1
|
Luo CW, Jiang L, Xie C, Huang DG, Jiang TJ. LED illumination-assisted activation of peroxydisulfate by heterogeneous Cu 2S under alkaline condition for efficient organic pollutants removal. ENVIRONMENTAL RESEARCH 2025; 268:120634. [PMID: 39709118 DOI: 10.1016/j.envres.2024.120634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
The copper-based materials were considered as promising catalysts for the activation of peroxydisulfate (PDS), but the study on the Cu2S-activated PDS under LED illumination and alkaline condition was little reported. In this work, Cu2S, a simple and readily available heterogeneous catalyst, was employed to enhance the activation of PDS under alkaline condition through LED illumination. The results indicated that under LED illumination, the degradation rate of tetracycline (TC) during the first 15 min was 3.55 times higher than that of the darkness. A series of important influencing factors were optimized, including anions, humic acid and complex water matrices. The results showed that the Cu2S/PDS/LED system exhibited excellent adaptability. Besides, the Cu2S maintained a good stability. The quenching experiments and electron spin resonance analysis demonstrated that the electron transfer and singlet oxygen were two primary pathways for the degradation of TC, and also other species such as sulfate and hydroxyl radicals played important roles. Furthermore, X-ray photoelectron spectroscopy characterization and a series of experiments confirmed that the Cu+ was the primary catalytic active sites, while the reductive sulfur species could directly activate PDS and accelerate the circulation of Cu2+/Cu+. The toxicity test proved that the toxicity of TC was decreased after the degradation. This study not only highlighted the potential of the Cu2S/PDS/LED system for efficient TC degradation under alkaline condition but also provided new insight for the development of Cu-based catalytic technology.
Collapse
Affiliation(s)
- Cai-Wu Luo
- School of Resources Environment and Safety Engineering, University of South China, 421000, China.
| | - Liang Jiang
- School of Resources Environment and Safety Engineering, University of South China, 421000, China
| | - Chao Xie
- School of Resources Environment and Safety Engineering, University of South China, 421000, China
| | - Deng-Gao Huang
- Department of Nuclear Technology and Application, China Institute of Atomic Energy, Beijing, 102413, China
| | - Tian-Jiao Jiang
- School of Nuclear Science and Technology, University of South China, 421000, China
| |
Collapse
|
2
|
Zhu Q, Chen L, Zhu T, Gao Z, Wang C, Geng R, Bai W, Cao Y, Zhu J. Contribution of 1O 2 in the efficient degradation of organic pollutants with Cu 0/Cu 2O/CuO@N-C activated peroxymonosulfate: A Case study with tetracycline. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123064. [PMID: 38042475 DOI: 10.1016/j.envpol.2023.123064] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Peroxymonosulfate-mediated advanced oxidation processes (PMS-AOPs) degrading organic pollutants (Tetracycline (TC) as an example) in water with singlet oxygen (1O2) as the main reactive oxygen has received more and more attention. However, the generation mechanism of 1O2 is still unclear. Consequently, this study investigates the 1O2 formation mechanism during the activated PMS process using a nitrogen-copper-loaded carbon-based material (Cu0/Cu2O/CuO@N-C), synthesized by thermally decomposing organobase-modified HKUST-1 via a one-pot method. It was discovered that incorporating an organobase (Benzylamine) into the metal organic framework (MOF) precursor directs the MOF's self-assembly process and supplements its nitrogen content. This modification modulates the Nx-Cu-Oy active site formation in the material, selectively producing 1O2. Additionally, 1O2 was identified as the dominant reactive oxygen species in the Cu0/Cu2O/CuO@N-C-PMS system, contributing to TC degradation with a rate of 70.82%. The TC degradation efficiency remained high in the pH range of 3-11 and sustained its efficacy after five consecutive uses. Finally, based on the intermediates of TC degradation, three possible degradation pathways were postulated, and a reduction in the ecotoxicity of the degradation products was predicted. This work presents a novel and general strategy for constructing nitrogen-copper-loaded carbon-based materials for use in PMS-AOPs.
Collapse
Affiliation(s)
- Qiuzi Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Liang Chen
- Management Division of QinhuaiRiver Hydraulic Engineering of Jiangsu Province, Nanjing, 210029, China
| | - Tiancheng Zhu
- Nanchang Hangkong University, Nanchang, 330063, China
| | - Zhimin Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Cunshi Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ruiwen Geng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Wangjun Bai
- Hohai University Design Institute CO., Ltd, Nanjing, 210098, China
| | - Yanyan Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jianzhong Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
3
|
Martínez-Zamudio LY, González-González RB, Araújo RG, Rodríguez Hernández JA, Flores-Contreras EA, Melchor-Martínez EM, Parra-Saldívar R, Iqbal HM. Emerging pollutants removal from leachates and water bodies by nanozyme-based approaches. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2024; 37:100522. [DOI: 10.1016/j.coesh.2023.100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
4
|
Xue C, Ma J, Chen X, Liu D, Huang W. Efficient degradation of 2,4-dichlorophenol by heterogeneous electro-Fenton using bulk carbon aerogels modified in situ with FeCo-LDH as cathodes: Operational parameters and mechanism exploration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119114. [PMID: 37783084 DOI: 10.1016/j.jenvman.2023.119114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
In this study, an in situ grown FeCo-Layered double hydroxide anchored to the surface of a bulk carbon aerogel (FeCo-LDH/CA) for contaminant degradation during the heterogeneous electro-Fenton (EF) process. The results exhibited that the FeCo-LDH/CA cathode achieved 100% of 2,4-dichlorophenol (2,4-DCP = 20 mg/L) degradation within 120 min at pH = 3, application current 20 mA, and Na2SO4 concentration 0.05 M. Moreover, the degradation efficiency was impressive in the range of pH = 2-9. The coexistence of the Fe (III)/Fe (II) and Co (III)/Co (II) as active sites on the cathode surface promoted the in-situ decomposition of H2O2 to form reactive oxygen species (ROS). •OH and O2- were confirmed to be the major degradation pollutants of ROS. Furthermore, density functional theory (DFT) was used to predict the reaction sites of 2,4-DCP, and its possible degradation pathways were proposed. The toxicity of intermediate products was evaluated and decreased after degradation. In addition, the eight cycle experiments and the degradation of other typical contaminants demonstrated the satisfactory stability and applicability of the synthetic cathode. This study presents the preparation of an efficient and stable EF cathode, further promoting the application of iron-based composites in wastewater treatment.
Collapse
Affiliation(s)
- Cheng Xue
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jianrui Ma
- China Academy of Information and Communications Technology, Beijing, 100191, China
| | - Xi Chen
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Dongfang Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Wenli Huang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
5
|
Chai TQ, Wang JL, Chen GY, Chen LX, Yang FQ. Tris-Copper Nanozyme as a Novel Laccase Mimic for the Detection and Degradation of Phenolic Compounds. SENSORS (BASEL, SWITZERLAND) 2023; 23:8137. [PMID: 37836965 PMCID: PMC10575388 DOI: 10.3390/s23198137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Phenolic compounds are one of the main organic pollutants in the environment that can seriously affect ecosystems, even at very low concentrations. Due to the resistance of phenolic compounds to microorganisms, conventional biological treatment methods face challenges in effectively addressing this pollution problem. In this study, a novel laccase mimic (Tris-Cu nanozyme) is prepared using a simple and rapid synthesis strategy based on the coordination of copper ions and amino groups in Tris(hydroxymethyl)aminomethane (Tris). It is found that the Tris-Cu nanozyme exhibits good catalytic activity against a variety of phenolic compounds, the Km, Vmax and Kcat are determined to be 0.18 mM, 15.62 μM·min-1 and 1.57 × 107 min-1 using 2,4-dichlorophenol (2,4-DP) as the substrate, respectively. Then, based on the laccase-like activity of the Tris-Cu nanozyme, a novel colorimetric method for 2,4-DP (the limit of detection (LOD) = 2.4 μM, S/N = 3) detection in the range of 10-400 μM was established, and its accuracy was verified by analyzing tap and lake water samples. In addition, the Tris-Cu nanozyme shows excellent removal abilities for six phenolic compounds in experiments. The removal percentages for 2,4-DP, 2-chlorophenol (2-CP), phenol, resorcinol, 2,6-dimethoxyphenol (2,6-DOP), and bisphenol A (BPA) are 100%, 100%, 100%, 100%, 87%, and 81% at 1 h, respectively. In the simulated effluent, the Tris-Cu nanozyme maintains its efficient catalytic activity towards 2,4-DP, with a degradation percentage of 76.36% at 7 min and a reaction rate constant (k0) of 0.2304 min-1. Therefore, this metal-organic complex shows promise for applications in the monitoring and degrading of environmental pollutants.
Collapse
Affiliation(s)
| | | | | | | | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (T.-Q.C.); (J.-L.W.); (G.-Y.C.); (L.-X.C.)
| |
Collapse
|
6
|
Zhang L, Liu Y, Wang J. Selective and effective oxidation of ammonium to dinitrogen in MgO/Na 2SO 3/K 2S 2O 8 system. CHEMOSPHERE 2023; 325:138401. [PMID: 36925013 DOI: 10.1016/j.chemosphere.2023.138401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
The oxidation of ammonium (NH4+) to dinitrogen (N2) with high selectivity and high efficiency is still a challenge. Herein, a novel sunlight induced persulfate (PS)-based AOPs process (MgO/Na2SO3/PS/hv) was proposed by introducing solid base (MgO) and hydrated electron (eaq-), to selectively oxidize NH4+ to N2, with high selectivity and high efficiency at a wide range of pH value. The deprotonation of NH4+ into NH3 by MgO and the generation of •OH and SO4-• by PS activation were responsible for the high efficiency of NH4+ oxidation. The buffering capacity provided by MgO to proton released from PS activation made the NH4+ oxidation possible at a wide pH range. The eaq- from the Na2SO3/hv process was the main active specie to reduce NO2-and NO3- (NOx-) into N2, responsible for high N2 selectivity of NH4+ oxidation. 100% NH4+ could be oxidized within 30 min, and N2 selectivity exceeded 96% at the initial pH range of 3-11 and the initial concentration of NH4+ of 30 mg N/L. This work could offer an efficient AOPs process for selective NH4+ oxidation, which is promising for the chemical denitrification of wastewater ….
Collapse
Affiliation(s)
- Le Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Yong Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Tang J, Yao S, Yao R, Liu H, Chen M, Zhong Y, Yu X, Yin A, Sun J. Insight into radical-nonradical coupling activation pathways of peroxymonosulfate by Cu xO for antibiotics degradation. CHEMOSPHERE 2023; 318:137970. [PMID: 36708784 DOI: 10.1016/j.chemosphere.2023.137970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
In this work, a heterogeneous catalyst of CuxO was rationally designed by using Cu-based metal organic frameworks (marked Cu-BDC) as the template, and was used to degrade tetracycline (TC) via activation of peroxymonosulfate (PMS). The optimal CuxO-350 showed excellent catalytic efficiency for TC degradation, and the reaction rate constant (0.104 min-1) was 8 times higher than that (0.013 min-1) of raw Cu-BDC. The characterization observations confirmed that CuxO-350 possessed multiple valence states (CuO and Cu2O) and oxygen vacancies (Ov), both of which were favorable for the activation of PMS, resulting in promoting the generation of active species in the CuxO-350 + PMS system. Different from the free radical pathway in Cu-BDC + PMS system, a radical-nonradical coupling process was detected in the CuxO-350 + PMS system, which was confirmed by quenching experiments and EPR measurements. Moreover, the toxicity prediction showed that the toxicity of degradation intermediates declined compared with TC. This work not only opened up a new strategy for the rational design and preparation of high-efficient catalysts by employing metal organic frameworks precursors, but also offered an insight into the reaction mechanism of PMS activation through a radical-nonradical coupling process catalyzed by CuxO-350 derived from Cu-BDC.
Collapse
Affiliation(s)
- Jin Tang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Siyu Yao
- Department of Environmental Sciences, College of Earth and Environment Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Runlin Yao
- Bathurst Future Agri-Tech Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Hang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Meiqin Chen
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Yongming Zhong
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Aiguo Yin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China.
| |
Collapse
|
8
|
Pan M, Tang-Hu SY, Li C, Hong J, Liu S, Pan B. Oxygen vacancy-mediated peroxydisulfate activation and singlet oxygen generation toward 2,4-dichlorophenol degradation on specific CuO 1-x nanosheets. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129944. [PMID: 36116314 DOI: 10.1016/j.jhazmat.2022.129944] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Durable and stable removal of 2,4-dichlorophenpl (2,4-DCP) by CuO1-x nanosheets is reported. CuO1-x nanosheets were fabricated by a simple defect engineering strategy and greatly increased the efficiency of peroxydisulfate (PDS) activation to improve 2,4-DCP removal by introducing abundant oxygen vacancy (Vo) to produce an electron-rich surface. Results showed that CuO1-x nanosheets exposed more Vo as active sites for PDS activation as compared with that of CuO nanoparticles, giving rise to dramatic enhancement of catalytic performance with ultrahigh reaction rate that is qualified for serving in flow filtration system, completely degrading 100 mg L-1 of 2,4-DCP within 3 s of residence time. Besides, experimental studies confirmed that 1O2 generated by Vo - mediated PDS activation plays the dominate role in the degradation of contaminants. Relative to the previously reported CuO/PDS systems, the obtained CuO1-x nanosheets demonstrated 2.7 times higher specific PDS activity and 67 times higher specific CuO activity for 2,4-DCP removal. Our study not only improves the fundamental understanding of active sites in morphologically tunable metal oxides but also proposes a guideline for future research and engineering application of persulfate.
Collapse
Affiliation(s)
- Meilan Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Shuang-Yin Tang-Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Cong Li
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jianheng Hong
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Subiao Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Bingjun Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
9
|
Wang W, Zhang J, Hou Z, Chen P, Zhou X, Wang W, Tan F, Wang X, Qiao X. Improvement of Carbonyl Groups and Surface Defects in Carbon Nanotubes to Activate Peroxydisulfate for Tetracycline Degradation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13010216. [PMID: 36616125 PMCID: PMC9824654 DOI: 10.3390/nano13010216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 05/23/2023]
Abstract
Carbon nanotubes (CNTs) were considered a promising activator for persulfates due to their high electrical conductivity, large specific surface area and low toxicity. The functional groups and surface defects of CNTs could significantly affect their activation performance. In this study, CNTs with high C=O ratio and defect density (CNT-O-H) were prepared through a facile treatment of raw CNTs with HNO3 oxidation followed by calcination at 800 °C under an argon atmosphere. X-ray photoelectron spectroscopy (XPS) and Raman results showed that the C=O proportion and defect degree (ID/IG) rose to 75% and 1.53, respectively. The obtained CNT-O-H possessed a superior performance towards peroxydisulfate (PDS) activation, and the degradation efficiency of tetracycline (TC) in the CNT-O-H/PDS system was increased to 75.2% from 56.2% of the raw CNTs/PDS system within 40 min. Moreover, the activity of CNT-O-H after use could be easily recovered with re-calcination. In addition, the CNT-O-H/PDS system exhibited high adaptabilities towards wide solution pH (2-10), common coexisting substances and diverse organic pollutants. Singlet oxygen (1O2) was confirmed to be the dominant reactive oxygen species (ROS) generated in the CNT-O-H/PDS system. It was inferred that surface C=O groups and defects of CNTs were the key site to activate PDS for TC degradation.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Wang
- Correspondence: ; Tel./Fax: +86-27-87541540
| | | | | | | |
Collapse
|
10
|
Fe-Cu@γ-Al2O3 microspheres as a heterogeneous Fenton-like catalyst for degrading polyvinyl alcohol, Rhodamine-B, and Reactive Red X-3B. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Ma W, Zhang S, Chen Y, Zhong D, Du Q, Li J, Li R, Du X, Zhang J, Yu T. Fe 3O 4-CuO@Lignite activated coke activated persulfate advanced treatment of phenolic wastewater from coal chemical industry. ENVIRONMENTAL RESEARCH 2022; 213:113601. [PMID: 35660564 DOI: 10.1016/j.envres.2022.113601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
In this study, lignite activated coke (LAC) was used as the carrier for the first time, Fe3O4-CuO composite metal oxide was used as the main active material, and the nano-scale magnetic supported composite metal oxide Fe3O4-CuO@LAC catalyst was synthesized for the first time, which can effectively activate the active oxygen in peroxodisulfate (PS). XRD, FTIR, BET, SEM, XPS and other analysis results showed that there was particulate matter with spherical structure on the surface of the active coke, and its diffraction peaks matched well with the characteristic peaks of Fe3O4 and CuO, and it was a mesoporous structure with a specific surface area of 619.090 m2 g-1. By optimizing the experimental conditions, the results showed that more than 92% of hydroquinone can be removed under the conditions of hydroquinone concentration of 50 mg/L, pH = 5, adding 0.1 g/L catalyst and 3 mmol/L PS. EPR and quenching experiments proved that there were four reactive oxygen species in the reaction system ·OH, SO4-·, O2-· and 1O2. According to the degradation products of hydroquinone detected by LC-MS, the possible degradation path was deduced which laid a foundation for solving the problem of difficult treatment of phenol-containing wastewater in coal chemical industry.
Collapse
Affiliation(s)
- Wencheng Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shaobo Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yiru Chen
- The Quanzhoushi Water Co., Ltd, PR China
| | - Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Qinghui Du
- The Quanzhoushi Water Co., Ltd, PR China
| | - Jinxin Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Ru Li
- The Institute of Shanxi Architectural Design and Research Co., Ltd, PR China
| | - Xuan Du
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jingna Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Taiping Yu
- Yangtze Ecology and Environment Co. Ltd., Wuhan, 430062, PR China
| |
Collapse
|
12
|
Bai X, Sun H, Sun J, Zhu Z. Efficient removal of sixteen priority polycyclic aromatic hydrocarbons from textile dyeing sludge using electrochemical Fe 2+-activated peroxymonosulfate oxidation-A green pretreatment strategy for textile dyeing sludge toxicity reduction. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129087. [PMID: 35650734 DOI: 10.1016/j.jhazmat.2022.129087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
It is urgent to remove polycyclic aromatic hydrocarbons (PAHs) from textile dyeing sludge (TDS) before its final deposal due to their recalcitrant nature and generation of toxic byproducts during TDS treatment. In this study, an electrochemical Fe2+-activated peroxymonosulfate (PMS) oxidation process for removing 16 priority PAHs from real TDS was firstly investigated. The results showed that the removal efficiency of the ∑16PAHs in TDS was positively correlated to the concentration of Fe2+ released from sacrificial iron anode and the concentration of electroregenerated Fe2+ in the cathode by the reduction of Fe3+ within the applied voltage range of 3-7 V, but a higher voltage of 10 V did not lead to further improvement in ∑16PAHs removal due to the radical scavenging reaction resulted from the excessive accumulation of Fe2+. 64.7% and 16.1% of the ∑16PAHs were removed in the anodic and cathodic chamber under the optimum reaction conditions of 400 mg/g PMS/VSS, pH 3 and applied voltage 7 V, respectively. low-ring PAHs were preferentially degraded compared to high-ring PAHs. The O⋅Hplayed a major role while SO4⋅-had a minor role in PAHs degradation in TDS. The intracellular PAHs released from cracked sludge cells were found to undergo further degradation under free radical attack.
Collapse
Affiliation(s)
- Xiaoyan Bai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Haichuan Sun
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jian Sun
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zhihua Zhu
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
13
|
Dos Santos JRN, Alves ICB, Marques ALB, Marques EP. Bibliometric analysis of global research progress on electrochemical degradation of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54769-54781. [PMID: 35305220 PMCID: PMC8934053 DOI: 10.1007/s11356-022-19534-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
As a result of anthropogenic action, an increasing amount of toxic organic compounds has been released into the environment. These pollutants have adverse effects on human health and wildlife, which has motivated the development of different types of technologies for the treatment of effluents and contaminated environments. The electrochemical degradation of organic pollutants has attracted the interest of research centers around the world for its environmental compatibility, high efficiency, and affordable cost. In the present study, a bibliometric analysis was performed using the Web of Science database in order to assess the progress of publications related to electrochemical degradation of organic pollutants between the years 2001 and 2021. The data retrieved showed a significant increase in publications related to the topic in the last 20 years. Electrochimica Acta was the magazine responsible for the largest number of publications (291, 6.52%). The studies mainly included the areas of engineering, chemistry, and environmental science ecology. China with a total of 1472 (32.96%) publications dominated research in this area, followed by Spain (436, 9.76%) and Brazil (345, 7.72%). The institutions with the highest number of contributions were the University of Barcelona and the Chinese Academy of Sciences, and the most productive authors were Brillas E. and Oturan M. A. The results of this study provide important references and information on possible research directions for future investigations on electrochemical degradation of organic pollutants.
Collapse
Affiliation(s)
- José Ribamar Nascimento Dos Santos
- Postgraduate Program in Biodiversity and Biotechnology of the Legal Amazon (BIONORTE), Federal University of Maranhão (UFMA), São Luís, MA, Brazil
- Department of Chemistry, NEPE: LPQA & LAPQAP), Federal University of Maranhão (UFMA), São Luís, MA, Brazil
| | - Ismael Carlos Braga Alves
- Postgraduate Program in Biodiversity and Biotechnology of the Legal Amazon (BIONORTE), Federal University of Maranhão (UFMA), São Luís, MA, Brazil
- Department of Chemical Technology, NEPE: LPQA & LAPQAP), Federal University of Maranhão (UFMA), São Luís, MA, Brazil
| | - Aldaléa Lopes Brandes Marques
- Postgraduate Program in Biodiversity and Biotechnology of the Legal Amazon (BIONORTE), Federal University of Maranhão (UFMA), São Luís, MA, Brazil.
- Department of Chemical Technology, NEPE: LPQA & LAPQAP), Federal University of Maranhão (UFMA), São Luís, MA, Brazil.
| | - Edmar Pereira Marques
- Postgraduate Program in Biodiversity and Biotechnology of the Legal Amazon (BIONORTE), Federal University of Maranhão (UFMA), São Luís, MA, Brazil
- Department of Chemistry, NEPE: LPQA & LAPQAP), Federal University of Maranhão (UFMA), São Luís, MA, Brazil
| |
Collapse
|
14
|
Cho YC, Hsu CC, Lin YP. Integration of in-situ chemical oxidation and permeable reactive barrier for the removal of chlorophenols by copper oxide activated peroxydisulfate. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128726. [PMID: 35316633 DOI: 10.1016/j.jhazmat.2022.128726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/27/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
In-situ chemical oxidation (ISCO) and permeable reactive barrier (PRB) have been used in field practices for contaminated groundwater remediation. In this lab-scale study, a novel system integrating ISCO and PRB using peroxydisulfate (PDS) as the oxidant and copper oxide (CuO) as the reactive barrier material was developed for the removal of 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP). The influences of chlorophenol concentration and flow rate on the system performance were first evaluated using synthetic solutions. The removal efficiencies of target chlorophenols were greater than 90% when sufficient PDS was supplied ([PDS]/[chlorophenol]>1). It was also found that the removal efficiencies decreased with the increasing chlorophenol concentrations (10-150 μM) and flow rates (1.8-14.4 mL/min). When three real groundwaters were employed, the removal efficiencies of 2,4-DCP and 2,4,6-TCP slightly reduced to 90% and 85%, respectively. For PCP, the removal efficiency dropped to 20% in two groundwaters with relatively high levels of alkalinity. The influences of pH and TOC were found to be insignificant for the range investigated (pH 6.5-8.7 and TOC = 0.4-1.5 mgC/L). The reduced removal efficiency could be due to the formation of weaker radicals and the stronger competition between bicarbonate ions and PDS for the activation sites on the CuO surfaces.
Collapse
Affiliation(s)
- Yi-Chin Cho
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chia-Chun Hsu
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yi-Pin Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan; NTU Research Center for Future Earth, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
15
|
Zou Y, Qi H, Sun Z. In-situ catalytic degradation of sulfamethoxazole with efficient CuCo-O@CNTs/NF cathode in a neutral electro-Fenton-like system. CHEMOSPHERE 2022; 296:134072. [PMID: 35216983 DOI: 10.1016/j.chemosphere.2022.134072] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
In this paper, a CuCo-O@CNTs/NF electrode was successfully prepared and used for in-situ degradation of sulfamethoxazole (SMX) in an electro-Fenton-like system. Carbon nanotubes (CNTs) and coral-like copper-cobalt oxides were successively loaded on nickel foam (NF). CNTs contributed to improving the dispersibility and stability of copper-cobalt oxides, and the coral-like copper-cobalt oxide catalyst was anchored on CNTs without any adhesive. In the electro-Fenton-like system, dissolved oxygen can be reduced to superoxide anions in a one-electron step, which could be further transformed into hydrogen peroxide and then reacted with the active components on the electrode to generate reactive oxygen species (ROS) to participate in the degradation of SMX. Almost 100% SMX removal was obtained within 60 min in a wide near-neutral pH range (5.6-9.0), and the electrode could still achieve a 90.4% removal rate after ten recycle runs. Radical-quenching results showed that superoxide anions were the main species in the degradation of SMX. In addition, a possible degradation pathway of SMX was proposed. According to the result of toxicological simulations, the toxicity of the pollutant solution during the degradation process exhibited a decreasing trend. This study provides new insights for in-situ catalysis of electrodes with bimetallic active components to generate ROS for high-efficiency degradation of refractory organic pollutants.
Collapse
Affiliation(s)
- Yelong Zou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| | - Haiqiang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
16
|
Fu A, Liu Z, Sun Z. Cu/Fe oxide integrated on graphite felt for degradation of sulfamethoxazole in the heterogeneous electro-Fenton process under near-neutral conditions. CHEMOSPHERE 2022; 297:134257. [PMID: 35271897 DOI: 10.1016/j.chemosphere.2022.134257] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
In the heterogeneous electro-Fenton (EF) system, high-efficiency and durable materials have attracted widespread attention as cathodes for degradation of refractory organic pollutants. In this study, a stable Cu/Fe oxide modified graphite felt electrode (Cu0.33Fe0.67NBDC-300/GF) was fabricated via a one-step hydrothermal method and subsequent thermal treatment, which used a bimetallic metal-organic framework (MOF) with 2-aminoterephthalic acid (NH2BDC) ligand as the precursor. The Cu0.33Fe0.67NBDC-300/GF electrode was used as the cathode for sulfamethoxazole (SMX) degradation in the heterogeneous EF process. The coexistence of the FeII/FeIII and CuI/CuII redox couples significantly accelerates the regeneration of FeII and promotes the generation of active free radicals (•OH and •O2-). FeIV was detected during the process, which indicates that the high-valent iron-oxo species was produced in near-neutral pH conditions. The removal efficiency of SMX (10 mg L-1) can reach 100.0% within 75 min over a wide pH range (4.0-9.0). After five cycles, the electrode retained a high stability and an outstanding catalytic capacity. Furthermore, the mechanisms and pathways for SMX degradation were proposed, the products and intermediates of SMX were analyzed, and the toxicity was evaluated. It was found that the toxicity decreased after degradation. This study displays a novel strategy for building an efficient and stable self-supporting electrode for treating antibiotic wastewater.
Collapse
Affiliation(s)
- Ao Fu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhibin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
17
|
Fan B, Huang X, Liu C, Ren X, Zhang J. Highly Efficient Oxygen-Activated Self-Cleaning Membranes Prepared by Grafting a Metal-Organic Framework-Derived Catalyst. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20930-20942. [PMID: 35482824 DOI: 10.1021/acsami.2c01422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, an efficient oxygen-activated self-cleaning membrane was successfully prepared by grafting a metal-organic framework-devised catalyst (CuNi-C) onto a membrane surface, resulting in enhanced filtration performance and self-cleaning capability based on oxygen activation under mild conditions. The pore features, surface roughness, and surface hydrophilicity of the prepared membrane were analyzed and used to determine the causes of the enhanced filtration performance; the results showed that an increase in the porosity and surface roughness enhanced the permeate flux, and enhanced adsorption capacity and surface hydrophobicity improved the membrane removal efficiency. The self-cleaning mechanism was elucidated by identifying the reactive oxygen species (ROS) and detecting catalytic element valences. The results revealed that zero-valent Cu embedded into the membrane surface effectively activated natural dissolved oxygen (DO) to generate ROS that degraded organic pollutants. In this study, catalytic oxidation with DO as the oxidant was successively integrated with membrane separation to prevent membrane fouling, providing a novel direction for the development of multifunctional membranes.
Collapse
Affiliation(s)
- Botao Fan
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xue Huang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Chang Liu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiancheng Ren
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jing Zhang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
18
|
Zhu L, Li M, Qi H, Sun Z. Using Fe-Cu/HGF composite cathodes for the degradation of Diuron by electro-activated peroxydisulfate. CHEMOSPHERE 2022; 291:132897. [PMID: 34780743 DOI: 10.1016/j.chemosphere.2021.132897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
An iron-copper graphite felt (Fe-Cu/HGF) electrode was successfully prepared by heat treatment and impregnation of graphite felt as the support followed by calcination, and an electro-activated peroxydisulfate (E-PDS) system with Fe-Cu/HGF as the cathode was constructed to degrade Diuron. This system synergistically activated PDS through electrochemical processes and transition metal catalysis. High-valence metal ions could be converted into low-valence metal ions by reduction at the cathode, and low-valence metal ions continuously activated PDS to generate more sulfate radicals (SO4-) and hydroxyl radicals (OH) to accelerate Diuron degradation. The Fe-Cu/HGF composite cathode exhibited a performance superior to graphite felt (RGF) obtained using pretreatment only, including increased hydrophilicity, significantly increased number of defect sites and larger electroactive surface area. Under optimized experimental degradation conditions, Diuron could be completely removed in 35 min, at which time copper ion leaching was not detected in the solution, while the total iron ion concentration was 0.27 mg L-1. Extending the reaction time to 6 h, the amount of total organic carbon was reduced to 32.2%. In addition, the free radicals that degraded Diuron were identified as mainly SO4- and OH with a slightly higher contribution of SO4-. The mechanism and pathways of Diuron degradation in the E-PDS system were determined. The E-PDS system was successfully applied to the degradation of other pollutants and the degradation of Diuron in different simulated water environments. In summary, the E-PDS system using Fe-Cu/HGF as the cathode is a promising treatment method for Diuron-containing wastewater.
Collapse
Affiliation(s)
- Lijing Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Mengya Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Haiqiang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
19
|
High performance nanozymatic assay-based CuO nanocluster supported by reduced graphene oxide for determination of hydrogen peroxide and ascorbic acid. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Khoshtinat F, Tabatabaie T, Ramavandi B, Hashemi S. Phenol removal kinetics from synthetic wastewater by activation of persulfate using a catalyst generated from shipping ports sludge. CHEMOSPHERE 2021; 283:131265. [PMID: 34182645 DOI: 10.1016/j.chemosphere.2021.131265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Disposal sludges from shipping docks contain elements that have the potential to catalyze the desired treatment process. The current work was designed to decompose phenol from wastewater by activation peroxymonosulfate (PMS) using a catalyst made from sea sediments (at 400 °C for 3 h). The catalyst had a crystalline form and contained metal oxides. The parameters of pH (3-9), catalyst dose (0-80 mg/L), phenol concentration (50-250 mg/L), and PMS dose (0-250 mg/L) were tested to specify the favorable phenol removal. The phenol removal of 99% in the waste sludge catalyst/PMS system was achieved at pH 5, catalyst quantity of 30 mg/L, phenol content of 50 mg/L, PMS dose of 150 mg/L, and reaction time of 150 min. From the results, it was implied that the pH factor was more important in removing phenol with the studied system than other factors. By-products and phenol decomposition pathways were also provided. The results showed that the sea sediment catalyst/PMS system is a vital alternative for removing phenol from wastewater medium.
Collapse
Affiliation(s)
- Feyzollah Khoshtinat
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Tayebeh Tabatabaie
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Seyedenayat Hashemi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
21
|
Mao S, Sun X, Qi H, Sun Z. Cu 2O nanoparticles anchored on 3D bifunctional CNTs/copper foam cathode for electrocatalytic degradation of sulfamethoxazole over a broad pH range. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148492. [PMID: 34174611 DOI: 10.1016/j.scitotenv.2021.148492] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
In this paper, nanoscale Cu2O particles was successfully anchored at defect sites of carbon nanotubes (CNTs), which doped on three-dimensional copper foam (CF) electrode (Cu2O@CNTs/CF). The compound as cathode was synthesized via dip-coating and rapid electrodeposition followed by annealing procedure, and conducted in heterogeneous electro-Fenton (EF) system. The Cu2O@CNTs/CF composites electrode enabled activate O2 to generate H2O2 in situ and further Cu0/Cu2O synergistic catalysis to produce reactive oxygen species for a broad pH-range via the heterogeneous EF process. Cu0 on the surface of CF also contributed to the reduction of Cu2+ to Cu+, thereby enhancing the stability of the electrode. The effects of critical parameters such as precursor-ligand dosage, the initial pH value, initial pollutant concentration and current density on the degradation of the antibiotic sulfamethoxazole (SMX) were investigated. The as-obtained electrode performed both effective catalytic activity and good reusability. Almost 100% removal rate was reached within 75 min over a broad pH range (3 to 11) during the heterogeneous EF process, with the current density of 12 mA cm-2 and the removal efficiency of SMX decreased by only 9.0% after 8 recycle runs. Furthermore, quenching experiments indicated that hydroxyl radicals (·OH) were main species responsible for the SMX oxidation. In addition, the possible degradation pathways of SMX were proposed, which were based on nine identified intermediates. The comprehensive work is elucidated to accelerate the development of the in-situ production of H2O2 during the heterogeneous EF system and provide new insights to achieve high-efficiency degradation of pollutants via copper-based catalytic materials.
Collapse
Affiliation(s)
- Shiqin Mao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
| | - Xiuping Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
| | - Haiqiang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
22
|
Li J, Liu Y, Ren X, Dong W, Chen H, Cai T, Zeng W, Li W, Tang L. Soybean residue based biochar prepared by ball milling assisted alkali activation to activate peroxydisulfate for the degradation of tetracycline. J Colloid Interface Sci 2021; 599:631-641. [PMID: 33979745 DOI: 10.1016/j.jcis.2021.04.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022]
Abstract
The advanced oxidation process (AOPs) has caused great concern in recent years. Among them, biochar has been widely studied as a catalyst for advanced oxidation process because of its low price and low environmental risk. In this study, a novel ball milling assisted KOH activation biochar (MKBC) was prepared and applied in peroxydisulfate (PDS) activation to degrade tetracycline hydrochloride (TC-H). In comparison with the oxidation (3.48%) by PDS alone and adsorption (36.19%) by MKBC alone, the removal rate of TC-H was increased to 84.15% in the MKBC/PDS system, indicating that MKBC can successfully activate PDS. Besides, the catalytic activity of the MKBC to activate PDS for the degradation of TC-H is 58.33% higher than that of pristine biochar (PBC). In addition, MKBC has outstanding stability that after three repeated experiments, the removal rate of TC-H by the MKBC/PDS system still remains 77.35%. Meanwhile, the mechanism was investigated that the singlet oxygen (1O2) seized the principal position in the degradation of TC-H in the PDS/MKBC system. This study explored a novel, solvent-free and economic method to propose this extraordinary biochar, which provided a new strategy for the future research of biochar.
Collapse
Affiliation(s)
- Juan Li
- College of Environmental Science and Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Lushan South Road, Yuelu District, Changsha 410082, PR China
| | - Yutang Liu
- College of Environmental Science and Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Lushan South Road, Yuelu District, Changsha 410082, PR China.
| | - Xiaoya Ren
- College of Environmental Science and Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Lushan South Road, Yuelu District, Changsha 410082, PR China
| | - Wanyue Dong
- College of Environmental Science and Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Lushan South Road, Yuelu District, Changsha 410082, PR China
| | - Hui Chen
- College of Environmental Science and Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Lushan South Road, Yuelu District, Changsha 410082, PR China
| | - Tao Cai
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Wengao Zeng
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Wenlu Li
- College of Environmental Science and Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Lushan South Road, Yuelu District, Changsha 410082, PR China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Lushan South Road, Yuelu District, Changsha 410082, PR China.
| |
Collapse
|
23
|
Wang J, Tang J. Fe-based Fenton-like catalysts for water treatment: Preparation, characterization and modification. CHEMOSPHERE 2021; 276:130177. [PMID: 33714147 DOI: 10.1016/j.chemosphere.2021.130177] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Fenton reaction based on hydroxyl radicals () is effective for environment remediation. Nevertheless, the conventional Fenton reaction has several disadvantages, such as working at acidic pH, producing iron-containing sludge, and the difficulty in catalysts reuse. Fenton-like reaction using solid catalysts rather than Fe2+ has received increasing attention. To date, Fe-based catalysts have received increasing attention due to their earth abundance, good biocompatibility, comparatively low toxicity and ready availability, it is necessary to review the current status of Fenton-like catalysts. In this review, the recent advances in Fe-based Fenton-like catalysts were systematically analyzed and summarized. Firstly, the various preparation methods were introduced, including template-free methods (precipitation, sol gel, impregnation, hydrothermal, thermal, and others) and template-based methods (hard-templating method and soft-templating method); then, the characterization techniques for Fe-based catalysts were summarized, such as X-ray diffraction (XRD), Brunauer, Emmett and Teller (BET), SEM (scanning electron microscopy)/TEM (transmission electron microscopy)/HRTEM (high-resolution TEM), FTIR (Fourier transform infrared spectroscopy)/Raman, XPS (X-ray photoelectron spectroscopy), 57Fe Mössbauer spectroscopy etc.; thirdly, some important conventional Fe-based catalysts were introduced, including iron oxides and oxyhydroxides, zero-valent iron (ZVI) and iron disulfide and oxychloride; fourthly, the modification strategies of Fe-based catalysts were discussed, such as microstructure controlling, introduction of support materials, construction of core-shell structure and incorporation of new metal-containing component; Finally, concluding remarks were given and the future perspectives for further study were discussed. This review will provide important information to further advance the development and application of Fe-based catalysts for water treatment.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Juntao Tang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
24
|
Wang J, Tang J. Fe-based Fenton-like catalysts for water treatment: Catalytic mechanisms and applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115755] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|