1
|
Yang Y, Han Y, Zhao X, Liu X, Zhang W, Peng C, Kong L, Zhan X. Risks of biodegradable films: The time-lagged release of phthalic acid esters and organophosphates esters under realistic agricultural environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 377:126467. [PMID: 40381682 DOI: 10.1016/j.envpol.2025.126467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/14/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Agricultural plastic films, while boosting crop productivity, may pose significant environmental risks due to additive release during crack degradation. Phthalic acid esters (PAEs) and organophosphate esters (OPEs), widely used as plasticizers and flame retardants respectively, represent two additive categories of the greatest environmental concern due to their persistence and endocrine-disrupting properties. This study systematically investigated the dynamic release of PAEs and OPEs from polyethylene (PE) and biodegradable poly (butylene adipate-co-terephthalate)/polylactic acid (PBAT/PLA)-based films under four simulated agricultural conditions: Natural conditions (NC), UV irradiation (UV), high temperature (HT), and flooding (FC). Uncultivated soil exhibited Σ8PAEs and Σ7OPEs approximately of 1317.5 ng/g and 1931.1 ng/g, respectively. During a 360 d incubation period, the contents of PAEs in soil surged during a short-term period, which may link to the desorption of adsorbed contaminant. Biodegradable films released higher PAEs concentrations than PE films, with secondary contamination peaks emerging 180-360 d post-incubation. Scanning electron microscopy (SEM) observations revealed that structural degradation (e.g., cracks/holes) during early degradation (0-180 d) unexpectedly amplified additive leaching in later stages, contrasting with assumptions of reduced contamination risks over time. UV irradiation had a photo-degradation effect on PAEs further accelerated the release of pollutants by 25-40 %, while high temperature and flooding conditions showed limited promoting effects along with NC conditions. These findings highlight the need for additive-free formulations and environment-specific mulch management policies to mitigate soil contamination risks.
Collapse
Affiliation(s)
- Yuhe Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanna Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuan Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiangdong Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lingjuan Kong
- Shanghai Agricultural Extension and Service Center, Shanghai, 201103, China.
| | - Xiuping Zhan
- Shanghai Agricultural Extension and Service Center, Shanghai, 201103, China
| |
Collapse
|
2
|
Yan G, Qiao C, Liu Z, Bohu T, Wang J, Zhang G, Bai Z, Zhuang X. Fugitive gases reduction and carbon sequestration potential of ecological floating beds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125341. [PMID: 40262495 DOI: 10.1016/j.jenvman.2025.125341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/15/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
Ecological floating beds (EFBs) are widely utilized as a green, cost-effective, and efficient technology for biologicalwater treatment in ponds, rivers, and secondary treatment of wastewater plant effluents. However, their potential for greenhouse gas (GHG) absorption and transformation is often overlooked. This paper begins by summarizing the accounting and emission status of GHGs from wastewater treatment plants (WWTPs), reviewing plant-microbial interactions in the phyllosphere and rhizosphere, and exploring plant-microbial-mediated transformations of carbon and nitrogen cycles. Special attention is given to variations in carbon and nitrogen cycling intensities within the plant phyllosphere and rhizosphere under warm and humid conditions with elevated GHG concentrations. We propose an exploratory approach using Ecological Floating Beds-Greenhouse (EFBs-GH) to absorb and transform fugitive gases from biochemical tanks, while enhancing sewage treatment efficiency. The study investigates the advantages and potential of EFBs for carbon sequestration and efficiency improvement in WWTPs, aiming to provide technical solutions and theoretical foundations for reducing fugitive gas emissions, including GHGs and odorous gases, etc., from concentrated sources such as WWTPs.
Collapse
Affiliation(s)
- Gaojun Yan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Binzhou Institute of Technology, Binzhou, Shandong, 256600, China.
| | - Chisong Qiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Binzhou Institute of Technology, Binzhou, Shandong, 256600, China; Zhengzhou University, Zhengzhou, 450001, China.
| | - Ziyan Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tsing Bohu
- Xiongan Institute of Innovation, Xiongan New Area, 071000, China.
| | - Jiancheng Wang
- Binzhou Institute of Technology, Binzhou, Shandong, 256600, China.
| | | | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Zhang L, He Y, Jiang L, Shi Y, Hao L, Huang L, Lyu M, Wang S. Plastic additives as a new threat to the global environment: Research status, remediation strategies and perspectives. ENVIRONMENTAL RESEARCH 2024; 263:120007. [PMID: 39284493 DOI: 10.1016/j.envres.2024.120007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Discharge or leaching of plastic additives, which are an essential part of the plastic production process, can lead to environmental pollution with serious impacts on human and ecosystem health. Recently, the emission of plastic additives is increasing dramatically, but its pollution condition has not received enough attention. Meanwhile, the effective treatment strategy of plastic additive pollution is lack of systematic introduction. Therefore, it is crucial to analyze the harm and pollution status of plastic additives and explore effective pollution control strategies. This paper reviews the latest research progress on additives in plastics, describes the effects of their migration into packaged products and leaching into the environment, presents the hazards of four major classes of plastic additives (i.e., plasticizers, flame retardants, stabilizers, and antimicrobials), summarizes the existing abiotic/biotic strategies for accelerated the remediation of additives, and finally provides perspectives on future research on the removal of plastic additives. To the best of our knowledge, this is the first review that systematically analyzes strategies for the treatment of plastic additives. The study of these strategies could (i) provide feasible, cost-effective abiotic method for the removal of plastic additives, (ii) further enrich the current knowledge on plastic additive bioremediation, and (iii) present application and future development of plants, invertebrates and machine learning in plastic additive remediation.
Collapse
Affiliation(s)
- Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Yuehui He
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lei Jiang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yong Shi
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lijuan Hao
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lirong Huang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
4
|
Fan L, Guo C, Zhang B, Ning M, Ren X. Distribution of phthalate esters and their metabolites in peanut plant during the entire growth period and their dietary risk assessment of peanuts in China. Food Sci Nutr 2024; 12:7202-7211. [PMID: 39479635 PMCID: PMC11521647 DOI: 10.1002/fsn3.4340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/30/2024] [Accepted: 07/03/2024] [Indexed: 11/02/2024] Open
Abstract
To understand the remediation potential of peanut plants to phthalate esters (PAEs) contamination, the absorption and accumulation patterns of dibutyl phthalate (DBP), bis (2-ethylhexyl) phthalate (DEHP), and diisononyl ortho-phthalate (DINP), as well as their metabolites-monoalkyl phthalate esters (MPEs), monobutyl phthalate (MBP), monoethylhexyl phthalate (MEHP), and monoisononyl phthalate (MINP), were examined in peanut plant during the entire growth period. It was found that the amounts of DBP and MBP in peanut plants correlated positively, when the DBP content is high, the MBP content is also high, as well as DEHP and MEHP. Additionally, the root contained the highest overall concentrations of DBP, DEHP, DINP, MBP, and MEHP over the course of the growth cycle. To evaluate PAEs contamination and dietary risk of peanuts in China, 18 PAEs and seven MPEs in 490 peanut samples collected from 17 provinces of China were detected by UPLC-MS/MS, the detection rate of 18 selected PAE in peanut was 100%. The dietary risk assessment suggested that the general population and high consuming population are not at risk of non-carcinogenic from the PAEs and MPEs found in peanuts of China. There is no need for the general consumption group to take any precautions against the carcinogenic risk of DEHP, and the high consumption group's carcinogenic risk is also within an acceptable range.
Collapse
Affiliation(s)
- Lixia Fan
- Institute of Quality Standard and Testing Technology for Agro‐ProductsShandong Academy of Agricultural SciencesJinanChina
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and SafetyJinanChina
| | - Changying Guo
- Institute of Quality Standard and Testing Technology for Agro‐ProductsShandong Academy of Agricultural SciencesJinanChina
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and SafetyJinanChina
| | - Bingchun Zhang
- Institute of Quality Standard and Testing Technology for Agro‐ProductsShandong Academy of Agricultural SciencesJinanChina
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and SafetyJinanChina
| | - Mingxiao Ning
- Institute of Quality Standard and Testing Technology for Agro‐ProductsShandong Academy of Agricultural SciencesJinanChina
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and SafetyJinanChina
| | - Xianfeng Ren
- Institute of Quality Standard and Testing Technology for Agro‐ProductsShandong Academy of Agricultural SciencesJinanChina
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and SafetyJinanChina
| |
Collapse
|
5
|
Liang J, Ji X, Feng X, Su P, Xu W, Zhang Q, Ren Z, Li Y, Zhu Q, Qu G, Liu R. Phthalate acid esters: A review of aquatic environmental occurrence and their interactions with plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134187. [PMID: 38574659 DOI: 10.1016/j.jhazmat.2024.134187] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
The increasing use of phthalate acid esters (PAEs) in various applications has inevitably led to their widespread presence in the aquatic environment. This presents a considerable threat to plants. However, the interactions between PAEs and plants in the aquatic environment have not yet been comprehensively reviewed. In this review, the properties, occurrence, uptake, transformation, and toxic effects of PAEs on plants in the aquatic environment are summarized. PAEs have been prevalently detected in the aquatic environment, including surface water, groundwater, seawater, and sediment, with concentrations ranging from the ng/L or ng/kg to the mg/L or mg/kg range. PAEs in the aquatic environment can be uptake, translocated, and metabolized by plants. Exposure to PAEs induces multiple adverse effects in aquatic plants, including growth perturbation, structural damage, disruption of photosynthesis, oxidative damage, and potential genotoxicity. High-throughput omics techniques further reveal the underlying toxicity molecular mechanisms of how PAEs disrupt plants on the transcription, protein, and metabolism levels. Finally, this review proposes that future studies should evaluate the interactions between plants and PAEs with a focus on long-term exposure to environmental PAE concentrations, the effects of PAE alternatives, and human health risks via the intake of plant-based foods.
Collapse
Affiliation(s)
- Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaomeng Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoxia Feng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Pinjie Su
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wenzhuo Xu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qingzhe Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhihua Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Yiling Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
6
|
Fernandes AS, Bragança I, Homem V. Personal care products in soil-plant and hydroponic systems: Uptake, translocation, and accumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168894. [PMID: 38036128 DOI: 10.1016/j.scitotenv.2023.168894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
Personal care products (PCPs) are organic compounds that are incorporated in several daily life products, such as shampoos, lotions, perfumes, cleaning products, air fresheners, etc. Due to their massive and continuous use and because they are not routinely monitored in the environment, these compounds are considered emerging contaminants. In fact, residues of PCPs are being discharged into the sewage system, reaching wastewater treatment plants (WWTPs), where most of these compounds are not completely degraded, being partially released into the environment via the final effluents and/or accumulating in the sewage sludges. Environmental sustainability is nowadays one of the main pillars of society and the application of circular economy models, promoting the waste valorisation, is increasingly encouraged. Therefore, irrigation with reclaimed wastewater or soil fertilization with sewage sludge/biosolids are interesting solutions. However, these practices raise concerns due to the potential risks associated to the presence of hazardous compounds, including PCPs. When applied to agricultural soils, PCPs present in these matrices can contaminate the soil or be taken up by crops. Crops can therefore become a route of exposure for humans and pose a risk to public health. However, the extent to which PCPs are taken up and bioaccumulated in crops is highly dependent on the physicochemical properties of the compounds, environmental variables, and the plant species. This issue has attracted the attention of scientists in recent years and the number of publications on this topic has rapidly increased, but a systematic review of these studies is lacking. Therefore, the present paper reviews the uptake, accumulation, and translocation of different classes of PCPs (biocides, parabens, synthetic musks, phthalates, UV-filters) following application of sewage sludge or reclaimed water under field and greenhouse conditions, but also in hydroponic systems. The factors influencing the uptake mechanism in plants were also discussed.
Collapse
Affiliation(s)
- Ana Sofia Fernandes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Idalina Bragança
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Vera Homem
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
7
|
Zhang S, Zhang Y, Ren S, Lu H, Li J, Liang X, Wang L, Li Y, Wang M, Zhang C. Uptake, translocation and metabolism of acetamiprid and cyromazine by cowpea (Vigna unguiculata L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121839. [PMID: 37201568 DOI: 10.1016/j.envpol.2023.121839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Acetamiprid (ACE) and cyromazine (CYR) are the two pesticides that are used relatively frequently and in large quantities in cowpea growing areas in Hainan. The uptake, translocation and metabolic patterns and subcellular distribution of these two pesticides in cowpea are important factors affecting pesticide residues in cowpea and assessing the dietary safety of cowpea. In this study, we investigated the uptake, translocation, subcellular distribution, and metabolic pathway of ACE and CYR in cowpea under laboratory hydroponic conditions. The distribution trends of both ACE and CYR in cowpea plants were leaves > stems > roots. The distribution of both pesticides in subcellular tissues of cowpea was cell soluble fraction > cell wall > cell organelle, and both transport modes were passive. A multiplicity of metabolic reactions of both pesticides occurred in cowpea, including dealkylation, hydroxylation and methylation. The results of the dietary risk assessment indicate that ACE is safe for use in cowpeas, but CYR poses an acute dietary risk to infants and young children. This study provided a basis for insights into the transport and distribution of ACE and CYR in vegetables and contributes to the assessment of whether pesticide residues in vegetables could pose a potential threat to human health at high concentrations of pesticides in the environment.
Collapse
Affiliation(s)
- Shanying Zhang
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, PR China
| | - Yu Zhang
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, PR China
| | - Saihao Ren
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, PR China
| | - Hongwei Lu
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China
| | - Jiaomei Li
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China
| | - Xiaoyu Liang
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, PR China
| | - Lifeng Wang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, PR China
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, PR China
| | - Meng Wang
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, PR China
| | - Chenghui Zhang
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, PR China.
| |
Collapse
|
8
|
Tang X, Chen M, Li M, Liu H, Tang H, Yang Y. Do differentially charged nanoplastics affect imidacloprid uptake, translocation, and metabolism in Chinese flowering cabbage? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161918. [PMID: 36736408 DOI: 10.1016/j.scitotenv.2023.161918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Micro(nano)plastics are ubiquitous in the environment. Among the microplastics, imidacloprid (IMI) concentration has been increasing in some intensive agricultural regions, thus receiving increased attention. However, only a few studies have investigated the interaction of nanoplastics (polystyrene (PS)) and IMI in vegetable crops. We studied the effects of positively (PS-NH2) and negatively (PS-COOH) charged nanoplastics on the uptake, translocation, and degradation of IMI in Chinese flowering cabbage grown in Hoagland solution for 28 days. PS-NH2 co-exposure with IMI inhibited plant growth, resulting in decreased plant weight, height, and root length. Translocation of IMI from the roots to the shoots was significantly lower in the presence of PS-NH2, whereas PS-COOH accelerated the accumulation and translocation of IMI in plants, thus potentially affecting IMI metabolism in plants. Notably, IMI-NTG and 5-OH-IMI were the two dominant metabolites. PS-NH2 co-exposure with IMI induced significant oxidation stress and considerably affected the activities of superoxide dismutase (SOD) and peroxidase (POD), indicating that the antioxidant defense system was the main mechanism for reducing oxidative damage. Notably, both positively and negatively charged nanoplastics can accumulate in Chinese flowering cabbage. Plants in the PS-COOH alone treatment group had the highest concentration of nanoplastics in both roots and shoots. The accumulation of nanoplastics, IMI, and its metabolites in plants raises concerns about their combined potential toxicity because it compromises food safety.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China; College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China.
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Muzi Li
- College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Huanping Liu
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China
| | - Hao Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China; College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Yang Yang
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China.
| |
Collapse
|
9
|
Viljoen SJ, Brailsford FL, Murphy DV, Hoyle FC, Chadwick DR, Jones DL. Leaching of phthalate acid esters from plastic mulch films and their degradation in response to UV irradiation and contrasting soil conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130256. [PMID: 36327845 DOI: 10.1016/j.jhazmat.2022.130256] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Phthalate acid esters (PAEs) are commonly used plastic additives, not chemically bound to the plastic that migrate into surrounding environments, posing a threat to environmental and human health. Dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) are two common PAEs found in agricultural soils, where degradation is attributed to microbial decomposition. Yet the impact of the plastic matrix on PAE degradation rates is poorly understood. Using 14C-labelled DBP and DEHP we show that migration from the plastic matrix into soil represents a key rate limiting step in their bioavailability and subsequent degradation. Incorporating PAEs into plastic film decreased their degradation in soil, DBP (DEHP) from 79% to 21% (9% to <1%), over four months when compared to direct application of PAEs. Mimicking surface soil conditions, we demonstrated that exposure to ultraviolet radiation accelerated PAE mineralisation twofold. Turnover of PAE was promoted by the addition of biosolids, while the presence of plants and other organic residues failed to promote degradation. We conclude that PAEs persist in soil for longer than previously thought due to physical trapping within the plastic matrix, suggesting PAEs released from plastics over very long time periods lead to increasing levels of contamination.
Collapse
Affiliation(s)
- Samantha J Viljoen
- Bioplastics Innovation Hub, Murdoch University, Murdoch, WA 6105, Australia; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia; Environment Centre Wales, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Francesca L Brailsford
- Bioplastics Innovation Hub, Murdoch University, Murdoch, WA 6105, Australia; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| | - Daniel V Murphy
- Bioplastics Innovation Hub, Murdoch University, Murdoch, WA 6105, Australia; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| | - Frances C Hoyle
- Bioplastics Innovation Hub, Murdoch University, Murdoch, WA 6105, Australia; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| | - David R Chadwick
- Environment Centre Wales, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Davey L Jones
- Bioplastics Innovation Hub, Murdoch University, Murdoch, WA 6105, Australia; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia; Environment Centre Wales, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
10
|
Xiang L, Harindintwali JD, Wang F, Redmile-Gordon M, Chang SX, Fu Y, He C, Muhoza B, Brahushi F, Bolan N, Jiang X, Ok YS, Rinklebe J, Schaeffer A, Zhu YG, Tiedje JM, Xing B. Integrating Biochar, Bacteria, and Plants for Sustainable Remediation of Soils Contaminated with Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16546-16566. [PMID: 36301703 PMCID: PMC9730858 DOI: 10.1021/acs.est.2c02976] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 05/06/2023]
Abstract
The contamination of soil with organic pollutants has been accelerated by agricultural and industrial development and poses a major threat to global ecosystems and human health. Various chemical and physical techniques have been developed to remediate soils contaminated with organic pollutants, but challenges related to cost, efficacy, and toxic byproducts often limit their sustainability. Fortunately, phytoremediation, achieved through the use of plants and associated microbiomes, has shown great promise for tackling environmental pollution; this technology has been tested both in the laboratory and in the field. Plant-microbe interactions further promote the efficacy of phytoremediation, with plant growth-promoting bacteria (PGPB) often used to assist the remediation of organic pollutants. However, the efficiency of microbe-assisted phytoremediation can be impeded by (i) high concentrations of secondary toxins, (ii) the absence of a suitable sink for these toxins, (iii) nutrient limitations, (iv) the lack of continued release of microbial inocula, and (v) the lack of shelter or porous habitats for planktonic organisms. In this regard, biochar affords unparalleled positive attributes that make it a suitable bacterial carrier and soil health enhancer. We propose that several barriers can be overcome by integrating plants, PGPB, and biochar for the remediation of organic pollutants in soil. Here, we explore the mechanisms by which biochar and PGPB can assist plants in the remediation of organic pollutants in soils, and thereby improve soil health. We analyze the cost-effectiveness, feasibility, life cycle, and practicality of this integration for sustainable restoration and management of soil.
Collapse
Affiliation(s)
- Leilei Xiang
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jean Damascene Harindintwali
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Institute
for Environmental Research, RWTH Aachen
University, 52074 Aachen, Germany
| | - Marc Redmile-Gordon
- Department
of Environmental Horticulture, Royal Horticultural
Society, Wisley, Surrey GU23 6QB, U.K.
| | - Scott X. Chang
- Department
of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Yuhao Fu
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao He
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Zhejiang University, Hangzhou 310058, China
| | - Bertrand Muhoza
- College
of Food Science, Northeast Agricultural
University, Harbin, Heilongjiang 150030, China
| | - Ferdi Brahushi
- Department
of Agroenvironment and Ecology, Agricultural
University of Tirana, Tirana 1029, Albania
| | - Nanthi Bolan
- School of
Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6001, Australia
| | - Xin Jiang
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Sik Ok
- Korea
Biochar Research Center, APRU Sustainable Waste Management Program
& Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic
of Korea
| | - Jörg Rinklebe
- Department
of Soil and Groundwater Management, Bergische
Universität, 42285 Wuppertal, Germany
| | - Andreas Schaeffer
- Institute
for Environmental Research, RWTH Aachen
University, 52074 Aachen, Germany
- School
of the Environment, State Key Laboratory of Pollution Control and
Resource Reuse, Nanjing University, 210023 Nanjing, China
- Key
Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Chongqing University, 400045 Chongqing, China
| | - Yong-guan Zhu
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Key
Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State
Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
| | - James M. Tiedje
- Center
for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States
| | - Baoshan Xing
- Stockbridge
School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
11
|
Tran HT, Nguyen MK, Hoang HG, Hutchison JM, Vu CT. Composting and green technologies for remediation of phthalate (PAE)-contaminated soil: Current status and future perspectives. CHEMOSPHERE 2022; 307:135989. [PMID: 35988768 PMCID: PMC10052775 DOI: 10.1016/j.chemosphere.2022.135989] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 05/29/2023]
Abstract
Phthalate esters (PAEs) are hazardous organic compounds that are widely added to plastics to enhance their flexibility, temperature, and acidic tolerance. The increase in global consumption and the corresponding environmental pollution of PAEs has caused broad public concerns. As most PAEs accumulate in soil due to their high hydrophobicity, composting is a robust remediation technology for PAE-contaminated soil (efficiency 25%-100%), where microbial activity plays an important role. This review summarized the roles of the microbial community, biodegradation pathways, and specific enzymes involved in the PAE degradation. Also, other green technologies, including biochar adsorption, bioaugmentation, and phytoremediation, for PAE degradation were also presented, compared, and discussed. Composting combined with these technologies significantly enhanced removal efficiency; yet, the properties and roles of each bacterial strain in the degradation, upscaling, and economic feasibility should be clarified in future research.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Civil, Environmental, and Architectural Engineering Department, University of Kansas, Lawrence, KS, 66045, USA.
| | - Minh-Ky Nguyen
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City 700000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai 76100, Viet Nam
| | - Justin M Hutchison
- Civil, Environmental, and Architectural Engineering Department, University of Kansas, Lawrence, KS, 66045, USA
| | - Chi Thanh Vu
- Civil and Environmental Engineering Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|
12
|
Xing H, Yu X, Huang J, Du X, Wang M, Sun J, Lu G, Tao X. Characteristics and Health Risks of Phthalate Ester Contamination in Soil and Plants in Coastal Areas of South China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159516. [PMID: 35954873 PMCID: PMC9367859 DOI: 10.3390/ijerph19159516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 02/01/2023]
Abstract
Phthalate esters (PAEs) are widely used as plasticizers in industrial and commercial products, and are classified as endocrine-disrupting compounds. In this study, we investigated the contamination characteristics and health risks of PAEs in the soil–plant system in coastal areas of South China. PAEs were detected in soil and plant samples at all 37 sampling sites. The total concentration of the 15 PAEs in soil samples ranged from 0.445 to 4.437 mg/kg, and the mean concentration was 1.582 ± 0.937 mg/kg. The total concentration of the 15 PAEs in plant samples ranged from 2.176 to 30.276 mg/kg, and the mean concentration was 8.712 ± 5.840 mg/kg. Di(2-Ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) were the major PAEs compounds in all samples. The selected contaminants exhibited completely different spatial distributions within the study area. Notably, higher concentrations of PAEs were found in the coastal Guangdong Province of South China. The average noncarcinogenic risks of Σ6 PAEs were at acceptable levels via dietary and nondietary routes. However, the noncarcinogenic risks posed by DEHP and DBP at some sampling sites were relatively high. Furthermore, dietary and nondietary carcinogenic risks were very low for BBP, but carcinogenic risks posed by DEHP via diet. The results suggest that PAEs in the coastal soil–plant system in South China, through human risk assessment, will induce some adverse effects on human health, especially in children. This study provides an important basis for risk management of PAEs in agriculture, and safety in coastal areas of South China.
Collapse
Affiliation(s)
- Huanhuan Xing
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; (H.X.); (X.D.); (M.W.)
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (X.Y.); (J.H.)
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (X.Y.); (J.H.)
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (X.Y.); (J.H.)
| | - Xiaodong Du
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; (H.X.); (X.D.); (M.W.)
| | - Mengting Wang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; (H.X.); (X.D.); (M.W.)
| | - Jianteng Sun
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; (H.X.); (X.D.); (M.W.)
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (X.Y.); (J.H.)
- Correspondence: (J.S.); (G.L.)
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; (H.X.); (X.D.); (M.W.)
- Correspondence: (J.S.); (G.L.)
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| |
Collapse
|
13
|
Tao Y, Xing Y, Jing J, Yu P, He M, Zhang J, Chen L, Jia C, Zhao E. Insight into the uptake, accumulation, and metabolism of the fungicide phenamacril in lettuce (Lactuca sativa L.) and radish (Raphanus sativus L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119240. [PMID: 35367504 DOI: 10.1016/j.envpol.2022.119240] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The fungal species Fusarium can cause devastating disease in agricultural crops. Phenamacril is an extremely specific cyanoacrylate fungicide and a strobilurine analog that has excellent efficacy against Fusarium. To date, information on the mechanisms involved in the uptake, accumulation, and metabolism of phenamacril in plants is scarce. In this study, lettuce and radish were chosen as model plants for a comparative analysis of the absorption, accumulation, and metabolic characteristics of phenamacril from a polluted environment. We determined the total amount of phenamacril in the plant-water system by measuring the concentrations in the solution and plant tissues at frequent intervals over the exposure period. Phenamacril was readily taken up by the plant roots with average root concentration factor ranges of 60.8-172.7 and 16.4-26.9 mL/g for lettuce and radish, respectively. However, it showed limited root-to-shoot translocation. The lettuce roots had a 2.8-12.4-fold higher phenamacril content than the shoots; whereas the radish plants demonstrated the opposite, with the shoots having 1.5 to 10.0 times more phenamacril than the roots. By the end of the exposure period, the mass losses from the plant-water systems reached 72.0% and 66.3% for phenamacril in lettuce and radish, respectively, suggesting evidence of phenamacril biotransformation. Further analysis confirmed that phenamacril was metabolized via hydroxylation, hydrolysis of esters, demethylation, and desaturation reactions, and formed multiple transformation products. This study furthers our understanding of the fate of phenamacril when it passes from the environment to plants and provides an important reference for its scientific use and risk assessment.
Collapse
Affiliation(s)
- Yan Tao
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, PR China
| | - Yinghui Xing
- College of Plant Protection, Hebei Agricultural University, Baoding, 071000, PR China
| | - Junjie Jing
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, PR China
| | - Pingzhong Yu
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, PR China
| | - Min He
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, PR China
| | - Jinwei Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, PR China
| | - Li Chen
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, PR China
| | - Chunhong Jia
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, PR China
| | - Ercheng Zhao
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, PR China.
| |
Collapse
|
14
|
He Y, Lin W, Shi C, Li R, Mu C, Wang C, Ye Y. Accumulation, detoxification, and toxicity of dibutyl phthalate in the swimming crab. CHEMOSPHERE 2022; 289:133183. [PMID: 34883125 DOI: 10.1016/j.chemosphere.2021.133183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Dibutyl phthalate (DBP) is one of the most commonly used and toxic phthalate esters and has a variety of harmful effects on aquatic animals. However, there is still a lack of knowledge on the accumulation, detoxification, and toxicity of DBP in aquatic animals. In this study, we chose the swimming crab Portunus trituberculatus, an ecologically and economically important species, as the model and investigated the metabolism of DBP and its effects on the detoxification, antioxidation, survival and growth of the crab juveniles to better understand DBP-triggered molecular response over different time courses. As a result, DBP could be accumulated in the swimming crab in a concentration-dependent manner and metabolized to monobutyl phthalate (MBP) and phthalic acid (PA) through de-esterification. DBP exposure induced the different responses of three cytochrome P450 members and antioxidant enzyme genes, enhanced gene transcript and protein levels of glutathione-S-transferase and two heat stress proteins and malondialdehyde accumulation, decreased glutathione level, and inhibited antioxidant enzyme activities. Further, no significant effect of DBP was observed in crab survival, size, and weight but there was molting retardation. Therefore, DBP induced strong detoxification and antioxidative defense mechanisms to overcome detrimental effects of DBP on the swimming crab juveniles despite a molting retardation as a trade-off in fitness costs. The prevalent coexistence of DBP with MBP and PA during the whole exposure period is raising concerns on the combined action and ecological risk to aquatic animals.
Collapse
Affiliation(s)
- Yimin He
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, 315832, China
| | - Weichuan Lin
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, 315832, China
| | - Ce Shi
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, 315832, China.
| | - Ronghua Li
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, 315832, China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, 315832, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315832, China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, 315832, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315832, China
| | - Yangfang Ye
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, 315832, China.
| |
Collapse
|
15
|
Wang D, Xi Y, Shi XY, Zhong YJ, Guo CL, Han YN, Li FM. Effect of plastic film mulching and film residues on phthalate esters concentrations in soil and plants, and its risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117546. [PMID: 34130117 DOI: 10.1016/j.envpol.2021.117546] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/13/2021] [Accepted: 06/03/2021] [Indexed: 05/14/2023]
Abstract
The application of plastic film mulching can greatly improve dryland productivity, while the release of toxic phthalate esters (PAEs) from the plastic film has generated concern. This study investigated the effects of mulched plastic film and residual plastic film on the PAE concentrations in the soil-crop system and assessed the risks to people eating crop products. The PAEs concentration in the 0-25 cm soil layer of plastic mulched farmland was 0.45-0.81 mg/kg, while the average PAEs concentration of 0.37-0.73 mg/kg in non-mulched farmland decreased by 19%. The PAEs concentration in mulched soil reached the highest in July, being 0.80-0.84 mg/kg, while in the non-mulched soil, the PAEs also appeared and gradually decreased from May at 0.62-0.74 mg/kg to October, and the PAEs concentrations were almost the same in the mulched and non-mulched soils at the harvest time in October at 0.37-0.44 mg/kg. With the amounts of residual film in farmland increasing from 0 kg/ha to 2700 kg/ha (equivalent to the total amount of residual film after 60 years of continuous plastic film mulching), the PAEs concentrations were no significant changes, being 0.54-0.93 mg/kg. Maize (Zea mays L.) roots could absorb and accumulate PAEs, and the bio-concentration factor (BCF) was 1.6-2.3, and the average PAEs concentrations in stems, leaves, and grains were 79%-80% of those in roots at 0.77-1.47 mg/kg. For the ingestion of maize grains or potato (Solanum tuberosum L.) tubers grown in plastic film mulched farmland or farmland containing residual film of 450-2700 kg/ha, the hazard index (HI) were less than 1, the carcinogenic risks (CRs) were 2.5 × 10-7-2.2 × 10-6, and the estrogenic equivalences were 6.17-17.73 ng E2/kg. This study provides important data for the risk management of PAEs in farmlands.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Grassland Agroecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, China
| | - Yue Xi
- State Key Laboratory of Grassland Agroecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, China
| | - Xiao-Yan Shi
- State Key Laboratory of Grassland Agroecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, China
| | - Yu-Jie Zhong
- State Key Laboratory of Grassland Agroecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, China
| | - Chao-Li Guo
- State Key Laboratory of Grassland Agroecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, China
| | - Ya-Nan Han
- State Key Laboratory of Grassland Agroecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, China
| | - Feng-Min Li
- State Key Laboratory of Grassland Agroecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, China.
| |
Collapse
|
16
|
Cheng Z, Wang Y, Qiao B, Zhang Q, Sun H. Insights into mechanisms involved in the uptake, translocation, and metabolism of phthalate esters in Chinese cabbage (Brassica rapa var. chinensis). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144945. [PMID: 33736326 DOI: 10.1016/j.scitotenv.2021.144945] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/02/2021] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
In the present study, the uptake and translocation mechanisms of phthalate esters (PAEs) and their primary mono esters metabolites (mPAEs), and the mechanisms of PAEs metabolism in plants were elucidated. The objectives of this study were to: (i) elucidate the fractionation of PAEs and mPAEs in Chinese cabbage (Brassica rapa var. chinensis) by hydroponic experiment, (ii) investigate the PAEs and mPAEs uptake mechanisms in root by inhibitor experiments, (iii) explain the molecular mechanisms of PAE interactions with the plant macromolecules by proteomics analysis and molecular docking, and (iv) reveal the involvement of carboxylesterase in the plant metabolism of PAEs. The results demonstrated that both the apoplastic and symplastic pathways contributed to the uptake of di-n-butyl phthalate (DnBP), di-(2-ethylhexyl) phthalate (DEHP), mono-n-butyl phthalate (MnBP), and mono-(2-ethylhexyl) phthalate (MEHP) by vacuum-infiltration-centrifugation method. The energy-dependent active process was involved for the uptake of DnBP, DEHP, MnBP, and MEHP. The passive uptake pathways of anion mPAEs and neutral PAEs differ. Aquaporins contributed to the uptake of anion MnBP and MEHP, and slow-type anion channel was also responsible for the uptake of anion MEHP. Molecular interactions of PAEs and macromolecules were further characterized by proteomic analysis and molecular docking. PAEs were transferred via non-specific lipid transfer protein by binding hydroponic amino acid residues. The carboxylesterase enzyme was attributed to the metabolism of PAEs to form mPAEs by using crude enzyme extract and commercial pure enzyme. This study provides both experimental and theoretical evidence for uptake, accumulation, and metabolism of PAEs in plants.
Collapse
Affiliation(s)
- Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Biting Qiao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
17
|
Mustafa AEZMA, Alkahtani J, Elshikh MS, Al Shaqhaa MM, Alwahibi MS. Enhanced uptake of di-(2-ethylhexyl) phthalate by the influence of citric acid in Helianthus annuus cultivated in artificially contaminated soil. CHEMOSPHERE 2021; 264:128485. [PMID: 33032222 DOI: 10.1016/j.chemosphere.2020.128485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/17/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Di-(2-ethylhexyl) phthalic acid (DEHP) is the most extensively practiced plasticizer compound and a representative endocrine disrupting pollutant. Recently, the environmental impact and toxicological causes of DHEP on human health have been extensively investigated. DEHP uptake by plants is most significant biotransformation process of DEHP in environment. In this study, Helianthus annuus (H.annuus), vastly efficient in phytoremediation of polluted soil was selected to study the uptake and phytoremediation of DEHP in contaminated soil. In addition, the effect of citric acid on enhanced uptake and removal of DEHP was also investigated. The orders of biomass concentrations showed in the CA treatments were 200 mM (60.5 g) ˃ 150 mM (54.5) ˃ 100 mM (50.2 g) ˃ 50 mM (46.5 g). The maximum shoot accumulation of DHEP (20 mg/kg) was observed at 200 mM citric acid treatment compared to all other treatments (50, 100, and 150 mM). Significant difference of the antioxidant enzymes activity (CAT, 25.7, POD, 22.5 (μmol H2O2/min/g FW) and COD 5.6 U/g FW) was observed between control and CA treatments as well as different concentrations of CA treated plants. The maximum ALP (0.17 mg.g-1soil.24 h-1) and urease activities (1.65 mg.g-1soil.24 h-1) were observed at 200 mM CA amended soils. The application of citric acid was significantly enhanced the H.annuus growth as well as uptake of DEHP. The results explored that the citric acid has excellent potential for the enhanced uptake of DEHP in contaminated soil.
Collapse
Affiliation(s)
- Abd El-Zaher M A Mustafa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Manal M Al Shaqhaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mona S Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|