1
|
Huang Y, Deng M, Zhou S, Xue Y, Yeerken S, Wang Y, Li L, Song K. Microbial mechanisms underlying the reduction of N 2O emissions from submerged plant covered system. WATER RESEARCH X 2025; 28:100314. [PMID: 40007796 PMCID: PMC11849602 DOI: 10.1016/j.wroa.2025.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Submerged plant (SP) restoration is a crucial strategy for restoring aquatic ecosystem. However, the effect of SP on nitrous oxide (N2O) emissions remains controversial, and the impact of SP-attached biofilms on N2O emissions is often overlooked. In this study, SP and non-submerged plant (NSP) systems were set up and operated continuously for 189 days, revealing that SP reduced N2O flux by 42.4 %. By comparing the N2O net emission rates from water, sediment, and biofilms, we identified biofilms as the primary medium responsible for the reduction in N2O emissions in both SP and NSP systems. Further analysis of N2O metabolic rates from nitrification, denitrification, and abiotic processes under light and dark conditions confirmed that counter-diffusion of dissolved oxygen and nutrients in SP biofilms plays a key role in reducing denitrification-driven N2O emissions. Additionally, SP-attached biofilms increased nosZII-type denitrifiers (e.g., Bacillus) and reduced N2O production potential ((nirS+nirK)/(nosZI+nosZII)). Notably, the establishment of a SP restoration project in a typical eutrophic freshwater lake demonstrated that SP could reduce N2O fluxes by 61.5 %. This study provides significant insights for strategies aimed at mitigating N2O emissions.
Collapse
Affiliation(s)
- Yongxia Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Min Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Shuni Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yunpeng Xue
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Senbati Yeerken
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuren Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lu Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Kang Song
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, PR China
| |
Collapse
|
2
|
Zheng MY, Qi XJ, Liu ZY, Wang YT, Ren YB, Li Y, Zhang Y, Chai BF, Jia T. Microbial taxonomic diversity and functional genes mirror soil ecosystem multifunctionality in nonferrous metal mining areas. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138149. [PMID: 40188538 DOI: 10.1016/j.jhazmat.2025.138149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/09/2025] [Accepted: 04/01/2025] [Indexed: 04/08/2025]
Abstract
The pollution of metal ions triggers great risks of damaging biodiversity and biodiversity-driven ecosystem multifunctioning, whether microbial functional gene can mirror ecosystem multifunctionality in nonferrous metal mining areas remains largely unknown. Macrogenome sequencing and statistical tools are used to decipher linkage between functional genes and ecosystem multifunctioning. Soil samples were collected from subdams in a copper tailings area at various stages of restoration. The results indicated that the diversity and composition of soil bacterial communities were more sensitive than those of the fungal and archaeal communities during the restoration process. The mean method revealed that nutrient, heavy metal, and soil carbon, nitrogen, and phosphorus multifunctionality decreased with increasing bacterial community richness, whereas highly significant positive correlations were detected between the species richness of the bacterial, fungal, and archaeal communities and the multifunctionality of the carbon, nitrogen, and phosphorus functional genes and of functional genes for metal resistance in the microbial communities. SEM revealed that soil SWC and pH were ecological factors that directly influenced abiotic factor-related EMF; microbial diversity was a major biotic factor influencing the functional gene multifunctionality of the microbiota; and different abiotic and biotic factors associated with EMF had differential effects on whole ecosystem multifunctionality. These findings will help clarify the contributions of soil microbial diversity and functional genes to multifunctionality in degraded ecosystems.
Collapse
Affiliation(s)
- Meng-Yao Zheng
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Xiao-Jun Qi
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Zhi-Yue Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Yi-Ting Wang
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Yan-Bo Ren
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Yuan Li
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Yue Zhang
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Bao-Feng Chai
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Tong Jia
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
3
|
Lei L, Yu J, Liu L, Gong C, Gao Y, Zhang Z, Zhang R, Zhuang H, Shan S. Unveiling soil-borne antibiotic resistome and their associated risks: A comparative study of antibiotic and non-antibiotic pharmaceutical factories. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137127. [PMID: 39764958 DOI: 10.1016/j.jhazmat.2025.137127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/06/2024] [Accepted: 01/03/2025] [Indexed: 03/12/2025]
Abstract
Antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) are extensively documented within antibiotic pharmaceutical factories. Notably, non-antibiotic pharmaceuticals also represent a significant portion of the pharmaceuticals market. However, the comparative analyses of soil-borne ARG profiles and associated risks in different categories of pharmaceutical factories remain limited. This study conducted metagenomic sequencing on soil samples collected from both antibiotic and non-antibiotic pharmaceutical factories, alongside isolated ARB from soil, wastewater, groundwater, and air. Our results indicated the significant discrepancies in soil-borne ARG profiles, comprising abundance, diversity, and composition, in different categories of pharmaceutical factories (P < 0.05), which mainly driven by antibiotic residues. Significantly, bacterial pathogens were the important soil-borne ARG hosts, potentially posing risks to human health. In addition, the full-length nucleotide sequences of sul1, tetA, and TEM-1 were similar among soil, wastewater, groundwater, and air, suggesting the cross-media ARG dissemination within pharmaceutical settings. Through macrophage and Galleria mellonella infection models, the isolated antibiotic-resistant Escherichia coli strains possessed relatively high virulence. Overall, the findings provide valuable insights into the discrepancies in soil-borne ARG profiles and associated risks across different types of pharmaceutical factories, offering critical data for the targeted prevention and control of soil-borne ARG contamination in pharmaceutical production settings.
Collapse
Affiliation(s)
- Liusheng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Jing Yu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Linqi Liu
- Jiangxi Academy of Forestry/Jiangxi Nanchang Urban Ecosystem Research Station, Nanchang 330013, China
| | - Chenpan Gong
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resource, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Yuze Gao
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resource, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Zihan Zhang
- Henan Provincial Puyang Eco Environmental Monitoring Center, China
| | - Ranran Zhang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resource, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
| | - Haifeng Zhuang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resource, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resource, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| |
Collapse
|
4
|
Yang W, Jiang H, Zhang L, Gu J, Wang X. SiO 2 nanoparticles can enhance nitrogen retention and reduce copper resistance genes during aerobic composting of swine manure. BIORESOURCE TECHNOLOGY 2024; 414:131577. [PMID: 39374833 DOI: 10.1016/j.biortech.2024.131577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/09/2024]
Abstract
SiO2 nanoparticles (SiO2 NPs) are low-cost, environmentally friendly materials with significant potential to remove pollutants from complex environments. In this study, SiO2 NPs were used for the first time as an additive in aerobic composting to enhance nitrogen retention and reduce the expression of copper resistance genes. The addition of 0.5 g kg-1 SiO2 NPs effectively reduced nitrogen loss by 72.33 % by decreasing denitrification genes (nosZ, nirK, and napA) and increasing nitrogen fixation gene (nifH). The dominant factors affecting nitrification and denitrification genes were Firmicutes and C/N ratio. Additionally, SiO2 NPs decreased copper resistance genes by 28.96 % - 37.52 % in compost products. Copper resistance genes decreased most in the treatment with 0.5 g kg-1 SiO2 NPs. In summary, 0.5 g kg-1 SiO2 NPs have the potential to reduce copper resistance genes and enhance nitrogen retention during aerobic composting, which may be used to improve compost quality.
Collapse
Affiliation(s)
- Wenshan Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Haihong Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510000, China.
| | - Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Liu Y, Ma R, Tang R, Zheng G, Li G, Yin J, Yuan J. Phosphate, magnesium containing additives and biochar regulate compost maturity and synergistically reduce odor emission in chicken manure composting: Role of physicochemical, bacterial and fungal dynamics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123205. [PMID: 39504668 DOI: 10.1016/j.jenvman.2024.123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
This study explored the odor composition and emission in chicken manure composting process, employing chemical fixatives and biochar to mitigate odors effectively. Compost maturity, ammonia, sulfur-containing odor emissions, as well as the bacterial and fungal community structure were analyzed to assess composting performance and mechanisms. The results indicated that four malodorous substances were identified as major contributors: dimethyl disulfide (Me2S2), hydrogen sulfide (H2S), methyl sulfide (Me2S), and ammonia (NH3). Biochar (BC) augmented compost maturity by enhancing the relative abundance of Thermobifida and Saccharomonospora, while reducing the emission of total malodorous sulfur-containing components by 65.3% by mitigating Halocella and Hydrogenispora, albeit without affecting NH3 emissions. Superphosphate (SP) mitigated malodorous sulfur-containing components by 51.3% through its calcium (Ca) components and associated bacteria (Pseudomonas, Halocella and Hydrogenispora). Notably, magnesium (Mg) emerged as a limiting factor for NH3 fixation by SP. The combination of SP and magnesium sulfate (MS) decreased NH3 emissions by 47.9% via the formation of struvite crystals (MgNH4PO4) and further reduced the emission of malodorous sulfur-containing components by 60.0% by enhancing functional fungi inhibiting malodorous substance production. Ultimately, the combined application of BC, SP, and MS yielded the most significant odor reduction effects, with reductions of 86.8%, 35.3%, 92.8%, and 38.8% observed in Me2S2, H2S, Me2S, and NH3, respectively.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Ruonan Ma
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Ruolan Tang
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Guannan Zheng
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Guoxue Li
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Jie Yin
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Jing Yuan
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Xu M, Yu B, Chen Y, Zhou P, Xu X, Qi W, Jia Y, Liu J. Mitigating greenhouse gas emission and enhancing fermentation by phosphorus slag addition during sewage sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122740. [PMID: 39378818 DOI: 10.1016/j.jenvman.2024.122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
During the composting of sewage sludge (SS), a quantity of greenhouse gases has been produced. This study aimed to clarify the microbial mechanisms associated with the addition of industrial solid waste phosphorus slag (PS) to SS composting, specifically focusing on its impact on greenhouse gas emissions and the humification. The findings indicated that the introduction of PS increased the temperature and extended the high-temperature phase. Moreover, the incorporation of 10% and 15% PS resulted in a decrease of N2O emissions by 68.9% and 88.6%, respectively. Microbial diversity analysis indicated that PS improved waste porosity, ensuring the aerobic habitat. Therefore, the environmental factors of the system were altered, leading to the enrichment of various functional bacterial species, such as Firmicutes and Chloroflexi, and a reduction of pathogenic bacterium Dokdonella. Consequently, incorporating PS into SS composting represents an effective waste treatment strategy, exhibiting economic feasibility and promising application potential.
Collapse
Affiliation(s)
- Mingyue Xu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Bao Yu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yue Chen
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Ping Zhou
- Kunming Dianchi Water Treatment Co., Ltd, Kunming, 650228, China
| | - Xingkun Xu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wenzhi Qi
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yufeng Jia
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Wu S, Yang Y, Ma Z, Feng F, Xu X, Deng S, Han X, Xi B, Jiang Y. Co-migration behavior of toluene coupled with trichloroethylene and the response of the pristine groundwater ecosystems - A mesoscale indoor experiment. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134248. [PMID: 38636237 DOI: 10.1016/j.jhazmat.2024.134248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Experimental scale and sampling precision are the main factors limiting the accuracy of migration and transformation assessments of complex petroleum-based contaminants in groundwater. In this study, a mesoscale indoor aquifer device with high environmental fidelity and monitoring accuracy was constructed, in which dissolved toluene and trichloroethylene were used as typical contaminants in a 1.5-year contaminant migration experiment. The process was divided into five stages, namely, pristine, injection, accumulation, decrease, and recovery, and characteristics such as differences in contaminant migration, the responsiveness of environmental factors, and changes in microbial communities were investigated. The results demonstrated that the mutual dissolution properties of the contaminants increased the spread of the plume and confirmed that toluene possessed greater mobility and natural attenuation than trichloroethylene. Attenuation of the contaminant plume proceeded through aerobic degradation, nitrate reduction, and sulfate reduction phases, accompanied by negative feedback from characteristic ion concentrations, dissolved oxygen content, the oxidation-reduction potential and microbial community structure of the groundwater. This research evaluated the migration and transformation characteristics of typical petroleum-based pollutants, revealed the response mechanism of the ecosystem to pollutant, provided a theoretical basis for predicting pollutant migration and formulating control strategies.
Collapse
Affiliation(s)
- Shuxuan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhifei Ma
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China
| | - Fan Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiangjian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sheng Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xu Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yonghai Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
8
|
Wang W, Wang X, Zhang X, Bai Z, Ma L. Modified lignin can achieve mitigation of ammonia and greenhouse gas emissions simultaneously in composting. BIORESOURCE TECHNOLOGY 2024; 402:130840. [PMID: 38750829 DOI: 10.1016/j.biortech.2024.130840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
The constant ammonia gas (NH3) and greenhouse gases (GHG) emissions were considered as a deep-rooted problem in composting which caused air pollution and global climate change. To achieve the mitigation of NH3 and GHG, a novel additive derived from wasted straw, with modified structure and functional groups, has been developed. Results showed that the adsorption capacity of modified lignin (ML) for both ammonium and nitrate was significantly increased by 132.5-360.8 % and 313.7-454.3 % comparing with biochar (BC) and phosphogypsum (PG) after reconstructing porous structure and grafting R-COOH, R-SO3H functional groups. The application of ML could reduce 36.3 % NH3 emission during composting compared with control. Furthermore, the synergetic mitigation NH3 and GHG in ML treatment resulted in a reduction of global warming potential (GWP) by 31.0-64.6 % compared with BC and PG. These findings provide evidence that ML can be a feasible strategy to effectively alleviate NH3 and GHG emissions in composting.
Collapse
Affiliation(s)
- Weishuai Wang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China
| | - Xuan Wang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China
| | - Xinyuan Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China
| | - Zhaohai Bai
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
9
|
Xu J, Zhang Z, Wu Y, Liu B, Xia X, Chen Y. Effects of C/N ratio on N 2O emissions and nitrogen functional genes during vegetable waste composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32538-32552. [PMID: 38656720 DOI: 10.1007/s11356-024-33427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Nitrous oxide (N2O) generation during composting not only leads to losses of nitrogen (N) but also reduces the agronomic values and environmental benefits of composting. This study aimed to investigate the effect of the C/N ratio on N2O emissions and its underlying mechanisms at the genetic level during the composting of vegetable waste. The experiment was set up with three treatments, including low C/N treatment (LT, C/N = 18), middle C/N treatment (MT, C/N = 30), and high C/N treatment (HT, C/N = 50). The results showed that N2O emission was mainly concentrated in the cooling and maturation periods, and the cumulative N2O emissions decreased as the C/N ratio increased. Specifically, the cumulative N2O emission was 57,401 mg in LT, significantly higher than 2155 mg in MT and 1353 mg in HT. Lowering the C/N ratio led to increasing TN, NH4+-N, and NO3--N contents throughout the composting process. All detected nitrification-related gene abundances in LT continued to increase during composting, significantly surpassing those in MT during the cooling period. By contrast, in HT, there was a slight increase in the abundance of detected nitrification-related genes but a significant decrease in the abundance of narG, napA, and norB genes in the thermophilic and cooling periods. The structural equation model revealed that hao and nosZ genes were vital in N2O emissions. In conclusion, increasing the C/N ratio effectively contributed to N2O reduction during vegetable waste composting.
Collapse
Affiliation(s)
- Jingang Xu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Zhi Zhang
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Yupeng Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bo Liu
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Xiange Xia
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Yunfeng Chen
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China.
| |
Collapse
|
10
|
Zhang Y, Deng F, Su X, Su H, Li D. Semi-permeable membrane-covered high-temperature aerobic composting: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120741. [PMID: 38522273 DOI: 10.1016/j.jenvman.2024.120741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Semi-permeable membrane-covered high-temperature aerobic composting (SMHC) is a suitable technology for the safe treatment and disposal of organic solid waste as well as for improving the quality of the final compost. This paper presents a comprehensive summary of the impact of semi-permeable membranes centered on expanded polytetrafluoroethylene (e-PTFE) on compost physicochemical properties, carbon and nitrogen transformations, greenhouse gas emission reduction, microbial community succession, antibiotic removal, and antibiotic resistance genes migration. It is worth noting that the semi-permeable membrane can form a micro-positive pressure environment under the membrane, promote the uniform distribution of air in the heap, reduce the proportion of anaerobic area in the heap, improve the decomposition rate of organic matter, accelerate the decomposition of compost and improve the quality of compost. In addition, this paper presents several recommendations for future research areas in the SMHC. This investigation aims to guide for implementation of semi-permeable membranes in high-temperature aerobic fermentation processes by systematically compiling the latest research progress on SMHC.
Collapse
Affiliation(s)
- Yanzhao Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Fang Deng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiongshuang Su
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Haifeng Su
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Dong Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
11
|
Li Y, Chen Y, Sun F, He L, Zhao Y. Study on the effect of biochar combined with Fenton oxidation on the aerobic composting of sludge. ENVIRONMENTAL TECHNOLOGY 2024; 45:1374-1387. [PMID: 36322505 DOI: 10.1080/09593330.2022.2143289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Biochar was derived from rice straw pyrolyzed at 400°C, and biochar was added to the excess sludge at the ratio of 10% DS, 25% DS, and 50% DS as a supplementary skeleton for sludge Fenton pre-treatment. Rice husk biochar mixed with fungus residue as compost conditioner. In this study, we explored the effects of seven groups of composting materials on the composting effect and fertilizer quality under different pre-treatment methods of Fenton-pretreated sludge cake and conventional dewatered sludge cake, and different biochar additions. Specifically, we conducted a 22-day composting experiment using a composting reactor to investigate the effect of rice husk biochar combined with Fenton oxidation on the physicochemical properties of sludge composting. The results of this study showed that the FB50 group significantly increased the composting rate. Nutrient analysis showed that the FB50 group was rich in fertilizer nutrients, such as available phosphorus, and alkali-hydrolyzable nitrogen content increased. Heavy metals (Cu, Cd, Cr, Pb, Zn, Ni) met China's 'Agricultural Sludge Pollutant Control Standard' GB 4284-2018 Grade A standard, with obvious passivation and significantly reduced bioavailability. All these results suggested that biochar coupled with Fenton oxidation was more beneficial to sludge composting.
Collapse
Affiliation(s)
- Yanjun Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Yu Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Fei Sun
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Liwenze He
- School of Civil Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Yuting Zhao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| |
Collapse
|
12
|
Gao P, Yan X, Xia X, Liu D, Guo S, Ma R, Lou Y, Yang Z, Wang H, Yang Q, Pan H, Zhuge Y. Effects of the three amendments on NH 3 volatilization, N 2O emissions, and nitrification at four salinity levels: An indoor experiment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120399. [PMID: 38387357 DOI: 10.1016/j.jenvman.2024.120399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
The marked salinity and alkaline pH of coastal saline soil profoundly impact the nitrogen conversion process, leading to a significantly reduced nitrogen utilization efficiency and substantial gaseous nitrogen loss. The application of soil amendments (e.g. biochar, manure, and gypsum) was proved to be effective for the remediation of saline soils. However, the effects of the three amendments on soil nitrogen transformation in soils with various salinity levels, especially on NH3 volatilization and N2O emission, remain elusive. Here, we reported the effects of biochar, manure, and gypsum on NH3 volatilization and N2O emission under four natural salinity gradients in the Yellow River Delta. Also, high-throughput sequencing and qPCR analysis were performed to characterize the response of nitrification (amoA) and denitrification (nirS, nirK, and nosZ) functional genes to the three amendments. The results showed that the three amendments had little effect on NH3 volatilization in low- and moderate-salinity soils, while biochar stimulated NH3 volatilization in high-salinity soils and reduced NH3 volatilization in severe-salinity soils. Spearman correlation analysis demonstrated that AOA was significantly and positively correlated with the NO3--N content (r = 0.137, P < 0.05) and N2O emissions (r = 0.174, P < 0.01), which indicated that AOA dominated N2O emissions from nitrification in saline soils. Structural equation modeling indicated that biochar, manure, and gypsum affected N2O emission by influencing soil pH, conductivity, mineral nitrogen content, and functional genes (AOA-amoA and nosZ). Two-way ANOVA further showed that salinity and amendments (biochar, manure, and gypsum) had significant effects on N2O emissions. In summary, this study provides valuable insights to better understand the effects of gaseous N changes in saline soils, thereby improving the accuracy and validity of future GHG emission predictions and modeling.
Collapse
Affiliation(s)
- Panpan Gao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Xianghui Yan
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Xuejing Xia
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Dan Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Songnian Guo
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Ronghui Ma
- Agricultural Technology Promotion Center of Shandong Province, Jinan, 252199, China
| | - Yanhong Lou
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Zhongchen Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Hui Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Quangang Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Hong Pan
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China.
| | - Yuping Zhuge
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China.
| |
Collapse
|
13
|
Zhang Q, Liu H, Liang S, Chen W, Tan S, Yang C, Qin S, Long K. Comparison of moving bed biofilm reactor and bio-contact oxidation reactor start-up with heterotrophic nitrification-aerobic denitrification bacteria and activated sludge inoculation under high ammonia nitrogen conditions. BIORESOURCE TECHNOLOGY 2024; 395:130408. [PMID: 38295957 DOI: 10.1016/j.biortech.2024.130408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/03/2024]
Abstract
To overcome poor ammonia tolerance and removal performance of bio-contact oxidation (BCO) reactor inoculated with activated sludge for high-ammonia nitrogen (NH4+-N) chemical wastewater treatment, this study compared inoculating heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria in moving bed biofilm reactor (MBBR) with activated sludge inoculation in BCO reactor under simulated high NH4+-N conditions. Results revealed that MBBR achieved faster biofilm formation (20 days vs. 100 days for BCO) with notable advantages: 27.6 % higher total nitrogen (TN) and 29.9 % higher NH4+-N removal efficiency than BCO. Microbial analysis indicated optimal enrichment of the key nitrogen removal (NR) bacterium Alcaligenes, leading to increased expression of NR enzymes hydroxylamine reductase, ensuring the superior NR efficiency of the MBBR. Additionally, functional enzymes and genes analysis speculated that the NR pathway in MBBR was: NH4+-N → NH2OH → NO3--N → NO2--N → NO → N2O → N2. This research offers a practical and theoretical foundation for extending HN-AD bacteria-inoculated MBBR processes.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Huan Liu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Siyu Liang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Wang Chen
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Senwen Tan
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chenxi Yang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Shumin Qin
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Kun Long
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
14
|
Li H, Zhao Z, Shi M, Luo B, Wang G, Wang X, Gu J, Song Z, Sun Y, Zhang L, Wang J. Metagenomic binning analyses of swine manure composting reveal mechanism of nitrogen cycle amendment using kaolin. BIORESOURCE TECHNOLOGY 2024; 393:130156. [PMID: 38056679 DOI: 10.1016/j.biortech.2023.130156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
The efficient control of nitrogen loss in composting and the enhancement of product quality have become prominent concerns in current research. The positive role of varying concentrations kaolin in reducing nitrogen loss during composting was revealed using metagenomic binning combined with reverse transcription quantitative polymerase chain reaction. The results indicated that the addition of 0.5 % kaolin significantly (P < 0.05) up-regulated the expression of nosZ and nifH on day 35, while concurrently reducing norB abundance, resulting in a reduction of NH3 and N2O emissions by 61.4 % and 17.5 %, respectively. Notably, this study represents the first investigation into the co-occurrence of nitrogen functional genes and heavy metal resistance genes within metagenomic assembly genomes during composting. Emerging evidence indicates that kaolin effectively impedes the binding of Cu/Zn to nirK and nosZ gene reductases through passivation. This study offers a novel approach to enhance compost quality and waste material utilization.
Collapse
Affiliation(s)
- Huakang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; China Construction Sixth Division Construction & Development Co., Ltd., Tianjin 300450, China
| | - Zixuan Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meiling Shi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Water Conservancy and Architectural Engineering, Tarim University, Alar 843300, China
| | - Bin Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guangdong Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
15
|
Zhang Z, Jin B, Zhang Y, Huang Z, Li C, Tan M, Huang J, Lei T, Qi Y, Li H. The synergistic regulation of sewage sludge biodrying and greenhouse gas reduction by additives. BIORESOURCE TECHNOLOGY 2024; 394:130180. [PMID: 38086457 DOI: 10.1016/j.biortech.2023.130180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
As a dewatering method of high moisture solid waste sludge, biodrying still faces environmental problems such as material loss and greenhouse gas emission in the process of treatment. In this study, biochar and magnesium chloride were used to explore the synergistic effect of enhancing sludge biodrying and reducing greenhouse gas emissions. The highest temperature of biodrying was raised to 68.2 °C within 3 days, extending the longest high-temperature period to 5 days, which reduced the water content to 28.8 % in the single addition of biochar treatment. The complex addition increased the NH4+-N content of materials by 57.49 % and decreased the NO3--N content of materials by 40.62 %. The use of additives significantly reduced the emissions of CO2, CH4, and N2O compared to the no-addition treatment. The increase in dominant Actinomycetes and Chloroflexibacter was the main reason for the reduction in gas emissions.
Collapse
Affiliation(s)
- Zhiguo Zhang
- College of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Baicheng Jin
- College of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China; State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Yanru Zhang
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Zhongliang Huang
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Mengjiao Tan
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Jing Huang
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Tingzhou Lei
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Youxiang Qi
- Zhilan Ecological Environment Construction Co., Ltd, 410004, PR China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
16
|
Zhan Y, Xu S, Hou Z, Gao X, Su J, Peng B, Zhao J, Wang Z, Cheng M, Zhang A, Guo Y, Ding G, Li J, Wei Y. Co-inoculation of phosphate-solubilizing bacteria and phosphate accumulating bacteria in phosphorus-enriched composting regulates phosphorus transformation by facilitating polyphosphate formation. BIORESOURCE TECHNOLOGY 2023; 390:129870. [PMID: 37839642 DOI: 10.1016/j.biortech.2023.129870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
This study aimed to explore the impact of co-inoculating phosphate-solubilizing bacteria (PSB) and phosphate accumulating bacteria (PAB) on phosphorus forms transformation, microbial biomass phosphorus (MBP) and polyphosphate (Poly-P) accumulation, bacterial community composition in composting, using high throughput sequencing, PICRUSt 2, network analysis, structural equation model (SEM) and random forest (RF) analysis. The results demonstrated PSB-PAB co-inoculation (T1) reduced Olsen-P content (1.4 g) but had higher levels of MBP (74.2 mg/kg) and Poly-P (419 A.U.) compared to PSB-only (T0). The mantel test revealed a significantly positive correlation between bacterial diversity and both bioavailable P and MBP. Halocella was identified as a key genus related to Poly-P synthesis by network analysis. SEM and RF analysis showed that pH and bacterial community had the most influence on Poly-P synthesis, and PICRUSt 2 analysis revealed inoculation of PAB increased ppk gene abundance in T1. Thus, PSB-PAB co-inoculation provides a new idea for phosphorus management.
Collapse
Affiliation(s)
- Yabin Zhan
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Shaoqi Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Zhuonan Hou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Xin Gao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Jing Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Bihui Peng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Jinyue Zhao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Zhigang Wang
- DBN Agriculture Science and Technology Group CO., Ltd., DBN Pig Academy, Beijing 102629, China
| | - Meidi Cheng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Ake Zhang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Fuyang Academy of Agricultural Sciences, Fuyang 236065, China
| | - Yanbin Guo
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Guochun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
17
|
Shan G, Li W, Liu J, Tan W, Bao S, Wang S, Zhu L, Hu X, Xi B. Macrogenomic analysis of the effects of aqueous-phase from hydrothermal carbonation of sewage sludge on nitrogen metabolism pathways and associated bacterial communities during composting. BIORESOURCE TECHNOLOGY 2023; 389:129811. [PMID: 37776912 DOI: 10.1016/j.biortech.2023.129811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The effects of aqueous phases (AP) formed from hydrothermal carbonation of sewage sludge (with or without rice husk) as moisture regulators of nitrogen metabolism pathways during composting are currently unclear. Macrogenomic analyses revealed that both APs resulted in notably changes in bacterial communities during composting; increased levels of nitrogen assimilation, nitrification, and denitrification metabolic pathways; and decreased levels of nitrogen mineralization metabolic pathways. Genes associated with nitrogen assimilation and mineralization accounted for 34-41% and 32-40% of the annotated reads related to nitrogen cycling during composting, respectively, representing them as the most abundant nitrogen metabolism processes. The gudB and norB were identified as key genes for nitrogen mineralization and nitrous oxide emission, respectively. This research offers a better understanding of the effects of additional nitrogen sources on nitrogen metabolism pathways during composting.
Collapse
Affiliation(s)
- Guangchun Shan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jie Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Shanshan Bao
- Key Laboratory of Water Management and Water Security for Yellow River Basin, Ministry of Water Resources, Yellow River Engineering Consulting Co. Ltd., Zhengzhou 450003, China
| | - Shuncai Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lin Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinhao Hu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
18
|
Yang X, Li R, Wang J, Xu W, Wang Y, Yi G, Zhang X, Zhu J, Mazarji M, Syed A, Bahkali AH, Zhang Z, Pan J. Exploring carbon conversion and balance with magnetite-amended during pig manure composting. BIORESOURCE TECHNOLOGY 2023; 388:129707. [PMID: 37659668 DOI: 10.1016/j.biortech.2023.129707] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/04/2023]
Abstract
This study was designed to explore the magnetite in maturation and humification during pig manure (PM) and wolfberry branch fillings (BF) composting. Different proportions of magnetite (T1, 0%; T2, 2.5%; T3, 5%; T4, 7.5%;) were blended with PM for 50 days of composting. The findings indicated magnetite amendment has no influence on the maturity, and the 5% ratio significantly promoted humic acid (HA) formation and fulvic acid (FA) decomposition compared to other treatments. Compared to T1, magnetite addition significantly increased CO2 and CH4 emissions by 106.39%-191.69% and 6.88-13.72 times. The further analysis suggested that magnetite improved Ruminofilibacter activity were significantly positively associated with HA, and C emissions. The further PICRUSt 2 analysis showed membrane transport may enhance environmental information processing by magnetite. Overall, these results demonstrated higher organic matter (OM) degradation and HA formation with an additional increase in microbial activity highlighted advantages of using magnetite during PM composting.
Collapse
Affiliation(s)
- Xu Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jingwen Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wanying Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Guorong Yi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Juanjuan Zhu
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Mahmoud Mazarji
- Key Laboratory of Non-point Source Pollution of Ministry of Agricultural and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Junting Pan
- Key Laboratory of Non-point Source Pollution of Ministry of Agricultural and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
19
|
Zhu L, Huang C, Li W, Wu W, Tang Z, Tian Y, Xi B. Ammonia assimilation is key for the preservation of nitrogen during industrial-scale composting of chicken manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:50-61. [PMID: 37544234 DOI: 10.1016/j.wasman.2023.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/16/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
Nitrogen loss from compost is a serious concern, causing severe environmental pollution. The NH4+-N content reflects the release of NH3. However, the nitrogen conversion pathway that has the greatest impact on NH4+-N content is still unclear. This study attempted to explore the key pathways, core functional microorganisms, and mechanisms involved in the transformation of ammonia nitrogen during composting. KEGG (Kyoto Encyclopedia of Genes and Genomes) metabolic pathways revealed that ammonia assimilation was dominated by the glutamate dehydrogenase (GDH) pathway (53.4%), which is crucial for nitrogen preservation. The combined analysis of KEGG, NR species annotation, and co-occurrence network identified 20 easy-to-regulate obligate core nitrogen-transforming functional microorganisms, including 18 ammonia-assimilating bacteria. Furthermore, the effects of environmental parameters on the obligate core functional microorganisms were investigated. The present study results provided a theoretical basis for the utilization of ten ammonia-assimilating bacteria, such as Paenibacillus, Erysipelatoclostridium, and Defluviimonas to improve the quality of compost.
Collapse
Affiliation(s)
- Lin Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weixia Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Zhurui Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
20
|
Chen X, Zhao Y, Yang L, Yang Y, Wang L, Wei Z, Song C. Identifying the specific pathways to improve nitrogen fixation of different straw biochar during chicken manure composting based on its impact on the microbial community. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:8-16. [PMID: 37531741 DOI: 10.1016/j.wasman.2023.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
The application of straw biochar to chicken manure composting mitigated nitrogen loss. However, the impact of biochar derived from different types of straw on nitrogen fixation in chicken manure composting is discrepant, and the specific pathways remain unclear. Therefore, this study aimed to clarify the specific pathways of maize straw biochar (M) and rice straw biochar (R) to improve nitrogen fixation during chicken manure composting. The nitrogen losses in control (no addition, CK), M, and R composting were 51.84 %, 33.47 %, and 38.24 %, respectively, suggesting that adding straw biochar effectively improved nitrogen fixation. Microbial community analysis suggested that inhibiting denitrification and NH4+-N transformation by microorganisms was the primary means of improving nitrogen fixation. Meanwhile, biochar addition reduced the number of bacteria participating in nitrogen transformation and strengthened the NO3--N and total organic nitrogen transformation processes, among which the effect of M composting was stronger. The stronger effect was attributed to the significant role of the core microorganisms in M composting in shifting the transformation processes of the nitrogen components (P < 0.05). Therefore, the function of different straw biochar was determined by its different impacts on the microbial community, highlighting the important role of microbial community variability.
Collapse
Affiliation(s)
- Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Liu Yang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunan Yang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Liqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; College of Life Science, Tianjin Normal University, Tianjin 300387, China.
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
21
|
Ahmed I, Zhang Y, Sun P, Zhang B. Co-occurrence pattern of ARGs and N-functional genes in the aerobic composting system with initial elevated temperature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118073. [PMID: 37229868 DOI: 10.1016/j.jenvman.2023.118073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/10/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
Animal manure is known to harbor antibiotic resistance genes (ARGs). Aerobic composting is a prevalent cost-effective and sustainable method to treat animal waste. However, the effect of initially elevated temperature on antibiotic resistome during the composting process is unclear. In this study composting was subjected to initial external heating (EHC) for a period of 5 days compared to conventional composting (CC). After composting ARGs abundance was significantly reduced by 2.43 log in EHC and 1.95 log in CC. Mobile genetic elements (MGEs) also exhibited a reduction of 1.95 log in EHC and 1.49 log in CC. However, during the cooling phase, the genes resisting macrolide lincosamide and streptogramin B (MLSB) rebounded by 0.04 log in CC. The potential human pathogenic bacteria Pseudomonas (41.5-61.5%) and Actinobacteria (98.4-98.8%) were significantly reduced in both treatments and the bulk of targeted antibiotics were eliminated by 80.74% in EHC and 68.98% in CC. ARGs and N-functional genes (NFGs), mainly denitrification genes, were carried by the same microbial species, such as Corynebacterium sp. and Bacillus sp., of the dominant phylum. Redundancy analysis (RDA) revealed that CC microbial communities played a key role in the enrichment of ARGs while in EHC the variation of ARGs was attributed to the composting temperature. The number of high-risk ARGs was also lower in EHC (4) compared with CC (6) on day 30. These results provide insight into the effects of an initially enhanced temperature on ARGs removal and the relationship between ARGs and NFGs during the composting process.
Collapse
Affiliation(s)
- Imtiaz Ahmed
- Environmental Science and Engineering School, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yongpeng Zhang
- Environmental Science and Engineering School, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Pengyu Sun
- Environmental Science and Engineering School, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Bo Zhang
- Environmental Science and Engineering School, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200240, China.
| |
Collapse
|
22
|
Li H, Tan L, Liu W, Li X, Zhang D, Xu Y. Unraveling the effect of added microbial inoculants on ammonia emissions during co-composting of kitchen waste and sawdust: Core microorganisms and functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162522. [PMID: 36868270 DOI: 10.1016/j.scitotenv.2023.162522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Despite the role of microorganisms in nitrogen biotransformation has been extensively explored, how microorganisms mitigate NH3 emissions in the transformation of nitrogen throughout the composting system is rarely addressed. The present study explored the effect of microbial inoculants (MIs) and the contribution of different composted phases (solid, leachate, and gas) on NH3 emissions by constructing a co-composting system of kitchen waste and sawdust with and without the addition of MI. The results showed that NH3 emissions increased markedly after adding MIs, in which the contribution of leachate ammonia volatilization to NH3 emissions was most prominent. The core microorganisms of NH3 emission had a clear proliferation owing to the MIs reshaping community stochastic process. Also, MIs can strengthen the co-occurrence between microorganisms and functional genes of nitrogen to promote nitrogen metabolism. In particular, the abundances of nrfA, nrfH, and nirB genes, which could augment the dissimilatory nitrate reduction process, were increased, thus enhancing NH3 emissions. This study bolsters the fundamental, community-level understanding of nitrogen reduction treatments for agricultural.
Collapse
Affiliation(s)
- Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Wei Liu
- Department F.A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Switzerland.
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Dandan Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Department F.A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Switzerland.
| |
Collapse
|
23
|
Su Y, Xiong J, Fang C, Qu H, Han L, He X, Huang G. Combined effects of amoxicillin and copper on nitrogen transformation and the microbial mechanisms during aerobic composting of cow manure. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131569. [PMID: 37172386 DOI: 10.1016/j.jhazmat.2023.131569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/14/2023]
Abstract
Pollutants in livestock manure have a compound effect during aerobic composting, but research to date has focused more on single factors. This study investigated the effects of adding amoxicillin (AMX), copper (Cu) and both (ACu) on nitrogen transformation and the microbial mechanisms in cow manure aerobic composting with wheat straw. In this study, compared with CK, AMX, Cu, and ACu increased NH3 cumulative emissions by 32.32%, 41.78% and 8.32%, respectively, due to their inhibition of ammonia oxidation. Coexisting AMX and Cu decreased the absolute abundances of amoA/ nxrA genes and increased the absolute abundances of nirS /nosZ genes, but they had an antagonistic effect on the changes in functional gene abundances. Pseudomonas and Luteimonas were enriched during the thermophilic and cooling periods due to the addition of AMX and ACu, which enhanced denitrification in these two groups. Moreover, adding AMX and/or Cu led to more complex bacterial networks, but the effect of the two pollutants was lower than those of the individual pollutants. These findings provide theoretical and experimental support for controlling typical combined pollution with antibiotics and heavy metals in livestock manure.
Collapse
Affiliation(s)
- Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jinpeng Xiong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Chen Fang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Huiwen Qu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
24
|
Jiang H, Zhang L, Wang X, Gu J, Song Z, Wei S, Guo H, Xu L, Qian X. Reductions in abundances of intracellular and extracellular antibiotic resistance genes by SiO 2 nanoparticles during composting driven by mobile genetic elements. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118071. [PMID: 37148762 DOI: 10.1016/j.jenvman.2023.118071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Applying exogenous additives during the aerobic composting of livestock manure is effective for slowing down the spread of antibiotic resistance genes (ARGs) in the environment. Nanomaterials have received much attention because only low amounts need to be added and they have a high capacity for adsorbing pollutants. Intracellular ARGs (i-ARGs) and extracellular ARGs (e-ARGs) comprise the resistome in livestock manure but the effects of nanomaterials on the fates of these different fractions during composting are still unclear. Thus, we investigated the effects of adding SiO2 nanoparticles (SiO2NPs) at four levels (0 (CK), 0.5 (L), 1 (M), and 2 g/kg (H)) on i-ARGs, e-ARGs, and the bacterial community during composting. The results showed that i-ARGs represented the main fraction of ARGs during aerobic composting of swine manure, and their abundance was lowest under M. Compared with CK, M increased the removal rates of i-ARGs and e-ARGs by 17.9% and 100%, respectively. SiO2NPs enhanced the competition between ARGs hosts and non-hosts. M optimized the bacterial community by reducing the abundances of co-hosts (Clostridium_sensu_stricto_1, Terrisporobacter, and Turicibacter) of i-ARGs and e-ARGs (by 96.0% and 99.3%, respectively) and killing 49.9% of antibiotic-resistant bacteria. Horizontal gene transfer dominated by mobile genetic elements (MGEs) played a key role in the changes in the abundances of ARGs. i-intI1 and e-Tn916/1545 were key MGEs related closely to ARGs, and the maximum decreases of 52.8% and 100%, respectively, occurred under M, which mainly explained the decreased abundances of i-ARGs and e-ARGs. Our findings provide new insights into the distribution and main drivers of i-ARGs and e-ARGs, as well as demonstrating the possibility of adding 1 g/kg SiO2NPs to reduce the propagation of ARGs.
Collapse
Affiliation(s)
- Haihong Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, 510000, China
| | - Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shumei Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
25
|
Liu S, Hao Y, Wang H, Zheng X, Yu X, Meng X, Qiu Y, Li S, Zheng T. Bidirectional potential effects of DON transformation in vadose zones on groundwater nitrate contamination: Different contributions to nitrification and denitrification. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130976. [PMID: 36860052 DOI: 10.1016/j.jhazmat.2023.130976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The main cause of groundwater nitrate contamination is the continual downward migration of dissolved nitrogen (N) in vadose zone with leachate. In recent years it has been found that dissolved organic N (DON) rise to forefront due to its great migration capacity and environmental effects. However, it remains unknown how the transformation behaviors of DONs with different properties in vadose zone profile may impact N forms distribution and groundwater nitrate contamination. To address the issue, we conducted a series of 60-day microcosm incubation experiments to investigate the effects of various DONs transformation behaviors on the distribution of N forms, microbial communities, and functional genes. The results revealed that urea and amino acids mineralized immediately after substrates addition. By contrast, amino sugars and proteins caused less dissolved N throughout entire incubation period. The transformation behaviors could substantially alter the microbial communities. Moreover, we discovered that amino sugars remarkably increased the absolute abundances of denitrification function genes. These results delineated that DONs with unique characteristics (such as amino sugar) promoted different N geochemical processes in distinct ways: different contributions to nitrification and denitrification. This can provide new insights for nitrate non-point source pollution control in groundwater.
Collapse
Affiliation(s)
- Shixuan Liu
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yujie Hao
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Huan Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xilai Zheng
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Xiaoping Yu
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xianyu Meng
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yingying Qiu
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shiji Li
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Tianyuan Zheng
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
26
|
Xiao Z, Hou K, Zhou T, Zhang J, Li B, Du Z, Sun S, Zhu L. Effects of the fungicide trifloxystrobin on the structure and function of soil bacterial community. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104104. [PMID: 36893889 DOI: 10.1016/j.etap.2023.104104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Trifloxystrobin has been widely applied to prevent fungal diseases because of its high efficiency and desirable safety characteristics. In the present study, the effects of trifloxystrobin on soil microorganisms were integrally investigated. The results showed that trifloxystrobin inhibited urease activity, promoted dehydrogenase activity. Downregulated expressions of the nitrifying gene (amoA), denitrifying genes (nirK and nirS), and carbon fixation gene (cbbL) were also observed. Soil bacterial community structure analysis showed that trifloxystrobin changed the abundance of bacteria genera related to nitrogen and carbon cycle in soil. Through the comprehensive analysis of soil enzymes, functional gene abundance, and soil bacterial community structure, we concluded that trifloxystrobin inhibited both nitrification and denitrification of soil microorganisms, and also diminished the carbon-sequestration ability. Integrated biomarker response analysis showed that dehydrogenase and nifH were the most sensitive indicators of trifloxystrobin exposure. It provides new insights about trifloxystrobin environmental pollution and its influence on soil ecosystem.
Collapse
Affiliation(s)
- Zongyuan Xiao
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Kaixuan Hou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Tongtong Zhou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Jingwen Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Shujuan Sun
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| |
Collapse
|
27
|
Cheng Y, Wan W. Strong linkage between nutrient-cycling functional gene diversity and ecosystem multifunctionality during winter composting with pig manure and fallen leaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161529. [PMID: 36634774 DOI: 10.1016/j.scitotenv.2023.161529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Microorganisms play important roles in element transformation and display distinct compositional changes during composting. However, little is known about the linkage between nutrient-cycling functional gene diversity and compost ecosystem multifunctionality (EMF). This study performed winter composting with pig manure and fallen leaves and evaluated the distribution patterns and ecological roles of multiple functional genes involved in nutrient cycles. Physicochemical properties and enzyme activities presented large fluctuations during composting. Absolute abundance, composition, and diversity of functional genes participating in carbon, nitrogen, phosphorus, and sulfur cycles presented distinct dynamic changes. Stronger linkage was found between enzyme activities and temperature than other physicochemical factors, whereas total nitrogen rather than other physicochemical factors displayed closer linkage with functional gene composition and diversity. EMF targeting key nutrient (i.e., carbon, nitrogen, phosphorus, and sulfur) cycles was significantly positively correlated with temperature and notably negatively correlated with functional gene diversity. Enzyme activities rather than functional gene diversity showed a greater potential effect on phosphorus availability. Consequently, the available phosphorus (AP) content increased from initial 0.50 g/kg to final 1.43 g/kg. To our knowledge, this is the first study that deciphered ecological roles of nutrient-cycling functional gene diversity during composting, and the final compost can serve as a potential phosphorus fertilizer.
Collapse
Affiliation(s)
- Yarui Cheng
- College of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan 442000, PR China
| | - Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, PR China.
| |
Collapse
|
28
|
Long Y, Ma Y, Wan J, Wang Y, Tang M, Fu H, Cao J. Denitrification efficiency, microbial communities and metabolic mechanisms of corn cob hydrolysate as denitrifying carbon source. ENVIRONMENTAL RESEARCH 2023; 221:115315. [PMID: 36657591 DOI: 10.1016/j.envres.2023.115315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
In this study, the denitrification efficacy of corn cob hydrolysate (CCH) was compared and analyzed with that of glucose and acetate to determine its feasibility as an additional carbon source, and its metabolic mechanism as a denitrification carbon source was investigated in depth. By constructing a denitrification reactor, it was found that the TN removal rate exceeded 97% and the effluent COD remained below 70 mg/L during the stable operation with CCH as the carbon source, and the denitrification effect was comparable to that of the glucose stage (GS) and the acetate stage (AS). The analysis of the microbial community showed that the dominant phylum was Proteobacteria and Bacteroidota, where the abundance of Bacteroidota in the hydrolysate stage (HS) (24.37%) was significantly higher than that of GS (4.89%) and AS (11.93%). And the analysis at the genus level showed the presence of a large number of genera of organic matter hydrolysis and acid production in HS that were almost absent in other stages, such as Paludibacter (12.83%), Gracilibacteria (4.27%), f__Prolixibacteraceae_Unclassified (2.94%). In addition, the higher fatty acid metabolism and lower sugar metabolism of HS during carbon metabolism were similar to the ratio of AS, suggesting that CCH was mainly fermented to acids and then involved in the tricarboxylic acid (TCA) cycle. During nitrogen metabolism, the high relative abundance of narG, nirS, and nosZ ensured the denitrification process. The results of this study were expected to provide a theoretical basis and data support for promoting denitrification from novel carbon sources.
Collapse
Affiliation(s)
- Yingping Long
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yongwen Ma
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510006, China.
| | - Jinquan Wan
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510006, China
| | - Yan Wang
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510006, China
| | - Min Tang
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Hao Fu
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jianye Cao
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
29
|
Zhong L, Wu T, Ding J, Xu W, Yuan F, Liu BF, Zhao L, Li Y, Ren NQ, Yang SS. Co-composting of faecal sludge and carbon-rich wastes in the earthworm's synergistic cooperation system: Performance, global warming potential and key microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159311. [PMID: 36216047 DOI: 10.1016/j.scitotenv.2022.159311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Composting is an effective alternative for recycling faecal sludge into organic fertilisers. A microflora-earthworm (Eisenia fetida) synergistic cooperation system was constructed to enhance the composting efficiency of faecal sludge. The impact of earthworms and carbon-rich wastes (rice straw (RS) and sawdust (S)) on compost properties, greenhouse gas emissions, and key microbial species of composting were evaluated. The addition of RS or S promoted earthworm growth and reproduction. The earthworm-based system reduced the volatile solid of the final substrate by 13.19-16.24 % and faecal Escherichia coli concentrations by 1.89-3.66 log10 cfu/g dry mass compared with the earthworm-free system. The earthworm-based system increased electrical conductivity by 0.322-1.402 mS/cm and reduced C/N by 56.16-64.73 %. The NH4+:NO3- ratio of the final faecal sludge and carbon-rich waste was <0.16. The seed germination index was higher than 80 %. These results indicate that earthworms contribute to faecal sludge maturation. Earthworm addition reduced CO2 production. The simultaneous addition of earthworms and RS system (FRS2) resulted in the lowest global warming potential (GWP). The microbial diversity increased significantly over time in the RS-only system, whereas it initially increased and later decreased in the FRS2 system. Cluster analysis revealed that earthworms had a more significant impact on the microbial community than the addition of carbon-rich waste. Co-occurrence networks for earthworm-based systems were simple than those for earthworm-free systems, but the major bacterial genera were more complicated. Highly abundant key species (norank_f_Chitinophagaceae and norank_f_Gemmatimonadaceae) are closely related. Microbes may be more cooperative than competitive, facilitating the conversion of carbon and nitrogen in earthworm-based systems. This work has demonstrated that using earthworms is an effective approach for promoting the efficiency of faecal sludge composting and reducing GWP.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wei Xu
- General Water of China Co., Ltd., Beijing 100022, China
| | - Fang Yuan
- General Water of China Co., Ltd., Beijing 100022, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yan Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
30
|
Pang L, Huang Z, Yang P, Wu M, Zhang Y, Pang R, Jin B, Zhang R. Effects of biochar on the degradation of organophosphate esters in sewage sludge aerobic composting. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130047. [PMID: 36194960 DOI: 10.1016/j.jhazmat.2022.130047] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
In this study, the impact of biochar on the degradation of organophosphate esters (OPEs) during the aerobic composting of sewage sludge was investigated. Three treatments were conducted with different percentages of biochar in the compost, including 5 %, 10 %, and 20 %. The treatment with 10 % of biochar showed the longest thermophilic phase compared to that of 5 % and 20 % of biochar, which greatly promoted the decomposition of organic matter. In addition, the degradation rate of the hard-to-degrade chlorinated-OPEs was significantly increased by 10 % biochar, reaching to 57.2 %. Correspondingly, approximately 43.6 % of the total concentration of OPEs (Σ6OPEs) was eliminated in the presence of 10 % of biochar, which was higher than the treatments with 5 % and 20 % of biochar. Biochar significantly influenced the microbial community structure of compost, but the previously reported organophosphorus-degrading bacteria did not play a major role in the degradation of OPEs. The redox ability of the increased oxygen-containing functional groups such as quinone on the surface of biochar and the biochar-mediated electron transfer ability may play an essential role in the degradation of OPEs during the composting process.
Collapse
Affiliation(s)
- Long Pang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Ziling Huang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Peijie Yang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Mingkai Wu
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yanyan Zhang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Rong Pang
- Department of Medicine, Huanghe Science and Technology College, Zhengzhou, Henan, 450001, China
| | - Baodan Jin
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Ruiming Zhang
- College of Chemistry and Materials, Longyan University, Fujian 364012, China
| |
Collapse
|
31
|
Zhao Y, Li W, Chen L, Meng L, Zhang S. Impacts of adding thermotolerant nitrifying bacteria on nitrogenous gas emissions and bacterial community structure during sewage sludge composting. BIORESOURCE TECHNOLOGY 2023; 368:128359. [PMID: 36423768 DOI: 10.1016/j.biortech.2022.128359] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to evaluate the impacts of inoculation with bacterial inoculum containing three thermotolerant nitrifying bacteria strains on nitrogenous gas (mainly NH3 and N2O) emissions and bacterial structure during the sludge composting. The results of physicochemical parameters indicated that inoculation could prolong the thermophilic phase, accelerate degradation of organic substances and improve compost quality. Compared with the non-inoculated treatment, the addition of bacterial agents not only increased the total nitrogen content by 8.7% but also reduced the cumulative NH3 and N2O emissions by 32.2% and 34.6%, respectively. The bacterial inoculation changed the structure and diversity of the microbial community in composting. Additionally, the relative abundances (RA) of bacteria and correlation analyses revealed that inoculation increased the RA of bacteria involved in nitrogen fixation. These results suggested that inoculation of thermotolerant nitrifying bacteria was beneficial for reducing nitrogen loss, nitrogenous gas emissions and regulating the bacterial community during the composting.
Collapse
Affiliation(s)
- Yi Zhao
- School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- School of Environmental, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Li Chen
- School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Liqiang Meng
- Institute of Microbiology, Heilongjiang Academy of Science, Harbin 150010, China
| | - Shumei Zhang
- Institute of Microbiology, Heilongjiang Academy of Science, Harbin 150010, China
| |
Collapse
|
32
|
Ahmed I, Zhang Y, Sun P, Xie Y, Zhang B. Sensitive response mechanism of ARGs and MGEs to initial designed temperature during swine manure and food waste co-composting. ENVIRONMENTAL RESEARCH 2023; 216:114513. [PMID: 36208781 DOI: 10.1016/j.envres.2022.114513] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The rapid aerobic composting process has been used to reduce organic wastes, but the associated risks of antibiotic resistance genes (ARGs) need to evaluate in an efficient way. The primary objective of this work was to explore the underlying mechanism of initial adjustment in composting temperature on the variation of ARGs, mobile genetic elements (MGEs), and microbial composition during co-composting. The co-composting was initially externally heated (T2) for 5 days. The results showed that ARGs abundance in conventional composting (T1) was reduced by 49.36%, while multidrug was enriched by 86.16% after a period of 30 days. While in T2 ARGs were removed by 79.46% particularly the fraction of sulfonamide, multidrug, and vancomycin resistance genes were >90% without rebounding of any ARGs. Whereas, MGEs were reduced by 68.12% and 93.62% in T1 and T2, while the half-lives of ARGs and MGEs were lower in T2 compared to T1 (86.3%,86.7%). T2 also affected the metabolism function by regulating carbohydrate metabolism (9.62-10.39%) and amino acid metabolism (9.92-10.93%). Apart from this, the potential human pathogenic bacteria Pseudomonas was reduced by 90.6% in T2 and only 32.9% in T1 respectively. Network analysis showed that Ureibacillus, Weissella, Corynebacterium, Escherichia-Shigella, Acinetobacter were the main host of multiple genes. Structural equation models exhibited that bacterial communities were mainly responsible for the enrichment of ARGs in T1, whereas, it was directly affected by MGEs in T2. Similarly, ARGs variation was directly related to composting temperature. With this simple strategy, ARGs associated risk can be significantly reduced in composting.
Collapse
Affiliation(s)
- Imtiaz Ahmed
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yongpeng Zhang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Pengyu Sun
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yu Xie
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200240, China.
| |
Collapse
|
33
|
Ku Y, Li W, Mei X, Yang X, Cao C, Zhang H, Cao L, Li M. Biological Control of Melon Continuous Cropping Obstacles: Weakening the Negative Effects of the Vicious Cycle in Continuous Cropping Soil. Microbiol Spectr 2022; 10:e0177622. [PMID: 36301101 PMCID: PMC9769590 DOI: 10.1128/spectrum.01776-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/19/2022] [Indexed: 01/05/2023] Open
Abstract
The continuous cropping obstacles of melons have become increasingly serious in recent years. To investigate this, we explored the effects and mechanisms of Bacillus subtilis C3 in control of the continuous cropping obstacles of melon. We provide a novel interaction model of the occurrence factors of continuous cropping obstacles. The dominant pathogen isolated from melon soil was Fusarium. Their hyphae were used as food to cultivate root-knot nematodes. The main phenolic acids in melon soil promoted the growth of Fusarium and indirectly increased the number of root-knot nematodes, but they also had direct toxic effects on melon root-knot nematodes. The simultaneous inoculation of the three had the strongest inhibitory effect on melon seedlings, while the inhibitory effect of paired inoculation was weaker than that of single inoculation. Therefore, the three balance each other, forming a vicious cycle. Bacillus subtilis C3 weakened the negative effects of this cycle on melon by eliminating phenolic acids and inhibiting the growth of Fusarium and root-knot nematodes. Simultaneously, they also alleviated the continuous cropping obstacles of melon by improving the composition and structure of the rhizosphere microbial community. Our results might be useful for the effective control of the continuous cropping obstacles of melon. IMPORTANCE The soil environment, crop growth and fruit quality of melons are negatively affected by long-term continuous cropping. It is important to study the mechanism of continuous cropping obstacles and their biological control. In this study, we propose a novel interaction model of the occurrence factors of continuous cropping obstacles. The dominant phenolic acids, pathogenic fungi, and root-knot nematodes from melon soil balance each other, forming a vicious cycle. Bacillus subtilis C3 weakened the negative effects of this cycle on melon by eliminating phenolic acids and inhibiting the growth of Fusarium and root-knot nematodes. In addition, C3 also improved the composition and structure of the melon rhizosphere microbial community. These results advance the study of the occurrence mechanism of continuous cropping obstacles and demonstrate an efficient and environmentally friendly biological control scheme.
Collapse
Affiliation(s)
- Yongli Ku
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Wenqiang Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xueli Mei
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xiangna Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Cuiling Cao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Huimei Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Le Cao
- College of Environment and Life Sciences, Weinan Normal University, Weinan, Shaanxi Province, China
| | - Minglei Li
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
34
|
Yang Y, Yin Z, Li L, Li Y, Liu Y, Luo Y, Li G, Yuan J. Effects of dicyandiamide, phosphogypsum and superphosphate on greenhouse gas emissions during pig manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157487. [PMID: 35870587 DOI: 10.1016/j.scitotenv.2022.157487] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the effects of dicyandiamide, phosphogypsum and superphosphate on greenhouse gas emissions and compost maturity during pig manure composting. The results indicated that the addition of dicyandiamide and phosphorus additives had no negative effect on organic matter degradation, and could improve the compost maturity. Adding dicyandiamide alone reduced the emissions of ammonia (NH3), methane (CH4) and nitrous oxide (N2O) by 9.37 %, 9.60 % and 31.79 %, respectively, which was attributed that dicyandiamide effectively inhibited nitrification to reduce the formation of N2O. Dicyandiamide combined with phosphogypsum or superphosphate could enhance mitigation of the total greenhouse gas (29.55 %-37.46 %) and NH3 emission (18.28 %-21.48 %), which was mainly due to lower pH value and phosphoric acid composition. The combination of dicyandiamide and phosphogypsum exhibited the most pronounced emission reduction effect, simultaneously decreasing the NH3, CH4 and N2O emissions by 18.28 %, 38.58 % and 36.14 %, respectively. The temperature and C/N content of the compost were significantly positively correlated with greenhouse gas emissions.
Collapse
Affiliation(s)
- Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ziming Yin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Liqiong Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yun Li
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yiming Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
35
|
Eid R, Maatouk E, Samrani AE, Azzi V, Bassil J. Characterisation of Zinc-bearing sulphate phases formed during the synthesis of phosphoric acid and Zinc removal by the ligands of Opuntia ficus-indica. ENVIRONMENTAL TECHNOLOGY 2022; 43:4125-4136. [PMID: 34125654 DOI: 10.1080/09593330.2021.1943001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Phosphogypsum (PG) is a solid waste generated from phosphate fertilisers industries. It represents a serious threat to the aquatic and terrestrial environment because of its acidity and its high content in heavy metals and radionuclides. The aim of this work is to describe the formation of PG during the synthesis of the phosphoric acid, the entrapment of Zinc (Zn) in PG and its lixiviation in presence of a natural organic matter extracted as powder from the cladodes of Opuntia ficus-indica (OFI) using physical and chemical characterisation techniques such as FTIR, XRD, SEM-EDX, laser diffraction, and AAS. The formation of PG mainly occurs in the pH range between 4.6 and 3 and it accompanies the transformation of H2(PO4)- into phosphoric acid H3PO4. The maximal Zn incorporation within the PG was reached at pH 6 and decreased progressively with pH. Zinc was found to have a great tendency to migrate from PG particles to OFI's suspensions since a maximum Zn removal percentage of 93% was achieved.
Collapse
Affiliation(s)
- Roukaya Eid
- Faculty of Science II, Platform for Research and Analysis in Environmental Sciences (Doctoral School of Science and Technology), Laboratory of Geoscience, Geo-resources, and Environment (L2GE), Lebanese University, Fanar, Lebanon
| | - Elias Maatouk
- Faculty of Science II, Platform for Research and Analysis in Environmental Sciences (Doctoral School of Science and Technology), Laboratory of Geoscience, Geo-resources, and Environment (L2GE), Lebanese University, Fanar, Lebanon
| | - Antoine El Samrani
- Faculty of Science II, Platform for Research and Analysis in Environmental Sciences (Doctoral School of Science and Technology), Laboratory of Geoscience, Geo-resources, and Environment (L2GE), Lebanese University, Fanar, Lebanon
| | - Valérie Azzi
- Faculty of Science II, Platform for Research and Analysis in Environmental Sciences (Doctoral School of Science and Technology), Laboratory of Geoscience, Geo-resources, and Environment (L2GE), Lebanese University, Fanar, Lebanon
- Soil and Soilless Unit, Lebanese Agriculture Research Institute (LARI), Fanar, Lebanon
| | - Joseph Bassil
- Faculty of Science II, Platform for Research and Analysis in Environmental Sciences (Doctoral School of Science and Technology), Laboratory of Geoscience, Geo-resources, and Environment (L2GE), Lebanese University, Fanar, Lebanon
| |
Collapse
|
36
|
Huang D, Gao L, Cheng M, Yan M, Zhang G, Chen S, Du L, Wang G, Li R, Tao J, Zhou W, Yin L. Carbon and N conservation during composting: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156355. [PMID: 35654189 DOI: 10.1016/j.scitotenv.2022.156355] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Composting, as a conventional solid waste treatment method, plays an essential role in carbon and nitrogen conservation, thereby reducing the loss of nutrients and energy. However, some carbon- and nitrogen-containing gases are inevitably released during the process of composting due to the different operating conditions, resulting in carbon and nitrogen losses. To overcome this obstacle, many researchers have been trying to optimize the adjustment parameters and add some amendments (i.e., pHysical amendments, chemical amendments and microbial amendments) to reduce the losses and enhance carbon and nitrogen conservation. However, investigation regarding mechanisms for the conservation of carbon and nitrogen are limited. Therefore, this review summarizes the studies on physical amendments, chemical amendments and microbial amendments and proposes underlying mechanisms for the enhancement of carbon and nitrogen conservation: adsorption or conversion, and also evaluates their contribution to the mitigation of the greenhouse effect, providing a theoretical basis for subsequent composting-related researchers to better improve carbon and nitrogen conservation measures. This paper also suggests that: assessing the contribution of composting as a process to global greenhouse gas mitigation requires a complete life cycle evaluation of composting. The current lack of compost clinker impact on carbon and nitrogen sequestration capacity of the application site needs to be explored by more research workers.
Collapse
Affiliation(s)
- Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Lan Gao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Gaoxia Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jiaxi Tao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
37
|
Liu Y, Ma R, Tang R, Kong Y, Wang J, Li G, Yuan J. Effects of phosphate-containing additives and zeolite on maturity and heavy metal passivation during pig manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155727. [PMID: 35523334 DOI: 10.1016/j.scitotenv.2022.155727] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/12/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the effects of the combination of phosphogypsum with calcium oxide (PPG + CaO), superphosphate with calcium oxide (SSP + CaO) and zeolite (Zeolite) on composting maturity and heavy metal passivation in pig manure composting. The results showed that all treatments reached the maturity requirements and the phosphorus-containing additive treatments had higher final germination indices (GIs). Compared with CK, additive treatments enhanced the compost maturity by promoting volatile fatty acids (VFAs) decomposition (26.4%-30.5%) and formation of stable humus substances. All additive amendment treatments increased humic acid-like substances by over 20%, and the PPG + CaO treatment had the highest level of humus. Composting process reduced the bioavailability of Cu (49.2%), Cd (5.0%), Cr (54.3%), and Pb (26.6%). Correlation analysis found that the heavy mental passivation rate was significantly negatively correlated with the contents of VFAs and nitrogenous substances, and positively correlated with the pH, GI, humic acid content and the ratio of humic acid to fulvic acid (HA/FA). Therefore, the PPG + CaO treatment further increased the passivation rates of Cu (65.6%), Cd (21.7%), and Pb (48.7%) and decreased the mobilization of Zn by promoting maturity and humification during composting.
Collapse
Affiliation(s)
- Yan Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ruolan Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jiani Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
38
|
Lei L, Gu J, Wang X, Song Z, Yu J, Guo H, Xie J, Wang J, Sun W. Effects and microbial mechanisms of phosphogypsum and medical stone on organic matter degradation and methane emissions during swine manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115139. [PMID: 35512600 DOI: 10.1016/j.jenvman.2022.115139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
The degradation of organic matter (OM) and CH4 emissions during composting greatly influence the composting efficiency and greenhouse effect. This study evaluated the effects of adding phosphogypsum (PPG) and medical stone (MS) on OM breakdown, CH4 emissions, and their underlying mechanisms. MS accelerated the breakdown of OM in the early composting stage, whereas PPG increased it in the cooling and maturation periods. At the ending of composting, humification was also significantly promoted by PPG and MS (P < 0.05). Moreover, MS and PPG reduced CH4 emissions by 27.64% and 23.12%, respectively, and significantly inhibited the activities of methanogens in terms of their abundance (mcrA) and composition (dominant genera such as Methanobrevibacter, Methanocorpusculum, and Methanothermus) (P < 0.05). Interestingly, MS enhanced the activity of enzymes and bacterial metabolism related to OM degradation in the early composting stage, whereas PPG promoted them during the cooling and maturity stages. MS and PPG inhibited the activities of enzymes related to CH4 release during the cooling and maturity stages. Therefore, PPG and MS may have influenced OM degradation and CH4 releases during composting via changes in bacterial metabolism and enzyme activity levels. PPG and MS could have altered the activities of methanogens to influence the transformation of carbon and CH4 emissions according to network analysis and partial least-squares path modeling analysis. These findings provide insights at the molecular level into the effects of adding PPG and MS on OM degradation and CH4 emissions during composting, thereby facilitating the application of PPG and MS in composting systems.
Collapse
Affiliation(s)
- Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; School of the Environment, Nanjing University, Nanjing, 210046, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing Yu
- College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Honghong Guo
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jun Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
39
|
Yan L, Zheng Y, Chen W, Liu S, Yin M, Jiang J, Yang M. Step feed mode synergistic mixed carbon source to improve sequencing batch reactor simultaneous nitrification and denitrification efficiency of domestic wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 358:127440. [PMID: 35680088 DOI: 10.1016/j.biortech.2022.127440] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The limited efficiency of nitrogen removal has traditionally hindered wide application of simultaneous nitrification and denitrification (SND) technology. Here, the nitrogen removal characteristics of a sequencing batch reactor were studied by adopting a strategy of a step-feeding mode, synergistic regional oxygen limitation, and a mixed carbon source. The changes of the microbial population succession and nitrogen metabolism functional genes were analyzed. This strategy provided a favorable level of dissolved oxygen and continuous carbon sources for driving the denitrification process. The total nitrogen removal efficiency and SND rate reached 92.60% and 96.49%, respectively, by regulating the ratio of sodium acetate to starch in the step feed to 5:1. This procedure increased the relative abundance of denitrifying functional genes and induced the growth of a variety of traditional denitrifying bacteria and aerobic denitrifying bacteria participating in the process of nitrogen removal. Overall, this work offers a new strategy for achieving efficient SND.
Collapse
Affiliation(s)
- Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China.
| | - Yaoqi Zheng
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Wanting Chen
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Shuang Liu
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Mingyue Yin
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Jishuang Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Mengya Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| |
Collapse
|
40
|
Wang N, Huang D, Bai X, Lin Y, Miao Q, Shao M, Xu Q. Mechanism of digestate-derived biochar on odorous gas emissions and humification in composting of digestate from food waste. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128878. [PMID: 35427971 DOI: 10.1016/j.jhazmat.2022.128878] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Emissions of odorous gases and prolonged composting duration are the key concerns in the composting of digestate from food waste (DFW). In this study, different amounts of biochar derived from DFW (BC-DFW) were introduced in the composting process of DFW to decrease the emissions of ammonia (NH3) and volatile sulfur compounds (VSCs) and composting duration. The addition of BC-DFW increased the temperature and germination index during DFW composting. The group with 25% BC-DFW exhibited a 30% smaller composting duration. Significant amounts of NH3 and VSCs emissions were observed in the initial phase of DFW composting. Dimethyl disulfide (DMDS) was a prominent contributor to the odor associated with VSCs. The addition of BC-DFW facilitated the adsorption of NH3 and VSCs, and the corresponding contents decreased by 5-21% and 15-20%, respectively. Moreover,the BC-DFW accelerated the transformation of ammonium-nitrogen (NH4+-N) to nitrate-nitrogen (NO3--N), thereby alleviating the NH3 volatilization. The addition of 25% BC-DFW minimized the NH3 emission and enhanced the generation of humic-acid-like matter, thereby promoting humification. Therefore, the addition of 25% BC-DFW was optimal for promoting the degradation of organic matter and humification and odor emission reduction (e.g., NH3, DMDS).
Collapse
Affiliation(s)
- Ning Wang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Dandan Huang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China; School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| | - Xinyue Bai
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Yeqi Lin
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Qianming Miao
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Mingshuai Shao
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China.
| |
Collapse
|
41
|
Zhu P, Pan X, Shen Y, Huang X, Yu F, Wu D, Feng Q, Zhou J, Li X. Biodegradation and potential effect of ranitidine during aerobic composting of human feces. CHEMOSPHERE 2022; 296:134062. [PMID: 35202670 DOI: 10.1016/j.chemosphere.2022.134062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Ranitidine is widely concerned due to it is mainly related to the transformation into highly toxic carcinogenic products and non-readily biodegradable characteristics in aquatic environment. In this study, biodegradation of ranitidine during rural human feces (HF) aerobic composting was investigated. Results show that both levels of ranitidine are quickly removed in the first-3-day composting. The microorganisms play a vital role in the ranitidine degradation, especially for Firmicutes at the thermophilic period. The effect of ranitidine on the aerobic composting was further analyzed under the normal content (10 mg/kg) and high content (100 mg/kg). The 10 mg/kg ranitidine quickens temperature rise and organic matter degradation of the composting, while the 100 mg/kg ranitidine produces inhibiting effects. However, the effects only occur in the early stage of composting, and then tend to disappear with the removal of ranitidine. Fluorescence spectra confirm that humification and aromatization of dissolved organic matters (DOMs) in the substrates are fastened in 10 mg/kg group, while delayed in 100 mg/kg group. Metagenomic analysis reveals that relative abundances of Firmicutes and sequences related to carbohydrates metabolism increase in the groups mixed with the ranitidine at the early period. The findings provide the first new and systematical insights into degradation characteristics and potential effect of ranitidine during the rural HF composting.
Collapse
Affiliation(s)
- Ping Zhu
- School of Environmental and Chemical Engineering, Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Xusheng Pan
- School of Environmental and Chemical Engineering, Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Yilin Shen
- School of Environmental and Chemical Engineering, Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Xiang Huang
- School of Environmental and Chemical Engineering, Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Fang Yu
- School of Environmental and Chemical Engineering, Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Qingge Feng
- School of Resources, Environment and Materials, Guangxi University, 100 Daxue East Road, Nanning, 530004, PR China
| | - John Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Sydney, NSW, 2007, Australia
| | - Xiaowei Li
- School of Environmental and Chemical Engineering, Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China.
| |
Collapse
|
42
|
Wei Y, Gu J, Wang X, Song Z, Sun W, Hu T, Guo H, Xie J, Lei L, Xu L, Li Y. Elucidating the beneficial effects of diatomite for reducing abundances of antibiotic resistance genes during swine manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153199. [PMID: 35063512 DOI: 10.1016/j.scitotenv.2022.153199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Diatomite (DE) has been used for nitrogen conservation during the composting of feces but its effects on antibiotic resistance genes (ARGs) and the associated mechanisms are still unclear. In this study, DE was added at three different proportions (0%, 4%, and 8%) to swine manure during composting. The results showed that adding DE helped to reduce the abundances of ARGs and the maximum decrease (88.99%) occurred with the highest dose. DE amendment promoted the transformation of reducible copper into a more stable form, i.e., the residual fraction, which reduced the selective pressure imposed by copper and further decreased the abundances of ARGs. Tn916/1545 and intI1 were critical genetic components related to ARGs, and thus the reductions in the abundances of ARGs may be attributed to the suppression of horizontal transfer due to the decreased abundances of mobile genetic elements (MGEs). The microbial community structure (bacterial abundance and diversity) played key role in the evolution of ARGs. DE could enhance the competition between hosts and non-hosts of ARGs by increasing the bacterial community diversity. Compared with CK, DE amendment optimized the bacterial community by reducing the abundances of the potential hosts of ARGs and pathogens such as Corynebacterium, thereby improving the safety of the compost product. In addition, KEGG function predictions revealed that adding DE inhibited the metabolic pathway and genes related to ARGs. Thus, composting with 8% DE can reduce the risk of ARG transmission and improve the practical value for agronomic applications.
Collapse
Affiliation(s)
- Yuan Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuexuan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
43
|
Zhao Y, Weng Q, Hu B. Microbial interaction promote the degradation rate of organic matter in thermophilic period. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 144:11-18. [PMID: 35299060 DOI: 10.1016/j.wasman.2022.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Composting is an efficient, microbe-driven method for the biodegradation of solid organic substrates. In such a complex engineering ecosystem, microbial interaction is more important to function than relative abundance and alpha diversity. However, microbial interaction and its driving force in the composting process has been rarely reported. Thus, we combined network analysis and positive cohesion to analyze the relationship between cooperation among bacteria taxa and the degradation of organic matter in ten industrial-scale food waste composting piles. The results showed that although the complexity of network and microbial diversity were inhibited by high temperature, microbial cooperation was stimulated in the thermophilic period. The positive cohesion, which reflected the degree of microbial cooperation, tended to be positively correlated with the degradation rate of organic matter, functional genera, and genes associated with organic matter degradation. Thus, microbial cooperation was a key factor in the promotion of the degradation of organic matter. From the insight microbial community, Thermobifida was the genera with high abundance, high occurrence frequency, and high contributions to microbial structure. Additionally, it was not only highly associated with the degree of cooperation but was also highly linked with the functional genera in the composting, implying that it might play an important role in regulating cooperation to promote the functional genera. Our research provides a deep understanding of the interaction among bacteria taxa during the composting process. Focusing on the abundance of Thermobifida might be an efficient way to improve composting quality by enhancing the cooperation of microbes.
Collapse
Affiliation(s)
- Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Qin Weng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
44
|
Chen X, Du G, Wu C, Li Q, Zhou P, Shi J, Zhao Z. Effect of thermophilic microbial agents on nitrogen transformation, nitrogen functional genes, and bacterial communities during bean dregs composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31846-31860. [PMID: 35013954 DOI: 10.1007/s11356-021-17946-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
This study explored how a thermophilic microbial agent altered nitrogen transformation, nitrogen functional genes, and bacterial communities during bean dregs composting with (T) and without (CK) a thermophilic microbial agent for 15 days. The results showed that the maximum temperature in T reached 73 °C and remained above 70 °C for 8 days, while that in CK was only 65 °C. The pH in T had essentially stabilized on day 7, while that in CK was still increasing. On day 15, the seed germination index (GI) of T (95%) reached maturity (defined by GI ≥ 85%), while the GI of CK was only 36%. The concentrations of total nitrogen, water-soluble nitrogen, ammonia nitrogen, and nitrate nitrogen in T (2.5%, 18.9 g/kg, 8.75 g/kg, and 1.69 g/kg) were all lower than those in CK (3.6%, 28.9 g/kg, 12.75 g/kg, and 6.82 g/kg). During composting, Bacillus played a major role in nitrogen reduction, nitrogen mineralization, denitrification, and the conversion between nitrite and nitrate. Weissella played a major role in nitrogen assimilation. Komagataeibacter and Bacillus played a major role in nitrogen fixation in CK and T, respectively. Nitrification was not observed during composting. The nosZ gene, which converts nitrous oxide to nitrogen, was found only in T. Network analysis suggested that the average number of neighbours in T was 3.30% higher than that in CK and the characteristic path length in T was 14.15% higher than that in CK. Therefore, the thermophilic microbial agents could cause nitrogen loss but promote the maturity of bean dregs, which have great potential application.
Collapse
Affiliation(s)
- Xiaojia Chen
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guilin Du
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chengjian Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China
| | - Qinyu Li
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Zhou
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China
| | - Jiping Shi
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China
| | - Zhijun Zhao
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
45
|
Wang Y, Chu L, Ma J, Chi G, Lu C, Chen X. Effects of multiple antibiotics residues in broiler manure on composting process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152808. [PMID: 34982991 DOI: 10.1016/j.scitotenv.2021.152808] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
At present, the effect of multiple antibiotics on aerobic composting process and its mechanism are not clear. So in this study, broiler manure containing different doses of Doxycycline (DOX) and Gatifloxacin (GAT) were used as raw materials and mixed with rice hull for aerobic composting, and the effects of the combination of multiple antibiotics on the process parameters of broiler manure composting and the succession of bacterial and fungal community structures were systematically analyzed. Our results showed that at the initial period of composting, the combination of multiple antibiotics led to a delayed temperature and pH increase (T1: 57.0 °C, T2: 48.3 °C, T3: 45.5 °C on Day 3 for temperature and T1: 7.44, T2: 7.1, T3: 6.88 on Day 5 for pH), and a slow total nitrogen decrease (T1: 1.56%, T2: 1.82%, T3: 1.74% on Day 5). Although these effects decreased gradually with the degradation of antibiotics, the relative abundance of Actinobacteriota (T1: 13.29%, T2: 10.57%, T3: 8.99%) and Bacteroidota (T1:27.52%, T2:40.03%, T3:39.81%)) were still influenced by multiple antibiotic residuals until the end of composting period. Higher levels of antibiotics had more lasting effects on the bacterial community (T3 > T2). However, the combination of these two antibiotics did not significantly promote or inhibit the succession of the fungal community structure. The heatmaps showed that composting stage had a greater effect on the microbial community structures than antibiotics. The results provided a theoretical reference for composting broiler manure containing DOX and GAT.
Collapse
Affiliation(s)
- Yongcui Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lei Chu
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100039, China; Wellhope Foods Co., Ltd, Shenyang, Liaoning Province, PR China
| | - Jian Ma
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Guangyu Chi
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Caiyan Lu
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xin Chen
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
46
|
Liu Z, Zou Y, Liu Y, Luo F, Wang R, Wu Z, Zhang Y. Effective adsorption of nutrients from simulated domestic sewage by modified maifanite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25939-25951. [PMID: 34850346 DOI: 10.1007/s11356-021-17661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Modified maifanite (MMF) was prepared by the synthesized method with sulfuric acid treatment and high-temperature calcination and evaluated as an effective adsorption material to remove the nutrient salt in waste watery. Compared with the raw maifanite (RMF), the MMF exhibited a higher adsorption capacity and higher removal efficiency. The results showed that the adsorption rates of total phosphorus (TP), total nitrogen (TN), ammonia nitrogen (NH3-N), nitrate-nitrogen (NOx-N), and chemical oxygen demand (COD) by MMF were 86.7%, 44.9%, 29.1%, 19.8%, and 11.9%, respectively, and compared to RMF, the average adsorption capacity of these nutrients by MMF increased by 20.5 mg/kg, 126.2 mg/kg, 61.9 mg/kg, 117.18 mg/kg, and 86.9 mg/kg, respectively. MMF maintained the basic structure and composition of maifanite, while having a rougher and looser surface, more irregular pores, wider gaps, and more active materials such as oxidizing Fe. This study suggests that MMF can be further applied to treat domestic sewage and eutrophic water.
Collapse
Affiliation(s)
- Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan, 430072, China
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yilingyun Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yunli Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Feng Luo
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
- School of Resource & Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Rou Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan, 430072, China
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
47
|
Yang J, Liu S, Wang Y, Huang Y, Yuxin S, Dai Q, Liu H, Ma L. Phosphogypsum Resource Utilization Based on Thermodynamic Analysis. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jie Yang
- Chengdu University of Information Technology College of Resources and Environment 610225 Chengdu Sichuan China
- Kunming University of Science and Technology Faculty of Environmental Science and Engineering 650500 Kunming China
| | - Shengyu Liu
- Chengdu University of Information Technology College of Resources and Environment 610225 Chengdu Sichuan China
| | - Yifan Wang
- Chengdu University of Information Technology College of Resources and Environment 610225 Chengdu Sichuan China
| | - Yi Huang
- Sichun Solid Waste and Chemicals Management Center Department of Solid Waste Environmental Management 610032 Chengdu Sichuan China
| | - Sun Yuxin
- Chengdu University of Information Technology College of Resources and Environment 610225 Chengdu Sichuan China
| | - Quxiu Dai
- Kunming University of Science and Technology Faculty of Environmental Science and Engineering 650500 Kunming China
| | - Hongpan Liu
- Sichun Solid Waste and Chemicals Management Center Department of Solid Waste Environmental Management 610032 Chengdu Sichuan China
| | - Liping Ma
- Kunming University of Science and Technology Faculty of Environmental Science and Engineering 650500 Kunming China
| |
Collapse
|
48
|
Gao X, Yang F, Yan Z, Zhao J, Li S, Nghiem L, Li G, Luo W. Humification and maturation of kitchen waste during indoor composting by individual households. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152509. [PMID: 34968605 DOI: 10.1016/j.scitotenv.2021.152509] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
This study evaluated the humification and maturation of kitchen waste during indoor composting by individual households. In total, 50 households were randomly selected to participate in this study using kitchen waste of their own for indoor composting using a standard 20 L sealed composter. Garden waste was also collected from their local communities and used as the bulking agent. Both effective microorganisms and lime were inoculated at 1% (wet weight) of raw composting materials to facilitate the composting initiation. Results from this study demonstrate for the first time that ordinary residents could correctly follow the instruction to operate indoor composting at household level to manage urban kitchen waste at source. Overall, 30 households provided valid and complete data to show an increase (to ~50 °C) and then decrease in temperature in response to the decline of biodegradable organic substances during indoor composting. The compost physiochemical characteristics varied significantly toward maturation with an increase in seed germination index to above 50% for most households. Furthermore, organic humification occurred continuously during indoor composting as indicated by the enhanced content of humic substances, degree of polymerization, and spectroscopic characteristics.
Collapse
Affiliation(s)
- Xingzu Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Feiyu Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaowei Yan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jun Zhao
- China Soong Ching Ling Science and Culture Centre for Young People, Beijing 100089, China
| | - Shiyu Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Long Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
49
|
Zhao B, Wang Y, Ma L, Li Y, Deng Y, Chen X, Xu Z. Adding an appropriate proportion of phosphogypsum ensured rice husk and urea composting to promote the compost as substrate utilization. BIORESOURCE TECHNOLOGY 2022; 344:126301. [PMID: 34752883 DOI: 10.1016/j.biortech.2021.126301] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
To explore the effectiveness of urea replacing poultry manure as the nitrogen source in the rice husk composting system, and to promote the utilization of compost products as substrates, 0%, 10%, 20%, and 30% of phosphogypsum were added respectively in the urea composting system, and were compared with the chicken manure composting (RCP0). Finally, the fermentation and maturation of RCP0 were achieved, but high EC value limited the utilization of compost products as the substrate. Urea, as an N source, could lower the EC value, but the C/N ratio was uncoordinated during the initial stage of composting. Adding an appropriate proportion of phosphogypsum could ensure a proper C/N ratio to promote smooth fermentation and enable the products to be ideal substrates. When the added proportion was 30%, the thermophilic stage was shortened significantly but this may increase heavy metals. 10%-20% were concluded to be the recommended proportion.
Collapse
Affiliation(s)
- Bing Zhao
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201, Yunnan, PR China
| | - Yuyun Wang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201, Yunnan, PR China
| | - Liting Ma
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201, Yunnan, PR China
| | - Yongjie Li
- Yunnan Academy of Forestry and Grassland, Kunming 650201, Yunnan, PR China
| | - Yaqing Deng
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201, Yunnan, PR China
| | - Xuejiao Chen
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201, Yunnan, PR China
| | - Zhi Xu
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201, Yunnan, PR China.
| |
Collapse
|
50
|
Mei J, Ji K, Su L, Wu M, Zhou X, Duan E. Effects of FeSO 4 dosage on nitrogen loss and humification during the composting of cow dung and corn straw. BIORESOURCE TECHNOLOGY 2021; 341:125867. [PMID: 34523583 DOI: 10.1016/j.biortech.2021.125867] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
The effects of FeSO4 on nitrogen loss and humification were investigated in the composting of cow dung and corn straw. The results showed that all groups met the ripening requirements after 50 days: the temperature was above 50 °C for 12- 17 days; the products had pH values of 6.4-7.6, electrical conductivities of 1.06-1.33 ms·cm-1, NH4+-N contents of 37.2-61.8 mg kg-1, and the seed germination index of 95%-101%. FeSO4 reduced nitrogen losses by 9.21-15.65% compared to the control group. FeSO4 also improved the compost humification process: the humus substances (HS) contents in the compost product with FeSO4 were 109.82-129.86 g·kg-1, higher than 106.31 g·kg-1 in the control group. The compost product in 3.75% FeSO4 treatment had the highest maturity degree. This study showed that FeSO4 could inhibit the mineralization of organic matter during the composting and accelerate the formation of HS.
Collapse
Affiliation(s)
- Juan Mei
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou 215009, China
| | - Kai Ji
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lianghu Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Mengting Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaojie Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Enshuai Duan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|