1
|
Bergin R, Peters S, Mitrovic S, Bishop DP. Simultaneous Multiclass Analysis of Cyanotoxins in Cyanobacterial Samples Using Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry. J Sep Sci 2025; 48:e70121. [PMID: 40108890 PMCID: PMC11923511 DOI: 10.1002/jssc.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
The proliferation of cyanobacteria can result in algal blooms, which may cause environmental and biological harm due to the production and release of secondary metabolites, or cyanotoxins, into the affected waterway. Cyanobacteria can produce multiple classes of cyanotoxins; therefore, to understand the full toxic load of algal blooms, it is necessary to perform analyses that quantify each class. These classes are generally monitored individually due to the challenges associated with the differing physicochemical properties of the cyanotoxins. Hydrophilic interaction liquid chromatography (HILIC) is a form of chromatography capable of retaining multiple classes of cyanotoxins that differ in physicochemical properties. Here an HILIC-MS/MS method was developed and validated to detect 3 microcystins, 11 saxitoxins, and 2 anatoxins. The chromatographic conditions were optimized to allow for the separation of multiple pairs of saxitoxin epimers, and in-source fragmentation in the MS interface was used to develop unique MRMs between the pairs. The method was validated and had low limits of detection (LODs, between 0.00770 and 9.75 µg L-1) and limits of quantification (LOQs, between 0.0257 and 32.5 µg L-1) for all compounds. All analytes exhibited good linearity (R2 values ≥ 0.991) and low percentage relative standard deviations for retention time (0%-1.74%) and peak area (4.54%-27.6%), with spiked recoveries ranging from 75.6% to 117% for all compounds. A multiclass sample preparation method to extract the three classes of analytes from cyanobacterial samples was developed and validated, with 80:20 acetonitrile:water and 0.1% formic acid as the optimal extraction solvent. The newly developed sample preparation and analysis methods were applied to cultured cyanobacteria and field samples, with microcystins and saxitoxins detected. The multiclass sample preparation and analysis methods developed here improve on individual methods as they reduce the complexity and time of sample preparation and analysis and will assist ecotoxicologists in assessing the full toxic risk of cyanobacterial blooms.
Collapse
Affiliation(s)
- Rosemary Bergin
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Siobhan Peters
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Simon Mitrovic
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
2
|
Plata-Calzado C, Prieto AI, Cameán AM, Jos A. Analytical Methods for Anatoxin-a Determination: A Review. Toxins (Basel) 2024; 16:198. [PMID: 38668623 PMCID: PMC11053625 DOI: 10.3390/toxins16040198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Anatoxin-a (ATX-a) is a potent neurotoxin produced by several species of cyanobacteria whose exposure can have direct consequences, including neurological disorders and death. The increasing prevalence of harmful cyanobacterial blooms makes the detection and reliable assessment of ATX-a levels essential to prevent the risk associated with public health. Therefore, the aim of this review is to compile the analytical methods developed to date for the detection and quantification of ATX-a levels alone and in mixtures with other cyanotoxins and their suitability. A classification of the analytical methods available is fundamental to make an appropriate choice according to the type of sample, the equipment available, and the required sensitivity and specificity for each specific purpose. The most widely used detection technique for the quantification of this toxin is liquid chromatography-tandem mass spectrometry (LC-MS/MS). The analytical methods reviewed herein focus mainly on water and cyanobacterial samples, so the need for validated analytical methods in more complex matrices (vegetables and fish) for the determination of ATX-a to assess dietary exposure to this toxin is evidenced. There is currently a trend towards the validation of multitoxin methods as opposed to single-ATX-a determination methods, which corresponds to the real situation of cyanotoxins' confluence in nature.
Collapse
Affiliation(s)
| | - Ana I. Prieto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González 2, 41012 Seville, Spain; (C.P.-C.); (A.M.C.); (A.J.)
| | | | | |
Collapse
|
3
|
Müller Molnár C, Cintă Pînzaru S, Chis V, Feher I, Glamuzina B. SERS of cylindrospermopsin cyanotoxin: Prospects for quantitative analysis in solution and in fish tissue. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121984. [PMID: 36323082 DOI: 10.1016/j.saa.2022.121984] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Cylindrospermopsin (CYN), a cyanotoxin occurring in environmental waters as a cyanobacteria metabolite, has recently raised increased interest both in the scientific community and the environmental, food control and health care bodies due to the incidence of poisoning reports and the lack of prompt, effective detection and monitoring techniques. Here we report comprehensive Raman and SERS spectroscopy data on CYN cyanotoxin and provide a detailed characterization of the vibrational Raman signal based on DFT calculation as well as the adsorption properties with respect to the silver nanoparticles surface. Quantitative SERS analysis was achieved for concentrations range from 0.218 nM to 2.18 µM in aqueous solution. We further investigated the SERS discrimination of artificially intoxicated fish tissue from normal one, using linear discriminant analysis. Significant changes in SERS signal of toxic tissue compared to normal one allowed clear and fast differentiation of toxic tissue with 100% specificity/sensitivity. The cross-validation procedure provided 100% clear separation based on the SERS data. The results open reliable perspectives for SERS monitoring the environmental water bodies.
Collapse
Affiliation(s)
- Cs Müller Molnár
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania; Babeş-Bolyai University, Faculty of Physics, Biomolecular Physics Department, Kogălniceanu 1, 400084 Cluj Napoca, Romania.
| | - S Cintă Pînzaru
- Babeş-Bolyai University, Faculty of Physics, Biomolecular Physics Department, Kogălniceanu 1, 400084 Cluj Napoca, Romania.
| | - V Chis
- Babeş-Bolyai University, Faculty of Physics, Biomolecular Physics Department, Kogălniceanu 1, 400084 Cluj Napoca, Romania
| | - I Feher
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania
| | - B Glamuzina
- University of Dubrovnik, Applied Ecology Department, Ćira Carića 4 20000, Dubrovnik, Croatia
| |
Collapse
|
4
|
Te SH, Kok JWK, Luo R, You L, Sukarji NH, Goh KC, Sim ZY, Zhang D, He Y, Gin KYH. Coexistence of Synechococcus and Microcystis Blooms in a Tropical Urban Reservoir and Their Links with Microbiomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1613-1624. [PMID: 36653016 PMCID: PMC9894078 DOI: 10.1021/acs.est.2c04943] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Bacteria play a crucial role in driving ecological processes in aquatic ecosystems. Studies have shown that bacteria-cyanobacteria interactions contributed significantly to phytoplankton dynamics. However, information on the contribution of bacterial communities to blooms remains scarce. Here, we tracked changes in the bacterial community during the development of a cyanobacterial bloom in an equatorial estuarine reservoir. Two forms of blooms were observed simultaneously corresponding to the lotic and lentic characteristics of the sampling sites where significant spatial variabilities in physicochemical water quality, cyanobacterial biomass, secondary metabolites, and cyanobacterial/bacterial compositions were detected. Microcystis dominated the upstream sites during peak periods and were succeeded by Synechococcus when the bloom subsided. For the main body of the reservoir, a mixed bloom featuring coccoid and filamentous cyanobacteria (Microcystis, Synechococcus, Planktothricoides, Nodosilinea, Raphidiopsis, and Prochlorothrix) was observed. Concentrations of the picocyanobacteria Synechococcus remained high throughout the study, and their positive correlations with cylindrospermopsin and anatoxin-a suggested that they could produce cyanotoxins, which pose more damaging impacts than previously supposed. Succession of different cyanobacteria (Synechococcus and Microcystis) following changes in nutrient composition and ionic strength was demonstrated. The microbiomes associated with blooms were unique to the dominant cyanobacteria. Generic and specialized bloom biomarkers for the Microcystis and downstream mixed blooms were also identified. Microscillaceae, Chthoniobacteraceae, and Roseomonas were the major heterotrophic bacteria associated with Microcystis bloom, whereas Phycisphaeraceae and Methylacidiphilaceae were the most prominent groups for the Synechococcus bloom. Collectively, bacterial community can be greatly deviated by the geological condition, monsoon season, cyanobacterial density, and dominant cyanobacteria.
Collapse
Affiliation(s)
- Shu Harn Te
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Jerome Wai Kit Kok
- Department
of Civil and Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, 117576 Singapore
| | - Rong Luo
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Luhua You
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Nur Hanisah Sukarji
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Kwan Chien Goh
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Zhi Yang Sim
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Dong Zhang
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Yiliang He
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
- Department
of Civil and Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, 117576 Singapore
| |
Collapse
|
5
|
Qiu J, Zhang J, Li A. Cytotoxicity and intestinal permeability of phycotoxins assessed by the human Caco-2 cell model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114447. [PMID: 38321666 DOI: 10.1016/j.ecoenv.2022.114447] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2024]
Abstract
Phycotoxins are a class of multiple natural metabolites produced by microalgae in marine and freshwater ecosystems that bioaccumulate in food webs, particularly in shellfish, having a great impact on human health. Phycotoxins are mainly leached and absorbed in the small intestine when human consumers accidentally ingest toxic aquatic products contaminated by them. To assess the intestinal uptake and damage of phycotoxins, a typical in vitro model was developed and widely applied using the human colorectal adenocarcinoma Caco-2 cell line. In this review, the application cases were summarized for multiple phycotoxins, including microcystins (MCs), cylindrospermopsins (CYNs), domoic acids (DAs), saxitoxins (STXs), palytoxins (PLTXs), okadaic acids (OAs), pectenotoxins (PTXs) and azaspiracids (AZAs). The results of the previous studies showed that each group of phycotoxins presented different cytotoxicity and mechanisms to Caco-2 cells, and significant discrepancies in the transport of phycotoxin across the Caco-2 cell monolayers. Therefore, this review describes the evaluation assays of the Caco-2 cell monolayer model, illustrates the principles of several primary cytotoxicity evaluation assays, and summarizes the cytotoxicity of each group of phycotoxins to Caco-2 cells line and their cellular transport, and finally proposes the development of multicellular intestinal models for future comprehensive studies on the toxicity and absorption of phycotoxins in the intestine. It will improve the understanding of Caco-2 cell monolayer models in the toxicology studies on phycotoxins and the potentially detrimental effects of microalgal toxins on the human intestine.
Collapse
Affiliation(s)
- Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Jingrui Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
6
|
Tong X, Mohapatra S, Zhang J, Tran NH, You L, He Y, Gin KYH. Source, fate, transport and modelling of selected emerging contaminants in the aquatic environment: Current status and future perspectives. WATER RESEARCH 2022; 217:118418. [PMID: 35417822 DOI: 10.1016/j.watres.2022.118418] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/07/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
The occurrence of emerging contaminants (ECs), such as pharmaceuticals and personal care products (PPCPs), perfluoroalkyl and polyfluoroalkyl substances (PFASs) and endocrine-disrupting chemicals (EDCs) in aquatic environments represent a major threat to water resources due to their potential risks to the ecosystem and humans even at trace levels. Mathematical modelling can be a useful tool as a comprehensive approach to study their fate and transport in natural waters. However, modelling studies of the occurrence, fate and transport of ECs in aquatic environments have generally received far less attention than the more widespread field and laboratory studies. In this study, we reviewed the current status of modelling ECs based on selected representative ECs, including their sources, fate and various mechanisms as well as their interactions with the surrounding environments in aquatic ecosystems, and explore future development and perspectives in this area. Most importantly, the principles, mathematical derivations, ongoing development and applications of various ECs models in different geographical regions are critically reviewed and discussed. The recommendations for improving data quality, monitoring planning, model development and applications were also suggested. The outcomes of this review can lay down a future framework in developing a comprehensive ECs modelling approach to help researchers and policymakers effectively manage water resources impacted by rising levels of ECs.
Collapse
Affiliation(s)
- Xuneng Tong
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Jingjie Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore; Shenzhen Municipal Engineering Lab of Environmental IoT Technologies, Southern University of Science and Technology, Shenzhen, 518055, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Ngoc Han Tran
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Luhua You
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore.
| |
Collapse
|
7
|
You L, Tong X, Te SH, Tran NH, Bte Sukarji NH, He Y, Gin KYH. Multi-class secondary metabolites in cyanobacterial blooms from a tropical water body: Distribution patterns and real-time prediction. WATER RESEARCH 2022; 212:118129. [PMID: 35121419 DOI: 10.1016/j.watres.2022.118129] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacterial blooms that produce toxins occur in freshwaters worldwide and yet, the occurrence and distribution patterns of many cyanobacterial secondary metabolites particularly in tropical regions are still not fully understood. Moreover, predictive models for these metabolites by using easily accessible water quality indicators are rarely discussed. In this study, we investigated the co-occurrence and spatiotemporal trends of 18 well-known and less-studied cyanobacterial metabolites (including [D-Asp3] microcystin-LR (DM-LR), [D-Asp3] microcystin-RR (DM-RR), microcystin-HilR (MC-HilR), microcystin-HtyR (MC-HtyR), microcystin-LA (MC-LA), microcystin-LF (MC-LF), microcystin-LR (MC-LR), microcystin-LW (MC-LW), microcystin-LY (MC-LY), microcystin-RR (MC-RR) and microcystin-WR (MC-WR), Anatoxin-a (ATX-a), homoanatoxin-a (HATX-a), cylindrospermospin (CYN), nodularin (NOD), anabaenopeptin A (AptA) and anabaenopeptin B (AptB)) in a tropical freshwater lake often plagued with blooms. Random forest (RF) models were developed to predict MCs and CYN and assess the relative importance of 22 potential predictors that determined their concentrations. The results showed that 11 MCs, CYN, ATX-a, HATX-a, AptA and AptB were found at least once in the studied water body, with MC-RR and CYN being the most frequently occurring, intracellularly and extracellularly. AptA and AptB were detected for the first time in tropical freshwaters at low concentrations. The metabolite profiles were highly variable at both temporal and spatial scales, in line with spatially different phytoplankton assemblages. Notably, MCs decreased with the increase of CYN, possibly revealing interspecific competition of cyanobacteria. The rapid RF prediction models for MCs and CYN were successfully developed using 4 identified drivers (i.e., chlorophyll-a, total carbon, rainfall and ammonium for MCs prediction; and chloride, total carbon, rainfall and nitrate for CYN prediction). The established models can help to better understand the potential relationships between cyanotoxins and environmental variables as well as provide useful information for making policy decisions.
Collapse
Affiliation(s)
- Luhua You
- E2S2-CREATE, NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower, #15-02, 138602, Singapore
| | - Xuneng Tong
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Shu Harn Te
- E2S2-CREATE, NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower, #15-02, 138602, Singapore
| | - Ngoc Han Tran
- E2S2-CREATE, NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower, #15-02, 138602, Singapore
| | - Nur Hanisah Bte Sukarji
- E2S2-CREATE, NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower, #15-02, 138602, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- E2S2-CREATE, NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower, #15-02, 138602, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
8
|
Abdallah MF, Van Hassel WHR, Andjelkovic M, Wilmotte A, Rajkovic A. Cyanotoxins and Food Contamination in Developing Countries: Review of Their Types, Toxicity, Analysis, Occurrence and Mitigation Strategies. Toxins (Basel) 2021; 13:786. [PMID: 34822570 PMCID: PMC8619289 DOI: 10.3390/toxins13110786] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
Cyanotoxins have gained global public interest due to their potential to bioaccumulate in food, which threatens human health. Bloom formation is usually enhanced under Mediterranean, subtropical and tropical climates which are the dominant climate types in developing countries. In this context, we present an up-to-date overview of cyanotoxins (types, toxic effects, analysis, occurrence, and mitigation) with a special focus on their contamination in (sea)food from all the developing countries in Africa, Asia, and Latin America as this has received less attention. A total of 65 publications have been found (from 2000 until October 2021) reporting the contamination by one or more cyanotoxins in seafood and edible plants (five papers). Only Brazil and China conducted more research on cyanotoxin contamination in food in comparison to other countries. The majority of research focused on the detection of microcystins using different analytical methods. The detected levels mostly surpassed the provisional tolerable daily intake limit set by the World Health Organization, indicating a real risk to the exposed population. Assessment of cyanotoxin contamination in foods from developing countries still requires further investigations by conducting more survey studies, especially the simultaneous detection of multiple categories of cyanotoxins in food.
Collapse
Affiliation(s)
- Mohamed F. Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Wannes H. R. Van Hassel
- Sciensano, Chemical and Physical Health Risks, Organic Contaminants and Additives, Leuvensesteenweg 17, 3080 Tervuren, Belgium;
| | - Mirjana Andjelkovic
- Sciensano Research Institute, Chemical and Physical Health Risks, Risk and Health Impact Assessment, Ju-liette Wytsmanstreet 14, 1050 Brussels, Belgium;
| | - Annick Wilmotte
- BCCM/ULC Cyanobacteria Collection, InBios-Centre for Protein Engineering, Université de Liège, 4000 Liège, Belgium;
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
9
|
Blahova L, Sehnal L, Lepsova-Skacelova O, Szmucova V, Babica P, Hilscherova K, Teikari J, Sivonen K, Blaha L. Occurrence of cylindrospermopsin, anatoxin-a and their homologs in the southern Czech Republic - Taxonomical, analytical, and molecular approaches. HARMFUL ALGAE 2021; 108:102101. [PMID: 34588122 DOI: 10.1016/j.hal.2021.102101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/26/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Water bloom-forming cyanobacteria have a severe impact on freshwater quality. Although some cyanobacterial toxins such as microcystins have been studied extensively, other toxins like anatoxin-a (ATX) and their structural analogs - as well as cyanobacterial taxa producing these toxins remain to be explored in detail. The present study investigated levels of ATX, CYN and their homologs along with the occurrence of anaC and cyrJ genes in water blooms in 16 sites in the Czech Republic that were pre-selected concerning the presence of potential toxin producers. Besides, we also studied toxins and genes in a series of strains available in our laboratories. ATX and its congener HATX were detected in 5 natural biomass samples from the Czech Republic (maximum concentration 2.8 micrograms per gram d.w.). Interestingly, the anaC gene coding for ATX production was not detected in any of these toxin-positive biomass samples. The concentrations of ATX congeners in cyanobacterial laboratory strains were about 10-times higher than those of the original ATX, which calls for further research addressing levels and hazards of ATX analogs. Regarding the CYN and 7-deoxyCYN (other CYN congeners were not analyzed in this study) - these toxins were identified in a single small pond in the Czech Republic at concentrations 4.3 and 2.7 micrograms per gram of biomass d.w., respectively (corresponded to dissolved concentrations higher than 1 microgram per liter). The CYN-positive sample was dominated by CYN-producing taxa Raphidiopsis (basionym Cylindrospermopsis) and Cuspidothrix. We also confirmed the presence of a specific cyrJ gene in this natural bloom sample. To our knowledge, this is the first study pointing to Raphidiopsis (Cylindrospermopsis) and Cuspidothrix as producers of CYN in Europe. This observation calls for further research because of their increasing occurrence in (Central) Europe along with the global change. The present study demonstrates the importance of using combined (taxonomical, analytical, and molecular) approaches in the assessment of hazardous cyanobacteria and their toxins in freshwaters.
Collapse
Affiliation(s)
- Lucie Blahova
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Ludek Sehnal
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Olga Lepsova-Skacelova
- University of South Bohemia, Faculty of Science, Department of Botany, 370 05 Ceske Budejovice, Czech Republic
| | - Vendula Szmucova
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Klara Hilscherova
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jonna Teikari
- University of Helsinki, Department of Microbiology, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Kaarina Sivonen
- University of Helsinki, Department of Microbiology, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
10
|
Tavakoli Y, Mohammadipanah F, Te SH, You L, Gin KYH. Biodiversity, phylogeny and toxin production profile of cyanobacterial strains isolated from lake Latyan in Iran. HARMFUL ALGAE 2021; 106:102054. [PMID: 34154781 DOI: 10.1016/j.hal.2021.102054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Monitoring toxigenic cyanobacteria in freshwaters is of great importance due to the adverse health impacts on humans and aquatic organisms. Here we studied cyanobacterial occurrence and biodiversity in a drinking water reservoir in Tehran province, Iran. In total, nine different species representing three orders of Synechococcales, Oscillatoriales and Nostocales were isolated and classified into six families and seven genera ranging from 92.3% to 99.0% similarities in their partial 16S rDNA with GenBank sequences. The cultures were analyzed for cyanotoxins production by the Artemia salina bioassay, ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and also screened for the presence of marker genes involved in toxins production. Ethyl acetate extracts of three strains showed more than 50% mortality on A. salina larvae after 24 h at a concentration of 500 µg/ml. Production of at least one of the cyanotoxins, microcystin (MC), cylindrospermopsin (CYN) and anatoxin-a (ATX-a), was detected in 6 of the strains. Seven MC variants with a total concentration of 130.6 ng/mg of biomass dry weight were detected for the strain Phormidium sp. UTMC6001 and molecular screening of the mcyE gene also confirmed the presence of this biomarker in its genome. Our study also revealed the production of CYN in a novel picocyanobacterial strain Cyanobium sp. UTMC6007 at 1.0 ng/mg of biomass dry weight. Considering the limited information on freshwater toxic cyanobacteria taxonomy in the Middle East, these findings will expand our knowledge and consequently aid in development of new water management policies in future.
Collapse
Affiliation(s)
- Yasaman Tavakoli
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1417864411, Iran; Energy and environmental sustainability for megacities (E2S2), NUS Environmental Research Institute (NERI), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, 138602 Singapore
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1417864411, Iran.
| | - Shu Harn Te
- Energy and environmental sustainability for megacities (E2S2), NUS Environmental Research Institute (NERI), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, 138602 Singapore
| | - Luhua You
- Energy and environmental sustainability for megacities (E2S2), NUS Environmental Research Institute (NERI), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, 138602 Singapore
| | - Karina Yew-Hoong Gin
- Energy and environmental sustainability for megacities (E2S2), NUS Environmental Research Institute (NERI), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, 138602 Singapore; Department of Civil & Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering 2, Singapore 117576, Singapore.
| |
Collapse
|
11
|
Yang Y, Yu G, Chen Y, Jia N, Li R. Four decades of progress in cylindrospermopsin research: The ins and outs of a potent cyanotoxin. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124653. [PMID: 33321325 DOI: 10.1016/j.jhazmat.2020.124653] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The cyanotoxin cylindrospermopsin (CYN), a toxic metabolite from cyanobacteria, is of particular concern due to its cosmopolitan occurrence, aquatic bioaccumulation, and multi-organ toxicity. CYN is the second most often recorded cyanotoxin worldwide, and cases of human morbidity and animal mortality are associated with ingestion of CYN contaminated water. The toxin poses a great challenge for drinking water treatment plants and public health authorities. CYN, with the major toxicity manifested in the liver, is cytotoxic, genotoxic, immunotoxic, neurotoxic and may be carcinogenic. Adverse effects are also reported for endocrine and developmental processes. We present a comprehensive review of CYN over the past four decades since its first reported poisoning event, highlighting its global occurrence, biosynthesis, toxicology, removal, and monitoring. In addition, current data gaps are identified, and future directions for CYN research are outlined. This review is beneficial for understanding the ins and outs of this environmental pollutant, and for robustly assessing health hazards posed by CYN exposure to humans and other organisms.
Collapse
Affiliation(s)
- Yiming Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Youxin Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Nannan Jia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renhui Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
12
|
Gin KYH, Sim ZY, Goh KC, Kok JWK, Te SH, Tran NH, Li W, He Y. Novel cyanotoxin-producing Synechococcus in tropical lakes. WATER RESEARCH 2021; 192:116828. [PMID: 33508721 DOI: 10.1016/j.watres.2021.116828] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/04/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Picocyanobacteria are small cyanobacteria, being about 0.8-1.5 µm in size. They are present in freshwater environments all over the world and are known to cause harmful algal blooms, although their effects are not well understood. Algal blooms are important to manage because they threaten freshwater resources, with potentially severe effects on ecological and human health. There is also increased urgency due to urbanization and climate change trends which are expected to exacerbate these bloom dynamics. These changes are expected to especially favour picocyanobacteria groups, emphasizing the need for better characterization of their effects in the environment. In this study, we report the discovery that Synechococcus sp. could produce cylindrospermopsin (CYN) and anatoxin-a (ATX). This ability had never been previously reported for this species. Their toxin genes were also partial compared to other major producers such as Raphidiopsis sp. and Anabaena sp., demonstrating potentially unique synthesis pathways that provides insight into the various mechanisms of genetic variation that drives toxin synthesis. The Synechococcus sp. strains were found to produce about 9.0 × 10-5-6.8 × 10-4 fg CYN cell-1 and 4.7 × 10-4-1.5 × 10-2 fg ATX cell-1. The potential for Synechococcus sp. to be toxic highlights a global concern due to its widespread distribution, and through environmental trends that increasingly favour its productivity within freshwater systems around the world.
Collapse
Affiliation(s)
- Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore.
| | - Zhi Yang Sim
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Kwan Chien Goh
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Jerome Wai Kit Kok
- Department of Civil and Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Shu Harn Te
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Ngoc Han Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Wenxuan Li
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|