1
|
Thien F, Davies JM, Douglass JA, Hew M. Thunderstorm Asthma: Current Perspectives and Emerging Trends. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2025:S2213-2198(25)00310-1. [PMID: 40199421 DOI: 10.1016/j.jaip.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Isolated episodes and epidemic outbreaks of thunderstorm asthma have now been documented for over 40 years, with global geographical reach across Europe, North America, Middle East, Asia, Oceania, and Africa. This phenomenon encompasses specific environmental and meteorological factors, interacting with aeroallergen propagation and exposure in susceptible allergen-sensitized individuals and populations. There is a likely contribution from climate change with prolonged allergenic pollen seasons combined with increased pollen allergenicity, as well as heightened likelihood of extreme weather events. Differential population susceptibility to thunderstorm asthma presentations, hospitalizations, and deaths with increased vulnerability of certain ethnic groups suggests a gene-environment interaction. This clinical commentary reviews the characteristics and updates the epidemiology of thunderstorm asthma; examines the role of aerobiology and climate change; discusses risk factors for emergency presentations, hospital admissions, and deaths; considers latest research and predictors of thunderstorm asthma; and proposes strategies to manage and mitigate risk.
Collapse
Affiliation(s)
- Francis Thien
- Box Hill Hospital, Eastern Health Clinical School, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.
| | - Janet M Davies
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jo A Douglass
- James Stewart Chair of Medicine, Royal Melbourne Hospital, Parkville, VIC, Australia; Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Mark Hew
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia; Allergy, Asthma & Clinical Immunology, The Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Gharbi D, Berman D, Neumann FH, Hill T, Sidla S, Cillers SS, Staats J, Esterhuizen N, Ajikah L, Moseri ME, J. Quick L, Hilmer E, Van Aardt A, John J, Garland R, Finch J, Hoek W, Bamford M, Seedat RY, I. Manjra A, Peter J. Ambrosia (ragweed) pollen - A growing aeroallergen of concern in South Africa. World Allergy Organ J 2024; 17:101011. [PMID: 39698164 PMCID: PMC11652763 DOI: 10.1016/j.waojou.2024.101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/18/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Background Ragweed is an invasive, highly allergenic weed predicted to expand its habitat with warming global temperatures. Several Ambrosia species have been identified in South Africa for well over a century; however, its presence remained undetected by allergists and aerobiologists until the development of an extensive aerospora monitoring system across South African urban areas since 2019. This paper presents the inventory of preliminary investigation of the Ambrosia airborne pollen and the taxonomic identification of ragweed species. Methods Burkard volumetric spore traps for collecting pollen samples are set up in 9 South African cities (Johannesburg, Cape Town, Pretoria, Kimberley, Durban, Potchefstroom, Ermelo, Bloemfontein, and Gqeberha). Light microscopic identification was combined with environmental DNA metabarcoding analysis to confirm the species level of airborne Ambrosia at selected monitoring stations. Ragweed sensitisation was examined in Cape Town between February 2019 and February 2024, using Allergy Xplorer (ALEX2) multicomponent allergen array. Results Ambrosia pollen was detected in 5 aerobiological monitoring stations over the sampling period (Durban, Kimberley, Pretoria, Potchefstroom, Johannesburg). Periods of 4 consistent pollination years were observed in Kimberley (min: 1; max: 16 p.g/m3) and Durban (min: 26; max: 66 p.g/m3). In Pretoria, ragweed pollen was detected for 2 years (2020-2021; 2022-2023) with average total annuals (5-17 p.g/m3). A peak flowering period between March and April was observed in Potchefstroom, and several ragweed pollen peaks were present between the end of December and the beginning of May in Durban. The highest number of Ambrosia pollen grains was recorded in Potchefstroom, with 308 grains, and a maximum peak of 47 p.g/m3. eDNA metabarcoding confirmed the presence of Ambrosia artemisiifolia and A.trifida species. The overall prevalence of Ambrosia-sensitisation amongst 673 tests (age range 7-72 years) was 8.2% (55/673), with no significant difference in sensitisation patterns between age groups. Conclusion Our study confirms the need to monitor the spread of ragweed, and an increasing awareness of Ambrosia as an allergen of concern in Southern Africa. Extension of aerobiological networks and testing for Ambrosia sensitisation across urban and rural sites will be required.
Collapse
Affiliation(s)
- Dorra Gharbi
- Division of Allergology and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Allergy and Immunology Unit, Lung Institute, University of Cape Town, South Africa
| | - Dilys Berman
- Division of Allergology and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Allergy and Immunology Unit, Lung Institute, University of Cape Town, South Africa
| | - Frank H. Neumann
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Science, North-West University, Potchefstroom, South Africa
| | - Trevor Hill
- Discipline of Geography, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Siyavuya Sidla
- Division of Allergology and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Allergy and Immunology Unit, Lung Institute, University of Cape Town, South Africa
| | - Sarel S. Cillers
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Science, North-West University, Potchefstroom, South Africa
| | - Jurgens Staats
- Department of Family Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nanike Esterhuizen
- Department of Conservation Ecology and Entomology, University of Stellenbosch, Stellenbosch, South Africa
| | - Linus Ajikah
- Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Moteng E. Moseri
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Science, North-West University, Potchefstroom, South Africa
| | - Lynne J. Quick
- African Centre for Coastal Paleoscience, Nelson Mandela University, Gqeberha, South Africa
| | - Erin Hilmer
- African Centre for Coastal Paleoscience, Nelson Mandela University, Gqeberha, South Africa
| | - Andri Van Aardt
- Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | | | - Rebecca Garland
- Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa
| | - Jemma Finch
- Discipline of Geography, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Werner Hoek
- Department of Otorhinolaryngology, Gariep Mediclinic, Kimberley, South Africa
| | - Marion Bamford
- Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Riaz Y. Seedat
- Department of Otorhinolaryngology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Ahmed I. Manjra
- Hiway Medical Centre, Westville Hospital, Durban, South Africa
| | - Jonny Peter
- Division of Allergology and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Allergy and Immunology Unit, Lung Institute, University of Cape Town, South Africa
| |
Collapse
|
3
|
Severova EE, Karaseva VS, Selezneva YM, Polevova SS. Phenological Analysis of Grasses (Poaceae) in Comparison with Aerobiological Data in Moscow (Russia). PLANTS (BASEL, SWITZERLAND) 2024; 13:2384. [PMID: 39273868 PMCID: PMC11397278 DOI: 10.3390/plants13172384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Grasses (Poaceae) produce large amounts of pollen and are among the main causes of pollinosis worldwide. Despite their morphological similarity, pollen grains of different grass species may have different allergenicities. Therefore, quantification of the roles of individual species in airborne pollen is an important task. There are very few studies on this topic, and none of them have been conducted in a temperate continental climate. Our study was carried out for three years (2020-2022) in the urban territory of Moscow (Russia) and aimed to understand what grass species contribute the most to the total pollen load of the atmosphere. The comparison of aerobiological and phenological data was based on calculating the phenological index, which is a combination of phenological parameters, pollen productivity of individual species, and their abundance. Our data showed that the decomposition of pollination curves based on the phenological index was sometimes very efficient but not always possible in temperate continental climates. The main reasons for disagreement between aerobiological and phenological data were weather conditions and lawn mowing. Not all grasses were equally important as sources of allergenic pollen. The greatest contribution to the pollen load at the beginning of the season in Moscow was made by Dactylis glomerata, and to a lesser extent by Phleum pratense and Festuca pratensis. These are the most common species, which are widespread throughout Europe. The contribution of minor components is insignificant.
Collapse
Affiliation(s)
- Elena E Severova
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
- Biological Faculty, Moscow State University, 119991 Moscow, Russia
| | - Vera S Karaseva
- Institute of Natural Science, S.A. Esenin Ryazan' State University, 390000 Ryazan, Russia
| | - Yulia M Selezneva
- Institute of Natural Science, S.A. Esenin Ryazan' State University, 390000 Ryazan, Russia
| | | |
Collapse
|
4
|
Van Haeften S, Campbell BC, Milic A, Addison-Smith E, Al Kouba J, Huete A, Beggs PJ, Davies JM. Environmental DNA analysis of airborne poaceae (grass) pollen reveals taxonomic diversity across seasons and climate zones. ENVIRONMENTAL RESEARCH 2024; 247:117983. [PMID: 38163541 DOI: 10.1016/j.envres.2023.117983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Grasses populate most biogeographical zones, and their diversity influences allergic sensitisation to pollen. Previously, the contribution of different Poaceae subfamilies to airborne pollen has mostly been inferred from historical herbarium records. We recently applied environmental (e)DNA metabarcoding at one subtropical site revealing that successive airborne grass pollen peaks were derived from repeated flowering of Chloridoid and Panicoid grasses over a season. This study aimed to compare spatiotemporal patterns in grass pollen exposure across seasons and climate zones. METHODS Airborne pollen concentrations across two austral pollen seasons spanning 2017-2019 at subtropical (Mutdapilly and Rocklea, Queensland) and temperate (Macquarie Park and Richmond, New South Wales) sites, were determined with a routine volumetric impaction sampler and counting by light microscopy. Poaceae rbcL metabarcode sequences amplified from daily pollen samples collected once per week were assigned to subfamily and genus using a ribosomal classifier and compared with Atlas of Living Australia sighting records. RESULTS eDNA analysis revealed distinct dominance patterns of grass pollen at various sites: Panicoid grasses prevailed in both subtropical Mutdapilly and temperate Macquarie Park, whilst Chloridoid grasses dominated the subtropical Rocklea site. Overall, subtropical sites showed significantly higher proportion of pollen from Chloridoid grasses than temperate sites, whereas the temperate sites showed a significantly higher proportion of pollen from Pooideae grasses than subtropical sites. Timing of airborne Pooid (spring), Panicoid and Chloridoid (late spring to autumn), and Arundinoid (autumn) pollen were significantly related to number of days from mid-winter. Proportions of eDNA for subfamilies correlated with distributions grass sighting records between climate zones. CONCLUSIONS eDNA analysis enabled finer taxonomic discernment of Poaceae pollen records across seasons and climate zones with implications for understanding adaptation of grasslands to climate change, and the complexity of pollen exposure for patients with allergic respiratory diseases.
Collapse
Affiliation(s)
- Shanice Van Haeften
- School of Biomedical Sciences, Centre Immunology and Infection Control and Centre for Environment, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Bradley C Campbell
- School of Biomedical Sciences, Centre Immunology and Infection Control and Centre for Environment, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Andelija Milic
- School of Biomedical Sciences, Centre Immunology and Infection Control and Centre for Environment, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Elizabeth Addison-Smith
- School of Biomedical Sciences, Centre Immunology and Infection Control and Centre for Environment, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jane Al Kouba
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Alfredo Huete
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Paul J Beggs
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Janet M Davies
- School of Biomedical Sciences, Centre Immunology and Infection Control and Centre for Environment, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
5
|
Tegart LJ, Schiro G, Dickinson JL, Green BJ, Barberán A, Marthick JR, Bissett A, Johnston FH, Jones PJ. Decrypting seasonal patterns of key pollen taxa in cool temperate Australia: A multi-barcode metabarcoding analysis. ENVIRONMENTAL RESEARCH 2024; 243:117808. [PMID: 38043901 DOI: 10.1016/j.envres.2023.117808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Pollen allergies pose a considerable global public health concern. Allergy risk can vary significantly within plant families, yet some key pollen allergens can only be identified to family level by current optical methods. Pollen information with greater taxonomic resolution is therefore required to best support allergy prevention and self-management. We used environmental DNA (eDNA) metabarcoding to deepen taxonomic insights into the seasonal composition of airborne pollen in cool temperate Australia, a region with high rates of allergic respiratory disease. In Hobart, Tasmania, we collected routine weekly air samples from December 2018 until October 2020 and sequenced the internal transcribed spacer 2 (ITS2) and chloroplastic tRNA-Leucine tRNA-Phenylalanine intergenic spacer (trnL-trnF) regions in order to address the following questions: a) What is the genus-level diversity of known and potential aeroallergens in Hobart, in particular, in the families Poaceae, Cupressaceae and Myrtaceae? b) How do the atmospheric concentrations of these taxa change over time, and c) Does trnL-trnF enhance resolution of biodiversity when used in addition to ITS2? Our results suggest that individuals in the region are exposed to temperate grasses including Poa and Bromus in the peak grass pollen season, however low levels of exposure to the subtropical grass Cynodon may occur in autumn and winter. Within Cupressaceae, both metabarcodes showed that exposure is predominantly to pollen from the introduced genera Cupressus and Juniperus. Only ITS2 detected the native genus, Callitris. Both metabarcodes detected Eucalyptus as the major Myrtaceae genus, with trnL-trnF exhibiting primer bias for this family. These findings help refine our understanding of allergy triggers in Tasmania and highlight the utility of multiple metabarcodes in aerobiome studies.
Collapse
Affiliation(s)
- Lachlan J Tegart
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000, Australia.
| | - Gabriele Schiro
- Department of Environmental Science, University of Arizona, Tucson, AZ, 85721, United States.
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000, Australia.
| | - Brett J Green
- Office of the Director, Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, United States.
| | - Albert Barberán
- Department of Environmental Science, University of Arizona, Tucson, AZ, 85721, United States.
| | - James R Marthick
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000, Australia.
| | - Andrew Bissett
- Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia.
| | - Fay H Johnston
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000, Australia; Public Health Services, Department of Health, Hobart, TAS, 7000, Australia.
| | - Penelope J Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000, Australia.
| |
Collapse
|
6
|
Bell KL, Turo KJ, Lowe A, Nota K, Keller A, Encinas‐Viso F, Parducci L, Richardson RT, Leggett RM, Brosi BJ, Burgess KS, Suyama Y, de Vere N. Plants, pollinators and their interactions under global ecological change: The role of pollen DNA metabarcoding. Mol Ecol 2023; 32:6345-6362. [PMID: 36086900 PMCID: PMC10947134 DOI: 10.1111/mec.16689] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022]
Abstract
Anthropogenic activities are triggering global changes in the environment, causing entire communities of plants, pollinators and their interactions to restructure, and ultimately leading to species declines. To understand the mechanisms behind community shifts and declines, as well as monitoring and managing impacts, a global effort must be made to characterize plant-pollinator communities in detail, across different habitat types, latitudes, elevations, and levels and types of disturbances. Generating data of this scale will only be feasible with rapid, high-throughput methods. Pollen DNA metabarcoding provides advantages in throughput, efficiency and taxonomic resolution over traditional methods, such as microscopic pollen identification and visual observation of plant-pollinator interactions. This makes it ideal for understanding complex ecological networks and their responses to change. Pollen DNA metabarcoding is currently being applied to assess plant-pollinator interactions, survey ecosystem change and model the spatiotemporal distribution of allergenic pollen. Where samples are available from past collections, pollen DNA metabarcoding has been used to compare contemporary and past ecosystems. New avenues of research are possible with the expansion of pollen DNA metabarcoding to intraspecific identification, analysis of DNA in ancient pollen samples, and increased use of museum and herbarium specimens. Ongoing developments in sequencing technologies can accelerate progress towards these goals. Global ecological change is happening rapidly, and we anticipate that high-throughput methods such as pollen DNA metabarcoding are critical for understanding the evolutionary and ecological processes that support biodiversity, and predicting and responding to the impacts of change.
Collapse
Affiliation(s)
- Karen L. Bell
- CSIRO Health & Biosecurity and CSIRO Land & WaterFloreatWAAustralia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWAAustralia
| | - Katherine J. Turo
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
| | | | - Kevin Nota
- Department of Ecology and GeneticsEvolutionary Biology Centre, Uppsala UniversityUppsalaSweden
| | - Alexander Keller
- Organismic and Cellular Networks, Faculty of BiologyBiocenter, Ludwig‐Maximilians‐Universität MünchenPlaneggGermany
| | - Francisco Encinas‐Viso
- Centre for Australian National Biodiversity ResearchCSIROBlack MountainAustralian Capital TerritoryAustralia
| | - Laura Parducci
- Department of Ecology and GeneticsEvolutionary Biology Centre, Uppsala UniversityUppsalaSweden
- Department of Environmental BiologySapienza University of RomeRomeItaly
| | - Rodney T. Richardson
- Appalachian LaboratoryUniversity of Maryland Center for Environmental ScienceFrostburgMarylandUSA
| | | | - Berry J. Brosi
- Department of BiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Kevin S. Burgess
- Department of BiologyCollege of Letters and Sciences, Columbus State University, University System of GeorgiaAtlantaGeorgiaUSA
| | - Yoshihisa Suyama
- Field Science CenterGraduate School of Agricultural Science, Tohoku UniversityOsakiMiyagiJapan
| | - Natasha de Vere
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
7
|
Simunovic M, Boyle J, Erbas B, Baker P, Davies JM. Airborne grass pollen and thunderstorms influence emergency department asthma presentations in a subtropical climate. ENVIRONMENTAL RESEARCH 2023; 236:116754. [PMID: 37500047 DOI: 10.1016/j.envres.2023.116754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Grass pollen is considered a major outdoor aeroallergen source worldwide. It is proposed as a mechanism for thunderstorm asthma that lightning during thunderstorms promotes electrical rupture of pollen grains that leads to allergic airway inflammation. However, most evidence of associations between grass pollen and asthma comes from temperate regions. The objective of this study was to investigate short-term associations between airborne grass pollen exposure and asthma emergency department presentations in a subtropical population. METHODS Episode level public hospital presentations for asthma (2016-2020) were extracted for greater Brisbane, Australia, from Queensland Health's Emergency Data Collection. Concentrations of airborne pollen were determined prospectively using a continuous flow volumetric impaction sampler. Daily time series analysis using a generalised additive mixed model were applied to determine associations between airborne grass pollen concentrations, and lightning count data, with asthma presentations. RESULTS Airborne grass pollen showed an association with asthma presentations in Brisbane; a significant association was detected from same day exposure to three days lag. Grass pollen exposure increased daily asthma presentations up to 48.5% (95% CI: 12%, 85.9%) in female children. Lightning did not modify the effect of grass pollen on asthma presentations, however a positive association was detected between cloud-to-cloud lightning strikes and asthma presentations (P = 0.048). CONCLUSION Airborne grass pollen exposure may exacerbate symptoms of asthma requiring urgent medical care of children and adults in a subtropical climate. This knowledge indicates an opportunity for targeted management of respiratory allergic disease to reduce patient and health system burden. For the first time, an influence of lightning on asthma was detected in this context. The outcomes support a need for continued pollen monitoring and surveillance of thunderstorm asthma risk in subtropical regions.
Collapse
Affiliation(s)
- Marko Simunovic
- School of Biomedical Sciences, Centre for Immunity and Infection Control, Centre for Environment, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Justin Boyle
- Australian E-Health Research Centre, The Commonwealth Scientific and Industrial Research Organisation, Brisbane, Queensland, Australia
| | - Bircan Erbas
- School of Psychology and Public Health, LaTrobe University, Bundoora, Victoria, Australia
| | - Philip Baker
- School of Public Health and Social Work, Australian Centre for Health Law Research, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Janet M Davies
- School of Biomedical Sciences, Centre for Immunity and Infection Control, Centre for Environment, Queensland University of Technology, Brisbane, Queensland, Australia; Office of Research, Metro North Hospital and Health Services, Herston, Queensland, Australia.
| |
Collapse
|
8
|
Krinitsina AA, Omelchenko DO, Kasianov AS, Karaseva VS, Selezneva YM, Chesnokova OV, Shirobokov VA, Polevova SV, Severova EE. Aerobiological Monitoring and Metabarcoding of Grass Pollen. PLANTS (BASEL, SWITZERLAND) 2023; 12:2351. [PMID: 37375978 DOI: 10.3390/plants12122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Grass pollen is one of the leading causes of pollinosis, affecting 10-30% of the world's population. The allergenicity of pollen from different Poaceae species is not the same and is estimated from moderate to high. Aerobiological monitoring is a standard method that allows one to track and predict the dynamics of allergen concentration in the air. Poaceae is a stenopalynous family, and thus grass pollen can usually be identified only at the family level with optical microscopy. Molecular methods, in particular the DNA barcoding technique, can be used to conduct a more accurate analysis of aerobiological samples containing the DNA of various plant species. This study aimed to test the possibility of using the ITS1 and ITS2 nuclear loci for determining the presence of grass pollen from air samples via metabarcoding and to compare the analysis results with the results of phenological observations. Based on the high-throughput sequencing data, we analyzed the changes in the composition of aerobiological samples taken in the Moscow and Ryazan regions for three years during the period of active flowering of grasses. Ten genera of the Poaceae family were detected in airborne pollen samples. The representation for most of them for ITS1 and ITS2 barcodes was similar. At the same time, in some samples, the presence of specific genera was characterized by only one sequence: either ITS1 or ITS2. Based on the analysis of the abundance of both barcode reads in the samples, the following order could describe the change with time in the dominant species in the air: Poa, Alopecurus, and Arrhenatherum in early mid-June, Lolium, Bromus, Dactylis, and Briza in mid-late June, Phleum, Elymus in late June to early July, and Calamagrostis in early mid-July. In most samples, the number of taxa found via metabarcoding analysis was higher compared to that in the phenological observations. The semi-quantitative analysis of high-throughput sequencing data well reflects the abundance of only major grass species at the flowering stage.
Collapse
Affiliation(s)
- Anastasia A Krinitsina
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Denis O Omelchenko
- Laboratory of Plant Genomics, Institute for Information Transmission Problems, 127051 Moscow, Russia
| | - Artem S Kasianov
- Laboratory of Plant Genomics, Institute for Information Transmission Problems, 127051 Moscow, Russia
| | - Vera S Karaseva
- Department of Biology, Institute of Natural Science, S.A. Esenin Ryazan State University, 390000 Ryazan, Russia
| | - Yulia M Selezneva
- Department of Biology, Institute of Natural Science, S.A. Esenin Ryazan State University, 390000 Ryazan, Russia
| | - Olga V Chesnokova
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vitaly A Shirobokov
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Svetlana V Polevova
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena E Severova
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
9
|
Frisk CA, Adams-Groom B, Smith M. Isolating the species element in grass pollen allergy: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163661. [PMID: 37094678 DOI: 10.1016/j.scitotenv.2023.163661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Grass pollen is a leading cause of allergy in many countries, particularly Europe. Although many elements of grass pollen production and dispersal are quite well researched, gaps still remain around the grass species that are predominant in the air and which of those are most likely to trigger allergy. In this comprehensive review we isolate the species aspect in grass pollen allergy by exploring the interdisciplinary interdependencies between plant ecology, public health, aerobiology, reproductive phenology and molecular ecology. We further identify current research gaps and provide open ended questions and recommendations for future research in an effort to focus the research community to develop novel strategies to combat grass pollen allergy. We emphasise the role of separating temperate and subtropical grasses, identified through divergence in evolutionary history, climate adaptations and flowering times. However, allergen cross-reactivity and the degree of IgE connectivity in sufferers between the two groups remains an area of active research. The importance of future research to identify allergen homology through biomolecular similarity and the connection to species taxonomy and practical implications of this to allergenicity is further emphasised. We also discuss the relevance of eDNA and molecular ecological techniques (DNA metabarcoding, qPCR and ELISA) as important tools in quantifying the connection between the biosphere with the atmosphere. By gaining more understanding of the connection between species-specific atmospheric eDNA and flowering phenology we will further elucidate the importance of species in releasing grass pollen and allergens to the atmosphere and their individual role in grass pollen allergy.
Collapse
Affiliation(s)
- Carl A Frisk
- Department of Urban Greening and Vegetation Ecology, Norwegian Institute of Bioeconomy Research, Ås, Norway.
| | - Beverley Adams-Groom
- School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Matt Smith
- School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
10
|
Mulec J, Skok S, Tomazin R, Letić J, Pliberšek T, Stopinšek S, Simčič S. Long-Term Monitoring of Bioaerosols in an Environment without UV and Desiccation Stress, an Example from the Cave Postojnska Jama, Slovenia. Microorganisms 2023; 11:809. [PMID: 36985383 PMCID: PMC10053050 DOI: 10.3390/microorganisms11030809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
A natural cave environment subject to regular human visitation was selected for aerobiological study to minimize the effects of severe temperature fluctuations, UV radiation, and desiccation stress on the aerobiome. The longer sampling period of bioaerosols, up to 22 months, was generally not associated with a proportionally incremental and cumulative increase of microbial biomass. The culture-independent biomass indicator ATP enabled quick and reliable determination of the total microbial biomass. Total airborne microbial biomass was influenced by human visitation to the cave, as confirmed by significantly higher concentrations being observed along tourist footpaths (p < 0.05). Airborne beta-glucans (BG) and lipopolysaccharide (LPS) are present in cave air, but their impact on the cave remains to be evaluated. Staphylococcus spp., as an indicator of human presence, was detected at all sites studied. Their long-term survival decrease is likely due to high relative humidity, low temperature, the material to which they adhere, and potentially natural elevated radon concentration. The most commonly recorded species were: S. saprophyticus, which was identified in 52% of the studied sites, S. equorum in 29%, and S. warneri in 24% of the studied sites. Only a few isolates were assigned to Risk group 2: S. aureus, S. epidermidis, S. haemolyticus, S. pasteuri, and S. saprophyticus.
Collapse
Affiliation(s)
- Janez Mulec
- Karst Research Institute, Research Centre of the Slovenian Academy of Sciences and Arts, Titov Trg 2, SI-6230 Postojna, Slovenia
- UNESCO Chair on Karst Education, University of Nova Gorica, Glavni Trg 8, SI-5271 Vipava, Slovenia
| | - Sara Skok
- Karst Research Institute, Research Centre of the Slovenian Academy of Sciences and Arts, Titov Trg 2, SI-6230 Postojna, Slovenia
| | - Rok Tomazin
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, SI-1000 Ljubljana, Slovenia
| | - Jasmina Letić
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, SI-1000 Ljubljana, Slovenia
| | - Tadej Pliberšek
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, SI-1000 Ljubljana, Slovenia
| | - Sanja Stopinšek
- Health Center Hrastnik, Novi Dom 11, SI-1430 Hrastnik, Slovenia
| | - Saša Simčič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Campbell BC, Van Haeften S, Massel K, Milic A, Al Kouba J, Addison-Smith B, Gilding EK, Beggs PJ, Davies JM. Metabarcoding airborne pollen from subtropical and temperate eastern Australia over multiple years reveals pollen aerobiome diversity and complexity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160585. [PMID: 36502990 DOI: 10.1016/j.scitotenv.2022.160585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/13/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
eDNA metabarcoding is an emergent tool to inform aerobiome complexity, but few studies have applied this technology with real-world environmental pollen monitoring samples. Here we apply eDNA metabarcoding to assess seasonal and regional differences in the composition of airborne pollen from routine samples collected across successive years. Airborne pollen concentrations over two sampling periods were determined using a continuous flow volumetric impaction air sampler in sub-tropical (Mutdapilly and Rocklea) and temperate (Macquarie Park and Richmond), sites of Australia. eDNA metabarcoding was applied to daily pollen samples collected once per week using the rbcL amplicon. Composition and redundancy analysis of the sequence read counts were examined. The dominant pollen families were mostly consistent between consecutive years but there was some heterogeneity between sites and years for month of peak pollen release. Many more families were detected by eDNA than counted by light microscopy with 211 to 399 operational taxonomic units assigned to family per site from October to May. There were 216 unique and 119 taxa shared between subtropics (27°S) and temperate (33°S) latitudes, with, for example, Poaceae, Myrtaceae and Causurinaceae being shared, and Manihot, Vigna and Aristida being in subtropical, and Ceratodon and Cerastium being in temperate sites. Certain genera were observed within the same location and season over the two years; Chloris at Rocklea in autumn of 2017-18 (0.625, p ≤ 0.004) and 2018-19 (0.55, p ≤ 0.001), and Pinus and Plantago at Macquarie Park in summer of 2017-18 (0.58, p ≤ 0.001 and 0.53, p ≤ 0.003, respectively), and 2018-19 (0.8, p ≤ 0.003 and 0.8, p ≤ 0.003, respectively). eDNA metabarcoding is a powerful tool to survey the complexity of pollen aerobiology and distinguish spatial and temporal profiles of local pollen to a far deeper level than traditional counting methods. However, further research is required to optimise the metabarcode target to enable reliable detection of pollen to genus and species level.
Collapse
Affiliation(s)
- B C Campbell
- School of Biomedical Sciences, Centre Immunology and Infection Control and Centre for Environment, Queensland University of Technology, Australia
| | - S Van Haeften
- School of Biomedical Sciences, Centre Immunology and Infection Control and Centre for Environment, Queensland University of Technology, Australia
| | - K Massel
- Queensland Alliance of Agriculture and Food Innovation, The University of Queensland, Australia
| | - A Milic
- School of Biomedical Sciences, Centre Immunology and Infection Control and Centre for Environment, Queensland University of Technology, Australia
| | - J Al Kouba
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Australia
| | - B Addison-Smith
- School of Biomedical Sciences, Centre Immunology and Infection Control and Centre for Environment, Queensland University of Technology, Australia
| | - E K Gilding
- Institute for Molecular Bioscience, The University of Queensland, Australia
| | - P J Beggs
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Australia
| | - J M Davies
- School of Biomedical Sciences, Centre Immunology and Infection Control and Centre for Environment, Queensland University of Technology, Australia.
| |
Collapse
|
12
|
Ma X, Zhu X, Xie Q, Jin J, Zhou Y, Luo Y, Liu Y, Tian J, Zhao Y. Monitoring nature's calendar from space: Emerging topics in land surface phenology and associated opportunities for science applications. GLOBAL CHANGE BIOLOGY 2022; 28:7186-7204. [PMID: 36114727 PMCID: PMC9827868 DOI: 10.1111/gcb.16436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Vegetation phenology has been viewed as the nature's calendar and an integrative indicator of plant-climate interactions. The correct representation of vegetation phenology is important for models to accurately simulate the exchange of carbon, water, and energy between the vegetated land surface and the atmosphere. Remote sensing has advanced the monitoring of vegetation phenology by providing spatially and temporally continuous data that together with conventional ground observations offers a unique contribution to our knowledge about the environmental impact on ecosystems as well as the ecological adaptations and feedback to global climate change. Land surface phenology (LSP) is defined as the use of satellites to monitor seasonal dynamics in vegetated land surfaces and to estimate phenological transition dates. LSP, as an interdisciplinary subject among remote sensing, ecology, and biometeorology, has undergone rapid development over the past few decades. Recent advances in sensor technologies, as well as data fusion techniques, have enabled novel phenology retrieval algorithms that refine phenology details at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. As such, here we summarize the recent advances in LSP and the associated opportunities for science applications. We focus on the remaining challenges, promising techniques, and emerging topics that together we believe will truly form the very frontier of the global LSP research field.
Collapse
Affiliation(s)
- Xuanlong Ma
- College of Earth and Environmental Sciences, Lanzhou UniversityLanzhouChina
| | - Xiaolin Zhu
- Department of Land Surveying and Geo‐InformaticsThe Hong Kong Polytechnic UniversityHong KongChina
| | - Qiaoyun Xie
- School of Life Sciences, Faculty of ScienceUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Jiaxin Jin
- College of Hydrology and Water Resources, Hohai UniversityNanjingChina
| | - Yuke Zhou
- Key Laboratory of Ecosystem Network Observation and ModellingInstitute of Geographic Sciences and Natural Resources Research, Chinese Academy of SciencesBeijingChina
| | - Yunpeng Luo
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Department of Environmental System ScienceETH ZurichZurichSwitzerland
| | - Yuxia Liu
- School of Life Sciences, Faculty of ScienceUniversity of Technology SydneySydneyNew South WalesAustralia
- Geospatial Sciences Center of Excellence (GSCE)South Dakota State UniversityBrookingsSouth DakotaUSA
| | - Jiaqi Tian
- Department of Land Surveying and Geo‐InformaticsThe Hong Kong Polytechnic UniversityHong KongChina
- Department of GeographyNational University of SingaporeSingaporeSingapore
| | - Yuhe Zhao
- College of Earth and Environmental Sciences, Lanzhou UniversityLanzhouChina
| |
Collapse
|
13
|
Davies JM, Smith BA, Milic A, Campbell B, Van Haeften S, Burton P, Keaney B, Lampugnani ER, Vicendese D, Medek D, Huete A, Erbas B, Newbigin E, Katelaris CH, Haberle SG, Beggs PJ. The AusPollen partnership project: Allergenic airborne grass pollen seasonality and magnitude across temperate and subtropical eastern Australia, 2016-2020. ENVIRONMENTAL RESEARCH 2022; 214:113762. [PMID: 35779617 DOI: 10.1016/j.envres.2022.113762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 05/25/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Allergic rhinitis affects half a billion people globally, including a fifth of the Australian population. As the foremost outdoor allergen source, ambient grass pollen exposure is likely to be altered by climate change. The AusPollen Partnership aimed to standardize pollen monitoring and examine broad-scale biogeographical and meteorological factors influencing interannual variation in seasonality of grass pollen aerobiology in Australia. METHODS Daily airborne grass and other pollen concentrations in four eastern Australian cities separated by over 1700 km, were simultaneously monitored using Hirst-style samplers following the Australian Interim Pollen and Spore Monitoring Standard and Protocols over four seasons from 2016 to 2020. The grass seasonal pollen integral was determined. Gridded rainfall, temperature, and satellite-derived grassland sources up to 100 km from the monitoring site were analysed. RESULTS The complexity of grass pollen seasons was related to latitude with multiple major summer-autumn peaks in Brisbane, major spring and minor summer peaks in Sydney and Canberra, and single major spring peaks occurring in Melbourne. The subtropical site of Brisbane showed a higher proportion of grass out of total pollen than more temperate sites. The magnitude of the grass seasonal pollen integral was correlated with pasture greenness, rainfall and number of days over 30 °C, preceding and within the season, up to 100 km radii from monitoring sites. CONCLUSIONS Interannual fluctuations in Australian grass pollen season magnitude are strongly influenced by regional biogeography and both pre- and in-season weather. This first continental scale, Southern Hemisphere standardized aerobiology dataset forms the basis to track shifts in pollen seasonality, biodiversity and impacts on allergic respiratory diseases.
Collapse
Affiliation(s)
- Janet M Davies
- School of Biomedical Sciences, Centre Immunity and Infection Control, Centre for Environment, Queensland University of Technology, Herston, 4006, Queensland, Australia; Metro North Hospital and Health Service, Office of Research, Herston, 4006, Queensland, Australia.
| | - Beth Addison Smith
- School of Biomedical Sciences, Centre Immunity and Infection Control, Centre for Environment, Queensland University of Technology, Herston, 4006, Queensland, Australia
| | - Andelija Milic
- School of Biomedical Sciences, Centre Immunity and Infection Control, Centre for Environment, Queensland University of Technology, Herston, 4006, Queensland, Australia
| | - Bradley Campbell
- School of Biomedical Sciences, Centre Immunity and Infection Control, Centre for Environment, Queensland University of Technology, Herston, 4006, Queensland, Australia
| | - Shanice Van Haeften
- School of Biomedical Sciences, Centre Immunity and Infection Control, Centre for Environment, Queensland University of Technology, Herston, 4006, Queensland, Australia
| | - Pamela Burton
- Department of Immunology, Campbelltown Hospital, Campbelltown, Sydney, New South Wales, 2751, Australia
| | - Benedict Keaney
- The Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Edwin R Lampugnani
- School of Biosciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Don Vicendese
- The Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, 3010, Australia; The Department of Mathematics and Statistics, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Danielle Medek
- Gold Coast University Hospital, Southport, Queensland, 4215, Australia
| | - Alfredo Huete
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Bircan Erbas
- School of Public Health, LaTrobe University, Bundoora, Victoria, 3086, Australia
| | - Edward Newbigin
- School of Biosciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Constance H Katelaris
- Department of Immunology, Campbelltown Hospital, Campbelltown, Sydney, New South Wales, 2751, Australia; School of Medicine, Western Sydney University, Sydney, New South Wales, 2751, Australia
| | - Simon G Haberle
- The Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Paul J Beggs
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
14
|
Tong S, Beggs PJ, Davies JM, Jiang F, Kinney PL, Liu S, Yin Y, Ebi KL. Compound impacts of climate change, urbanization and biodiversity loss on allergic disease. Int J Epidemiol 2022:6760684. [PMID: 36228124 DOI: 10.1093/ije/dyac197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shilu Tong
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Paul J Beggs
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Janet M Davies
- School of Biomedical Sciences, Centre Immunology and Infection Control, Queensland University of Technology, Brisbane, Australia
| | - Fan Jiang
- Department of Child Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Patrick L Kinney
- Department of Environmental Health, Boston University School of Public Health, Boston, USA
| | - Shijian Liu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Yin
- Department of Respiratory Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kristie L Ebi
- Center for Health and the Global Environment, University of Washington, Seattle, USA
| |
Collapse
|
15
|
Addison-Smith B, Milic A, Dwarakanath D, Simunovic M, Van Haeften S, Timbrell V, Davies JM. Medium-Term Increases in Ambient Grass Pollen Between 1994-1999 and 2016-2020 in a Subtropical Climate Zone. FRONTIERS IN ALLERGY 2022; 2:705313. [PMID: 35387005 PMCID: PMC8974679 DOI: 10.3389/falgy.2021.705313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022] Open
Abstract
Grass pollen is the major outdoor trigger of allergic respiratory diseases. Climate change is influencing pollen seasonality in Northern Hemisphere temperate regions, but many aspects of the effects on grass pollen remain unclear. Carbon dioxide and temperature rises could increase the distribution of subtropical grasses, however, medium term shifts in grass pollen in subtropical climates have not yet been analysed. This study investigates changes in grass pollen aerobiology in a subtropical city of Brisbane, Australia, between the two available monitoring periods, 1994-1999 and 2016-2020. Potential drivers of pollen change were examined including weather and satellite-derived vegetation indicators. The magnitude of the seasonal pollen index for grass showed almost a three-fold increase for 2016-2020 over 1994-1999. The number and proportion of high and extreme grass pollen days in the recent period increased compared to earlier monitoring. Statistically significant changes were also identified for distributions of CO2, satellite-derived seasonal vegetation health indices, and daily maximum temperatures, but not for minimum temperatures, daily rainfall, or seasonal fraction of green groundcover. Quarterly grass pollen levels were correlated with corresponding vegetation health indices, and with green groundcover fraction, suggesting that seasonal-scale plant health was higher in the latter period. The magnitude of grass pollen exposure in the subtropical region of Brisbane has increased markedly in the recent past, posing an increased environmental health threat. This study suggests the need for continuous pollen monitoring to track and respond to the possible effects of climate change on grass pollen loads.
Collapse
Affiliation(s)
- Beth Addison-Smith
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Centre for the Environment, Queensland University of Technology, Brisbane, QLD, Australia
| | - Andelija Milic
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Centre for the Environment, Queensland University of Technology, Brisbane, QLD, Australia
| | - Divya Dwarakanath
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Centre for the Environment, Queensland University of Technology, Brisbane, QLD, Australia
| | - Marko Simunovic
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Centre for the Environment, Queensland University of Technology, Brisbane, QLD, Australia
| | - Shanice Van Haeften
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Centre for the Environment, Queensland University of Technology, Brisbane, QLD, Australia
| | - Victoria Timbrell
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Centre for the Environment, Queensland University of Technology, Brisbane, QLD, Australia
| | - Janet M Davies
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Centre for the Environment, Queensland University of Technology, Brisbane, QLD, Australia.,Office of Research, Metro North Hospital and Health Service, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Pollen Monitoring by Optical Microscopy and DNA Metabarcoding: Comparative Study and New Insights. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052624. [PMID: 35270312 PMCID: PMC8910172 DOI: 10.3390/ijerph19052624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023]
Abstract
Environmental samples collected in Brindisi (Italy) by a Hirst-type trap and in Lecce (Italy) by a PM10 sampler were analysed by optical microscopy and DNA-metabarcoding, respectively, to identify airborne pollen and perform an exploratory study, highlighting the benefits and limits of both sampling/detection systems. The Hirst-type trap/optical-microscopy system allowed detecting pollen on average over the full bloom season, since whole pollen grains, whose diameter vary within 10–100 μm, are required for morphological detection with optical microscopy. Conversely, pollen fragments with an aerodynamic diameter ≤10 μm were collected in Lecce by the PM10 sampler. Pollen grains and fragments are spread worldwide by wind/atmospheric turbulences and can age in the atmosphere, but aerial dispersal, aging, and long-range transport of pollen fragments are favoured over those of whole pollen grains because of their smaller size. Twenty-four Streptophyta families were detected in Lecce throughout the sampling year, but only nine out of them were in common with the 21 pollen families identified in Brindisi. Meteorological parameters and advection patterns were rather similar at both study sites, being only 37 km apart in a beeline, but their impact on the sample taxonomic structure was different, likely for the different pollen sampling/detection systems used in the two monitoring areas.
Collapse
|
17
|
Polling M, Sin M, de Weger LA, Speksnijder AGCL, Koenders MJF, de Boer H, Gravendeel B. DNA metabarcoding using nrITS2 provides highly qualitative and quantitative results for airborne pollen monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150468. [PMID: 34583071 PMCID: PMC8651626 DOI: 10.1016/j.scitotenv.2021.150468] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/28/2021] [Accepted: 09/16/2021] [Indexed: 05/30/2023]
Abstract
Airborne pollen monitoring is of global socio-economic importance as it provides information on presence and prevalence of allergenic pollen in ambient air. Traditionally, this task has been performed by microscopic investigation, but novel techniques are being developed to automate this process. Among these, DNA metabarcoding has the highest potential of increasing the taxonomic resolution, but uncertainty exists about whether the results can be used to quantify pollen abundance. In this study, it is shown that DNA metabarcoding using trnL and nrITS2 provides highly improved taxonomic resolution for pollen from aerobiological samples from the Netherlands. A total of 168 species from 143 genera and 56 plant families were detected, while using a microscope only 23 genera and 22 plant families were identified. NrITS2 produced almost double the number of OTUs and a much higher percentage of identifications to species level (80.1%) than trnL (27.6%). Furthermore, regressing relative read abundances against the relative abundances of microscopically obtained pollen concentrations showed a better correlation for nrITS2 (R2 = 0.821) than for trnL (R2 = 0.620). Using three target taxa commonly encountered in early spring and fall in the Netherlands (Alnus sp., Cupressaceae/Taxaceae and Urticaceae) the nrITS2 results showed that all three taxa were dominated by one or two species (Alnus glutinosa/incana, Taxus baccata and Urtica dioica). Highly allergenic as well as artificial hybrid species were found using nrITS2 that could not be identified using trnL or microscopic investigation (Alnus × spaethii, Cupressus arizonica, Parietaria spp.). Furthermore, perMANOVA analysis indicated spatiotemporal patterns in airborne pollen trends that could be more clearly distinguished for all taxa using nrITS2 rather than trnL. All results indicate that nrITS2 should be the preferred marker of choice for molecular airborne pollen monitoring.
Collapse
Affiliation(s)
- Marcel Polling
- Naturalis Biodiversity Center, Leiden, the Netherlands; Natural History Museum, University of Oslo, Norway.
| | - Melati Sin
- Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Letty A de Weger
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arjen G C L Speksnijder
- Naturalis Biodiversity Center, Leiden, the Netherlands; Leiden University of Applied Sciences, Leiden, the Netherlands
| | | | - Hugo de Boer
- Naturalis Biodiversity Center, Leiden, the Netherlands; Natural History Museum, University of Oslo, Norway
| | - Barbara Gravendeel
- Naturalis Biodiversity Center, Leiden, the Netherlands; Radboud Institute for Biological and Environmental Sciences, Nijmegen, the Netherlands
| |
Collapse
|
18
|
Suanno C, Aloisi I, Fernández-González D, Del Duca S. Monitoring techniques for pollen allergy risk assessment. ENVIRONMENTAL RESEARCH 2021; 197:111109. [PMID: 33848553 DOI: 10.1016/j.envres.2021.111109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 05/15/2023]
Abstract
Understanding airborne pollen allergens trends is of great importance for the high prevalence and the socio-economic impact that pollen-related respiratory diseases have on a global scale. Pursuing this aim, aeropalynology evolved as a broad and complex field, that requires multidisciplinary knowledge covering the molecular identity of pollen allergens, the nature of allergen-bearing particles (pollen grains, pollen sub-particles, and small airborne particles), and the distribution of their sources. To estimate the health hazard that urban vegetation and atmospheric pollen concentrations pose to allergic subjects, it is pivotal to develop efficient and rapid monitoring systems and reliable allergic risk indices. Here, we review different pollen allergens monitoring approaches, classifying them into I) vegetation-based, II) pollen-based, and III) allergen-based, and underlining their advantages and limits. Finally, we discuss the outstanding issues and directions for future research that will further clarify our understanding of pollen aeroallergens dynamics and allergen avoidance strategies.
Collapse
Affiliation(s)
- Chiara Suanno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Delia Fernández-González
- Institute of Atmospheric Sciences and Climate, ISAC-CNR, Via Piero Gobetti 101, 40129, Bologna, Italy; Department Biodiversity and Environmental Management, University of León, 24071, Callejón Campus Vegazana, S/n, 24007, León, Spain
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| |
Collapse
|
19
|
Simunovic M, Erbas B, Boyle J, Baker P, Davies JM. Characteristics of emergency patients admitted to hospital with asthma: A population-based cohort study in Queensland, Australia. Emerg Med Australas 2021; 33:1027-1035. [PMID: 33991056 DOI: 10.1111/1742-6723.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Patient characteristics with exacerbation of asthma accessing care in the ED who are at risk of hospital admission have not been determined in subtropical climates. The objective of the study was to investigate the spatiotemporal burden of asthma hospital admissions across Queensland (QLD) and model risk factors for asthma hospital admission following an ED visit. METHODS Six years of routinely collected data (2012-2017) from 28 QLD public hospitals were extracted from Queensland Health's Emergency Data Collection. The dataset contained individual, episode-level ED presentations having asthma-like diagnoses, and an indicator of hospital admission, including to short-stay unit (SSU). A generalised additive model was used to examine the risk of asthma hospital admission. RESULTS Asthma hospital admissions increased from a weekly median of 79 (interquartile range [IQR] 66-99) in 2012 to 104 (IQR 81-135) in 2017. A higher incidence of asthma hospital admission was observed among males (median age 9, IQR 5-32) in childhood and females in adulthood (median age 32, IQR 11-51). Compared to the state capital Brisbane, the odds of asthma hospital admission ranged from 0.48 (95% CI 0.42-0.54) to 1.34 (95%CI 1.21-1.48) in other regions of QLD. CONCLUSION Asthma hospital admissions appear to be increasing in QLD, largely driven by utilisation of the SSU admissions for asthma. With large variation in both incidence and proportion admitted across different regions, routinely collected data can in part be used to understand risk factors for asthma-related hospital admission following an ED presentation and further inform public health policy development.
Collapse
Affiliation(s)
- Marko Simunovic
- School of Biomedical Sciences, Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Bircan Erbas
- School of Public Health and Epidemiology, La Trobe University, Melbourne, Victoria, Australia
| | - Justin Boyle
- Australian E-Health Research Centre, The Commonwealth Scientific and Industrial Research Organisation, Brisbane, Queensland, Australia
| | - Philip Baker
- School of Public Health and Social Work, Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Janet M Davies
- School of Biomedical Sciences, Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,Office of Research, Metro North Hospital and Health Services, Brisbane, Queensland, Australia
| |
Collapse
|
20
|
Rowney FM, Brennan GL, Skjøth CA, Griffith GW, McInnes RN, Clewlow Y, Adams-Groom B, Barber A, de Vere N, Economou T, Hegarty M, Hanlon HM, Jones L, Kurganskiy A, Petch GM, Potter C, Rafiq AM, Warner A, Wheeler B, Osborne NJ, Creer S. Environmental DNA reveals links between abundance and composition of airborne grass pollen and respiratory health. Curr Biol 2021; 31:1995-2003.e4. [PMID: 33711254 DOI: 10.1016/j.cub.2021.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/28/2020] [Accepted: 02/08/2021] [Indexed: 10/21/2022]
Abstract
Grass (Poaceae) pollen is the most important outdoor aeroallergen,1 exacerbating a range of respiratory conditions, including allergic asthma and rhinitis ("hay fever").2-5 Understanding the relationships between respiratory diseases and airborne grass pollen with a view to improving forecasting has broad public health and socioeconomic relevance. It is estimated that there are over 400 million people with allergic rhinitis6 and over 300 million with asthma, globally,7 often comorbidly.8 In the UK, allergic asthma has an annual cost of around US$ 2.8 billion (2017).9 The relative contributions of the >11,000 (worldwide) grass species (C. Osborne et al., 2011, Botany Conference, abstract) to respiratory health have been unresolved,10 as grass pollen cannot be readily discriminated using standard microscopy.11 Instead, here we used novel environmental DNA (eDNA) sampling and qPCR12-15 to measure the relative abundances of airborne pollen from common grass species during two grass pollen seasons (2016 and 2017) across the UK. We quantitatively demonstrate discrete spatiotemporal patterns in airborne grass pollen assemblages. Using a series of generalized additive models (GAMs), we explore the relationship between the incidences of airborne pollen and severe asthma exacerbations (sub-weekly) and prescribing rates of drugs for respiratory allergies (monthly). Our results indicate that a subset of grass species may have disproportionate influence on these population-scale respiratory health responses during peak grass pollen concentrations. The work demonstrates the need for sensitive and detailed biomonitoring of harmful aeroallergens in order to investigate and mitigate their impacts on human health.
Collapse
Affiliation(s)
- Francis M Rowney
- European Centre for Environment and Human Health, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro TR1 3HD, UK; School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| | - Georgina L Brennan
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, UK; Centre for Environmental and Climate Science/Aquatic Ecology, Department of Biology, Lund University, 223 62 Lund, Sweden.
| | - Carsten A Skjøth
- School of Science and the Environment, University of Worcester, Worcester WR2 6AJ, UK
| | | | | | | | - Beverley Adams-Groom
- School of Science and the Environment, University of Worcester, Worcester WR2 6AJ, UK
| | - Adam Barber
- Met Office, Fitzroy Road, Exeter EX1 3PB, UK
| | - Natasha de Vere
- IBERS, Aberystwyth University, Aberystwyth SY23 3FL, UK; National Botanic Garden of Wales, Llanarthne SA32 8HN, UK
| | - Theo Economou
- Met Office, Fitzroy Road, Exeter EX1 3PB, UK; Department of Mathematics, University of Exeter, North Park Road, Exeter EX4 4QF, UK
| | | | | | - Laura Jones
- National Botanic Garden of Wales, Llanarthne SA32 8HN, UK
| | - Alexander Kurganskiy
- School of Science and the Environment, University of Worcester, Worcester WR2 6AJ, UK; Department of Geography, University of Exeter, Penryn Campus, Treliever Road, Penryn TR10 9FE, UK
| | - Geoffrey M Petch
- School of Science and the Environment, University of Worcester, Worcester WR2 6AJ, UK
| | | | - Abdullah M Rafiq
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, UK
| | | | | | - Benedict Wheeler
- European Centre for Environment and Human Health, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro TR1 3HD, UK.
| | - Nicholas J Osborne
- European Centre for Environment and Human Health, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro TR1 3HD, UK; School of Public Health, The University of Queensland, Herston Road, Brisbane, QLD 4006, Australia.
| | - Simon Creer
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, UK.
| |
Collapse
|