1
|
Zheng Y, Wang B, Chen H, Zhou J, Song C, Chen J, Chai Z, Zheng M. Rhizosphere as hotspot for ammonia oxidation in secondary effluent constructed wetlands: Role of comammox Nitrospira. BIORESOURCE TECHNOLOGY 2025; 431:132621. [PMID: 40319949 DOI: 10.1016/j.biortech.2025.132621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Secondary effluent constructed wetlands (SECWs) are engineered ecosystems for advanced wastewater treatment, yet the functional roles and survival strategies of complete ammonia oxidizers (comammox) within these systems remain poorly understood, particularly from a rhizosphere view. The results of this study demonstrated that comammox was numerically and functionally dominant (60.4 % to 70.6 %) in SECWs. The rhizosphere acted as a hotspot for ammonia oxidation and N2O production, compared to the nonrhizosphere. Enhanced nitrification was attributed to radial oxygen loss and humic acid-like compounds in root exudates. Furthermore, variations in comammox community structure and ammonia kinetic properties (Km(app) = 0.140 ± 0.026 mg N L-1) revealed niche differentiation among comammox species: the r-strategist Nitrospira sp. HN-bin3 thrived over time, whereas the K-strategist Nitrospira nitrificans was outcompeted, with ammonia concentration identified as the main driving factor. These results highlighted the vital but underappreciated role of comammox in the nitrogen cycle of constructed wetlands and provided new insights into their ecological functions and adaptive strategies.
Collapse
Affiliation(s)
- Yize Zheng
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Bowen Wang
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hongwei Chen
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jinyang Zhou
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Chao Song
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jin Chen
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zimin Chai
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Maosheng Zheng
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
2
|
Pulvirenti E, Conti GO, Falqui L, Banni M, Ferrante M. Innovative prototype for the mitigation of water pollution from microplastics to safeguard the environment and health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179358. [PMID: 40239507 DOI: 10.1016/j.scitotenv.2025.179358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025]
Abstract
Microplastics (MPs) are ubiquitary environmental pollutants facilitated by anthropic activities as wastewaters (WWs) not properly treated or dispersed. Our study focused on the validation of an innovative prototype filter for its future applications in WWs Treatment Plants (WWTPs) to reduce the release of MPs in the environment. The aims of the study were: The WWTPs resulted in catching 85 % and 73 % of MPs >10 and MPs <10 μm, respectively; instead, the WWTPs-prototype treated outputs showed a further reduction of 99 % and 92 % of the uncaught MPs. The mussel haemolymphs analysis showed a decrease of 100 % and 95 %, respectively, for both MPs <10 and >10 μm in filtering treatment against the normal WWTPs outputs. We revealed longer LMS times in mussels exposed to prototype-filtered WWs (29-41 min) compared to the raw output of WWTPs (18-24 min). MF and q-PCR of all studied genes revealed a reduced genotoxicity in mussels exposed to prototype-treated WWs. Hence, the results demonstrated the prototype efficacy, and it will be tested in real WWTPs at a field scale in the next study.
Collapse
Affiliation(s)
- Eloise Pulvirenti
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy; Department of Biological, Geological and Environmental Sciences, University of Catania, Italy; CRIAB, Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Catania, Italy.
| | - Gea Oliveri Conti
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy; CRIAB, Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Catania, Italy.
| | - Luciano Falqui
- GREENERTECH Srl, via Nicola Fabrizi, 21, 95128 Catania, CT, Italy
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, Sousse University, Chott-Mariem 4042, Sousse, Tunisia; Higher Institute of Biotechnology, Monastir University, Tunisia
| | - Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy; CRIAB, Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Catania, Italy
| |
Collapse
|
3
|
Teng X, He M, Xu J, Tang X, Zheng Q, Wang Z, Qu R. Photochemical transformation and interaction of octachlorodibenzofuran (OCDF) with microplastics in suspended particulate matter-water system. WATER RESEARCH 2025; 282:123766. [PMID: 40334378 DOI: 10.1016/j.watres.2025.123766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/09/2025]
Abstract
Microplastics (MPs) and suspended particulate matter (SPM) are widely present in the aquatic environment, serving as carriers for various pollutants. Understanding the phototransformation behavior of hydrophobic organic pollutants in the presence of coexisting microplastics and SPM is crucial for assessing their environmental fate and potential impacts. In this study, we investigated the photochemical transformation behavior of octachlorodibenzo-p-dioxin (OCDF) in water under simulated solar irradiation, using polypropylene (PP) microplastics and SPM collected from the Pearl River. The results showed that the degradation rate of OCDF increased with the increase of PP content in the system. Experiments using EPR and probe molecules, as well as quenching experiments of reactive species, demonstrated that the presence of PP significantly elevated the concentration of reactive oxygen species (ROS) in the system. Through product analysis, we identified the main degradation pathways of OCDF to involve carbon-oxygen bond breaking, dechlorination and substitution reactions. These pathways were further rationalized and verified through theoretical calculations. In addition, we calculated the reaction energy barriers of OCDF attacked by ROS on the surface of particulate matter. Compared with SPM, the reaction energy barrier for OCDF reacting with •O2- on the PP surface was significantly reduced, suggesting that PP can enhance the photochemical transformation of OCDF by facilitating the reactivity of ROS. This study provides new insights into the photochemical transformation of hydrophobic organic pollutants mediated by microplastics in real aqueous environments, highlighting the role of MPs in altering the fate and behavior of persistent organic pollutants.
Collapse
Affiliation(s)
- Xiaolei Teng
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Mengqiang He
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Jianqiao Xu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Xiaosheng Tang
- Jiangsu Yangtze River Delta Environmental Science and Technology Research Institute Co., Ltd., Changzhou 213100, Jiangsu, PR China
| | - Qing Zheng
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Zunyao Wang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Nanjing University, Jiangsu, Nanjing 210023, PR China.
| |
Collapse
|
4
|
Ayankunle AY, Buhhalko N, Pachel K, Lember E, Drenkova-Tuhtan A, Heinlaan M. Microplastics in Estonian wastewater treatment plants: First evaluation of baseline concentrations and stage-wise removal efficiency. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 281:107305. [PMID: 40037213 DOI: 10.1016/j.aquatox.2025.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Wastewater treatment plants (WWTPs) are important pathways of microplastics (MPs) into the environment. To date, the extent of MPs contamination from Estonian WWTPs, located at the Baltic Sea, is not known. To establish MPs baseline levels in the Estonian wastewater treatment system and evaluate MPs removal efficiency, six WWTPs were selected for evaluation. From each plant, 24 h composite samples were collected from raw influent, after primary treatment, and from secondary effluent using an automated sampler with a three-layered sieve system. Upon Fenton-H2O2 digestion of organic matter, ≥ 300 µm MPs were quantified by microscope and categorized by size, shape and color. At least 50 % of microscopically identified MPs were analyzed by µFTIR, identifying at least 78 % of these as artificial polymers. The results showed that MPs concentrations in the WWTPs' influents were 205 - 520 MPs/L of which 36 - 94 % was removed during mechanical treatment. As a result of the overall MPs removal efficiency of 99.6 - 99.8 % compared to the influent, 0.5 - 1.4 MPs/L was quantified in the final effluent of the WWTPs. Fibers, fragments and films were recorded in the influent whereas the effluents were dominated by fibers. Fragments and films were mainly composed of polypropylene (PP) and -ethylene, while fibers had more diverse polymeric compositions incl. PP, polyethylene terephthalate and polyacrylonitrile. Despite high MPs removal rates, in total, the six studied WWTP discharge about 9,7E+07 MPs/day in the environment. The obtained results are significant for future regulatory and research endeavors.
Collapse
Affiliation(s)
- Ayankoya Yemi Ayankunle
- Department of Environmental Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Natalja Buhhalko
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; Department of Marine Systems, Tallinn University of Technology, Akadeemia tee 15A, 12618 Tallinn, Estonia
| | - Karin Pachel
- Department of Environmental Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Erki Lember
- Department of Environmental Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Asya Drenkova-Tuhtan
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Margit Heinlaan
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
5
|
Bodzek M, Bodzek P. Remediation of Micro- and Nanoplastics by Membrane Technologies. MEMBRANES 2025; 15:82. [PMID: 40137034 PMCID: PMC11943828 DOI: 10.3390/membranes15030082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
Micro- and nanoplastics (NPs) cannot be completely removed from water/wastewater in conventional wastewater treatment plants (WWTPs) and drinking water treatment plants (DWTPs). According to the literature analysis, membrane processes, one of the advanced treatment technologies, are the most effective and promising technologies for the removal of microplastics (MPs) from water and wastewater. In this article, firstly, the properties of MPs commonly found in water and wastewater treatment and their removal efficiencies are briefly reviewed. In addition, research on the use of microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), and membrane bioreactors (MBR) for the remediation of MPs and NPs from water/wastewater is reviewed, and the advantages/disadvantages of each removal method are discussed. Membrane filtration is also compared with other methods used to remove MPs. Furthermore, the problem of membrane fouling by MPs during filtration and the potential for MPs to be released from the polymeric membrane structure are discussed. Finally, based on the literature survey, the current status and gaps in research on MPs removal by membrane technologies are identified, and recommendations for further research are made.
Collapse
Affiliation(s)
- Michał Bodzek
- Institute of Environmental Engineering, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Piotr Bodzek
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
6
|
Yang Q, Li J, Ma L, Du X. Impact and mechanism of polyethylene terephthalate microplastics with different particle sizes on sludge anaerobic digestion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125494. [PMID: 39653267 DOI: 10.1016/j.envpol.2024.125494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/17/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Municipal wastewater treatment plants (WWTPs) are important sinks for microplastics, and the vast majority of microplastics entering WWTPs are trapped in residual sludge. In order to investigate the effect of microplastics on anaerobic digestion of sludge, polyethylene terephthalate (PET) microplastics with common particle size and physical aging were selected to conduct a comparative study. Regardless of aging, the addition of 300 and 500 μm PET microplastics inhibited methane production, with their cumulative methane production reduced by 11.3-24.9% compared to the control group. In contrast, when 100 μm microplastics were added, the raw PET promoted methane production, yielding 337 L CH4/kg VS, while the aged experimental group showed similar yields to the control group. For the 800 μm microplastics treatment group, aged microplastics facilitated methane production while raw microplastics inhibited it, with methane production of 91.0% and 111% of the control group, respectively. The effects were also investigated by model fitting, stage discussion, and microbial community structure analysis. The results discovered that the main rate-limiting steps of adding microplastics with smaller or larger particle sizes (100, 800 μm) to methane production were solubilization and hydrolysis, while the main rate-limiting step of microplastics with medium particle sizes (300, 500 μm) was methanogenesis. Physically aged PET microplastics with smaller or larger sizes showed a more significant effect on methane production. Furthermore, PET microplastics altered the microbial community structure, shifting methanogens from acetotrophic pathways to hydrotrophic pathways. This study offers new insights into the performance analysis of sludge anaerobic digestion in practical WWTPs.
Collapse
Affiliation(s)
- Qing Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Jiaxin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Linlin Ma
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Xue Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
7
|
Xiao M, Zhang H, Wu L, Wu Y, He X, Li B, Chen X, Yang L. Divergent responses of microalgal-bacterial granular sludge to two typical microplastics polystyrene and polybutylene succinate during the treatment of sulfamethoxazole-containing wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124286. [PMID: 39935060 DOI: 10.1016/j.jenvman.2025.124286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 02/13/2025]
Abstract
This study evaluated the mechanisms by which biodegradable microplastics (polystyrene, PS MPs) and non-biodegradable microplastics (polybutylene succinate, PBS MPs), affect the performance of microalgal-bacterial granular sludge in sulfamethoxazole (SMX)-containing wastewater. Macroscopically, microalgal-bacterial granular sludge adapted to PS MPs more significantly and rapidly than PBS MPs. PS MPs slightly inhibited the removal of chemical oxygen demand (COD) and NH4+-N, with the average removal rate reduced by 4.54% and 3.65%, respectively. Nonetheless, PBS MPs facilitated the degradation of SMX with the main pathway being the breakage of N-S bonds. At the microscopic level, the inhibition of Proteobacteria and Cyanobacteria abundance by PS MPs emerged as a significant factor affecting the performance of granular sludge. Conversely, the enrichment of Desulfobacterota promoted by PBS MPs favorably impacted the removal and degradation of pollutants. Overall, PBS MPs showed better environmental compatibility and lower ecotoxicity for microalgal-bacterial granular sludge treatment of antibiotic-containing wastewater.
Collapse
Affiliation(s)
- Meixing Xiao
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Huiyin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Li Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Yaxin Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Xiaoman He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Bolin Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Xiaoguo Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
8
|
Wang Y, Yuan P, Gao P. Microplastics accelerate nitrification, shape the microbial community, and alter antibiotic resistance during the nitrifying process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178306. [PMID: 39740624 DOI: 10.1016/j.scitotenv.2024.178306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/03/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) are both emerging pollutants that are frequently detected in wastewater treatment plants. In this study, the effects of various MPs, including polyethylene (PE), polyvinyl chloride (PVC), and biodegradable polylactic acid (PLA), on nitrification performance, dominant microbial communities, and antibiotic resistance during nitrification were investigated. The results revealed that the addition of MPs increased the specific ammonia oxidation rate and specific nitrate production rate by 15.2 % - 15.5 % and 8.0 % - 11.6 %, respectively, via enrichment of nitrifying microorganisms, Nitrospira and Nitrosomonas. Moreover, ARGs were selectively enriched in nitrifying sludge and microplastic biofilms under stress from different MPs. Compared with PE-MPs (23.9 %) and PVC-MPs (21.4 %), exposure to PLA-MPs significantly increased intI1 abundance by 51.6 %. The results of the variance decomposition analysis implied that MPs and the microbial community play important roles in the behavior of ARGs. Network analysis indicated that Nitrosomonas and potentially pathogenic bacteria emerged as possible hosts, harboring ARGs and intI1 genes in the nitrifying sludge and microplastic biofilms. Critically, PLA-MPs were found to enrich both ARGs and potential pathogenic bacteria during nitrification, which should be considered in their promotion of application processes due to their biodegradability.
Collapse
Affiliation(s)
- Yang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Peikun Yuan
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
9
|
Ye JA, Wang LC, Liu TK. Accumulation of persistent organic pollutants by MPs in coastal wastewater treatment plants. MARINE POLLUTION BULLETIN 2024; 207:116922. [PMID: 39243473 DOI: 10.1016/j.marpolbul.2024.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/11/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The abundance and fate of microplastics (MPs) in wastewater treatment plants (WTPs) has been reported extensively. However, in the wastewater, the extent to which hazardous chemicals such as persistent organic pollutants (POPs) accumulated by MPs not been clearly explored. In this study, MPs was sampled from influents and effluents in WTPs to characterize POPs in sorption within MPs. The highest concentrations of PCDD/Fs, PBDD/Fs, PBDEs, and PCBs in sorption within MPs from untreated influents were 5310, 2310, 5,220,000, and 22,700 pg/g, respectively. The most toxic congener, 1,2,3,7,8-PeCDD, accounts for up to 32.3 % of the contribution to PCDD/Fs within MPs. Furthermore, the concentration of PCDD/Fs within MPs from untreated influents could be up to 27.7 times higher than that in microplastic pellets on the coastal beach. This study highlights the quantitative evidence of the POPs within MPs present in untreated influents.
Collapse
Affiliation(s)
- Jia-An Ye
- Institute of Ocean Technology and Marine Affairs, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - Lin-Chi Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, No.142, Haijhuan Rd., Nanzih Dist., Kaohsiung City 81157, Taiwan
| | - Ta-Kang Liu
- Institute of Ocean Technology and Marine Affairs, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan.
| |
Collapse
|
10
|
Noornama, Abidin MNZ, Abu Bakar NK, Hashim NA. Innovative solutions for the removal of emerging microplastics from water by utilizing advanced techniques. MARINE POLLUTION BULLETIN 2024; 206:116752. [PMID: 39053257 DOI: 10.1016/j.marpolbul.2024.116752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Microplastic pollution is one of the most pressing global environmental problems due to its harmful effects on living organisms and ecosystems. To address this issue, researchers have explored several techniques to successfully eliminate microplastics from water sources. Chemical coagulation, electrocoagulation, magnetic extraction, adsorption, photocatalytic degradation, and biodegradation are some of the recognized techniques used for the removal of microplastics from water. In addition, membrane-based techniques encompass processes propelled by pressure or potential, along with sophisticated membrane technologies like the dynamic membrane and the membrane bioreactor. Recently, researchers have been developing advanced membranes composed of metal-organic frameworks, MXene, zeolites, carbon nanomaterials, metals, and metal oxides to remove microplastics. This paper aims to analyze the effectiveness, advantages, and drawbacks of each method to provide insights into their application for reducing microplastic pollution.
Collapse
Affiliation(s)
- Noornama
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Department of Chemistry, Faculty of Science, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | | | - Nor Kartini Abu Bakar
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Awanis Hashim
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Sakali A, Egea-Corbacho A, Coello D, Albendín G, Arellano J, Rodríguez-Barroso R. Analysis of microplastics in the reuse of compost in three agricultural sites (Cádiz, Spain) as a circular economy strategy: detection of micropollutants and incidence of plastic ingestion levels by annelids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51747-51759. [PMID: 39126584 PMCID: PMC11374815 DOI: 10.1007/s11356-024-34615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
The system of fertilizing agricultural soils with sludge or compost from wastewater treatment processes, as one of the principles of the circular economy, can lead to microplastic (MP) contamination. The existing technical standards for fertilization are very recent and do not consider this problem, although there is scientific evidence of their existence. Therefore, this study, on the one hand, evaluates the presence of MPs in agricultural soils, previously treated with sludge or compost from wastewater treatment plants for fertilization, and on the second hand, it studies the effect of these MPs on earthworms in three different locations in the south of Spain. For the study, selected composts deriving from the different stages of the composting process and three fertilized soils with increasing MP doses were followed. Samples were taken from different sections in depth (0-5, 5-10, and 10-20 cm) to study the shape, size, type, and abundance of MPs using infrared spectroscopy (FTIR). The results showed that the most abundant shape was fiber, followed by fragment and finally bulk, for both composts and soils. Regarding size distribution, 100 µm was the predominant size in composts (64.3% ± 9.8), while in the case of soils, the predominant range was from 100 to 500 µm. The prevalent polymers in both, composts and soils, were PTFE, TPE, PP, and PET, with four times higher amounts in composts than in soils. Ingestion of common MPs were also verified in two earthworm species, which ingested concentrations higher than 2.1% w/w. PP was the most ingested MP and Eisenia fetida was more voracious compared with Lumbricus terrestris. Therefore, it can be considered a suitable bioindicator for monitoring microplastic contamination in agricultural soil.
Collapse
Affiliation(s)
- Ayda Sakali
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR International Campus of Excellence of the Sea, University of Cadiz, Campus Universitario de Puerto Real, 11510, Cadiz, Spain
| | - Agata Egea-Corbacho
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR International Campus of Excellence of the Sea, University of Cadiz, Campus Universitario de Puerto Real, 11510, Cadiz, Spain
| | - Dolores Coello
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR International Campus of Excellence of the Sea, University of Cadiz, Campus Universitario de Puerto Real, 11510, Cadiz, Spain
| | - Gemma Albendín
- Toxicology Department, International Campus of Excellence of the Sea (CEIMAR), Faculty of Marine and Environmental Sciences, University Institute of Marine Research (INMAR), University of Cádiz, 11510, Puerto Real, Spain.
| | - Juana Arellano
- Toxicology Department, International Campus of Excellence of the Sea (CEIMAR), Faculty of Marine and Environmental Sciences, University Institute of Marine Research (INMAR), University of Cádiz, 11510, Puerto Real, Spain
| | - Rocío Rodríguez-Barroso
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR International Campus of Excellence of the Sea, University of Cadiz, Campus Universitario de Puerto Real, 11510, Cadiz, Spain
| |
Collapse
|
12
|
Biao W, Hashim NA, Rabuni MFB, Lide O, Ullah A. Microplastics in aquatic systems: An in-depth review of current and potential water treatment processes. CHEMOSPHERE 2024; 361:142546. [PMID: 38849101 DOI: 10.1016/j.chemosphere.2024.142546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Plastic products, despite their undeniable utility in modern life, pose significant environmental challenges, particularly when it comes to recycling. A crucial concern is the pervasive introduction of microplastics (MPs) into aquatic ecosystems, with deleterious effects on marine organisms. This review presents a detailed examination of the methodologies developed for MPs removal in water treatment systems. Initially, investigating the most common types of MPs in wastewater, subsequently presenting methodologies for their precise identification and quantification in aquatic environments. Instruments such as scanning electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, Raman spectroscopy, surface-enhanced Raman spectroscopy, and Raman tweezers stand out as powerful tools for studying MPs. The discussion then transitions to the exploration of both existing and emergent techniques for MPs removal in wastewater treatment plants and drinking water treatment plants. This includes a description of the core mechanisms that drive these techniques, with an emphasis on the latest research developments in MPs degradation. Present MPs removal methodologies, ranging from physical separation to chemical and biological adsorption and degradation, offer varied advantages and constraints. Addressing the MPs contamination problem in its entirety remains a significant challenge. In conclusion, the review offers a succinct overview of each technique and forwards recommendations for future research, highlighting the pressing nature of this environmental dilemma.
Collapse
Affiliation(s)
- Wang Biao
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - N Awanis Hashim
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Mohamad Fairus Bin Rabuni
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Ong Lide
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Aubaid Ullah
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Maw MM, Boontanon N, Aung HKZZ, Jindal R, Fujii S, Visvanathan C, Boontanon SK. Microplastics in wastewater and sludge from centralized and decentralized wastewater treatment plants: Effects of treatment systems and microplastic characteristics. CHEMOSPHERE 2024; 361:142536. [PMID: 38844106 DOI: 10.1016/j.chemosphere.2024.142536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Domestic wastewater treatment plants (WWTPs) play a vital role in limiting the release of microplastics (MP) into the environment. This study examined MP removal efficiency from five centralized and four decentralized domestic WWTPs in Bangkok, Thailand. MP concentrations in wastewater and sludge were comparable between centralized and decentralized WWTPs, despite these decentralized WWTPs serving smaller populations and having limited treatment capacity. The elimination of MPs ranged from 50 to 96.8% in centralized WWTPs and 14.2-53.6% in decentralized WWTPs. It is noted that the retained MPs concentrations in sludge ranged from 20,000 to 228,100 MP/kg dry weight. The prevalence of synthetic fibers and fragments could be attributed to their pathways from laundry or car tires, and the accidental release of a variety of plastic wastes ended up in investigated domestic WWTPs. Removal of MPs between the centralized and decentralized WWTPs was influenced by several impact factors including initial MP concentrations, longer retention times, MP fragmentation, and variations of MP concentrations in sludge leading to different activated sludge process configurations. Sewage sludge has become a primary location for the accumulation of incoming microplastics in WWTPs. The MPs entering and leaving each unit process were varied due to the unique characteristics of MPs, and their different treatment efficiencies. While the extended hydraulic retention period in decentralized WWTPs decreased the MP removal efficacy, the centralized WWTP with the two-stage activated sludge process achieved the highest MP removal efficiency.
Collapse
Affiliation(s)
- Me Me Maw
- Graduate Program in Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73710, Thailand
| | - Narin Boontanon
- Research Center and Technology, Development for Environmental Innovation, Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, 73710, Thailand
| | - Humm Kham Zan Zan Aung
- Graduate Program in Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73710, Thailand
| | - Ranjna Jindal
- Graduate Program in Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73710, Thailand
| | - Shigeo Fujii
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Chettiyappan Visvanathan
- Graduate Program in Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73710, Thailand
| | - Suwanna Kitpati Boontanon
- Graduate Program in Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73710, Thailand; Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
14
|
Ju T, Zhang X, Jin D, Ji X, Wu P. A review of microplastics on anammox: Influences and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121801. [PMID: 39013314 DOI: 10.1016/j.jenvman.2024.121801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/11/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024]
Abstract
Microplastics (MPs) are prevalent in diverse environmental settings, posing a threat to plants and animals in the water and soil and even human health, and eventually converged in wastewater treatment plants (WWTPs), threatening the stable operation of anaerobic ammonium oxidation (anammox). Consequently, a comprehensive summary of their impacts on anammox and the underlying mechanisms must be provided. This article reviews the sources and removal efficiency of MPs in WWTPs, as well as the influencing factors and mechanisms on anammox systems. Numerous studies have demonstrated that MPs in the environment can enter WWTPs via domestic wastewater, rainwater, and industrial wastewater discharges. More than 90% of these MPs are found to accumulate in the sludge following their passage through the treatment units of the WWTPs, affecting the characteristics of the sludge and the efficiency of the microorganisms treating the wastewater. The key parameters of MPs, encompassing concentration, particle size, and type, exert a notable influence on the nitrogen removal efficiency, physicochemical characteristics of sludge, and microbial community structure in anammox systems. It is noteworthy that extracellular polymer secretion (EPS) and reactive oxygen stress (ROS) are important impact mechanisms by which MPs exposure affects anammox systems. In addition, the influence of MPs exposure on the microbial community structure of anammox cells represents a crucial mechanism that demands attention. Future research endeavors will delve into additional crucial parameters of MPs, such as shape and aging, to investigate their effects and mechanisms on anammox. Furthermore, the effective mitigation strategies will also be developed. The paper provides a fresh insight to reveal the influences of MPs exposure on the anammox process and its influence mechanisms, and lays the groundwork for further exploration into the influence of MPs on anammox and potential mitigation strategies.
Collapse
Affiliation(s)
- Ting Ju
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Da Jin
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xu Ji
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
15
|
Carnevale Miino M, Galafassi S, Zullo R, Torretta V, Rada EC. Microplastics removal in wastewater treatment plants: A review of the different approaches to limit their release in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172675. [PMID: 38670366 DOI: 10.1016/j.scitotenv.2024.172675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
In last 10 years, the interest about the presence of microplastics (MPs) in the environment has strongly grown. Wastewaters function as a carrier for MPs contamination from source to the aquatic environment, so the knowledge of the fate of this emerging contaminant in wastewater treatment plants (WWTPs) is a priority. This work aims to review the presence of MPs in the influent wastewater (WW) and the effectiveness of the treatments of conventional WWTPs. Moreover, the negative impacts of MPs on the management of the processes have been also discussed. The work also focuses on the possible approaches to tackle MPs contamination enhancing the effectiveness of the WWTPs. Based on literature results, despite WWTPs are not designed for MPs removal from WW, they can effectively remove the MPs (up to 99 % in some references). Nevertheless, they normally act as "hotspots" of MPs contamination considering the remaining concentration of MPs in WWTPs' effluents can be several orders of magnitude higher than receiving waters. Moreover, MPs removed from WW are concentrated in sewage sludge (potentially >65 % of MPs entering the WWTP) posing a concern in case of the potential reuse as a soil improver. This work aims to present a paradigm shift intending WWTPs as key barriers for environmental protection. Approaches for increasing effectiveness against MPs have been discussed in order to define the optimal point(s) of the WWTP in which these technologies should be located. The need of a future legislation about MPs in water and sludge is discussed.
Collapse
Affiliation(s)
- Marco Carnevale Miino
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Silvia Galafassi
- Water Research Institute, National Research Council, Largo Tonolli 50, 28920 Verbania, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Rosa Zullo
- Water Research Institute, National Research Council, Largo Tonolli 50, 28920 Verbania, Italy.
| | - Vincenzo Torretta
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Elena Cristina Rada
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| |
Collapse
|
16
|
Gani A, Pathak S, Hussain A, Shukla AK, Chand S. Emerging pollutant in surface water bodies: a review on monitoring, analysis, mitigation measures and removal technologies of micro-plastics. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:214. [PMID: 38842590 DOI: 10.1007/s10653-024-01992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/09/2024] [Indexed: 06/07/2024]
Abstract
Water bodies play a crucial role in supporting life, maintaining the environment, and preserving the ecology for the people of India. However, in recent decades, human activities have led to various alterations in aquatic environments, resulting in environmental degradation through pollution. The safety of utilizing surface water sources for drinking and other purposes has come under intense scrutiny due to rapid population growth and industrial expansion. Surface water pollution due to micro-plastics (MPs) (plastics < 5 mm in size) is one of the emerging pollutants in metropolitan cities of developing countries because of its utmost resilience and synthetic nature. Recent studies on the surface water bodies (river, pond, Lake etc.) portrait the correlation between the MPs level with different parameters of pollution such as specific conductivity, total phosphate, and biological oxygen demand. Fibers represent the predominant form of MPs discovered in surface water bodies, exhibiting fluctuations across seasons. Consequently, present study prioritizes understanding the adaptation, prevalence, attributes, fluctuations, and spatial dispersion of MPs in both sediment and surface water environments. Furthermore, the study aims to identify existing gaps in the current understanding and underscore opportunities for future investigation. From the present study, it has been reported that, the concentration of MPs in the range of 0.2-45.2 items/L at the Xisha Islands in the south China sea, whereas in India it was found in the range of 96 items/L in water samples and 259 items/kg in sediment samples. This would certainly assist the urban planners in achieving sustainable development goals to mitigate the increasing amount of emergent pollutant load.
Collapse
Affiliation(s)
- Abdul Gani
- Civil Engineering Department, Netaji Subhas University of Technology, New Delhi, 110073, India
| | - Shray Pathak
- Department of Civil Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.
| | - Athar Hussain
- Civil Engineering Department, Netaji Subhas University of Technology, New Delhi, 110073, India
| | - Anoop Kumar Shukla
- Manipal School of Architecture and Planning, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sasmita Chand
- Manipal School of Architecture and Planning, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
17
|
Chand R, Iordachescu L, Bäckbom F, Andreasson A, Bertholds C, Pollack E, Molazadeh M, Lorenz C, Nielsen AH, Vollertsen J. Treating wastewater for microplastics to a level on par with nearby marine waters. WATER RESEARCH 2024; 256:121647. [PMID: 38657311 DOI: 10.1016/j.watres.2024.121647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/10/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Retention of microplastics (MPs) at the third largest wastewater treatment plant (WWTP) in Sweden was investigated. The plant is one of the most modern and advanced of its kind, with rapid sand filter for tertiary treatment in combination with mechanical, biological, and chemical treatment. It achieved a significantly high treatment efficiency, which brought the MP concentration in its discharge on par with concentrations measured in marine waters of the same region. This novel data shows that properly designed modern WWTPs can reduce the MP content of sewage down to background levels measured in the receiving aquatic environment. Opposite to current understanding of the retention of MP by WWTPs, a modern and well-designed WWTP does not have to be a significant point source for MP. MPs were quantified at all major treatment steps, including digester inlet and outlet sludge. MPs sized 10-500 µm were analyzed by a focal plane array based micro-Fourier transform infrared (FPA-µFTIR) microscopy, a hyperspectral imaging technique, while MPs above 500 µm were analyzed by Attenuated Total Reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Mass was estimated from the hyperspectral images for MPs <500 µm and from microscope images >500 µm. The overall treatment efficiency was in terms of MP counts 99.98 %, with a daily input of 6.42 × 1010 and output of 1.04 × 107 particles. The mass removal efficiency was 99.99 %. The mechanical part of the treatment, the pre-treatment, and primary stages, reduced both the MP counts and mass by approximately 71 %. The combined biological treatment, secondary settling, and final polishing with rapid sand filtration removed nearly all the remaining 29 %. MPs became successively smaller as they passed the different treatment steps. The digester inlet received 1.04 × 1011 MPs daily, while it discharged 9.96 × 1010 MPs, causing a small but not significant decrease in MP counts, with a corresponding MP mass reduction of 9.56 %.
Collapse
Affiliation(s)
- Rupa Chand
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, Aalborg 9200, Denmark.
| | - Lucian Iordachescu
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, Aalborg 9200, Denmark
| | - Frida Bäckbom
- Käppala, Södra Kungsvägen 315, Lidingö 18163, Sweden
| | | | | | | | - Marziye Molazadeh
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, Aalborg 9200, Denmark
| | - Claudia Lorenz
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, Aalborg 9200, Denmark; Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Asbjørn Haaning Nielsen
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, Aalborg 9200, Denmark
| | - Jes Vollertsen
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, Aalborg 9200, Denmark
| |
Collapse
|
18
|
Li X, Liu L, Zhang X, Yang X, Niu S, Zheng Z, Dong B, Hur J, Dai X. Aging and mitigation of microplastics during sewage sludge treatments: An overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171338. [PMID: 38428608 DOI: 10.1016/j.scitotenv.2024.171338] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Wastewater treatment plants (WWTPs) receive large quantities of microplastics (MPs) from raw wastewater, but many MPs are trapped in the sludge. Land application of sludge is a significant source of MP pollution. Existing reviews have summarized the analysis methods of MPs in sludge and the effect of MPs on sludge treatments. However, MP aging and mitigation during sludge treatment processes are not fully reviewed. Treatment processes used to remove water, pathogenic microorganisms, and other pollutants in sewage sludge also cause surface changes and degradation in the sludge MPs, affecting the potential risk of MPs. This study integrates MP abundance and distribution in sludge and their aging and mitigation characteristics during sludge treatment processes. The abundance, composition, and distribution of sludge MPs vary significantly with WWTPs. Furthermore, MPs exhibit variable degrees of aging, including rough surfaces, enhanced adsorption potentials for pollutants, and increased leaching behavior. Various sludge treatment processes further intensify these aging characteristics. Some sludge treatments, such as hydrothermal treatment, have efficiently removed MPs from sewage sludge. It is crucial to understand the potential risk of MP aging in sludge and the degradation properties of the MP-derived products from MP degradation in-depth and develop novel MP mitigation strategies in sludge, such as combining hydrothermal treatment and biological processes.
Collapse
Affiliation(s)
- Xiaowei Li
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Lulu Liu
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Xiaolei Zhang
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - XingFeng Yang
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Shiyu Niu
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Zhiyong Zheng
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
19
|
Adeel M, Granata V, Carapella G, Rizzo L. Effect of microplastics on urban wastewater disinfection and impact on effluent reuse: Sunlight/H 2O 2 vs solar photo-Fenton at neutral pH. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133102. [PMID: 38070270 DOI: 10.1016/j.jhazmat.2023.133102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 02/08/2024]
Abstract
The interference of three types of microplastics (MPs) on the inactivation of Escherichia coli (E. coli) by advanced oxidation processes (AOPs) (namely, sunlight/H2O2 and solar photo-Fenton (SPF) with Ethylenediamine-N,N'-disuccinic acid (EDDS)), in real secondary treated urban wastewater was investigated for the first time. Inactivation by sunlight/H2O2 treatment decreased as MPs concentration and H2O2 dose were increased. Noteworthy, an opposite behaviour was observed for SPF process where inactivation increased as MPs concentration was increased. Biofilm formation and microbial attachment on surfaces of post-treated MPs were observed on polyethylene (PE) and polyvinyl chloride (PVC) MPs by field emission scanning electron microscopy. In presence of PE MPs, a complete inactivation of E. Coli was achieved by SPF with EDDS (Fe:EDDS = 1:2) after 90 min treatment unlike of sunlight/H2O2 treatment (∼4.0 log reduction, 40 mg/L H2O2 dose, 90 min treatment). The lower efficiency of sunlight/H2O2 process could be attributed to the blocking/scattering effect of MPs on sunlight, which finally reduced the intracellular photo Fenton effect. A reduced E. coli regrowth was observed in presence of MPs. SPF (Fe:EDDS = 1:1) with PE MPs was less effective in controlling bacterial regrowth (∼120 CFU/100 mL) than sunlight/H2O2 (∼10 CFU/100 mL) after 48 h of post-treatment. These results provide useful information about possible interference of MPs on urban wastewater disinfection by solar driven AOPs and possible implications for effluent reuse.
Collapse
Affiliation(s)
- Mister Adeel
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Veronica Granata
- Department of Physics "E.R. Caianiello", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Giovanni Carapella
- Department of Physics "E.R. Caianiello", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Luigi Rizzo
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
20
|
Mendonça I, Faria M, Rodrigues F, Cordeiro N. Microalgal-based industry vs. microplastic pollution: Current knowledge and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168414. [PMID: 37963529 DOI: 10.1016/j.scitotenv.2023.168414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023]
Abstract
Microalgae can play a crucial role in the environment due to their efficient capture of CO2 and their potential as a solution for a carbon-negative economy. Water quality is critical for the success and profitability of microalgal-based industries, and understanding their response to emergent pollutants, such as microplastics (MPs), is essential. Despite the published studies investigating the impact of MPs on microalgae, knowledge in this area remains limited. Most studies have mainly focused on microalgal growth, metabolite analysis, and photosynthetic activity, with significant discrepancies in what is known about the impact on biomass yield. Recent studies show that the yield of biomass production depends on the levels of water contamination by MPs, making it necessary to reduce the contamination levels in the water. However, present technologies for extracting and purifying water from MPs are limited, and further research and technological advancements are required. One promising solution is the use of bio-based polymer materials, such as bacterial cellulose, which offer biodegradability, cost-effectiveness, and environmentally friendly detoxifying properties. This review summarises the current knowledge on MPs pollution and its impact on the viability and proliferation of microalgae-based industries, highlights the need for further research, and discusses the potential of bio-solutions for MPs removal in microalgae-based industries.
Collapse
Affiliation(s)
- Ivana Mendonça
- LB3 - Faculty of Science and Engineering, University of Madeira, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Marisa Faria
- LB3 - Faculty of Science and Engineering, University of Madeira, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Filipa Rodrigues
- LB3 - Faculty of Science and Engineering, University of Madeira, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Nereida Cordeiro
- LB3 - Faculty of Science and Engineering, University of Madeira, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.
| |
Collapse
|
21
|
Guo T, Pan K, Chen Y, Tian Y, Deng J, Li J. When aerobic granular sludge faces emerging contaminants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167792. [PMID: 37838059 DOI: 10.1016/j.scitotenv.2023.167792] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
The evolution of emerging contaminants (ECs) has caused greater requirements and challenges to the current biological wastewater treatment technology. As one of the most promising biological treatment technologies, the aerobic granular sludge (AGS) process also faces the challenge of ECs. This study summarizes the recent progress and characteristics of several representative ECs (persistent organic pollutants, endocrine disrupting chemicals, antibiotics, and microplastics) in AGS systems that have garnered widespread attention. Additionally, the biodegradation and adsorption mechanisms of ECs were discussed, and the interactions between various ECs and AGS was elucidated. The importance of extracellular polymeric substances for the stabilization of AGS and the removal of ECs is also discussed. Knowledge gaps and future research directions that may enable the practical application of AGS are highlighted. Overall, AGS processes show great application potential and this review provides guidance for the future implementation of AGS technology as well as elucidating the mechanism of its interaction with ECs.
Collapse
Affiliation(s)
- Tao Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Kuan Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yunxin Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yajun Tian
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jing Deng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
22
|
Shen M, Zhao Y, Liu S, Tao S, Li T, Long H. Can microplastics and disinfectant resistance genes pose conceivable threats to water disinfection process? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167192. [PMID: 37730038 DOI: 10.1016/j.scitotenv.2023.167192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/13/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Microplastic pollution in the environment has aroused widespread concerns, however, the potential environmental risks caused by excessive use of disinfectants are still unknown. Disinfectants with doses below the threshold can enhance the communication of resistance genes in pathogenic microorganisms, promoting the development and spread of antimicrobial activity. Problematically, the intensification of microplastic pollution and the increase of disinfectant consumption will become a key driving force for the growth of disinfectant resistance bacteria (DRB) and disinfectant resistance genes (DRGs) in the environment. Disinfection plays a crucial role in ensuring water safety, however, the presence of microplastics and DRGs seriously disturb the water disinfection process. Microplastics can reduce the concentration of disinfectant in the local environment around microorganisms and improve their tolerance. Microorganisms can improve their resistance to disinfectants or generate resistance genes via phenotypic adaptation, gene mutations, and horizontal gene transfer. However, very limited information is available on the impact of DRB and DRGs on disinfection process. In this paper, the contribution of microplastics to the migration and transmission of DRGs was analyzed. The challenges posed by the presence of microplastics and DRGs on conventional disinfection were thoroughly discussed. The knowledge gaps faced by relevant current research and further research priorities have been proposed in order to provide a scientific basis in the future.
Collapse
Affiliation(s)
- Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Yifei Zhao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shiwei Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shiyu Tao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Tianhao Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Hongming Long
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| |
Collapse
|
23
|
Goyal T, Singh S, Das Gupta G, Verma SK. Microplastics in environment: a comprehension on sources, analytical detection, health concerns, and remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114707-114721. [PMID: 37897575 DOI: 10.1007/s11356-023-30526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023]
Abstract
Contamination of ecosystems by microplastics (MPs) has been reported intensively worldwide in the recent decade. A trend of reports indicated their presence in the atmosphere; food items and soil ecosystems are rising continuously. Literature evidenced that MPs are abundant in seawater, beach sand, drinking water, agricultural soils, wastewater treatment plant (WWTP) effluent, and the atmosphere. The greater abundance of MPs in the environment has led to their invasion of seafood, human-consumed food items such as table salts, beverages, takeout food containers, and disposable cups, marine biological lives, and creating serious health hazards in humans. Moreover, the absence of guidelines and specifications for controlling MPs in the environment makes the situation alarming, and the human toxicity data of MPs is scarce. Thereby, the toxicity assessment of MPs in humans is of greater concern. This review compiles the updated information on the potential sources of MPs in different components of the environment (viz. soil, water, and air), their analysis methods, effects on human health, and remediation methods.
Collapse
Affiliation(s)
- Tanish Goyal
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, 142 001, Punjab, India
| | - Sukhwinder Singh
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, 142 001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142 001, Punjab, India.
| |
Collapse
|
24
|
Xiong W, Wang S, Zhang Q, Hou Y, Jin Y, Chen B, Su H. Synergistic analysis of performance, microbial community, and metabolism in aerobic granular sludge under polyacrylonitrile microplastics stress. BIORESOURCE TECHNOLOGY 2023; 385:129394. [PMID: 37369317 DOI: 10.1016/j.biortech.2023.129394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
Aerobic granular sludge (AGS) has proved to be a promising biotechnology for microplastics wastewater treatment. However, polyacrylonitrile microplastics (PAN MPs), the most widely used plastic in textile materials, have not been investigated. Therefore, the effect of the neglected PAN MPs on AGS at different concentrations (1, 10, and 100 mg/L) was evaluated. The results indicated that PAN MPs with 1 and 10 mg/L concentrations had no obvious effect on granular stability and nutrient removal performance, but greatly promoted the secretion of EPS. Remarkably, the granule structure was severely damaged under 100 mg/L PAN MPs. Moreover, microbial community analysis showed that phylum Proteobacteria played a dominant role in resistance to PAN MPs. Metabolic analysis further revealed that genes related to denitrification pathway (nasA, nirK, nirS and norB) and membrane transport were significantly inhibited under PAN MPs stress. This study may provide additional information on the treatment of microplastics wastewater using AGS.
Collapse
Affiliation(s)
- Wei Xiong
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shaojie Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Qiuhua Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yiran Hou
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yu Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Biqiang Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
25
|
Wei S, Zeng F, Zhou Y, Zhao J, Wang H, Gao R, Liang W. Phototransformation of extracellular polymeric substances in activated sludge and their interaction with microplastics. RSC Adv 2023; 13:26574-26580. [PMID: 37674486 PMCID: PMC10478482 DOI: 10.1039/d3ra04027e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023] Open
Abstract
Substantial amounts of extracellular polymeric substances (EPS) are present in sludge from wastewater treatment plants (WWTP), and EPS can significantly affect the fate, bioavailability, and toxicity of microplastics (MPs) that coexist in the effluent, however, the mechanism of action between EPS and microplastics remains unclear. In addition, ultraviolet (UV) disinfection is indispensable in the wastewater treatment process in WWTP, which can significantly affect the characteristics of EPS. Therefore, it is of great significance to study the photochemical characteristics of EPS and the effect on binding MPs. In this study, using multispectral technology and two-dimensional correlation spectroscopy analysis, indicates that the molecular weight and aromaticity of EPS after phototransformation were reduced. The results showed that the adsorption of EPS on PSMPs was in the order of TB-EPS > LB-EPS > S-EPS, which was positively correlated with the SUVA254, but negatively correlated with O/C of EPS. This indicates that the main adsorption mechanisms of PSMPs on EPS were π-π and hydrophobicity. The adsorption capacity of S-EPS, LB-EPS and TB-EPS to PSMPs decreased with the increasing of illumination time. After phototransformation, the adsorption sensitivity and reaction sequence of EPS and PSMPs did not change much. This research provides a theoretical basis for understanding the photochemical transformation of extracellular polymers and the morphology and migration of microplastics in sewage treatment, and evaluating the impact of microplastics on ecosystems.
Collapse
Affiliation(s)
- Shuyin Wei
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +8620-84114133
| | - Feng Zeng
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +8620-84114133
| | - Yingyue Zhou
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +8620-84114133
| | - Jiawei Zhao
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +8620-84114133
| | - Hao Wang
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +8620-84114133
| | - Rui Gao
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +8620-84114133
| | - Weiqian Liang
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +8620-84114133
| |
Collapse
|
26
|
Huang S, Zhang B, Zhao Z, Yang C, Zhang B, Cui F, Lens PNL, Shi W. Metagenomic analysis reveals the responses of microbial communities and nitrogen metabolic pathways to polystyrene micro(nano)plastics in activated sludge systems. WATER RESEARCH 2023; 241:120161. [PMID: 37276653 DOI: 10.1016/j.watres.2023.120161] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/18/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are prevalent in sewage and pose a potential threat to nitrogen biotransformation in wastewater treatment systems. However, investigations on how MPs and NPs affect the microbial nitrogen conversion and metabolism of the activated sludge are still scanty. Herein, the responses of microbiomes and functional genes to polystyrene MPs and NPs in activated sludge systems were investigated by metagenomic analysis. Results indicated that 1 mg/L MPs and NPs had marginal impacts on the nitrogen removal performance of the activated sludge systems, whereas high concentrations of MPs and NPs (20 and 100 mg/L) decreased the total nitrogen removal efficiency (13.4%-30.6%) by suppressing the nitrogen transformation processes. Excessive reactive oxygen species induced by MPs and NPs caused cytotoxicity, as evidenced by impaired cytomembranes and decreased bioactivity. Metagenomic analysis revealed that MPs and NPs diminished the abundance of denitrifiers (e.g. Mesorhizobium, Rhodobacter and Thauera), and concurrently reduced the abundance of functional genes (e.g. napA, napB and nirS) encoding for key enzymes involved in the nitrogen transformations, as well as the genes (e.g. mdh) related to the electron donor production, thereby declining the nitrogen removal efficiency. Network analysis further clarified the attenuate association between denitrifiers and denitrification-related genes in the plastic-exposed systems, elucidating that MPs and NPs restrained the nitrogen removal by inhibiting the contributions of microorganisms to nitrogen transformation processes. This study provides vital insights into the responses of the microbial community structure and nitrogen conversion processes to micro(nano)plastics disturbance in activated sludge systems.
Collapse
Affiliation(s)
- Shuchang Huang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Bing Zhang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Zhiwei Zhao
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Chun Yang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Bing Zhang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Fuyi Cui
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Piet N L Lens
- UNESCO-IHE, Institute for Water Education, Westvest 7, 2601, DA Delft, the Netherlands
| | - Wenxin Shi
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
27
|
V G, Shanmugavel SP, Tyagi VK, Rajesh Banu J. Microplastics as emergent contaminants in landfill leachate: Source, potential impact and remediation technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118240. [PMID: 37235990 DOI: 10.1016/j.jenvman.2023.118240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
A significant amount of plastic waste is generated each year on a global scale, in which the maximum quantity of plastic waste is typically dumped in landfills in various parts of the world. Moreover, dumping plastic waste in landfills cannot address the issue of proper disposal; it simply delays the process. Exploiting waste resources entails environmental hazards because plastic wastes buried in landfills gradually break down into Microplastics (MPs) due to physical, chemical, and biological effects. The possibility of landfill leachate as a source of MPs in the environment has not received much attention. Without systematic treatment, MPs in leachate increase the risk to human health and environmental health since they contain dangerous and toxic pollutants and antibiotic resistance genes transmitted by leachate vectors. Due to their severe environmental risks, MPs are now widely recognized as emerging pollutants. Therefore, the composition of MPs in landfill leachate and the interaction of MPs with other hazardous contaminants are summarised in this review. The available potential mitigation or treatment methods of MPs in landfill leachate as of now, along with the drawbacks and challenges of the present leachate treatment for eliminating MPs, are described in this review. Since it is unclear how MPs will be removed from the current leachate facilities, it is crucial to develop innovative treatment facilities as quickly as possible. Finally, the areas that require more research to provide complete solutions to the persistent problem of plastic debris are discussed.
Collapse
Affiliation(s)
- GodvinSharmila V
- Department of Civil Engineering, Mar Ephraem College of Engineering and Technology, Marthandam, 629171, Tamil Nadu, India
| | - Surya Prakash Shanmugavel
- Department of Solid Waste Management and Health, Greater Chennai Corporation, Tamil Nadu, 600 003, India
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, 610005, India.
| |
Collapse
|
28
|
Kim D, Mo K, Kim M, Cui F. Occurrence and sources of micro-plastics in various water bodies, sediments, and fishes in Ansan, South Korea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62579-62589. [PMID: 36944838 DOI: 10.1007/s11356-023-26562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/16/2023] [Indexed: 05/10/2023]
Abstract
In this study, the Pearson correlation coefficients were determined to derive correlations between micro-plastics (MPs) in carp and river crabs. MPs were detected for various water sources, including four rivers and four main waterways, sediments, and fish, using Fourier transform infrared spectrometry (FTIR), microscopic analysis, and image mapping. Carp and river crabs had coefficients of 0.888 and 0.724, respectively, which showed a high positive correlation. In water samples, the MPs detected in rivers were higher than those in the main waterway. However, in sediment samples, the MPs detected in the main waterway were higher than those in the rivers. It is believed that MPs are carried toward shore by ocean tide. The size of most of the sediment MPs was 20-49 µm, representing 64.1% of the entire population. The plastics detected in this study were polyethylene terephthalate (PET), polypropylene (PP), and polyethylene (PE), which originate from synthetic fibers, scrubs, and packing material. MP pollution by non-point pollution sources was investigated, with the abundance of MPs increasing by 2 to 3 times between the dry and wet seasons in water and sediment, respectively. It was determined that the inflow of MPs into rivers could have been due to non-point source pollutants from household items, roads, plants, and soil around the water sources.
Collapse
Affiliation(s)
- Dokyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 55 Hanyangdaehak-Ro, Sangnok-Gu, Ansan-Si, Kyeonggi-Do, 15588, Republic of Korea
| | - Kyung Mo
- Department of Civil and Environmental Engineering, Hanyang University, 55 Hanyangdaehak-Ro, Sangnok-Gu, Ansan-Si, Kyeonggi-Do, 15588, Republic of Korea
| | - Moonil Kim
- Department of Civil and Environmental Engineering, Hanyang University, 55 Hanyangdaehak-Ro, Sangnok-Gu, Ansan-Si, Kyeonggi-Do, 15588, Republic of Korea
| | - Fenghao Cui
- Center for Creative Convergence Education, Hanyang University, 55 Hanyangdaehak-Ro, Ansan City, Kyeonggi-Do, 426-791, Republic of Korea.
| |
Collapse
|
29
|
Choi JH, Jung YJ, Kim HJ, Seo YJ, Choi WS. A Janus branch filter for washing machines: Simultaneous removal of microplastics and surfactants. CHEMOSPHERE 2023; 331:138741. [PMID: 37084898 DOI: 10.1016/j.chemosphere.2023.138741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Emerging pollutants, such as microplastics (MPs), are becoming a significant issue worldwide. The highest percentage of MPs released into the environment occurs through daily laundry. The average weight of dreg obtained from 5 kg of laundry was 1.26 g/kg. According to energy dispersive X-ray (EDX) and thermogravimetric analysis (TGA) analyses, the dreg consisted of MPs (78.3-89 wt%, organic elements: C/O) and alien materials (11-21.7 wt%, inorganic elements: Al/Fe/Ca, etc.). Thus, to reproduce the real environment, alien materials (Fe3O4 and CaCO3) were added to various types of model MPs in the presence and absence of sodium dodecyl benzenesulfonate (SDBS) to test MP removal. Hydrophobic and hydrophilic MPs were generated upon laundering, accounting for 55-59% and 41-45% of MPs, respectively. We provide a novel approach to design a laundry filter system for the simultaneous removal of SDBS and hydrophilic/hydrophobic MPs.
Collapse
Affiliation(s)
- Ji Hee Choi
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon, 305-719, North Korea
| | - Young Ju Jung
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon, 305-719, North Korea
| | - Hee Ju Kim
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon, 305-719, North Korea
| | - Yu Jin Seo
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon, 305-719, North Korea
| | - Won San Choi
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon, 305-719, North Korea.
| |
Collapse
|
30
|
Priya A, Anusha G, Thanigaivel S, Karthick A, Mohanavel V, Velmurugan P, Balasubramanian B, Ravichandran M, Kamyab H, Kirpichnikova IM, Chelliapan S. Removing microplastics from wastewater using leading-edge treatment technologies: a solution to microplastic pollution-a review. Bioprocess Biosyst Eng 2023; 46:309-321. [PMID: 35301580 DOI: 10.1007/s00449-022-02715-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/23/2022] [Indexed: 12/26/2022]
Abstract
Microplastics (MPs) in environmental studies have revealed that public sewage treatment plants are a common pathway for microplastics to reach local surroundings. Microplastics are becoming more of a worry, posing a danger to both marine wildlife and humans. These plastic items not only contribute to the macrocosmic proliferation of plastics but also the scattering of microplastics and the concentration of other micropollutant-containing objects, increasing the number of pollutants identified. Microplastics' behavior, movement, transformation, and persistence mechanisms, as well as their mode of action in various wastewater effluent treatment procedures, are still unknown. They are making microplastics made from wastewater a big deal. We know that microplastics enter wastewater treatment facilities (WWTPs), that wastewater is released into the atmosphere, and that this wastewater has been considered to represent a threat to habitats and ground character based on our literature assessment. The basic methods of wastewater and sewage sludge, as well as the treatment procedure and early characterization, are covered throughout the dissection of the problematic scientific conceptualization.
Collapse
Affiliation(s)
- Arunkumar Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu, 641407, India.
| | - Gururajan Anusha
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu, 641407, India
| | - Sundaram Thanigaivel
- Saveetha School of Engineering, Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602105, India
| | - Alagar Karthick
- Renewable Energy lab, Department of Electrical and Electronics Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu, 641407, India.
| | - Vinayagam Mohanavel
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu, 600073, India
| | - Palanivel Velmurugan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu, 600073, India
| | | | - Manickam Ravichandran
- Department of Mechanical Engineering, K. Ramakrishnan College of Engineering, Tiruchirappalli, Tamil Nadu, 621112, India
- Department of Mechanical Engineering and University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Hesam Kamyab
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Irina Mikhailovna Kirpichnikova
- Electric Power Station, Network, and Supply System, South Ural State University, (National Research University), 76 Prospekt Lenina, 454080, Chelyabinsk, Russian Federation
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jln Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Mehmood T, Mustafa B, Mackenzie K, Ali W, Sabir RI, Anum W, Gaurav GK, Riaz U, Liu X, Peng L. Recent developments in microplastic contaminated water treatment: Progress and prospects of carbon-based two-dimensional materials for membranes separation. CHEMOSPHERE 2023; 316:137704. [PMID: 36592840 DOI: 10.1016/j.chemosphere.2022.137704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Micro (nano)plastics pollution is a noxious menace not only for mankind but also for marine life, as removing microplastics (MPs) is challenging due to their physiochemical properties, composition, and response toward salinity and pH. This review provides a detailed assessment of the MPs pollution in different water types, environmental implications, and corresponding treatment strategies. With the advancement in nanotechnology, mitigation strategies for aqueous pollution are seen, especially due to the fabrication of nanosheets/membranes mostly utilized as a filtration process. Two-dimensional (2D) materials are increasingly used for membranes due to their diverse structure, affinity, cost-effectiveness, and, most importantly, removal efficiency. The popular 2D materials used for membrane-based organic and inorganic pollutants from water mainly include graphene and MXenes however their effectiveness for MPs removal is still in its infancy. Albeit, the available literature asserts a 70- 99% success rate in micro/nano plastics removal achieved through membranes fabricated via graphene oxide (GO), reduced graphene oxide (rGO) and MXene membranes. This review examined existing membrane separation strategies for MPs removal, focusing on the structural properties of 2D materials, composite, and how they adsorb pollutants and underlying physicochemical mechanisms. Since MPs and other contaminants commonly coexist in the natural environment, a brief examination of the response of 2D membranes to MPs removal was also conducted. In addition, the influencing factors regulate MPs removal performance of membranes by impacting their two main operating routes (filtration and adsorption). Finally, significant limitations, research gaps, and future prospects of 2D material-based membranes for effectively removing MPs are also proposed. The conclusion is that the success of 2D material is strongly linked to the types, size of MPs, and characteristics of aqueous media. Future perspectives talk about the problems that need to be solved to get 2D material-based membranes out of the lab and onto the market.
Collapse
Affiliation(s)
- Tariq Mehmood
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province, 570228, China; Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany.
| | - Beenish Mustafa
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
| | - Katrin Mackenzie
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Wahid Ali
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Kingdom of Saudi Arabia
| | - Raja Irfan Sabir
- Faculty of Management Sciences, University of Central Punjab, Lahore; Pakistan
| | - Wajiha Anum
- Regional Agricultural Research Institute, Bahawalpur, Pakistan
| | - Gajendra Kumar Gaurav
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic; School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China
| | - Umair Riaz
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000, Pakistan
| | - Xinghui Liu
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
| | - Licheng Peng
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province, 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan Province, 570228, China.
| |
Collapse
|
32
|
Krishnan RY, Manikandan S, Subbaiya R, Karmegam N, Kim W, Govarthanan M. Recent approaches and advanced wastewater treatment technologies for mitigating emerging microplastics contamination - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159681. [PMID: 36302412 DOI: 10.1016/j.scitotenv.2022.159681] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Microplastics have been identified as an emerging pollutant due to their irrefutable prevalence in air, soil, and particularly, the aquatic ecosystem. Wastewater treatment plants (WWTPs) are seen as the last line of defense which creates a barrier between microplastics and the environment. These microplastics are discharged in large quantities into aquatic bodies due to their insufficient containment during water treatment. As a result, WWTPs are regarded as point sources of microplastics release into the environment. Assessing the prevalence and behavior of microplastics in WWTPs is therefore critical for their control. The removal efficiency of microplastics was 65 %, 0.2-14 %, and 0.2-2 % after the successful primary, secondary and tertiary treatment phases in WWTPs. In this review, other than conventional treatment methods, advanced treatment methods have also been discussed. For the removal of microplastics in the size range 20-190 μm, advanced treatment methods like membrane bioreactors, rapid sand filtration, electrocoagulation and photocatalytic degradation was found to be effective and these methods helps in increasing the removal efficiency to >99 %. Bioremediation based approaches has found that sea grasses, lugworm and blue mussels has the ability to mitigate microplastics by acting as a natural trap to the microplastics pollutants and could act as candidate species for possible incorporation in WWTPs. Also, there is a need for controlling the use and unchecked release of microplastics into the environment through laws and regulations.
Collapse
Affiliation(s)
- Radhakrishnan Yedhu Krishnan
- Department of Food Technology, Amal Jyothi College of Engineering, Kanjirappally, Kottayam 686 518, Kerala, India
| | - Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India.
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
33
|
Gao Z, Chen L, Cizdziel J, Huang Y. Research progress on microplastics in wastewater treatment plants: A holistic review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116411. [PMID: 36274308 DOI: 10.1016/j.jenvman.2022.116411] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Wastewater treatment plants (WWTPs) discharge metric tons of microplastics (MPs) daily to aquatic and terrestrial environments worldwide. Herein we provide a holistic review on MPs in the WWTPs, highlighting recent advances in sampling and analysis, improved understanding of their sources, occurrence, and degradation in treatment steps, and the potential risks MPs pose after being discharged in treated effluent and sludge. We discuss the merits and limitations of the various sampling and analytical approaches to determine MPs in major WWTP compartments; highlight new research on MP profiles (abundance, physical characteristics, and compositions) in raw sewage, treated effluent, and waste sludge, which are of particular interest when assessing MP sources, removal rates, and fate; and emphasize mechanisms of MP fragmentation and degradation within WWTPs as well as the potential sorption of wastewater contaminants to the MPs. We find that robust and standardized methods for determining MPs in WWTP samples is still urgently needed, and that complete removal of MPs from wastewater by WWTPs is not guaranteed, although the vast majority of MPs end up in sludge. Areas of research that deserve further attention include the fate of small (<20 μm) MPs, abiotic and biotic fragmentation of MPs in the WWTPs, and more empirical data with concentrations on a mass basis.
Collapse
Affiliation(s)
- Zhiqiang Gao
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, MEE, Guangzhou, 510655, China; Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| | - Laiguo Chen
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, MEE, Guangzhou, 510655, China.
| | - James Cizdziel
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| | - Yumei Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
34
|
Long Y, Zhou Z, Wen X, Wang J, Xiao R, Wang W, Li X, Lai X, Zhang Y, Deng C, Cao J, Yin L. Microplastics removal and characteristics of a typical multi-combination and multi-stage constructed wetlands wastewater treatment plant in Changsha, China. CHEMOSPHERE 2023; 312:137199. [PMID: 36372338 DOI: 10.1016/j.chemosphere.2022.137199] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Wastewater treatment plants (WWTPs) are an important source of microplastics (MPs) entering the aquatic environment. As environmental awareness increases, WWTPs are gradually using constructed wetlands (CWs) in the depth treatment stage. There were few studies related to MPs removal efficiency of CWs, especially in multi-stage and multi-combinations CWs. Therefore, we studied MPs characteristics and removal in a typical CWs WWTP in Changsha, comparing the MPs removal efficiencies of different processes in a WWTP, focusing on the MPs abundance variation in different stages CWs. Result showed that the MPs removal efficiency of Phase Ⅰ was 87.72% and that of Phase II was 80.65%. Approximate estimates showed that the daily discharge of MPs reached 7.20 * 108 items. The MPs removal efficiency of vertical flow CWs was 25.71%. The MPs removal efficiencies of secondary and tertiary horizontal subsurface flow CWs (HSSFCWs) were 32.00% and 21.43%. The MPs removal efficiencies of secondary and tertiary surface flow CWs were 23.53% and 12.50%. The MPs removal efficiencies of three bio-ponds were -23.08%, -12.90%, and -27.27%. Combined system of bio-pond + CWs reduced the MPs removal efficiency. The most dominant shape of MPs in wastewater was fibers. The most common MPs were polyethylene and polystyrene. The primary treatment in the Changsha WWTP had the highest MPs removal efficiency. Results of this investigation showed the multi-combination and multi-stage CWs WWTP can remove most of MPs in influent, which greatly reduced the amount of MPs discharged into the aquatic environment through WWTP and provided data for analyzing the distribution of MPs in the aquatic environment.
Collapse
Affiliation(s)
- Yuannan Long
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Zhenyu Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Xiaofeng Wen
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China.
| | - Jianwu Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wenming Wang
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha, 410006, China
| | - Xiwei Li
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha, 410006, China
| | - Xu Lai
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha, 410006, China
| | - You Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Chaoping Deng
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Jinsong Cao
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Lingshi Yin
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China.
| |
Collapse
|
35
|
He S, Wei Y, Yang C, He Z. Interactions of microplastics and soil pollutants in soil-plant systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120357. [PMID: 36220572 DOI: 10.1016/j.envpol.2022.120357] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
In recent years, increasing studies have been reported on characterization and detection of microplastics (MPs), and their interactions with organic pollutants (OPs) and heavy metals (HMs) in soils. However, a comprehensive review on the characteristics and factors that influence MPs distribution in soils, the sorption characteristics and mechanisms of soil contaminants by MPs, especially the interactions of MPs and their complexes with pollutants in the soil-plant systems remains rarely available at present. This review focuses on the sorption features and mechanisms of pollutants by MPs in soil and discussed the effects of MPs and their complexing with pollutants on soil properties, microbe and plants. The polarity of MPs significantly influenced the sorption of OPs, and different sorption mechanisms are involved for the hydrophobic and hydrophilic OPs. The sorption of OPs on MPs in soils is different from that in water. Aging of MPs can promote the sorption and migration of contaminants. The enhanced effects of biofilm in microplastisphere on the sorption of pollutants by MPs are critical, and interactions of soil environment-MPs-microbe-HMs-antibiotics increase the potential pathogens and larger release of resistance genes. The coexistence of HMs and MPs affected the growth of plants and the uptake of HMs and MPs by the plants. Moreover, the type, dose, shape and particle size of MPs have important influences on their interactions with pollutants and subsequent effects on soil properties, microbial activities and plant growth. This review also pointed out some knowledge gaps and constructive countermeasures to promote future research in this field.
Collapse
Affiliation(s)
- Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310012, China.
| | - Yufei Wei
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310012, China
| | - Chunping Yang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministryof Education, Changsha, Hunan, 410082, China
| | - Zhenli He
- Department Soil and Water Sciences / Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida, 34945, USA
| |
Collapse
|
36
|
Tirkey A, Pandey M, Tiwari A, Sahu RL, Kukkar D, Dubey R, Kim KH, Pandey SK. Global distribution of microplastic contaminants in aquatic environments and their remediation strategies. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10819. [PMID: 36539344 DOI: 10.1002/wer.10819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/28/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
This review describes the occurrence and distribution of microplastics in freshwater and marine environments in recent years (2017-2022). Use of microplastics often results in contamination of aquatic environments, threatens biodiversity, and creates the need for environmental remediation. Such remediation strategies can involve primary, secondary, and tertiary treatments. Tertiary treatment is a frequent research subject due to its high efficiency and the possibility for advancements and enhancements. This study discusses tertiary treatments with remediation efficiencies of 95% and greater and their advantages, disadvantages, and future perspectives. Biochar-mediated remediation of microplastics is an effective method that may be able to achieve efficiencies approaching 100%. The study concludes by exploring methods of removing microplastics, including constructed wetlands and biochar, which offer high efficiency. PRACTITIONER POINTS: Tertiary treatments are an effective microplastic remediation strategy applicable succeeding secondary or primary treatments or as an individual remediation strategy. Biochar is a highly efficient adsorbent for microplastic remediation from aquatic environment with eco-friendly aspect and reusability. Modifications in tertiary treatments and enhancement in remediation efficiency are still a subject of research for future studies.
Collapse
Affiliation(s)
- Astha Tirkey
- Department of Botany, Guru Ghasidas Vishwavidyalaya, (A Central University) Koni, Bilaspur, Chhattisgarh, India
| | - Mohineeta Pandey
- Department of Botany, Guru Ghasidas Vishwavidyalaya, (A Central University) Koni, Bilaspur, Chhattisgarh, India
| | - Ankesh Tiwari
- Department of Botany, Guru Ghasidas Vishwavidyalaya, (A Central University) Koni, Bilaspur, Chhattisgarh, India
| | - Roshan Lal Sahu
- Department of Botany, Guru Ghasidas Vishwavidyalaya, (A Central University) Koni, Bilaspur, Chhattisgarh, India
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, India
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Rashmi Dubey
- Department of Chemistry, L.B.S. College, Baloda (Janjgir-Champa), Baloda, Chhattisgarh, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sudhir Kumar Pandey
- Department of Botany, Guru Ghasidas Vishwavidyalaya, (A Central University) Koni, Bilaspur, Chhattisgarh, India
| |
Collapse
|
37
|
Qiu Y, Zhang Z, Zhang T, Zhang P. Sulfide modifies physicochemical properties and mercury adsorption of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157802. [PMID: 35931169 DOI: 10.1016/j.scitotenv.2022.157802] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) tend to accumulate and undergo a sulfur weathering process that leads to significant surface changes in sulfur-rich anaerobic environments, such as sewage and wastewater treatment plants. Aged MPs can have a profound impact on environmental behaviors of various toxic pollutants, especially heavy metals. Although previous studies have investigated the adsorption characteristics of metal ions on MPs that are aged in aerobic environments, the sorptive interactions of sulfur-aged MPs in anaerobic environments with mercury, i.e., Hg(II), are largely unknown. In this study, laboratory investigations were conducted to study the sorptive behaviors of Hg(II) by six common MPs treated anaerobically in the presence of sulfide. Adsorption isotherms show that the sulfur aging process greatly enhances the MP sorption capacity of Hg(II). The mechanisms including changes in the specific surface area, electrostatic interactions, surface precipitation, and surface functional groups are responsible for the enhanced adsorption capacities of sulfur-aged MPs. The thiol group that forms on the MP surface plays a dominant role in enhancing the MP adsorption capacity of Hg(II), which is determined by the formation of unsaturated bonds in the molecular chains of MPs. Furthermore, the pathways of surface chemical transformation of MPs during sulfur aging have been proposed. This study promotes our understanding of the potential hazard of MPs as well as the fate and transport of heavy metals in the presence of aged MPs.
Collapse
Affiliation(s)
- Ye Qiu
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau
| | - Zhanhua Zhang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China.
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau.
| |
Collapse
|
38
|
Zahmatkesh S, Klemeš JJ, Bokhari A, Wang C, Sillanpaa M, Amesho KTT, Vithanage M. Various advanced wastewater treatment methods to remove microplastics and prevent transmission of SARS-CoV-2 to airborne microplastics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2022; 20:2229-2246. [PMID: 36438928 PMCID: PMC9676805 DOI: 10.1007/s13762-022-04654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 05/08/2023]
Abstract
Microplastics (MPs) and SARS-CoV-2 interact due to their widespread presence in our environment and affect the virus' behaviour indoors and outdoors. Therefore, it is necessary to study the interaction between MPs and SARS-CoV-2. The environmental damage caused by MPs is increasing globally. Emerging pollutants may adversely affect organisms, especially sewage, posing a threat to human health, animal health, and the ecological system. A significant concern with MPs in the air is that they are a vital component of MPs in the other environmental compartments, such as water and soil, which may affect human health through ingesting or inhaling. This work introduces the fundamental knowledge of various methods in advanced water treatment, including membrane bioreactors, advanced oxidation processes, adsorption, etc., are highly effective in removing MPs; they can still serve as an entrance route due to their constantly being discharged into aquatic environments. Following that, an analysis of each process for MPs' removal and mitigation or prevention of SARS-CoV-2 contamination is discussed. Next, an airborne microplastic has been reported in urban areas, raising health concerns since aerosols are considered a possible route of SARS-CoV-2 disease transmission and bind to airborne MP surfaces. The MPs can be removed from wastewater through conventional treatment processes with physical processes such as screening, grit chambers, and pre-sedimentation.
Collapse
Affiliation(s)
- S. Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico
| | - J. J. Klemeš
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - A. Bokhari
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - C. Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - M. Sillanpaa
- Department of Chemical Engineering, College of Engineering, King Khalid University, 61411 Abha, Kingdom of Saudi Arabia
- Research Laboratory of Processes, Energetics, Environment and Electrical Systems, National School of Engineers, Gabes University, 6072 Gabes, Tunisia
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - K. T. T. Amesho
- The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804 Taiwan
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804 Taiwan
| | - M. Vithanage
- Faculty of Applied Sciences, University of Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
39
|
Huang S, Zhang B, Liu Y, Feng X, Shi W. Revealing the influencing mechanisms of polystyrene microplastics (MPs) on the performance and stability of the algal-bacterial granular sludge. BIORESOURCE TECHNOLOGY 2022; 354:127202. [PMID: 35460843 DOI: 10.1016/j.biortech.2022.127202] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Algal-bacterial granular sludge (ABGS) is an energy-saving and environment-friendly wastewater treatment technology; however, the effects of microplastics (MPs) on the performance and stability of the ABGS system remain unknown. Herein, the influencing mechanisms of polystyrene MPs (50 μm) on the ABGS were systematically investigated. The ABGS exhibited a high removal efficiency of MPs (over 96%) at 1 mg/L and 20 mg/L. Although the biomass content, sludge settling and particle size were not obviously affected by MPs, the COD and total phosphorus (TP) removal efficiencies were inhibited by 2.6%-4.1% and 2.9%-5.8%, respectively. Meanwhile, the structural stability of ABGS was damaged by MPs, owing to the excessive oxidative stress, low content of protein-like substance (especially tryptophan and tyrosine), and the large portion of loose protein secondary structure. Microbial community analysis revealed that the relative abundance of some functional bacteria (Candidatus_Competibacter and Rhodobacter) and algal species (Tetradesmus) were decreased under the MPs stress.
Collapse
Affiliation(s)
- Shuchang Huang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Bing Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Yi Liu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xueli Feng
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Wenxin Shi
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
40
|
Reuse of Water Contaminated by Microplastics, the Effectiveness of Filtration Processes: A Review. ENERGIES 2022. [DOI: 10.3390/en15072432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Water treatment generally does not specifically address the removal of microplastics (MPs). Nevertheless, treatment plants process water effectively, and the number of synthetic microparticles in effluents is usually very low. Still, discharge volumes from water-treatment plants are often elevated (reaching around 108 L/day), leading to the daily discharge of a substantial number of MPs and microfibers. Furthermore, MPs accumulate in the primary and secondary sludge, which in the end results in another environmental problem as they are currently used to amend soils, both for cultivation and forestry, leading to their dispersion. Something similar occurs with the treatment of water intended for human consumption, which has a much lower but still significant number of MPs. The amount of these pollutants being released into the environment depends on the processes that the water undergoes. One of the most-used treatment processes is rapid sand filtration, which is reviewed in this article. During the filtration process, MPs can break into smaller pieces, resulting in a greater number of plastic particles which mainly accumulate in sewage sludge. Thermal processes, such as incineration, carried out in facilities with the best available techniques in practice, could guarantee the safe disposal of highly MP-contaminated sewage sludges.
Collapse
|
41
|
Nabi I, Bacha AUR, Zhang L. A review on microplastics separation techniques from environmental media. JOURNAL OF CLEANER PRODUCTION 2022; 337:130458. [DOI: 10.1016/j.jclepro.2022.130458] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
|
42
|
Wu J, Zhang Y, Tang Y. Fragmentation of microplastics in the drinking water treatment process - A case study in Yangtze River region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150545. [PMID: 34582875 DOI: 10.1016/j.scitotenv.2021.150545] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are the emerging pollutants in the fresh water and have been found in the drinking water. Drinking water treatment plant (DWTP) is an important barrier to ensure the safety and quality of drinking water, so their effectiveness in removing MPs needs to be evaluated and optimized. In this paper, the abundance, characteristics and removal performance of 5 μm-5 mm granular MPs and 100 μm-5 mm fibrous MPs in the effluent of each water treatment unit in a DWTP in China were analyzed. The results show that only 80.96% of MPs ≤ 20 μm, accounting for more than 98% in the raw water, could be removed in the DWTP, while over 99% of the removal efficiency could be achieved for MPs > 20 μm. Coagulation-sedimentation and micro-flocculation combined with sand filtration couldn't effectively remove the granular MPs ≤ 20 μm (42.8% and 25.8%, respectively), but biological activated carbon (BAC) filtration was prone to remove this part (63.8%). Significant increases of granular MPs ≤ 20 μm were observed in the effluents of biological treatment (+149.6%) and ozonation (+13.8%). According to the variation in separate MPs' size distribution, the increases in MPs were attributed to the fragmentation of MPs, on which ozonation showed a remarkable effect. The ozonation might accelerate the aging and embrittlement of MPs, and then external stresses could further break them into smaller pieces, which eventually lead to an increase in MPs. To deal with the stubborn part and fragmentation of MPs in water, the removal ability of DWTP for MPs ≤ 20 μm needs to be improved. This study provides a detailed proof for the fate of MPs in the DWTP, and the results indicate that the fragmentation of MPs and the removal rate of MPs ≤ 20 μm should draw more attention in the DWTP.
Collapse
Affiliation(s)
- Junyi Wu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310012, PR China.
| | - Yan Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310012, PR China.
| | - Yu Tang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310012, PR China.
| |
Collapse
|
43
|
Ziajahromi S, Leusch FDL. Systematic assessment of data quality and quality assurance/quality control (QA/QC) of current research on microplastics in biosolids and agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118629. [PMID: 34871641 DOI: 10.1016/j.envpol.2021.118629] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/04/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Although a growing number of studies have reported microplastics (MPs) in biosolids and soils, there are significant differences in the concentrations found across different regions worldwide. This has raised questions about the quality of studies due to a lack of standardized sampling and analysis methods for detecting MPs in such complex samples. In this study, we applied a systematic quantitative literature review (SQLR) methodology to analyze studies reporting MPs in sludge/biosolids and agricultural soils. We also assessed the quality of individual studies on MPs in sludge/biosolids and soils based on the inclusion of quality assurance/quality control (QA/QC) procedures. There is limited understanding about MPs in soils with a history of biosolid application with only 9% of publications reporting MPs in biosolid-amended soil. There was almost eight orders of magnitude difference (3.4 × 10-5 to 9.4 × 103 particles/g) between the highest concentrations of MPs in sludge/biosolid samples compared to the lowest virgin soil samples. The literature shows a consistency in the polymer types (polyester, PP and PE) and morphotypes (fibres and fragments) of MPs most frequently detected in biosolids and soils, suggesting a potential role of biosolids in soils MP pollution. Despite the large variations in the sizes of MPs, there was a negative correlation between the lowest size detected and concentrations reported. This indicates that current concentrations of MPs are influenced by the detection size. Our assessment shows that the majority of studies to-date lack critical QA/QC measures, particularly field blank, positive control and method validation. This highlights an urgent need for quality improvement of future research in this field to produce reliable data, ultimately crucial to assess the risk of MPs and derive suitable environmental guidelines. It is recommended that MPs studies methodically include QA/QC protocols at every step of the process to ensure the integrity of the data that is published.
Collapse
Affiliation(s)
- Shima Ziajahromi
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia.
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia
| |
Collapse
|
44
|
Syranidou E, Kalogerakis N. Interactions of microplastics, antibiotics and antibiotic resistant genes within WWTPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150141. [PMID: 34509832 DOI: 10.1016/j.scitotenv.2021.150141] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/21/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) have been detected in atmosphere, soil, and water and have been characterized as contaminants of emerging concern. When exposed to these environments, MPs interact with the chemical compounds as well as the (micro)organisms inhabiting these ecosystems. This paper overviews the interactions and significant factors influencing the sorption process of antibiotics on MPs since distinct interactions are developed between MPs and antibiotics. The interplay between the MPs and the antibiotic resistant genes (ARGs) microbial hosts is presented and the important factors that may shape the plastisphere resistome are discussed. The interactions of MPs, antibiotics and antibiotic resistant bacteria (ARB) and ARGs in wastewater treatment plants (WWTPs) were discussed with the aim to provide a perspective for better understanding of the role of WWTPs in bringing together MPs, antibiotics and ARB/ARGs and further as release points of MPs carrying antibiotics, and ARB/ARGs.
Collapse
Affiliation(s)
- Evdokia Syranidou
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece.
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| |
Collapse
|
45
|
Liu YT, Xia Q, Huang WW, Yi XS, Dong LL, Yang F. Comparison of pharmaceutical removal in two membrane bioreactors with/without powdered activated carbon addition. RSC Adv 2022; 12:20958-20967. [PMID: 35919144 PMCID: PMC9302323 DOI: 10.1039/d2ra01686a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
The present study investigates the removal of six selected pharmaceuticals from municipal wastewater in two membrane bioreactors (MBRs) with and without powdered activated carbon (PAC) addition. Two approaches were carried out for obtaining different carbon dosages related to the influent: (1) with a fixed solids retention time (SRT) and varying PAC concentrations; (2) with varying SRTs and a fixed PAC concentration. The results reveal that a PAC dosage related to influent of 21 mg L−1 and SRT of 20 d are optimal. The first approach achieved a better removal performance than the second. The removal of amidotrizoic acid (up to 46%), bezafibrate (>92%) and iopromide (around 85%) were mainly caused by biological process, but were also enhanced by PAC addition. Efficient removal (>95%) of sulfamethoxazole, carbamazepine and diclofenac were highly dependent on the PAC dosage. However, carbamazepine shows re-metabolization properties during biological processing. Decreasing the SRT as done in the second approach, not only increased the PAC amount, but also decreased the mass of activated sludge and reduced the capability to degrade complex organic matter. Consequently, biodegradability and adsorbability played decisive roles in the removal of each compound. The present study investigates the removal of six selected pharmaceuticals from municipal wastewater in two membrane bioreactors (MBRs) with and without powdered activated carbon (PAC) addition.![]()
Collapse
Affiliation(s)
- Ya-Ting Liu
- Department of Environmental Science and Engineering, Hainan University, Renmin Avenue 58, 570228 Haikou, Hainan Province, P. R. China
| | - Qing Xia
- Department of Environmental Science and Engineering, Hainan University, Renmin Avenue 58, 570228 Haikou, Hainan Province, P. R. China
| | - Wei-Wei Huang
- Department of Environmental Science and Engineering, Hainan University, Renmin Avenue 58, 570228 Haikou, Hainan Province, P. R. China
| | - Xue-Song Yi
- Department of Environmental Science and Engineering, Hainan University, Renmin Avenue 58, 570228 Haikou, Hainan Province, P. R. China
| | - Li-Li Dong
- Department of Environmental Science and Engineering, Hainan University, Renmin Avenue 58, 570228 Haikou, Hainan Province, P. R. China
| | - Fei Yang
- Department of Environmental Science and Engineering, Hainan University, Renmin Avenue 58, 570228 Haikou, Hainan Province, P. R. China
| |
Collapse
|
46
|
Kremer I, Tomić T, Katančić Z, Erceg M, Papuga S, Vuković JP, Schneider DR. Catalytic pyrolysis of mechanically non-recyclable waste plastics mixture: Kinetics and pyrolysis in laboratory-scale reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113145. [PMID: 34271358 DOI: 10.1016/j.jenvman.2021.113145] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Post-consumer waste plastics that cannot be mechanically recycled represent a concerning environmental issue. According to the latest available data for Europe, as much as 25% of collected post-consumer waste plastics are landfilled, 43% is energy recovered, and 32% is recycled. One possible way of recovering non-recyclable plastics is pyrolysis, which is considered environmentally friendly technology for obtaining fuel or chemicals from plastic waste. To tackle the challenge of recovering non-recyclable plastics via pyrolysis, it is necessary to determine their actual composition. Visual separation of collected non-recyclable plastics was performed, and Fourier-transform infrared spectroscopy was used to confirm the accuracy of visual separation. A significant amount of plastics labelled as "other" was found. Since the composition of "other" waste plastics has not been sufficiently investigated, relatively few studies on their pyrolysis have been conducted. Therefore, they were characterised and added to the mixture with other found polymer types of non-recyclable plastics. Thermogravimetric analysis was conducted to determine thermochemical behaviour and kinetic parameters required for laboratory pyrolysis investigation. Kinetic analysis was conducted using the Friedman isoconversional model-free method and non-linear multivariate regression method. The goal of this paper was to analyse the kinetics, determine the product yield and characteristics of the pyrolysis process of non-recyclable plastics over zeolite catalysts. It was found how the decomposition of non-recyclable plastics occurs in two decomposition steps. The activation energy of non-recyclable plastics was 144 kJ/mol in the first stage of decomposition and 262 kJ/mol in the second stage of decomposition. It decreased by 34% and 6.5% after fresh fluid catalytic cracking catalyst was added and 41% and 18.3% with iron-modified Zeolite Socony Mobil-5 catalyst. The yield of condensate was 55% (wax) for the original sample, and it decreased to 50% (wax and oil) and 27% (mostly oil) with fresh fluid catalytic cracking and iron modified Zeolite Socony Mobil-5 catalysts. Processes with catalysts promoted the formation of olefins and aromatic compounds in pyrolytic oil. All pyrolysis products had a high value of higher heating value ranging from 39 MJ/kg to 43 MJ/kg showing good potential for further energy use.
Collapse
Affiliation(s)
- Irma Kremer
- University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10 002, Zagreb, Croatia.
| | - Tihomir Tomić
- University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10 002, Zagreb, Croatia.
| | - Zvonimir Katančić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Savska cesta 16, 10 000, Zagreb, Croatia.
| | - Matko Erceg
- University of Split, Faculty of Chemistry and Technology, Ruđera Boškovića 35, 21 000, Split, Croatia.
| | - Saša Papuga
- University of Banja Luka, Faculty of Technology, Bulevar Vojvode Petra Bojovića 1A, 78 000, Banja Luka, Bosnia and Herzegovina.
| | | | - Daniel Rolph Schneider
- University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10 002, Zagreb, Croatia.
| |
Collapse
|
47
|
Wang J, Sun C, Huang QX, Chi Y, Yan JH. Adsorption and thermal degradation of microplastics from aqueous solutions by Mg/Zn modified magnetic biochars. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126486. [PMID: 34214855 DOI: 10.1016/j.jhazmat.2021.126486] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/01/2021] [Accepted: 06/22/2021] [Indexed: 05/26/2023]
Abstract
Microplastics (MPs) derived from plastic wastes have attracted wide attention throughout the world due to the wide distribution, easy transition, and potential threats to organisms. This study proposes efficient Mg/Zn modified magnetic biochar adsorbents for microplastic removal. For polystyrene (PS) microspheres (1 µm, 100 mg/mL) in aqueous solution, the removal efficiencies of magnetic biochar (MBC), Mg modified magnetic biochar (Mg-MBC), and Zn modified magnetic biochar (Zn-MBC) were 94.81%, 98.75%, and 99.46%, respectively. It is supposed that the adsorption process was a result of electrostatic interaction and chemical bonding interaction between microplastics and biochar. The coexisting H2PO4- and organic matters in real water significantly affected the removal efficiency of Zn-MBC due to competitive adsorption effect. Microplastic degradation and adsorbent regeneration were accomplished by thermal treatment simultaneously. The degradation of adsorbed MPs was promoted by the catalytic active sites originated from Mg and Zn, releasing adsorption sites. Thermal regeneration maintained the adsorption capability. Even after five adsorption-pyrolysis cycles, MBC (95.02%), Mg-MBC (94.60%), and Zn-MBC (95.79%) showed high microplastic removal efficiency. Therefore, the low-cost, eco-friendly, and robust Mg/Zn-MBCs have promising potential for application in microplastic removal.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Chen Sun
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Qun-Xing Huang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Yong Chi
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jian-Hua Yan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
48
|
Review of Microplastic Distribution, Toxicity, Analysis Methods, and Removal Technologies. WATER 2021. [DOI: 10.3390/w13192736] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Microplastic contamination has become a problem, as plastic production has increased worldwide. Microplastics are plastics with particles of less than 5 mm and are absorbed through soil, water, atmosphere, and living organisms and finally affect human health. However, information on the distribution, toxicity, analytical methods, and removal techniques for microplastics is insufficient. For clear microplastic analytical methods and removal technologies, this article includes the following: (1) The distribution and contamination pathways of microplastics worldwide are reviewed. (2) The health effects and toxicity of microplastics were researched. (3) The sampling, pretreatment, and analytical methods of microplastics were all reviewed through various related articles. (4) The various removal techniques of microplastics were categorized by wastewater treatment process, physical treatment, chemical treatment, and biological treatment. This paper will be of great help to microplastic analysis and removal techniques.
Collapse
|
49
|
Ganie ZA, Khandelwal N, Tiwari E, Singh N, Darbha GK. Biochar-facilitated remediation of nanoplastic contaminated water: Effect of pyrolysis temperature induced surface modifications. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126096. [PMID: 34229390 DOI: 10.1016/j.jhazmat.2021.126096] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
"Nanoplastics- the emerging contaminants" and "agricultural waste to resource conversion" both are currently at the scientific frontiers and require solutions. This study aims to utilize sugarcane bagasse-derived biochar for the removal of nanoplastics (NPs) from aqueous environment. Three types of biochar were synthesized at three different pyrolysis temperatures, i.e. 350, 550, and 750 ℃ and evaluated for their potential in removing NPs. Effect of various environmental parameters, i.e., competing ions, pH, humic acid and complex aqueous matrices on NPs sorption was also studied. Results showed that attributing to decreased carbonyl functional groups, increased surface area and pore abundance, biochar prepared at 750 ℃ showed drastically higher NPs removal (>99%), while BC-550 and BC-350 showed comparatively lower NPs sorption (<39% and <24%, respectively). Further sorption studies confirmed instantaneous NPs removal with equilibrium attainment within 5 min of interaction and efficient NPs sorption capacity, i.e. 44.9 mg/g for biochar prepared at 750 ℃. Non-linear-kinetic modeling suggested pseudo 1st order removal kinetics while isotherm and thermodynamic modeling confirmed- monolayer instantaneous sorption of NPs sorption. Enhanced electrostatic repulsion resulted in decrease in NPs sorption at alkaline conditions, whereas steric hindrance caused limited removal (<25%) at higher humic acid concentrations.
Collapse
Affiliation(s)
- Zahid Ahmad Ganie
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Nitin Khandelwal
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Ekta Tiwari
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Nisha Singh
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Gopala Krishna Darbha
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education, and Research, Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
50
|
Youssef K, Archonta D, Kubiseski TJ, Tandon A, Rezai P. Microfluidic electric parallel egg-laying assay and application to in-vivo toxicity screening of microplastics using C. elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147055. [PMID: 34088132 DOI: 10.1016/j.scitotenv.2021.147055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Environmental pollutants like microplastics are posing health concerns on aquatic animals and the ecosystem. Microplastic toxicity studies using Caenorhabditis elegans (C. elegans) as a model are evolving but methodologically hindered from obtaining statistically strong data sets, detecting toxicity effects based on microplastics uptake, and correlating physiological and behavioural effects at an individual-worm level. In this paper, we report a novel microfluidic electric egg-laying assay for phenotypical assessment of multiple worms in parallel. The effects of glucose and polystyrene microplastics at two concentrations on the worms' electric egg-laying, length, diameter, and length contraction during exposure to electric signal were studied. The device contained eight parallel worm-dwelling microchannels called electric traps, with equivalent electrical fields, in which the worms were electrically stimulated for egg deposition and fluorescently imaged for assessment of neuronal and microplastic uptake expression. A new bidirectional stimulation technique was developed, and the device design was optimized to achieve a testing efficiency of 91.25%. Exposure of worms to 100 mM glucose resulted in a significant reduction in their egg-laying and size. The effects of 1 μm polystyrene microparticles at concentrations of 100 and 1000 mg/L on the electric egg-laying behaviour, size, and neurodegeneration of N2 and NW1229 (expressing GFP pan-neuronally) worms were also studied. Of the two concentrations, 1000 mg/L caused severe egg-laying deficiency and growth retardation as well as neurodegeneration. Additionally, using single-worm level phenotyping, we noticed intra-population variability in microplastics uptake and correlation with the above physiological and behavioural phenotypes, which was hidden in the population-averaged results. Taken together, these results suggest the appropriateness of our microfluidic assay for toxicological studies and for assessing the phenotypical heterogeneity in response to microplastics.
Collapse
Affiliation(s)
- Khaled Youssef
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Daphne Archonta
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | | | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada.
| |
Collapse
|