Shetland, ZE1 0UN, UK
| | - M Gubbins
- Marine Scotland, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK
| | - K L Yates
- School of Science, Engineering and Environment, University of Salford, Manchester, UK; ARC Centre of Excellence for Environmental Decisions, School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - A Morf
- Swedish Institute for the Marine Environment, University of Gothenburg, Sweden
| | - C Nic Aonghusa
- Marine Institute, Renville, Oranmore, Co., Galway, H91 R673, Ireland
| | - E Mikkelsen
- Nofima, Postboks 6122 Langnes, Tromsø, 9291, Norway
| | - J F Tweddle
- Cruickshank Building, School of Biological Sciences, University of Aberdeen, St Machar Dr, Aberdeen, AB24 3UU, UK
| | - E Pecceu
- Research Institute for Agriculture, Fisheries and Food, Ankerstraat 1, Ostend, 8400, Belgium
| | - A Kannen
- Helmholtz-Zentrum Geesthacht, Institute for Coastal Research, Max-Planck-Straße 1, Geesthacht, 21502, Germany
| | - S A Clarke
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Pakefield Road, Lowestoft, Suffolk, NE33 0HT, UK
| |
Collapse
|
24
|
Thrush SF, Hewitt JE, Gladstone‐Gallagher RV, Savage C, Lundquist C, O’Meara T, Vieillard A, Hillman JR, Mangan S, Douglas EJ, Clark DE, Lohrer AM, Pilditch C. Cumulative stressors reduce the self-regulating capacity of coastal ecosystems. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02223. [PMID: 32869444 PMCID: PMC7816261 DOI: 10.1002/eap.2223] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/09/2020] [Accepted: 06/29/2020] [Indexed: 05/11/2023]
Abstract
Marine ecosystems are prone to tipping points, particularly in coastal zones where dramatic changes are associated with interactions between cumulative stressors (e.g., shellfish harvesting, eutrophication and sediment inputs) and ecosystem functions. A common feature of many degraded estuaries is elevated turbidity that reduces incident light to the seafloor, resulting from multiple factors including changes in sediment loading, sea-level rise and increased water column algal biomass. To determine whether cumulative effects of elevated turbidity may result in marked changes in the interactions between ecosystem components driving nutrient processing, we conducted a large-scale experiment manipulating sediment nitrogen concentrations in 15 estuaries across a national-scale gradient in incident light at the seafloor. We identified a threshold in incident light that was related to distinct changes in the ecosystem interaction networks (EIN) that drive nutrient processing. Above this threshold, network connectivity was high with clear mechanistic links to denitrification and the role of large shellfish in nitrogen processing. The EIN analyses revealed interacting stressors resulting in a decoupling of ecosystem processes in turbid estuaries with a lower capacity to denitrify and process nitrogen. This suggests that, as turbidity increases with sediment load, coastal areas can be more vulnerable to eutrophication. The identified interactions between light, nutrient processing and the abundance of large shellfish emphasizes the importance of actions that seek to manage multiple stressors and conserve or enhance shellfish abundance, rather than actions focusing on limiting a single stressor.
Collapse
Affiliation(s)
- Simon F. Thrush
- Institute of Marine ScienceThe University of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Judi E. Hewitt
- Department of StatisticsThe University of AucklandPrivate Bag 92019Auckland1142New Zealand
- National Institute of Water and Atmospheric ResearchPO Box 11‐115Hillcrest Hamilton3251New Zealand
| | - Rebecca V. Gladstone‐Gallagher
- Institute of Marine ScienceThe University of AucklandPrivate Bag 92019Auckland1142New Zealand
- School of ScienceUniversity of WaikatoPrivate Bag 3105Hamilton3240New Zealand
| | - Candida Savage
- Department of Marine ScienceUniversity of OtagoPO Box 56Dunedin9054New Zealand
- Department of Biological SciencesUniversity of Cape TownPrivate BagRondebosch7700South Africa
| | - Carolyn Lundquist
- Institute of Marine ScienceThe University of AucklandPrivate Bag 92019Auckland1142New Zealand
- National Institute of Water and Atmospheric ResearchPO Box 11‐115Hillcrest Hamilton3251New Zealand
| | - Teri O’Meara
- Institute of Marine ScienceThe University of AucklandPrivate Bag 92019Auckland1142New Zealand
- Smithsonian Environmental Research Center647 Contees Wharf RoadEdgewaterMaryland21037‐0028USA
| | - Amanda Vieillard
- Institute of Marine ScienceThe University of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Jenny R. Hillman
- Institute of Marine ScienceThe University of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Stephanie Mangan
- School of ScienceUniversity of WaikatoPrivate Bag 3105Hamilton3240New Zealand
| | - Emily J. Douglas
- National Institute of Water and Atmospheric ResearchPO Box 11‐115Hillcrest Hamilton3251New Zealand
- School of ScienceUniversity of WaikatoPrivate Bag 3105Hamilton3240New Zealand
| | - Dana E. Clark
- School of ScienceUniversity of WaikatoPrivate Bag 3105Hamilton3240New Zealand
- Cawthron InstitutePrivate Bag 2Nelson,7042New Zealand
| | - Andrew M. Lohrer
- National Institute of Water and Atmospheric ResearchPO Box 11‐115Hillcrest Hamilton3251New Zealand
| | - Conrad Pilditch
- School of ScienceUniversity of WaikatoPrivate Bag 3105Hamilton3240New Zealand
| |
Collapse
|
25
|
Lonsdale JA, Blake S, Griffith A. A novel systematic, risk based approach to support the designation of aquatic disposal sites. MARINE POLLUTION BULLETIN 2021; 162:111874. [PMID: 33310542 DOI: 10.1016/j.marpolbul.2020.111874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Humans rely fundamentally on the marine environment, which is at the same time subject to an increasingly broad range of anthropogenic pressures, leading to growing concerns and the need for effective management for marine protection. One activity is the dredging of ports and harbours which is necessary to maintain safe channels for commercial and recreational navigation. Regulatory authorities in developing countries have few resources to conduct full EIAs for determining dredged material disposal sites but are required to do so under international obligations. The Tool in this paper provides an effective, pragmatic, transparent, consistent, and robust approach to protect the environment whilst using limited technical and scientific resources through a risk based approach to defining need, characterising and designating disposal sites at sea for dredged material. Whilst this approach for dredged material disposal sites was developed for use in UK, this process is equally applicable to other waste types, worldwide.
Collapse
Affiliation(s)
- Jemma-Anne Lonsdale
- Cefas, Pakefield Road, Lowestoft NR33 0HT, United Kingdom of Great Britain and Northern Ireland.
| | - Sylvia Blake
- Cefas, Pakefield Road, Lowestoft NR33 0HT, United Kingdom of Great Britain and Northern Ireland
| | - Andrew Griffith
- Cefas, Pakefield Road, Lowestoft NR33 0HT, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
26
|
Hammar L, Molander S, Pålsson J, Schmidtbauer Crona J, Carneiro G, Johansson T, Hume D, Kågesten G, Mattsson D, Törnqvist O, Zillén L, Mattsson M, Bergström U, Perry D, Caldow C, Andersen JH. Cumulative impact assessment for ecosystem-based marine spatial planning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139024. [PMID: 32464374 DOI: 10.1016/j.scitotenv.2020.139024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Claims for ocean space are growing while marine ecosystems suffer from centuries of insufficient care. Human pressures from runoff, atmospheric emissions, marine pollution, fishing, shipping, military operations and other activities wear on habitats and populations. Ecosystem-based marine spatial planning (MSP) has emerged worldwide as a strategic instrument for handling conflicting spatial claims among competing sectors and the environment. The twofold objective of both boosting the blue economy and protecting the environment is challenging in practice and marine planners need decision support. Cumulative Impact Assessment (CIA) was originally developed to provide an overview of the human imprint on the world's ocean ecosystems. We have now added a scenario component to the CIA model and used it within Swedish ecosystem-based MSP. This has allowed us to project environmental impacts for different planning alternatives throughout the planning process, strengthening the integration of environmental considerations into strategic decision-making. Every MSP decision may entail a local shift of environmental impact, causing positive or negative consequences for ecosystem components. The results from Swedish MSP in the North Sea and Baltic Sea illustrate that MSP certainly has the potential to lower net cumulative environmental impact, both locally and across sea basins, as long as environmental values are rated high and prevailing pressures derive from activities that are part of MSP. By synthesizing innumerous data into comprehensible decision support that informs marine planners of the likely environmental consequences of different options, CIA enables ecosystem-based MSP in practice.
Collapse
Affiliation(s)
- Linus Hammar
- Swedish Agency for Marine and Water Management, Gothenburg, Sweden.
| | - Sverker Molander
- Environmental Systems Analysis, Chalmers University of Technology, Gothenburg, Sweden
| | - Jonas Pålsson
- Swedish Agency for Marine and Water Management, Gothenburg, Sweden
| | | | - Gonçalo Carneiro
- Swedish Agency for Marine and Water Management, Gothenburg, Sweden
| | - Thomas Johansson
- Swedish Agency for Marine and Water Management, Gothenburg, Sweden
| | - Duncan Hume
- Geological Survey of Sweden, Uppsala, Sweden
| | | | | | | | | | | | - Ulf Bergström
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Sweden
| | - Diana Perry
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Sweden
| | - Chris Caldow
- NOAA Channel Islands National Marine Sanctuary, University of California Santa Barbara, USA
| | | |
Collapse
|