1
|
Soni V, Malhotra M, Singh A, Khan AAP, Kaya S, Katin K, Van Le Q, Nguyen VH, Ahamad T, Singh P, Raizada P. Unveiling cutting-edge developments in defective BiOI nanomaterials: Precise manipulation and improved functionalities towards bolstered photocatalysis. Adv Colloid Interface Sci 2025; 340:103467. [PMID: 40069985 DOI: 10.1016/j.cis.2025.103467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/12/2024] [Accepted: 03/03/2025] [Indexed: 04/15/2025]
Abstract
Defect engineering represents a paradigm shift in tailoring nanomaterials for enhanced catalytic performance across various applications. This manuscript succinctly highlights the significance of defect engineering in improving the catalytic performance of BiOI nanoparticles for multiple applications, particularly in photocatalysis. The photocatalytic process of BiOI semiconductor is intricately linked to its indirect bandgap and layered crystalline structure. By influencing the structural dynamics of its layered materials, defects contribute significantly to optimizing its catalytic performance. "Fundamental insights into manipulating defects, including oxygen and iodine vacancies, bismuth defects, and synergistic dual defects, in BiOI are meticulously discussed. Advanced characterization techniques, spanning spectroscopy to microscopy, are explored for precise defect identification and quantification. The fragile van der Waals forces foster interactions between adjacent iodine atoms in BiOI, contributing to the overall structural stability". Understanding these structural intricacies lays a robust foundation for comprehending and exploring the exceptional physicochemical properties of two-dimensional BiOI. The manuscript showcases BiOI potential in energy and environmental sectors, ranging from solar-driven H2 evolution to CO2 reduction and various harmful pollutant degradation. By unravelling the intricate interplay between defects and catalytic activity, this manuscript sets a new benchmark for tailored catalytic solutions. This manuscript offers a comprehensive overview of defect engineering in BiOI and charts a path towards sustainable and efficient photocatalytic systems. It underscores the imperative of meticulous defect control and innovation in addressing the pressing challenges of the energy and environmental landscape.
Collapse
Affiliation(s)
- Vatika Soni
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Monika Malhotra
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Archana Singh
- Advanced Materials and Processes Research Institute, Bhopal, MP, India
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Savaş Kaya
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Konstantin Katin
- Laboratory of 2D Nanomaterials in Electronics, Photonics and Spintronics, National Research Nuclear University "MEPhI", Kashirskoe sh. 31, Moscow 115409, Russia
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Van-Huy Nguyen
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India.
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India.
| |
Collapse
|
2
|
Giráldez A, Fdez-Sanromán A, Terrón D, Sanromán MA, Pazos M. Nanostructured copper-organic frameworks for the generation of sulphate radicals: application in wastewater disinfection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10490-10504. [PMID: 37670094 PMCID: PMC11996972 DOI: 10.1007/s11356-023-29394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023]
Abstract
In recent years, the presence of pathogens in the environment has become an issue of widespread concern in society. Thus, new research lines have been developed regarding the removal of pathogens and persistent pollutants in water. In this research, the efficacy of nanostructure copper-organic framework, HKUST-1, has been evaluated for its ability to eliminate Escherichia coli and generate sulphate radicals as catalyst for the treatment of effluents with a high microbiological load via peroxymonosulphate (PMS) activation. The disinfection process has been optimized, achieving complete elimination of Escherichia coli growth after 30 min of testing using a concentration of 60.5 mg/L HKUST-1 and 0.1 mM of PMS. To overcome the operational limitations of this system and facilitate its handling and reutilization in a flow disinfection process, HKUST-1 has been efficiently encapsulated on polyacrylonitrile as a novel development that could be scaled up to achieve continuous treatment.
Collapse
Affiliation(s)
- Alba Giráldez
- Department of Chemical Engineering, CINTECX, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Antía Fdez-Sanromán
- Department of Chemical Engineering, CINTECX, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Daniel Terrón
- Department of Chemical Engineering, CINTECX, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - M Angeles Sanromán
- Department of Chemical Engineering, CINTECX, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Marta Pazos
- Department of Chemical Engineering, CINTECX, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain.
| |
Collapse
|
3
|
Ding Y, Yang G, Zheng S, Gao X, Xiang Z, Gao M, Wang C, Liu M, Zhong J. Advanced photocatalytic disinfection mechanisms and their challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121875. [PMID: 39018863 DOI: 10.1016/j.jenvman.2024.121875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Currently, microbial contamination issues have globally brought out a huge health threat to human beings and animals. To be specific, microorganisms including bacteria and viruses display durable ecological toxicity and various diseases to aquatic organisms. In the past decade, the photocatalytic microorganism inactivation technique has attracted more and more concern owing to its green, low-cost, and sustainable process. A variety kinds of photocatalysts have been employed for killing microorganisms in the natural environment. However, two predominant shortcomings including low activity of photocatalysts and diverse impacts of water characteristics are still displayed in the current photocatalytic disinfection system. So far, various strategies to improve the inherent activity of photocatalysts. Other than the modification of photocatalysts, the optimization of environments of water bodies has been also conducted to enhance microorganisms inactivation. In this mini-review, we outlined the recent progress in photocatalytic sterilization of microorganisms. Meanwhile, the relevant methods of photocatalyst modification and the influences of water body characteristics on disinfection ability were thoroughly elaborated. More importantly, the relationships between strategies for constructing advanced photocatalytic microorganism inactivation systems and improved performance were correlated. Finally, the perspectives on the prospects and challenges of photocatalytic disinfection were presented. We sincerely hope that this critical mini-review can inspire some new concepts and ideas in designing advanced photocatalytic disinfection systems.
Collapse
Affiliation(s)
- Yang Ding
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Guoxiang Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Sirui Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xing Gao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Zhuomin Xiang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Mengyang Gao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chunhua Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, 99077, China
| | - Meijiao Liu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Jiasong Zhong
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| |
Collapse
|
4
|
Jeong SB, Heo KJ, Yoo JH, Kang DG, Santoni L, Knapp CE, Kafizas A, Carmalt CJ, Parkin IP, Shin JH, Hwang GB, Jung JH. Photobiocidal Activity of TiO 2/UHMWPE Composite Activated by Reduced Graphene Oxide under White Light. NANO LETTERS 2024; 24:9155-9162. [PMID: 38917338 PMCID: PMC11299222 DOI: 10.1021/acs.nanolett.4c00939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Herein, we introduce a photobiocidal surface activated by white light. The photobiocidal surface was produced through thermocompressing a mixture of titanium dioxide (TiO2), ultra-high-molecular-weight polyethylene (UHMWPE), and reduced graphene oxide (rGO) powders. A photobiocidal activity was not observed on UHMWPE-TiO2. However, UHMWPE-TiO2@rGO exhibited potent photobiocidal activity (>3-log reduction) against Staphylococcus epidermidis and Escherichia coli bacteria after a 12 h exposure to white light. The activity was even more potent against the phage phi 6 virus, a SARS-CoV-2 surrogate, with a >5-log reduction after 6 h exposure to white light. Our mechanistic studies showed that the UHMWPE-TiO2@rGO was activated only by UV light, which accounts for 0.31% of the light emitted by the white LED lamp, producing reactive oxygen species that are lethal to microbes. This indicates that adding rGO to UHMWPE-TiO2 triggered intense photobiocidal activity even at shallow UV flux levels.
Collapse
Affiliation(s)
- Sang Bin Jeong
- Department
of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
- Indoor
Environment Center, Korea Testing Laboratory, Seoul 08389, Republic of Korea
| | - Ki Joon Heo
- School
of Mechanical Engineering, Chonnam National
University, Gwangju 61186, Republic of Korea
| | | | - Dong-Gi Kang
- Department
of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Leonardo Santoni
- Department
of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Caroline E. Knapp
- Department
of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Andreas Kafizas
- Department
of Chemistry, Imperial College London, Molecular Science Research Hub,
White City Campus, 80 Wood Lane, London W12 OBZ, United
Kingdom
| | - Claire J. Carmalt
- Department
of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Ivan P. Parkin
- Department
of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Jae Hak Shin
- Department
of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Gi Byoung Hwang
- Department
of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Jae Hee Jung
- Department
of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
5
|
Syngouna VI, Georgopoulou MP, Bellou MI, Vantarakis A. Effect of Human Adenovirus Type 35 Concentration on Its Inactivation and Sorption on Titanium Dioxide Nanoparticles. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:143-158. [PMID: 38308001 DOI: 10.1007/s12560-023-09582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/30/2023] [Indexed: 02/04/2024]
Abstract
Removal of pathogenic viruses from water resources is critically important for sanitation and public health. Nanotechnology is a promising technology for virus inactivation. In this paper, the effects of titanium dioxide (TiO2) anatase nanoparticles (NPs) on human adenovirus type 35 (HAdV-35) removal under static and dynamic (with agitation) batch conditions were comprehensively studied. Batch experiments were performed at room temperature (25 °C) with and without ambient light using three different initial virus concentrations. The virus inactivation experimental data were satisfactorily fitted with a pseudo-first-order expression with a time-dependent rate coefficient. The experimental results demonstrated that HAdV-35 sorption onto TiO2 NPs was favored with agitation under both ambient light and dark conditions. However, no distinct relationships between virus initial concentration and removal efficiency could be established from the experimental data.
Collapse
Affiliation(s)
- Vasiliki I Syngouna
- Environmental Microbiology Unit, Department of Public Health, Medical School, University of Patras, 26504, Patras, Greece.
| | | | - Maria I Bellou
- Environmental Microbiology Unit, Department of Public Health, Medical School, University of Patras, 26504, Patras, Greece
| | - Apostolos Vantarakis
- Environmental Microbiology Unit, Department of Public Health, Medical School, University of Patras, 26504, Patras, Greece
| |
Collapse
|
6
|
Wang JJ, Zhou YY, Xiang JL, Du HS, Zhang J, Zheng TG, Liu M, Ye MQ, Chen Z, Du Y. Disinfection of wastewater by a complete equipment based on a novel ultraviolet light source of microwave discharge electrodeless lamp: Characteristics of bacteria inactivation, reactivation and full-scale studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170200. [PMID: 38296065 DOI: 10.1016/j.scitotenv.2024.170200] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 02/06/2024]
Abstract
Ultraviolet (UV) light is widely used for wastewater disinfection. Traditional electrode-excited UV lamps, such as low-pressure mercy lamps (LPUV), encounter drawbacks like electrode aging and rapid light attenuation. A novel UV source of microwave discharge electrodeless lamp (MDEL) has aroused attention, yet its disinfection performance is unclear and still far from practical application. Here, we successfully developed a complete piece of equipment based on MDELs and achieved the application for disinfection in wastewater treatment plants (WWTPs). The light emitted by an MDEL (MWUV) shared a spectrum similar to that of LPUV, with the main emission wavelength at 254 nm. The inactivation rate of Gram-negative E. coli by MWUV reached 4.5 log at an intensity of 1.6 mW/cm2 and a dose of 20 mJ/cm2. For Gram-positive B. subtilis, an MWUV dose of 50 mJ/cm2 and a light intensity of 1.2 mW/cm2 reached an inactivation rate of 3.4 log. A higher MWUV intensity led to a better disinfection effect and a lower photoreactivation rate of E. coli. When inactivated by MWUV with an intensity of 1.2 mW/cm2 and a dose of 16 mJ/cm2, the maximum photoreactivation rate and reactivation rate constant Kmax of E. coli were 0.63 % and 0.11 % h-1 respectively. Compared with the photoreactivation, the dark repair of E. coli was insignificant. The full-scale application of the MDEL equipment was conducted in two WWTPs (10,000 m3/d and 15,000 m3/d). Generally 2-3 log inactivation rates of fecal coliforms in secondary effluent were achieved within 5-6 s contact time, and the disinfected effluent met the emission standard (1000 CFU/L). This study successfully applied MDEL for disinfection in WWTPs for the first time and demonstrated that MDEL has broad application prospects.
Collapse
Affiliation(s)
- Jun-Jie Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Yun-Yi Zhou
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Jue-Lin Xiang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Hai-Sheng Du
- Sichuan Macyouwei Environmental Protection Technology Co., Ltd, Chengdu 610000, China
| | - Jin Zhang
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang 621022, China
| | - Ti-Gang Zheng
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang 621022, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Ming-Qi Ye
- Everbright Water (Shenzhen) Limited, Shenzhen 518000, China
| | - Zhuo Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
7
|
Ma S, Kong J, Luo X, Xie J, Zhou Z, Bai X. Recent progress on bismuth-based light-triggered antibacterial nanocomposites: Synthesis, characterization, optical properties and bactericidal applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170125. [PMID: 38242469 DOI: 10.1016/j.scitotenv.2024.170125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Bacterial infections pose a seriously threat to the safety of the environment and human health. In particular, the emergence of drug-resistant pathogens as a result of antibiotic abuse and high trauma risk has rendered conventional therapeutic techniques insufficient for treating infections by these so-called "superbugs". Therefore, there is an urgent need to develop highly efficient and environmentally-friendly antimicrobial agents. Bismuth-based nanomaterials with unique structures and physicochemical characteristics have attracted considerable attention as promising antimicrobial candidates, with many demonstratingoutstanding antibacterial effects upon being triggered by broad-spectrum light. These nanomaterials have also exhibited satisfactory energy band gaps and electronic density distribution with improved photonic properties for extensive and comprehensive applications after being modified through various engineering methods. This review summarizes the latest research progress made on bismuth-based nanomaterials with different morphologies, structures and compositions as well as the different methods used for their synthesis to meet their rapidly increasing demand, especially for antibacterial applications. Moreover, the future prospects and challenges regarding the application of these nanomaterials are discussed. The aim of this review is to stimulate interest in the development and experimental transformation of novel bismuth-based nanomaterials to expand the arsenal of effective antimicrobials.
Collapse
Affiliation(s)
- Sihan Ma
- College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China.
| | - Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xian Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361002, China
| | - Jun Xie
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zonglang Zhou
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xue Bai
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
8
|
Neiber RR, Samak NA, Xing J, Elmongy EI, Galhoum AA, El Sayed IET, Guibal E, Xin J, Lu X. Synthesis and molecular docking study of α-aminophosphonates as potential multi-targeting antibacterial agents. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133203. [PMID: 38103294 DOI: 10.1016/j.jhazmat.2023.133203] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Antibacterial compounds that reduce extracellular polymeric substances (EPS) are needed to avoid bacterial biofilms in water pipelines. Herein, green one-pot synthesis of α-aminophosphonates (α-Amps) [A-G] was achieved by using ionic liquid (IL) as a Lewis acid catalyst. The synthesized α-Amp analogues were tested against different bacteria such as Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. The representative [B] analogue showed an efficient antibacterial effect with MIC values of 3.13 μg/mL for E. coli, P. aeruginosa, and 6.25 μg/mL for B. subtilis. Additionally, a strong ability to eliminate the mature bacterial biofilm, with super-MIC values of 12.5 μg/mL for E. coli, P. aeruginosa, and 25 μg/mL for B. subtilis. Moreover, bacterial cell disruption by ROS formation was also tested, and the compound [B] revealed the highest ROS level compared to other compounds and the control, and efficiently destroyed the extracellular polymeric substances (EPS). The docking study confirmed strong interactions between [B] analogue and protein structures with a binding affinity of -6.65 kCal/mol for the lyase protein of gram-positive bacteria and -6.46 kCal/mol for DNA gyrase of gram-negative bacteria. The results showed that α-Amps moiety is a promising candidate for developing novel antibacterial and anti-biofilm agents for clean water supply.
Collapse
Affiliation(s)
- Rana R Neiber
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China; College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, 100049 Beijing, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Nadia A Samak
- College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, 100049 Beijing, China; CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Aquatic microbiology department, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany.
| | - Jianmin Xing
- College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, 100049 Beijing, China; CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Elshaymaa I Elmongy
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed A Galhoum
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo, Egypt.
| | | | - Eric Guibal
- Institut Mines Telecom-Mines Alès, C2MA, 6 avenue de Clavières, F-30319 Alès cedex, France
| | - Jiayu Xin
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China; Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingmei Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China; Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; Department of Chemistry, University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
9
|
Zhao D, Lu H, Cheng Q, Huang Q, Ai J, Zhang Z, Liu H, He Z, Li Q. Research Progress on Inactivation of Bacteriophages by Visible-Light Photocatalytic Composite Materials: A Mini Review. MATERIALS (BASEL, SWITZERLAND) 2023; 17:44. [PMID: 38203898 PMCID: PMC10779577 DOI: 10.3390/ma17010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Infectious diseases caused by waterborne viruses have attracted researchers' great attention. To ensure a safe water environment, it is important to advance water treatment and disinfection technology. Photocatalytic technology offers an efficient and practical approach for achieving this goal. This paper reviews the latest studies on visible-light composite catalysts for bacteriophage inactivation, with a main focus on three distinct categories: modified UV materials, direct visible-light materials and carbon-based materials. This review gives an insight into the progress in photocatalytic material development and offers a promising solution for bacteriophage inactivation.
Collapse
Affiliation(s)
- Deqiang Zhao
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden; (J.A.); (Z.Z.)
| | - Heng Lu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
| | - Qingkong Cheng
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
- Joint Graduate Training Base for Resources and Environment between Chongqing Jiaotong University and Chongqing Gangli Environmental Protection Co., Ltd., Chongqing Jiaotong University, Chongqing 400074, China
| | - Qi Huang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
| | - Jing Ai
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden; (J.A.); (Z.Z.)
| | - Zhibo Zhang
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden; (J.A.); (Z.Z.)
| | - Hainan Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
| | - Zongfei He
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| | - Qiuhong Li
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
| |
Collapse
|
10
|
Jia J, Giannakis S, Li D, Yan B, Lin T. Efficient and sustainable photocatalytic inactivation of E. coli by an innovative immobilized Ag/TiO 2 photocatalyst with peroxymonosulfate (PMS) under visible light. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166376. [PMID: 37595906 DOI: 10.1016/j.scitotenv.2023.166376] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
A novel catalytic system for effective photocatalytic inactivation of Escherichia coli (E. coli) was constructed by anchoring Ag nanoparticles (AgNPs) on silane coupling agent (SCA) pretreated TiO2 nano-tube arrays (Ag/SCA/TiO2NTAs). Morphology and structural analyses revealed that SCA could disperse AgNPs evenly on TiO2NTAs, thus inducing a superior surface plasmon resonance (SPR) effect. Ag/SCA/TiO2NTAs catalyst exhibited excellent inactivation performance when in the presence of peroxymonosulfate (PMS) and visible light (VL), with 6-log E. coli was completely inactivated within 60 min, which was 5.3, 12.5 and 13.2 times higher than that of Ag/SCA/TiO2NTAs/VL, PMS/VL and Ag/SCA/TiO2NTAs/PMS/dark systems, respectively. Additionally, the photocatalyst exhibited a highly reusable property, with the inactivation performance almost unchanged after ten cycles of uses with minimal Ag leaching. The inactivation mechanism analysis demonstrated that both radical (SO4•-, OH) and non-radical (h+, 1O2) pathways involved in E. coli inactivation, and SCA played a pivotal role in the production of reactive species. Chloride ions (Cl-) greatly enhanced the inactivation efficiency, while bicarbonate (HCO3-) and phosphate (H2PO4-) showed an inhibitory effect. Humic acid (HA) displayed a dual effect on inactivation performance, where the low concentration of HA facilitated the bacteria inactivation, while the higher dose suppressed bacteria inactivation. Moreover, the system exhibited excellent inactivation performance in tap water. This work first used SCA as the binder to fix AgNPs on TiO2NTAs for VL photocatalytic inactivation of bacteria with the assistance of PMS, which was expected to provide some insights into the practical treatment of drinking water.
Collapse
Affiliation(s)
- Jialin Jia
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Environment, Coast and Ocean Research Laboratory (ECOREL-UPM), c/ Profesor Aranguren, 3, ES-28040, Madrid, Spain.
| | - Dong Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Boyin Yan
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| |
Collapse
|
11
|
Zhang YX, Xiang JL, Wang JJ, Du HS, Wang TT, Huo ZY, Wang WL, Liu M, Du Y. Ultraviolet-based synergistic processes for wastewater disinfection: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131393. [PMID: 37062094 DOI: 10.1016/j.jhazmat.2023.131393] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Ultraviolet (UV) irradiation is widely used for wastewater disinfection but suffers from low inactivation rates and can cause photoreactivation of microorganisms. Synergistic disinfection with UV and oxidants is promising for enhancing the inactivation performance. This review summarizes the inactivation effects on representative microorganisms by UV/hydrogen peroxide (H2O2), UV/ozone (O3), UV/persulfate (PS), UV/chlorine, and UV/chlorine dioxide (ClO2). UV synergistic processes perform better than UV or an oxidant alone. UV mainly attacks the DNA or RNA in microorganisms; the oxidants H2O2 and O3 mainly attack the cell walls, cell membranes, and other external structures; and HOCl and ClO2 enter cells and oxidize proteins and enzymes. Free radicals can have strong oxidation effects on cell walls, cell membranes, proteins, enzymes, and even DNA. At similar UV doses, the inactivation rates of Escherichia coli with UV alone, UV/H2O2, UV/O3, UV/PS (peroxydisulfate or peroxymonosulfate), and UV/chlorinated oxidant (chlorine, ClO2, and NH2Cl) range from 2.03 to 3.84 log, 2.62-4.30 log, 4.02-6.08 log, 2.93-5.07 log, and 3.78-6.55 log, respectively. The E. coli inactivation rates are in the order of UV/O3 ≈ UV/Cl2 > UV/PS > UV/H2O2. This order is closely related to the redox potentials of the oxidants and quantum yields of the radicals. UV synergistic disinfection processes inhibit photoreactivation of E. coli in the order of UV/O3 > UV/PS > UV/H2O2. The activation mechanisms and formation pathways of free radicals with different UV-based synergistic processes are presented. In addition to generating HO·, O3 can reduce the turbidity and chroma of wastewater to increase UV penetration, which improves the disinfection performance of UV/O3. This knowledge will be useful for further development of the UV-based synergistic disinfection processes.
Collapse
Affiliation(s)
- Yi-Xuan Zhang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Jue-Lin Xiang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Jun-Jie Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Hai-Sheng Du
- Sichuan Macyouwei Environmental Protection Technology Co., Ltd, Chengdu 610000, China
| | - Ting-Ting Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Zheng-Yang Huo
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
12
|
Liu Q, Hou J, Zeng Y, Xia J, Miao L, Wu J. Integrated photocatalysis and moving bed biofilm reactor (MBBR) for treating conventional and emerging organic pollutants from synthetic wastewater: Performances and microbial community responses. BIORESOURCE TECHNOLOGY 2023; 370:128530. [PMID: 36574888 DOI: 10.1016/j.biortech.2022.128530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Increasing concern for emerging organic pollutants (e.g. antibiotics) urges improvements in conventional biological wastewater treatment processes. This study examined the performance of an integrated photocatalysis and moving bed biofilm reactor (MBBR) system in treating synthetic wastewater containing sulfamethoxazole (SMX). It was found that the integrated system could remove over 80.5 % of SMX and 67.7-80.7 % of chemical oxygen demand (COD) with a hydraulic retention time of 24 h. The introduction of photocatalysis had no impact on COD removal and significantly enhanced SMX removal. High-throughput analysis indicated that microbial community greatly altered due to photocatalytic oxidation stress, with clostridiaceae and enterobacteriaceae becoming dominant families. Nevertheless, microorganisms maintained metabolic activity, which may be ascribed to the protection of carriers and microbial self-preservation by secreting extracellular polymeric substances and antioxidant enzymes. Collectively, this study sheds light on treating wastewater containing conventional and emerging organic pollutants by integrating photocatalysis with MBBR.
Collapse
Affiliation(s)
- Qidi Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuan Zeng
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Jun Xia
- School of Civil Engineering and Transportation, Hohai University, Nanjing 210098, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
13
|
Zhang C, Xiong W, Li Y, Lin L, Zhou X, Xiong X. Continuous inactivation of human adenoviruses in water by a novel g-C 3N 4/WO 3/biochar memory photocatalyst under light-dark cycles. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130013. [PMID: 36155297 DOI: 10.1016/j.jhazmat.2022.130013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Viruses transmitted by water have raised considerable concerns for public health. A novel memory photocatalyst of g-C3N4/WO3/biochar was successfully developed for effective inactivation of human adenoviruses (HAdVs) in water, in which WO3 as an electron-storage reservoir and biochar as an electron shuttle is employed to synergistically improve photocatalytic activity of g-C3N4. The tertiary composite exhibited continuous photocatalytic performance for HAdVs inactivation without regrowth in water under light-dark cycles, i.e., ∼3.9-log inactivation under 6-h visible light irradiation and an additional ∼1.1-log inactivation under the following 6-h dark. The enhanced virucidal mechanism was attributed to the heterojunction formation and especially the electron-transfer pathway switching via biochar incorporation, contributing to electron transfer and storage in the light phase and then electron release in the dark phase, along with obviously increased generation of the virus-killing •OH radicals under light-dark cycles.
Collapse
Affiliation(s)
- Chi Zhang
- College of Mechanics and Materials, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Wei Xiong
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, Hubei 430010, PR China.
| | - Xinyi Zhou
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xinyan Xiong
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
14
|
Lanrewaju AA, Enitan-Folami AM, Sabiu S, Swalaha FM. A review on disinfection methods for inactivation of waterborne viruses. Front Microbiol 2022; 13:991856. [PMID: 36212890 PMCID: PMC9539188 DOI: 10.3389/fmicb.2022.991856] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Water contamination is a global health problem, and the need for safe water is ever-growing due to the public health implications of unsafe water. Contaminated water could contain pathogenic bacteria, protozoa, and viruses that are implicated in several debilitating human diseases. The prevalence and survival of waterborne viruses differ from bacteria and other waterborne microorganisms. In addition, viruses are responsible for more severe waterborne diseases such as gastroenteritis, myocarditis, and encephalitis among others, hence the need for dedicated attention to viral inactivation. Disinfection is vital to water treatment because it removes pathogens, including viruses. The commonly used methods and techniques of disinfection for viral inactivation in water comprise physical disinfection such as membrane filtration, ultraviolet (UV) irradiation, and conventional chemical processes such as chlorine, monochloramine, chlorine dioxide, and ozone among others. However, the production of disinfection by-products (DBPs) that accompanies chemical methods of disinfection is an issue of great concern due to the increase in the risks of harm to humans, for example, the development of cancer of the bladder and adverse reproductive outcomes. Therefore, this review examines the conventional disinfection approaches alongside emerging disinfection technologies, such as photocatalytic disinfection, cavitation, and electrochemical disinfection. Moreover, the merits, limitations, and log reduction values (LRVs) of the different disinfection methods discussed were compared concerning virus removal efficiency. Future research needs to merge single disinfection techniques into one to achieve improved viral disinfection, and the development of medicinal plant-based materials as disinfectants due to their antimicrobial and safety benefits to avoid toxicity is also highlighted.
Collapse
Affiliation(s)
| | | | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Feroz Mahomed Swalaha
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| |
Collapse
|
15
|
Rathinavelu S, Divyapriya G, Joseph A, Nambi IM, Muthukrishnan AB, Jayaraman G. Inactivation behavior and intracellular changes in Escherichia coli during electro-oxidation process using Ti/Sb-SnO 2/PbO 2 anode: Elucidation of the disinfection mechanism. ENVIRONMENTAL RESEARCH 2022; 210:112749. [PMID: 35123966 DOI: 10.1016/j.envres.2022.112749] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/15/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
This study investigates the behavior and intracellular changes in Escherichia coli (model organism) during electro-oxidation with Ti/Sb-SnO2/PbO2 anode in a chlorine free electrochemical system. Preliminary studies were conducted to understand the effect of initial E. coli concentration and applied current density on disinfection. At an applied current density 30 mA cm-2, 7 log reduction of E. coli was achieved in 75 min. The role of reactive oxygen species' (ROS) in E.coli disinfection was evaluated, which confirmed hydroxyl (•OH) radical as the predominant ROS in electro-oxidation. Observations were carried out at cell and molecular level to understand E.coli inactivation mechanism. Scanning electron microscopy images confirmed oxidative damage of the cell wall and irreversible cell death. Intracellular and extracellular protein quantification and genetic material release further confirmed cell component leakage due to cell wall rupture and degradation due to •OH radical interaction. Change in cell membrane potential suggests the colloidal nature of E. coli cells under applied current density. Plasmid deoxyribonucleic acid degradation study confirmed fragmentation and degradation of released genetic material. Overall, effective disinfection could be achieved by electro-oxidation, which ensures effective inactivation and prevents regrowth of E. coli. Disinfection of real wastewater was achieved in 12 min at an applied current density 30 mA cm-2. Real wastewater study further confirmed that effective disinfection is possible with a low cost electrode material such as Ti/Sb-SnO2/PbO2. Energy consumed during disinfection was determined to be 4.978 kWh m-3 for real wastewater disinfection at applied current density 30 mA cm-2. Cost of operation was estimated and stability of the electrode was studied to evaluate the feasibility of large scale operation. Relatively low energy and less disinfection time makes this technology suitable for field scale applications.
Collapse
Affiliation(s)
- Sasikaladevi Rathinavelu
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600 036, India; Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600 036, India
| | - Govindaraj Divyapriya
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600 036, India
| | - Angel Joseph
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600 036, India
| | - Indumathi M Nambi
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600 036, India.
| | - Anantha Barathi Muthukrishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600 036, India
| | - Guhan Jayaraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600 036, India
| |
Collapse
|
16
|
Samak NA, Selim MS, Hao Z, Xing J. Immobilized arginine/tryptophan-rich cyclic dodecapeptide on reduced graphene oxide anchored with manganese dioxide for microbial biofilm eradication. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128035. [PMID: 34954434 DOI: 10.1016/j.jhazmat.2021.128035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
To avoid the accumulation of bacterial biofilms in water pipelines, it is critical to develop potent antimicrobial agents with good ability to reduce extracellular polymeric substances (EPS). In this study, cyclic dodecapeptides were synthesized, and different mutations for increasing the ratio of arginine (Arg) and tryptophan (Trp) were introduced. Separately, the synthesized dodecapeptides were immobilized on a reduced graphene oxide nanocomposite anchored with a hierarchical β-MnO2 (RGO/β-MnO2) hybrid. With a minimum inhibitory concentration of 0.97 g/mL, the immobilized Arg-Trp rich antimicrobial peptides (AMP) on RGO/MnO2 nanocomposite, Cdp-4/RGO/MnO2, showed superior efficacy against multidrug-resistant Pseudomonas aeruginosa ATCC 15692 (P. aeruginosa) planktonic cells. The immobilized Cdp-4/RGO/β-MnO2 also eradicated the mature biofilm by 99% with a minimum inhibitory concentration value of 62.5 µg/mL with significant reduction of EPS. These characteristics allow the use of the immobilized Arg-Trp rich AMP as a promising antimicrobial agent against microbial biofilms, present in water distribution systems.
Collapse
Affiliation(s)
- Nadia A Samak
- CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Environmental Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg-Essen, 4141 Essen, Germany; Processes Design and Development Department, Egyptian Petroleum Research Institute, Nasr City 11727, Cairo, Egypt; College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mohamed S Selim
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China; Petroleum Application Department, Egyptian Petroleum Research Institute, Nasr City 11727, Cairo, Egypt
| | - Zhifeng Hao
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, PR China.
| |
Collapse
|
17
|
Jiang L, Guo Y, Pan J, Zhao J, Ling Y, Xie Y, Zhou Y, Zhao J. N, P, O co-doped carbon filling into carbon nitride microtubes to promote photocatalytic hydrogen production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151114. [PMID: 34688745 DOI: 10.1016/j.scitotenv.2021.151114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Carbon nitride (CN) as the photocatalytic hydrogen production catalyst has attracted great attentions but suffering from a poor performance due to the unsatisfied energy band gap and the low separation efficiency of photogenerated carriers. Herein, we create a simple method to construct a novel CN-based photocatalyst, i.e., the N, P, O co-doped carbon filled CN microtube, which presents a narrow band gap, a high separation efficiency of photogenerated carriers, and a good stability. In this novel structure, the tubular morphology of CN ensures a narrow band gap, and the N, P, O co-doped carbon facilitates the transfer of photogenerated electrons. Coupling these two further reduces the energy band gap and improves the separation efficiency. For the photocatalytic hydrogen evolution under the visible light, the optimal sample presents an ultrahigh hydrogen evolution rate of 1149.71 μmol g-1 h-1 ranking at the top level, which is 112.60 times that of traditional bulk CN. In addition, it also has a high reusability and good stability after four cycle experiments. This study has provided a new viewpoint to design or develop the high-efficient photocatalysts for hydrogen production.
Collapse
Affiliation(s)
- Liushan Jiang
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Yue Guo
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jianfei Pan
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Jie Zhao
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yun Ling
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Yu Xie
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China.
| | - Yipeng Zhou
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Jinsheng Zhao
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
18
|
Liu Q, Hou J, Wu J, Miao L, You G, Ao Y. Intimately coupled photocatalysis and biodegradation for effective simultaneous removal of sulfamethoxazole and COD from synthetic domestic wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127063. [PMID: 34537641 DOI: 10.1016/j.jhazmat.2021.127063] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/21/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The inefficiency of conventional biological treatment for removing sulfamethoxazole (SMX) is posing potential risks to ecological environments. In this study, an intimately coupled photocatalysis and biodegradation (ICPB) system consisting of Fe3+/g-C3N4 and biofilm was fabricated for the treatment of synthetic domestic wastewater containing SMX. The results showed that this ICPB system could simultaneously remove 96.27 ± 5.27% of SMX and 86.57 ± 3.06% of COD, which was superior to sole photocatalysis (SMX 100%, COD 4.2 ± 0.74%) and sole biodegradation (SMX 42.21 ± 0.86%, COD 95.1 ± 0.18%). Contributors to SMX removal in the ICPB system from big to small include LED photocatalysis, biodegradation, LED photolysis, and adsorption effect of the carrier, while COD removal was largely ascribed to biodegradation. Increasing initial SMX concentration inhibits SMX removal rate, while increasing photocatalyst dosage accelerates SMX removal rate, and both had no impact on COD removal. Our analysis of biofilm activity showed that microorganisms in this ICPB system maintained a high survival rate and metabolic activity, and the microbial community structure of the biofilm remained stable, with Nakamurella and Raoultella being the two dominant genera of the biofilm. This work provides a new strategy to effectively treat domestic wastewater polluted by antibiotics.
Collapse
Affiliation(s)
- Qidi Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
19
|
Song K, Wang H, Jiao Z, Qu G, Chen W, Wang G, Wang T, Zhang Z, Ling F. Inactivation efficacy and mechanism of pulsed corona discharge plasma on virus in water. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126906. [PMID: 34416696 DOI: 10.1016/j.jhazmat.2021.126906] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The presence of viruses in water is a major risk for human and animal health due to their high resistance to disinfection. Pulsed corona discharge plasma (PCDP) efficiently inactivates bacteria by causing damage to biological macromolecules, but its effect on waterborne virus has not been reported. This study evaluated the inactivation efficacy of PCDP to viruses using spring viremia of carp virus (SVCV) as a model. The results showed that 4-log10 reduction of SVCV infectivity in cells was reached after 120 s treatment, and there was no significant difference in survival of fish infected with SVCV inactivated by PCDP for 240 s or more longer compared to the control fish without virus challenge, thus confirming the feasibility of PCDP to waterborne virus inactivation. Moreover, the high input energy density caused by voltage significantly improved the inactivation efficiency. The further research indicated that reactive species (RS) generated by pulsed corona discharge firstly reacted with phosphoprotein (P) and polymerase complex proteins (L) through penetration into the SVCV virions, and then caused the loss of viral infectivity by damage to genome and other structural proteins. This study has significant implications for waterborne virus removal and development of novel disinfection technologies.
Collapse
Affiliation(s)
- Kaige Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hui Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zhi Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Weichao Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
20
|
De Pasquale I, Lo Porto C, Dell'Edera M, Curri ML, Comparelli R. TiO 2-based nanomaterials assisted photocatalytic treatment for virus inactivation: perspectives and applications. Curr Opin Chem Eng 2021; 34:100716. [PMID: 36348653 PMCID: PMC9634185 DOI: 10.1016/j.coche.2021.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The COVID 19 pandemic has demonstrated the need for urgent access to measures to contain the spread of the virus and bacteria. In this frame, the use of photocatalytic nanomaterials can be a valuable alternative to chemical disinfectants without the limitation of generating polluting by-products and with the advantage of re-usability in time. Here, on the basis of up-to-date literature reports, the use of TiO2-based photocatalytic nanomaterials in disinfection will be overviewed, considering the peculiar nanocatalysts assisted inactivation mechanisms. The potential of this class of photocatalysts for air, surface and water disinfection will be highlighted, critically revising the recent achievements in view of their potential in real application.
Collapse
Affiliation(s)
- Ilaria De Pasquale
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, S.S. Bari, c/o Dip. Chimica Via Orabona 4, 70126, Bari, Italy
| | - Chiara Lo Porto
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, S.S. Bari, c/o Dip. Chimica Via Orabona 4, 70126, Bari, Italy
| | - Massimo Dell'Edera
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, S.S. Bari, c/o Dip. Chimica Via Orabona 4, 70126, Bari, Italy
- Dip. Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy
| | - Maria Lucia Curri
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, S.S. Bari, c/o Dip. Chimica Via Orabona 4, 70126, Bari, Italy
- Dip. Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy
| | - Roberto Comparelli
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, S.S. Bari, c/o Dip. Chimica Via Orabona 4, 70126, Bari, Italy
| |
Collapse
|
21
|
Zhang Z, Sun J, Chen X, Wu G, Jin Z, Guo D, Liu L. The synergistic effect of enhanced photocatalytic activity and photothermal effect of oxygen-deficient Ni/reduced graphene oxide nanocomposite for rapid disinfection under near-infrared irradiation. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126462. [PMID: 34214854 DOI: 10.1016/j.jhazmat.2021.126462] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
The rational design of high antibacterial efficiency are urgently needed as the occurrence of drug-resistance issues. Hence, Ni/reduced graphene oxide nanocomposite (Ni/rGO) with different amounts of oxygen vacancies were fabricated for efficient disinfection. The optimized Ni/rGO (A100) exhibited highly effective inactivation efficacy of 99.6% and 99.5% against Escherichia coli and Bacillus subtilis within 8 min near-infrared (NIR) irradiation through the synergistic effects of photothermal therapy and oxidative damage, which were much higher than single treatment. The A100 nanocomposite achieved an extraordinary photothermal conversion efficiency (35.78%) under the 808 nm irradiation for enhanced photothermal hyperthermia, thereby destroying the cell membrane and accelerating the GSH depletion. The radical scavenger experiment confirmed that •O2- and •OH play the chief role in photodisinfection reaction. Besides, A100 could exert significant damage on the ATP synthesis. The excellent photothermal performance and photocatalytic activity can be attributed to the appropriate oxygen vacancy density, which improves the absorption of NIR light and facilitates the separation of photogenerated electron-hole pairs. Besides, the higher NiO content of A100 contributed to improving the photocatalytic effect. Our work demonstrated a promising strategy for efficient water pollution purification caused by pathogenic bacteria.
Collapse
Affiliation(s)
- Ze Zhang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Rd., Tianjin 300350, PR China
| | - Jingyu Sun
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Rd., Tianjin 300350, PR China
| | - Xue Chen
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Rd., Tianjin 300350, PR China
| | - Guizhu Wu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Rd., Tianjin 300350, PR China
| | - Zhengguo Jin
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Rd., Tianjin 300350, PR China
| | - Donggang Guo
- Shanxi Laboratory for Yellow River, College of Environment and Resource, Shanxi University, 92 Wucheng Rd., Shanxi 030006, PR China.
| | - Lu Liu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Rd., Tianjin 300350, PR China.
| |
Collapse
|
22
|
Nasir AM, Awang N, Hubadillah SK, Jaafar J, Othman MHD, Wan Salleh WN, Ismail AF. A review on the potential of photocatalysis in combatting SARS-CoV-2 in wastewater. JOURNAL OF WATER PROCESS ENGINEERING 2021; 42:102111. [PMID: 35592059 PMCID: PMC8084616 DOI: 10.1016/j.jwpe.2021.102111] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 05/09/2023]
Abstract
Photocatalytic technology offers powerful virus disinfection in wastewater via oxidative capability with minimum harmful by-products generation. This review paper aims to provide state-of-the-art photocatalytic technology in battling transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater. Prior to that, the advantages and limitations of the existing conventional and advanced oxidation processes for virus disinfection in water systems were thoroughly examined. A wide spectrum of virus degradation by various photocatalysts was then considered to understand the potential mechanism for deactivating this deadly virus. The challenges and future perspectives were comprehensively discussed at the end of this review describing the limitations of current photocatalytic technology and suggesting a realistic outlook on advanced photocatalytic technology as a potential solution in dealing with similar upcoming pandemics. The major finding of this review including discovery of a vision on the possible photocatalytic approaches that have been proven to be outstanding against other viruses and subsequently combatting SARS-CoV-2 in wastewater. This review intends to deliver insightful information and discussion on the potential of photocatalysis in battling COVID-19 transmission through wastewater.
Collapse
Affiliation(s)
- Atikah Mohd Nasir
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Nuha Awang
- Facilities Maintenance Engineering Section, Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur, Persiaran Sinaran Ilmu, Bandar Seri Alam, 81750, Johor, Malaysia
| | - Siti Khadijah Hubadillah
- School of Technology Management and Logistics, Universiti Utara Malaysia, Sintok, Kedah, 06010, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Wan Norhayati Wan Salleh
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
23
|
Yan K, Mu C, Meng L, Fei Z, Dyson PJ. Recent advances in graphite carbon nitride-based nanocomposites: structure, antibacterial properties and synergies. NANOSCALE ADVANCES 2021; 3:3708-3729. [PMID: 36133016 PMCID: PMC9419292 DOI: 10.1039/d1na00257k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/27/2021] [Indexed: 05/04/2023]
Abstract
Bacterial infections and transmission threaten human health and well-being. Graphite carbon nitride (g-C3N4), a promising photocatalytic antibacterial nanomaterial, has attracted increasing attention to combat bacterial transmission, due to the outstanding stability, high efficiency and environmental sustainability of this material. However, the antibacterial efficiency of g-C3N4 is affected by several factors, including its specific surface area, rapid electron/hole recombination processes and optical absorption properties. To improve the efficiency of the antibacterial properties of g-C3N4 and extend its range of applications, various nanocomposites have been prepared and evaluated. In this review, the advances in amplifying the photocatalytic antibacterial efficiency of g-C3N4-based nanocomposites is discussed, including different topologies, noble metal decoration, non-noble metal doping and heterojunction construction. The enhancement mechanisms and synergistic effects in g-C3N4-based nanocomposites are highlighted. The remaining challenges and future perspectives of antibacterial g-C3N4-based nanocomposites are also discussed.
Collapse
Affiliation(s)
- Kai Yan
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University Xi'an 710049 P. R. China
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Chenglong Mu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Lingjie Meng
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Instrumental Analysis Center, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Zhaofu Fei
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| |
Collapse
|