1
|
Crouchett-Catalán F, Arango J, Bernard O, Martínez C, Casagli F, Jeison D. M-ALBA: A modelling framework to guide the optimization of membrane-assisted algae-bacteria systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 971:179061. [PMID: 40081076 DOI: 10.1016/j.scitotenv.2025.179061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Biological systems combining microalgae and bacteria have been identified as a system with great potential to provide sustainable sanitation solutions. This consortium has been conceived to be normally implemented in the form of high-rate algal-bacteria ponds (HRABP). However, these systems face limitations, associated with effluent clarification and limited loads. Application of membrane filtration to induce biomass retention and effluent clarification have been identified as way to overcome such constraints. However, the effects of decoupling solid retention time (SRT) from hydraulic retention time (HRT) are complex and sometimes difficult to determine or predict. In this study, a model (M-ALBA) was used to predict the performance of a membrane-assisted HRABP. M-ALBA represents an extension of the previously validated ALBA model, by incorporating a compartment providing membrane separation. M-ALBA considers the action of microalgae, heterotrophic bacteria, and nitrifying bacteria (ammonium oxidizers and nitrite oxidizers), including 34 state variables, 19 biological processes and gas-liquid mass transfer of O2, CO2, and NH3. Experimental data from previous study were used to evaluate the model accuracy. Different scenarios were simulated and analysed, using mass balances, considering SRT and HRT in the ranges 4.5-22.5 and 0.5-4.5 days, respectively. Results show how decoupling SRT from HRT improves effluent quality, by increasing nitrogen removal, while avoiding ammonia volatilization. Additionally, it allows operation at lower HRT values, achieving the best performance at HRT 1.5 days. The results obtained in this study contributed to a better understanding of the complex microalgae-bacteria dynamics in membrane-assisted HRABPs.
Collapse
Affiliation(s)
- François Crouchett-Catalán
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, 2085 Valparaíso, Chile.
| | - Jineth Arango
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, 2085 Valparaíso, Chile.
| | - Olivier Bernard
- Centre INRIA d'Université Côte d'Azur, GreenOwl team, Sophia-Antipolis, 06902, France; LOV, Sorbonne University, CNRS, UMR 7093, Station Zoologique, BP 28, 06234 Villefranche-sur-mer, France.
| | - Carlos Martínez
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, 2085 Valparaíso, Chile.
| | - Francesca Casagli
- Centre INRIA d'Université Côte d'Azur, GreenOwl team, Sophia-Antipolis, 06902, France; LOV, Sorbonne University, CNRS, UMR 7093, Station Zoologique, BP 28, 06234 Villefranche-sur-mer, France.
| | - David Jeison
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, 2085 Valparaíso, Chile.
| |
Collapse
|
2
|
Galang MGK, Chen J, Cobb K, Zarra T, Ruan R. Reduction of biogenic CO 2 emissions, COD and nutrients in municipal wastewater via mixotrophic co-cultivation of Chlorella vulgaris - aerobic-activated sludge consortium. ENVIRONMENTAL TECHNOLOGY 2025:1-15. [PMID: 39956149 DOI: 10.1080/09593330.2025.2463696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025]
Abstract
In this study, biogenic CO2 emissions, COD and other nutrients (i.e. TP, TN and N H 4 + - N ) from aerobic treatment in municipal Wastewater Treatment Plants (WWTP) were quantified and reduced by phycoremediation using a mixotrophic co-cultivation of Chlorella vulgaris and activated sludge. It has been shown that the microalgae sludge consortium (A-ASR, R1) outperformed the normal-activated sludge system (ASR, R2). In fact, estimated biogenic CO2 emissions with algae mark 1.20-fold higher removal, COD marks 1.40-fold higher removal, TP marks 1.70-fold higher removal, and N H 4 + - N marks 1.40-fold higher removal, compared to normal activated sludge (ASR, R2). Meanwhile, due to aeration, N O 3 - - N concentration increased in both reactors because some Ns were oxidized through nitrification. Furthermore, COD increased again during C. vulgaris stationary growth; thus, activated sludge addition every 4 days (optimal time) was implemented to maintain algae-bacteria balance. The results suggest that integrating the treatment of GHG emissions and water pollutants in a single, concurrent process can significantly enhance the sustainability and efficiency of wastewater treatment plants, which has not been explored comprehensively. Finally, by leveraging C. vulgaris capabilities for carbon and nutrients sequestration, this study can provide practical guidance for achieving carbon neutrality in a WWTP.
Collapse
Affiliation(s)
- Mark Gino K Galang
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Fisciano, Italy
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Junhui Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Kirk Cobb
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Fisciano, Italy
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
3
|
Lu Q, Li H, Liu H, Xu Z, Saikaly PE, Zhang W. A fast microbial nitrogen-assimilation technology enhances nitrogen migration and single-cell-protein production in high-ammonia piggery wastewater. ENVIRONMENTAL RESEARCH 2024; 257:119329. [PMID: 38851372 DOI: 10.1016/j.envres.2024.119329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Conventional methods, such as freshwater dilution and ammonia stripping, have been widely employed for microalgae-based piggery wastewater (PW) treatment, but they cause high freshwater consumption and intensive ammonia loss, respectively. This present work developed a novel fast microbial nitrogen-assimilation technology by integrating nitrogen starvation, zeolite-based adsorption, pH control, and co-culture of microalgae-yeast for the PW treatment. Among them, the nitrogen starvation accelerated the nitrogen removal and shortened the treatment period, but it could not improve the tolerance level of microalgal cells to ammonia toxicity based on oxidative stress. Therefore, zeolite was added to reduce the initial total ammonia-nitrogen concentration to around 300 mg/L by ammonia adsorption. Slowly releasing ammonia at the later phase maintained the total ammonia-nitrogen concentration in the PW. However, the pH increase could cause lots of ammonia loss air and pollution and inhibit the desorption of ammonia from zeolite and the growth and metabolism of microalgae during the microalgae cultivation. Thus, the highest biomass yield (3.25 g/L) and nitrogen recovery ratio (40.31%) were achieved when the pH of PW was controlled at 6.0. After combining the co-cultivation of microalgae-yeast, the carbon-nitrogen co-assimilation and the alleviation of pH fluctuation further enhanced the nutrient removal and nitrogen migration to high-protein biomass. Consequently, the fast microbial nitrogen-assimilation technology can help update the industrial system for high-ammonia wastewater treatment by improving the treatment and nitrogen recovery rates.
Collapse
Affiliation(s)
- Qian Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Huankai Li
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Zhimin Xu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Pascal E Saikaly
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Wenxiang Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
4
|
Khairuddin NFM, Khan N, Sankaran S, Farooq W, Ahmad I, Aljundi IH. Produced water treatment by semi-continuous sequential bioreactor and microalgae photobioreactor. BIORESOUR BIOPROCESS 2024; 11:56. [PMID: 38825667 PMCID: PMC11144686 DOI: 10.1186/s40643-024-00775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/25/2024] [Indexed: 06/04/2024] Open
Abstract
Produced water (PW) from oil and gas exploration adversely affects aquatic life and living organisms, necessitating treatment before discharge to meet effluent permissible limits. This study first used activated sludge to pretreat PW in a sequential batch reactor (SBR). The pretreated PW then entered a 13 L photobioreactor (PBR) containing Scenedesmus obliquus microalgae culture. Initially, 10% of the PW mixed with 90% microalgae culture in the PBR. After the exponential growth of the microalgae, an additional 25% of PW was added to the PBR without extra nutrients. This study reported the growth performance of microalgae in the PBR as well as the reduction in effluent's total organic carbon (TOC), total dissolved solids (TDS), electrical conductivity (EC), and heavy metals content. The results demonstrated removal efficiencies of 64% for TOC, 49.8% for TDS, and 49.1% for EC. The results also showed reductions in barium, iron, and manganese in the effluent by 95, 76, and 52%, respectively.
Collapse
Affiliation(s)
- Nur Farahah Mohd Khairuddin
- Membranes and Water Security IRC, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia.
| | - Nadeem Khan
- Membranes and Water Security IRC, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Saravanan Sankaran
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Wasif Farooq
- Membranes and Water Security IRC, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
- Chemical Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Irshad Ahmad
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Isam H Aljundi
- Membranes and Water Security IRC, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
- Chemical Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| |
Collapse
|
5
|
Burratti L, Bertelà F, Sisani M, Di Guida I, Battocchio C, Iucci G, Prosposito P, Venditti I. Three-Dimensional Printed Filters Based on Poly(ethylene glycol) Diacrylate Hydrogels Doped with Silver Nanoparticles for Removing Hg(II) Ions from Water. Polymers (Basel) 2024; 16:1034. [PMID: 38674954 PMCID: PMC11054970 DOI: 10.3390/polym16081034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Nowadays, due to water pollution, more and more living beings are exposed to dangerous compounds, which can lead to them contracting diseases. The removal of contaminants (including heavy metals) from water is, therefore, a necessary aspect to guarantee the well-being of living beings. Among the most used techniques, the employment of adsorbent materials is certainly advantageous, as they are easy to synthesize and are cheap. In this work, poly(ethylene glycol) diacrylate (PEGDA) hydrogels doped with silver nanoparticles (AgNPs) for removing Hg(II) ions from water are presented. AgNPs were embedded in PEGDA-based matrices by using a photo-polymerizable solution. By exploiting a custom-made 3D printer, the filters were synthesized. The kinetics of interaction was studied, revealing that the adsorption equilibrium is achieved in 8 h. Subsequently, the adsorption isotherms of PEGDA doped with AgNPs towards Hg(II) ions were studied at different temperatures (4 °C, 25 °C, and 50 °C). In all cases, the best isotherm model was the Langmuir one (revealing that the chemisorption is the driving process and the most favorable one), with maximum adsorption capacities equal to 0.55, 0.57, and 0.61 mg/g, respectively. Finally, the removal efficiency was evaluated for the three temperatures, obtaining for 4 °C, 25 °C, and 50 °C the values 94%, 94%, and 86%, respectively.
Collapse
Affiliation(s)
- Luca Burratti
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy; (F.B.); (C.B.); (G.I.); (I.V.)
| | - Federica Bertelà
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy; (F.B.); (C.B.); (G.I.); (I.V.)
| | - Michele Sisani
- Prolabin & Tefarm S.r.l., 06134 Perugia, Italy; (M.S.); (I.D.G.)
| | - Irene Di Guida
- Prolabin & Tefarm S.r.l., 06134 Perugia, Italy; (M.S.); (I.D.G.)
| | - Chiara Battocchio
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy; (F.B.); (C.B.); (G.I.); (I.V.)
| | - Giovanna Iucci
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy; (F.B.); (C.B.); (G.I.); (I.V.)
| | - Paolo Prosposito
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy;
| | - Iole Venditti
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy; (F.B.); (C.B.); (G.I.); (I.V.)
| |
Collapse
|
6
|
Wu H, Li A, Gao S, Xing Z, Zhao P. The performance, mechanism and greenhouse gas emission potential of nitrogen removal technology for low carbon source wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166491. [PMID: 37633391 DOI: 10.1016/j.scitotenv.2023.166491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
Excessive nitrogen can lead to eutrophication of water bodies. However, the removal of nitrogen from low carbon source wastewater has always been challenging due to the limited availability of carbon sources as electron donors. Biological nitrogen removal technology can be classified into three categories: heterotrophic biological technology (HBT) that utilizes organic matter as electron donors, autotrophic biological technology (ABT) that relies on inorganic electrons as electron donors, and heterotrophic-autotrophic coupling technology (CBT) that combines multiple electron donors. This work reviews the research progress, microbial mechanism, greenhouse gas emission potential, and challenges of the three technologies. In summary, compared to HBT and ABT, CBT shows greater application potential, although pilot-scale implementation is yet to be achieved. The composition of nitrogen removal microorganisms is different, mainly driven by electron donors. ABT and CBT exhibit the lowest potential for greenhouse gas emissions compared to HBT. N2O, CH4, and CO2 emissions can be controlled by optimizing conditions and adding constructed wetlands. Furthermore, these technologies need further improvement to meet increasingly stringent emission standards and address emerging pollutants. Common measures include bioaugmentation in HBT, the development of novel materials to promote mass transfer efficiency of ABT, and the construction of BES-enhanced multi-electron donor systems to achieve pollutant prevention and removal. This work serves as a valuable reference for the development of clean and sustainable low carbon source wastewater treatment technology, as well as for addressing the challenges posed by global warming.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Sicong Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
7
|
Yan H, Liu X, Wang Z, Zhao P, Dang Y, Sun D. Enhancement of carbon sequestration via MIL-100(Fe)@PUS in bacterial-algal symbiosis treating municipal wastewater. BIORESOURCE TECHNOLOGY 2023; 380:129083. [PMID: 37100299 DOI: 10.1016/j.biortech.2023.129083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/14/2023]
Abstract
Bacterial-algal symbiosis (BAS) is a promising carbon neutrality technology to treat municipal wastewater. However, there are still non-trivial CO2 emissions in BAS due to the slow diffusion and biosorption of CO2. Aiming to reduce CO2 emissions, the inoculation ratio of aerobic sludge to algae was further optimized at 4:1 on the base of favorable carbon conversion. MIL-100(Fe) served as CO2 adsorbents was immobilized on polyurethane sponge (PUS) to increase the interaction with microbes. When MIL-100(Fe)@PUS was added to BAS in the treatment of municipal wastewater, zero CO2 emission was achieved and the carbon sequestration efficiency was increased from 79.9% to 89.0%. Most genes related to metabolic function were derived from Proteobacteria and Chlorophyta. The mechanism of enhanced carbon sequestration in BAS could be attributed to both enrichment of algae (Chlorella and Micractinium) and increased abundance of functional genes related to PS I, PS II and Calvin cycle in photosynthesis.
Collapse
Affiliation(s)
- Hongkang Yan
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Xinying Liu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Zheng Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Pengsha Zhao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Yan Dang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
8
|
Romero L, Oulego P, Collado S, Díaz M. Advanced thermal hydrolysis for biopolymer production from waste activated sludge: Kinetics and fingerprints. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118243. [PMID: 37276624 DOI: 10.1016/j.jenvman.2023.118243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Waste activated sludge (WAS) is the main residue of wastewater treatment plants, which can be considered an environmental problem of prime concern due to its increasing generation. In this study, a non-energetic approach was evaluated in order to use WAS as a renewable resource of high value-added products. For this reason, WAS was treated by thermal hydrolysis, H2O2 oxidation and advanced thermal hydrolysis (ATH) promoted by H2O2. The influence of temperature, H2O2 concentration and dosing strategy on biomolecule production (proteins and carbohydrates), size distribution (fingerprints) and various physico-chemical parameters (VSS, total and soluble COD, soluble TOC, pH and colour) was studied. The results revealed a synergistic effect between TH and H2O2 oxidation, which led to a significant increase in the production of both proteins and carbohydrates. In this sense, the concentration of proteins and carbohydrates obtained during TH at 85 °C for120 min was found to be 1376 ± 9 mg/L (121 mg/gVSSo) and 208 ± 4 mg/L (18 mg/gVSSo), respectively. However, in the presence of 4.5 mM H2O2/gVSSo under the same process conditions, the concentrations of proteins and carbohydrates exhibited a significant increase of 1.9-fold and 3.1-fold, respectively. Besides, the addition of H2O2 promoted the transformation of hydrophobic compounds, such as proteins and or lipids, into hydrophilic compounds, which presented low and medium sizes. An increase in temperature improved the solubilization rate and the yield of biomolecules significantly. Besides, the analysis of the kinetics related to the dosing strategy of H2O2 suggested the existence of two fractions during WAS solubilization, one of them being easily oxidizable, whereas the other one was more refractory to oxidation. Thus, the value of kH2O2 for the first addition of 1 mM H2O2/g VSSo was 0.020 L0.4 mgH2O2-0.4 min-1, while it was 4.3 and 8 times lower for the second and third additions, respectively.
Collapse
Affiliation(s)
- Luis Romero
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, E-33071, Oviedo, Spain
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, E-33071, Oviedo, Spain
| | - Sergio Collado
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, E-33071, Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, E-33071, Oviedo, Spain.
| |
Collapse
|
9
|
Li Q, Xu Y, Liang C, Peng L, Zhou Y. Nitrogen removal by algal-bacterial consortium during mainstream wastewater treatment: Transformation mechanisms and potential N 2O mitigation. WATER RESEARCH 2023; 235:119890. [PMID: 36958220 DOI: 10.1016/j.watres.2023.119890] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/08/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
This work investigated nitrogen transformation pathways of the algal-bacterial consortium as well as its potential in reducing nitrous oxide (N2O) emission in enclosed, open and aerated reactors. The results confirmed the superior ammonium removal performance of the algal-bacterial consortium relative to the single algae (Chlorella vulgaris) or the activated sludge, achieving the highest efficiency at 100% and the highest rate of 7.34 mg N g MLSS-1 h-1 in the open reactor with glucose. Enhanced total nitrogen (TN) removal (to 74.6%) by the algal-bacterial consortium was achieved via mixotrophic algal assimilation and bacterial denitrification under oxygen-limited and glucose-sufficient conditions. Nitrogen distribution indicated that ammonia oxidation (∼41.8%) and algal assimilation (∼43.5%) were the main pathways to remove ammonium by the algal-bacterial consortium. TN removal by the algal-bacterial consortium was primarily achieved by algal assimilation (28.1-40.8%), followed by bacterial denitrification (2.9-26.5%). Furthermore, the algal-bacterial consortium contributed to N2O mitigation compared with the activated sludge, reducing N2O production by 35.5-55.0% via autotrophic pathways and by 81.0-93.6% via mixotrophic pathways. Nitrogen assimilation by algae was boosted with the addition of glucose and thus largely restrained N2O production from nitrification and denitrification. The synergism between algae and bacteria was also conducive to an enhanced N2O reduction by denitrification and reduced direct/indirect carbon emissions.
Collapse
Affiliation(s)
- Qi Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China.
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University 639798, Singapore
| |
Collapse
|
10
|
Huang KX, Vadiveloo A, Zhou JL, Yang L, Chen DZ, Gao F. Integrated culture and harvest systems for improved microalgal biomass production and wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 376:128941. [PMID: 36948428 DOI: 10.1016/j.biortech.2023.128941] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Microalgae cultivation in wastewater has received much attention as an environmentally sustainable approach. However, commercial application of this technique is challenging due to the low biomass output and high harvesting costs. Recently, integrated culture and harvest systems including microalgae biofilm, membrane photobioreactor, microalgae-fungi co-culture, microalgae-activated sludge co-culture, and microalgae auto-flocculation have been explored for efficiently coupling microalgal biomass production with wastewater purification. In such systems, the cultivation of microalgae and the separation of algal cells from wastewater are performed in the same reactor, enabling microalgae grown in the cultivation system to reach higher concentration, thus greatly improving the efficiency of biomass production and wastewater purification. Additionally, the design of such innovative systems also allows for microalgae cells to be harvested more efficiently. This review summarizes the mechanisms, characteristics, applications, and development trends of the various integrated systems and discusses their potential for broad applications, which worth further research.
Collapse
Affiliation(s)
- Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National Engineering Research Center for Marine Aquaculture, Zhoushan 316000, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Lei Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Dong-Zhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China.
| |
Collapse
|
11
|
Zhang Y, Wang JH, Zhang JT, Chi ZY, Kong FT, Zhang Q. The long overlooked microalgal nitrous oxide emission: Characteristics, mechanisms, and influencing factors in microalgae-based wastewater treatment scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159153. [PMID: 36195148 DOI: 10.1016/j.scitotenv.2022.159153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Microalgae-based wastewater treatment is particularly advantageous in simultaneous CO2 sequestration and nutrients recovery, and has received increasing recognition and attention in the global context of synergistic pollutants and carbon reduction. However, the fact that microalgae themselves can generate the potent greenhouse gas nitrous oxide (N2O) has been long overlooked, most previous research mainly regarded microalgae as labile organic carbon source or oxygenic approach that interfere bacterial nitrification-denitrification and the concomitant N2O production. This study, therefore, summarized the amount and rate of N2O emission in microalgae-based systems, interpreted in-depth the multiple pathways that lead to NO formation as the key precursor of N2O, and the pathways that transform NO into N2O. Reduction of nitrite could take place in either the cytoplasm or the mitochondria to form NO by a series of enzymes, while the NO could be enzymatically reduced to N2O at the chloroplasts or the mitochondria respectively under light and dark conditions. The influences of abiotic factors on microalgal N2O emission were analyzed, including nitrogen types and concentrations that directly affect the nitrogen transformation routes, illumination and oxygen conditions that regulate the enzymatic activities related to N2O generation, and other factors that indirectly interfere N2O emission via NO regulation. The uncertainty of microalgae-based N2O emission in wastewater treatment scenarios were emphasized, which would be particularly impacted by the complex competition between microalgae and ammonia oxidizing bacteria or nitrite oxidizing bacteria over ammonium or inorganic carbon source. Future studies should put more efforts in improving the compatibility of N2O emission results expressions, and adopting consistent NO detection methods for N2O emission prediction. This review will provide much valuable information on the characteristics and mechanisms of microalgal N2O emission, and arouse more attention to the non-negligible N2O emission that may impair overall greenhouse gas reduction efficiency in microalgae-based wastewater treatment systems.
Collapse
Affiliation(s)
- Ying Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China.
| | - Jing-Tian Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Zhan-You Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Fan-Tao Kong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China
| |
Collapse
|
12
|
Nagarajan D, Lee DJ, Varjani S, Lam SS, Allakhverdiev SI, Chang JS. Microalgae-based wastewater treatment - Microalgae-bacteria consortia, multi-omics approaches and algal stress response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157110. [PMID: 35787906 DOI: 10.1016/j.scitotenv.2022.157110] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Sustainable environmental management is one of the important aspects of sustainable development goals. Increasing amounts of wastewaters (WW) from exponential economic growth is a major challenge, and conventional treatment methods entail a huge carbon footprint in terms of energy use and GHG emissions. Microalgae-based WW treatment is a potential candidate for sustainable WW treatment. The nutrients which are otherwise unutilized in the conventional processes are recovered in the beneficial microalgal biomass. This review presents comprehensive information regarding the potential of microalgae as sustainable bioremediation agents. Microalgae-bacterial consortia play a critical role in synergistic nutrient removal, supported by the complex nutritional and metabolite exchange between microalgae and the associated bacteria. Design of effective microalgae-bacteria consortia either by screening or by recent technologies such as synthetic biology approaches are highly required for efficient WW treatment. Furthermore, this review discusses the crucial research gap in microalgal WW treatment - the application of a multi-omics platform for understanding microalgal response towards WW conditions and the design of effective microalgal or microalgae-bacteria consortia based on genetic information. While metagenomics helps in the identification and monitoring of the microbial community throughout the treatment process, transcriptomics, proteomics and metabolomics aid in studying the algal cellular response towards the nutrients and pollutants in WW. It has been established that the integration of microalgal processes into conventional WW treatment systems is feasible. In this direction, future research directions for microalgal WW treatment emphasize the need for identifying the niche in WW treatment, while highlighting the pilot sale plants in existence. Microalgae-based WW treatment could be a potential phase in the waste hierarchy of circular economy and sustainability, considering WWs are a rich secondary source of finite resources such as nitrogen and phosphorus.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
13
|
The intrinsic characteristics of microalgae biofilm and their potential applications in pollutants removal — A review. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Abstract
This Special Issue of Sustainability aims to report the recent developments in Sustainable Wastewater Management and Treatment, mainly those focused on improving the overall performance of wastewater treatment plants (WWTPs) in terms of both reducing their environmental impact and integrating them into the urban circular economy [...]
Collapse
|
15
|
Fallahiarezoudar E, Ahmadipourroudposht M, Yakideh K, Ngadiman NA. An eco-environmental efficiency analysis of Malaysia sewage treatment plants: an incorporated window-based data envelopment analysis and ordinary least square regression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38285-38302. [PMID: 35075563 DOI: 10.1007/s11356-022-18742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Most human activities that use water produced sewage. As urbanization grows, the overall demand for water grows. Correspondingly, the amount of produced sewage and pollution-induced water shortage is continuously increasing worldwide. Ensuring there are sufficient and safe water supplies for everyone is becoming increasingly challenging. Sewage treatment is an essential prerequisite for water reclamation and reuse. Sewage treatment plants' (STPs) performance in terms of economic and environmental perspective is known as a critical indicator for this purpose. Here, the window-based data envelopment analysis model was applied to dynamically assess the relative annual efficiency of STPs under different window widths. A total of five STPs across Malaysia were analyzed during 2015-2019. The labor cost, utility cost, operation cost, chemical consumption cost, and removal rate of pollution, as well as greenhouse gases' (GHGs) emissions, all were integrated to interpret the eco-environmental efficiency. Moreover, the ordinary least square as a supplementary method was used to regress the efficiency drivers. The results indicated the particular window width significantly affects the average of overall efficiencies; however, it shows no influence on the ranking of STP efficiency. The labor cost was determined as the most influential parameter, involving almost 40% of the total cost incurred. Hence, higher efficiency was observed with the larger-scale plants. Meanwhile, the statistical regression analysis illustrates the significance of plant scale, inflow cBOD concentrations, and inflow total phosphorus concentrations at [Formula: see text] on the performance. Lastly, some applicable techniques were suggested in terms of GHG emission mitigation.
Collapse
Affiliation(s)
- Ehsan Fallahiarezoudar
- Department of Industrial Engineering, Faculty of Technology and Engineering, East of Guilan, University of Guilan, 44918, Roudsar, Guilan, Iran.
| | - Mohaddeseh Ahmadipourroudposht
- Department of Industrial Engineering, Faculty of Technology, Islamic Azad University (Lahijan Branch), Lahijan, Guilan, Iran
| | - Keikhosro Yakideh
- Department of Management, Faculty of Literature and Humanities, University of Guilan, 41996, Rasht, Guilan, Iran
| | - NorHasrul Akhmal Ngadiman
- Department of Materials, Manufacturing & Industrial Engineering, School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| |
Collapse
|
16
|
Oruganti RK, Katam K, Show PL, Gadhamshetty V, Upadhyayula VKK, Bhattacharyya D. A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal. Bioengineered 2022; 13:10412-10453. [PMID: 35441582 PMCID: PMC9161886 DOI: 10.1080/21655979.2022.2056823] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/08/2022] Open
Abstract
The scarcity of water resources and environmental pollution have highlighted the need for sustainable wastewater treatment. Existing conventional treatment systems are energy-intensive and not always able to meet stringent disposal standards. Recently, algal-bacterial systems have emerged as environmentally friendly sustainable processes for wastewater treatment and resource recovery. The algal-bacterial systems work on the principle of the symbiotic relationship between algae and bacteria. This paper comprehensively discusses the most recent studies on algal-bacterial systems for wastewater treatment, factors affecting the treatment, and aspects of resource recovery from the biomass. The algal-bacterial interaction includes cell-to-cell communication, substrate exchange, and horizontal gene transfer. The quorum sensing (QS) molecules and their effects on algal-bacterial interactions are briefly discussed. The effect of the factors such as pH, temperature, C/N/P ratio, light intensity, and external aeration on the algal-bacterial systems have been discussed. An overview of the modeling aspects of algal-bacterial systems has been provided. The algal-bacterial systems have the potential for removing micropollutants because of the diverse possible interactions between algae-bacteria. The removal mechanisms of micropollutants - sorption, biodegradation, and photodegradation, have been reviewed. The harvesting methods and resource recovery aspects have been presented. The major challenges associated with algal-bacterial systems for real scale implementation and future perspectives have been discussed. Integrating wastewater treatment with the algal biorefinery concept reduces the overall waste component in a wastewater treatment system by converting the biomass into a useful product, resulting in a sustainable system that contributes to the circular bioeconomy.
Collapse
Affiliation(s)
- Raj Kumar Oruganti
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, India
| | - Keerthi Katam
- Department of Civil Engineering, École Centrale School of Engineering, Mahindra University, India
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Malaysia
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid, South Dakota, USA
| | | | - Debraj Bhattacharyya
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, India
| |
Collapse
|
17
|
Çakirsoy I, Miyamoto T, Ohtake N. Physiology of microalgae and their application to sustainable agriculture: A mini-review. FRONTIERS IN PLANT SCIENCE 2022; 13:1005991. [PMID: 36466259 PMCID: PMC9712798 DOI: 10.3389/fpls.2022.1005991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/24/2022] [Indexed: 05/13/2023]
Abstract
Concern that depletion of fertilizer feedstocks, which are a finite mineral resource, threatens agricultural sustainability has driven the exploration of sustainable methods of soil fertilization. Given that microalgae, which are unicellular photosynthetic organisms, can take up nutrients efficiently from water systems, their application in a biological wastewater purification system followed by the use of their biomass as a fertilizer alternative has attracted attention. Such applications of microalgae would contribute to the accelerated recycling of nutrients from wastewater to farmland. Many previous reports have provided information on the physiological characteristics of microalgae that support their utility. In this review, we focus on recent achievements of studies on microalgal physiology and relevant applications and outline the prospects for the contribution of microalgae to the establishment of sustainable agricultural practices.
Collapse
Affiliation(s)
- Iffet Çakirsoy
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Takuji Miyamoto
- Sakeology Center, Niigata University, Niigata, Japan
- *Correspondence: Takuji Miyamoto, ; Norikuni Ohtake,
| | - Norikuni Ohtake
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
- *Correspondence: Takuji Miyamoto, ; Norikuni Ohtake,
| |
Collapse
|
18
|
Zheng M, Dai J, Ji X, Li D, He Y, Wang M, Huang J, Chen B. An integrated semi-continuous culture to treat original swine wastewater and fix carbon dioxide by an indigenous Chlorella vulgaris MBFJNU-1 in an outdoor photobioreactor. BIORESOURCE TECHNOLOGY 2021; 340:125703. [PMID: 34371337 DOI: 10.1016/j.biortech.2021.125703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
This work was the first time to evaluate the ability of an isolated Chlorella vulgaris MBFJNU-1 to remove nutrients of original swine wastewater (OSW) and fix carbon dioxide (CO2) under outdoor conditions in a simultaneous manner using column photobioreactors. The results showed that microalga cultivated at 3% CO2 in a batch mode achieved the highest biomass and CO2 fixation rate. Then, a semi-continuous process for OSW treatment and CO2 fixation simultaneously by microalga was established and the renewal rate of this process was deeply investigated. Microalga cultivated at 3% CO2 and 80% renewal rate gave the highest productivities of total biomass, CO2 fixation and the greatest average removal rates of total nitrogen, N-NH4+, total phosphorus and chemical oxygen demand. Taken together, C. vulgaris MBFJNU-1 was the promising microalga under outdoor conditions for swine wastewater treatment and CO2 fixation simultaneously for biofuels and biofertilizer production.
Collapse
Affiliation(s)
- Mingmin Zheng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Jingxuan Dai
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Xiaowei Ji
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Daogui Li
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Jian Huang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
19
|
Saravanan A, Senthil Kumar P, Jeevanantham S, Karishma S, Tajsabreen B, Yaashikaa PR, Reshma B. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. CHEMOSPHERE 2021; 280:130595. [PMID: 33940449 DOI: 10.1016/j.chemosphere.2021.130595] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 05/16/2023]
Abstract
Release of pollutants due to inflating anthropogenic activities has a conspicuous effect on the environment. As water is uniquely vulnerable to pollution, water pollution control has received a considerable attention among the most critical environmental challenges. Diverse sources such as heavy metals, dyes, pathogenic and organic compounds lead to deterioration in water quality. Demand for the pollutant free water has created a greater concern in water treatment technologies. The pollutants can be mitigated through physical, chemical and biological methodologies thereby alleviating the health and environmental effects caused. Diverse technologies for wastewater treatment with an accentuation on pre-treatment of feedstock and post treatment are concisely summed up. Pollutants present in the water can be removed by processes some of which include filtration, reverse osmosis, degasification, sedimentation, flocculation, precipitation and adsorption. Membrane separation and adsorption methodologies utilized to control water pollution and are found to be more effective than conventional methods and established recovery processes. This audit relatively features different methodologies that show remarkable power of eliminating pollutants from wastewater. This review describes recent research development on wastewater treatment and its respective benefits/applications in field scale were discussed. Finally, the difficulties in the enhancement of treatment methodologies for pragmatic commercial application are recognized and the future viewpoints are introduced.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P Senthil Kumar
- Deprtament of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - B Tajsabreen
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India
| | - B Reshma
- Deprtament of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| |
Collapse
|
20
|
Singh V, Mishra V. Exploring the effects of different combinations of predictor variables for the treatment of wastewater by microalgae and biomass production. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Zhang X, Liu Y. Circular economy-driven ammonium recovery from municipal wastewater: State of the art, challenges and solutions forward. BIORESOURCE TECHNOLOGY 2021; 334:125231. [PMID: 33962161 DOI: 10.1016/j.biortech.2021.125231] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
In current biological nitrogen removal (BNR) processes, most of ammonium in municipal wastewater is biologically transformed to nitrogen gas, making ammonium recovery impossible. Thus, this article aims to provide a holistic review with in-depth discussions on (i) current BNR processes for municipal wastewater treatment, (ii) environmental and economic costs behind ammonium in municipal wastewater, (iii) state of the art of ammonium recovery from municipal wastewater including anaerobic membrane bioreactor turning municipal wastewater to a liquid fertilizer, capturing ammonium in phototrophic biomass, waste activated sludge for land application, bioelectrochemical systems, biological conversion of ammonium to nitrous oxide as a fuel oxidizer, and adsorption, (iv) feasibility and challenge of adsorption for ammonium recovery from municipal wastewater and (v) innovative municipal wastewater reclamation processes coupled with ammonium recovery. Moving forward, municipal wastewater reclamation and resource recovery should be addressed under the framework of circular economy.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
22
|
Kumar A, Thanki A, Padhiyar H, Singh NK, Pandey S, Yadav M, Yu ZG. Greenhouse gases emission control in WWTS via potential operational strategies: A critical review. CHEMOSPHERE 2021; 273:129694. [PMID: 33524744 DOI: 10.1016/j.chemosphere.2021.129694] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Greenhouse gases (GHGs; particularly, CO2, CH4, and N2O) emission from wastewater treatment systems (WWTS) is one of the inevitable concerns for sustainable development. This indicator is directly linked with the carbon footprint and potential impacts of WWTS on climate change. In this view, various modeling, design, and operational tools have been introduced to mitigate the WWTS associated GHGs, at regional and global scales. In this study, authors have critically reviewed the selected potential operational control strategies for GHGs emission, particularly emitted from the operational stages of biological WWTS. The investigated operational control strategies and/or treatment configurations included intermittent aeration, varying dissolved oxygen, enhanced sludge retention time, coupled aerobic-anoxic nitrous decomposition operation, and microalgae integrated treatment process. Based on this analysis and considering the trade-off between treatment performance of WWTS and GHGs control, an integrated framework is also proposed for existing and upcoming WWTS. The findings of this study and proposed framework will play an instrumental role in mitigating the GHGs at various operational stages of WWTS. Future research works in this direction can lead to a better understanding of investigated operational GHGs emission control strategies in WWTS.
Collapse
Affiliation(s)
- Amit Kumar
- Nanjing University of Information Science and Technology, School of Hydrology and Water Resources, Nanjing, 210044, China.
| | | | - Hirendrasinh Padhiyar
- Department of Environmental Science and Engineering, Marwadi Education Foundation Group of Institutions, Rajkot, India.
| | - Nitin Kumar Singh
- Department of Environmental Science and Engineering, Marwadi Education Foundation Group of Institutions, Rajkot, India.
| | - Siddhartha Pandey
- Department of Civil Engineering, GH Raisoni University, Amravati, Maharashtra, 444701, India.
| | - Manish Yadav
- Central Mine Planning and Design Institute, India.
| | - Zhi-Guo Yu
- Nanjing University of Information Science and Technology, School of Hydrology and Water Resources, Nanjing, 210044, China.
| |
Collapse
|
23
|
Microalgal-Bacterial Granular Sludge Process in Non-Aerated Municipal Wastewater Treatment under Natural Day-Night Conditions: Performance and Microbial Community. WATER 2021. [DOI: 10.3390/w13111479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The microalgal-bacterial granular sludge (MBGS) process is expected to meet the future requirements of municipal wastewater treatment technology for decontamination, energy consumption, carbon emission and resource recovery. However, little research on the performance of the MBGS process in outdoor treatment was reported. This study investigated the performance of the MBGS system in treating municipal wastewater under natural alternate day and night conditions in late autumn. The results showed that the average removal efficiencies of Chemical oxygen demand (COD), NH4+-N and PO43−-P on daytime before cooling (stage I, day 1−4) could reach 59.9% ± 6.8%, 78.1% ± 7.9% and 61.5% ± 4.5%, respectively, while the corresponding average removal efficiencies at night were 47.6% ± 8.0%, 56.5% ± 17.9% and 74.2% ± 7.6%, respectively. Due to the dramatic changes in environmental temperature and light intensity, the microbial biomass and system stability was affected with fluctuation in COD and PO43−-P removal. In addition, the relative abundance of filamentous microorganisms (i.e., Clostridia and Anaerolineae) decreased, while Chlorella maintained a dominant position in the eukaryotic community (i.e., relative abundance > 99%). This study can provide a theoretical basis and technical support for the further engineering application of the MBGS process.
Collapse
|
24
|
Lu JJ, Yan WJ, Shang WT, Sun FY, Li A, Sun JX, Li XY, Mu JL. Simultaneous enhancement of nitrate removal flux and methane utilization efficiency in MBfR for aerobic methane oxidation coupled to denitrification by using an innovative scalable double-layer membrane. WATER RESEARCH 2021; 194:116936. [PMID: 33640753 DOI: 10.1016/j.watres.2021.116936] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/13/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Endevours on the enhancement of nitrate removal efficiency during methane oxidation coupled with denitrification (AME-D) has always overlooked the role of membrane employed. It would be highly beneficial to enrich the biomass content and to manage biofilm on the membrane, in the utilization of methane and denitrification. In this study, an innovative and scalable double-layer membrane (DLM) was designed and prepared for a membrane biofilm reactor (MBfR), to simultaneously enhance nitrate removal flux and methane utilization efficiency during aerobic methane oxidation coupled with the denitrification (AME-D) process. The DLM allowed quick bacterial attachment and biomass accumulation for biofilm growth, which would be then self-regulated for well distribution of functional microbes on/within the DLM. Upon a high biofilm density of over 70 g-VSS m-2 achieved on the DLM, the methane utilization efficiency of the MBfR was enhanced significantly to over 1.3 times than the control MBfR with conventional polypropylene membrane. The MBfR employed DLM also demonstrated the maximum nitrate removal flux of 740 mg-NO3--N m-2 d-1 that was approximately 1.64 times of that in control MBfR at continuous-mode operation. This DLM indeed favored the enrichment of Type II aerobic methanotrophs of Methylocystaceae, and methanol-utilization denitrifiers of Rhodocyclaceae that preferentially utilize methanol as the cross-feeding intermediates to promote the methane utilization efficiency, and thus to enhance the nitrate removal flux. These results raised from new designed DLM confirmed the importance of membrane surface properties on the effectiveness of MBfR, and offered great potential to address challenging problems of MBfRs during engineering application.
Collapse
Affiliation(s)
- Jian-Jiang Lu
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Wei-Jia Yan
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Wen-Tao Shang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Fei-Yun Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, People's Republic of China.
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Jin-Xu Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Xiao-Ying Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Jia-Le Mu
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| |
Collapse
|
25
|
Fu Y, Xie X, Wang Y, Liu J, Zheng Z, Kaplan DL, Wang X. Sustained Photosynthesis and Oxygen Generation of Microalgae-Embedded Silk Fibroin Hydrogels. ACS Biomater Sci Eng 2021; 7:2734-2744. [PMID: 33834759 DOI: 10.1021/acsbiomaterials.1c00168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microalgae immobilized in hydrogels offer advantages over those cultured in suspension culture in terms of carbon fixation and oxygen emission. However, alginate as a commonly used hydrogel for microalgal immobilization encounters problems with mechanical strength and stability. To address this limitation, silk fibroin (silk) hydrogels prepared by ultrasonication were utilized to host microalgae when mixed with the presonicated protein solution prior to its gelation. The gelation time, stability, and light transmission of these silk gels were evaluated, and a silk concentration of 4% w/v and a gel thickness of 1 mm provided mechanical strength and stability during algal culture in comparison to alginate hydrogels. Furthermore, silk hydrogels with algal cell densities of 7.6 × 105 and 7.8 × 107 cells/mL had better stability than those with a lower cell density (3.2 × 103 cells/mL), likely due to cell confinement and impact on proliferation. The silk hydrogels with microalgae at a high density generated 6.13 mg/L of oxygen continuously for 7 days. An oxygen-generating device was fabricated by coating the surface of a dialysis tube with a thin layer of the microalgae-embedded silk hydrogel, where the microalgal cells were nourished with culture medium prefilled in the dialysis tube. When suspended in a sealed flask filled with CO2 gas, the system continuously produced oxygen (151 mL) for at least 60 days, with an oxygen production efficiency 6 times that of microalgal suspension culture controls. This microalgae embedding and cultivation technique could have potential utility in air purification, tissue repair, and other applications due to the efficient and sustained generation of oxygen.
Collapse
Affiliation(s)
- Yuhang Fu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Xusheng Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yongfeng Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jian Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - David Lee Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
26
|
Zhang M, Ji B, Liu Y. Microalgal-bacterial granular sludge process: A game changer of future municipal wastewater treatment? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141957. [PMID: 32890823 DOI: 10.1016/j.scitotenv.2020.141957] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
This article is in the hope to open a fundamental discussion on what should future municipal wastewater treatment process be. A paradigm shift of treatment technology from present single functionality of removing to multiple-functionality of synergetic water-resource-energy recovery and carbon neutral for maximizing both environmental and economic sustainability. However, the current treatment technologies could hardly meet such requirements. It is elucidated in this article that a microalgal-bacterial granular sludge process could offer a promising option for achieving the multiple goals of municipal wastewater reclamation including energy generation, resource recovery and carbon reduction.
Collapse
Affiliation(s)
- Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|