1
|
Jaruwat D, Kaewtrakulchai N, Siriorarnroj S, Srifa A, Kiatkittipong W, Charojrochkul S, Fuji M, Eiad-Ua A, Assabumrungrat S. Nanoporous Carbon-Supported Bimetallic (Ni, Cu, and Fe)-Mo Catalysts for Partial Hydrogenation of Biodiesel. ACS OMEGA 2024; 9:42329-42342. [PMID: 39431091 PMCID: PMC11483403 DOI: 10.1021/acsomega.4c05207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024]
Abstract
Upgrading biodiesel or hydrogenated fatty acid methyl esters (H-FAMEs) by partial hydrogenation is a second-generation biofuel with high specific fuel characteristics, such as superior cold flow properties, higher oxidative stability, and lower hazardous gas emissions, allowing this biofuel to provide excellent fuel properties, over conventional biodiesel. This study assessed the potential of using nanoporous carbon produced from cattail leaves (CL) as an alternative catalyst support. We synthesized various catalysts including monometallic Mo/NPC, Ni/NPC, Ce/NPC, and Fe/NPC catalysts, as well as bimetallic molybdenum-based catalysts doped with nickel, copper, or iron for the partial hydrogenation of soybean biodiesel. The NPC support demonstrated a surface area (S BET) of approximately 1,323 m2g-1, which greatly increases the catalytic activity through the efficient dispersion of catalyst active sites. The partial hydrogenation reaction of soybean FAME over the MoNi/NPC catalyst obtained the highest catalytic activity with enhanced oxidation stability from 3 to 14 h, and the cloud point and pour point increased from 2 to 13 °C and -1 to 10 °C, respectively. Hence, the selection of catalysts is crucial due to their impact on the feasibility of the process and its economic viability. This article focuses on highlighting the effectiveness of a highly promising catalyst for partial hydrogenation as well as examining the variables that influence the primary reaction pathway.
Collapse
Affiliation(s)
- Dolrudee Jaruwat
- Center
of Excellence in Catalysis and Catalytic Reaction Engineering, Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Napat Kaewtrakulchai
- Kasetsart
Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok, Bangkhen 10900, Thailand
| | - Siwat Siriorarnroj
- Center
of Excellence in Catalysis and Catalytic Reaction Engineering, Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atthapon Srifa
- Department
of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon
Pathom 73170, Thailand
| | - Worapon Kiatkittipong
- Department
of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | | | - Masayoshi Fuji
- Advanced
Ceramic Center, Nagoya Institute of Technology, Gifu 466-8555, Japan
| | - Apiluck Eiad-Ua
- College
of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Ladkrabang 10520, Thailand
| | - Suttichai Assabumrungrat
- Center
of Excellence in Catalysis and Catalytic Reaction Engineering, Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Bio-Circular-Green-economy
Technology & Engineering Center, BCGeTEC, Department of Chemical
Engineering, Faculty of Engineering, Chulalongkorn
University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Sitepu EK, Sinaga RPA, Sitepu BEN, Santoso A, Susilo B, Ginting B, Perangin-angin S, Tarigan JB. Calcined Biowaste Durian Peel as a Heterogeneous Catalyst for Room-Temperature Biodiesel Production Using a Homogenizer Device. ACS OMEGA 2024; 9:15232-15238. [PMID: 38585132 PMCID: PMC10993264 DOI: 10.1021/acsomega.3c09642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024]
Abstract
Calcined biowaste durian peel (BDP) contains 86% potassium element as the main compound and has successfully catalyzed the transesterification of palm oil to biodiesel at room temperature. The effect of catalyst weight, molar ratio of palm oil to methanol, reaction time, and rotational speed of the homogenizer device was investigated on biodiesel conversion and yield. The highest biodiesel conversion of 97.4 ± 0.3% was achieved using the following reaction conditions: a catalyst weight of 5 wt %, a molar ratio of palm oil to methanol of 1:15, a reaction time of 10 min, and a rotational speed of 6000 rpm. Unfortunately, calcined BDP could not hold its catalytic activity in the reusability study. The biodiesel conversion was decreased in the second cycle due to the decrease of both catalyst weight and concentration of potassium ions after the first cycle. However, the calcined BDP paired with a homogenizer device could produce biodiesel in a short reaction time and at room temperature.
Collapse
Affiliation(s)
- Eko. K. Sitepu
- Department
of Chemistry, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Reni P. A. Sinaga
- Department
of Chemistry, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Bryan E. N. Sitepu
- Department
of Chemistry, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Aman Santoso
- Department
of Chemistry, Universitas Negeri Malang, Malang 65145, Indonesia
| | - Bambang Susilo
- Department
of Agricultural Engineering, Brawijaya University, Malang 65145, Indonesia
| | - Binawati Ginting
- Department
of Chemistry, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | | | | |
Collapse
|
3
|
P H, M V, Dey R. Multicomponent synthesis via acceptorless alcohol dehydrogenation: an easy access to tri-substituted pyridines. RSC Adv 2024; 14:10761-10767. [PMID: 38572342 PMCID: PMC10988360 DOI: 10.1039/d4ra00439f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024] Open
Abstract
Herein, we report palladium supported on a hydroxyapatite catalyst for synthesizing tri-substituted pyridines using ammonium acetate as the nitrogen source via acceptorless alcohol dehydrogenation strategy. The strategy offers a broad substrate scope using inexpensive and readily available alcohols as the starting material. The catalyst was prepared using a simple method and analyzed by several techniques, including FE-SEM, EDS, HR-TEM, BET, XRD, FT-IR, UV-visible spectroscopy, and XPS, demonstrating the anchoring of Pd nanoparticles on hydroxyapatite in the zero oxidation state. Moreover, several controlled experiments were carried out to understand the reaction pathway and a suitable mechanism has been proposed.
Collapse
Affiliation(s)
- Hima P
- Department of Chemistry, National Institute of Technology Calicut Kozhikode 673601 India
| | - Vageesh M
- Department of Chemistry, National Institute of Technology Calicut Kozhikode 673601 India
| | - Raju Dey
- Department of Chemistry, National Institute of Technology Calicut Kozhikode 673601 India
| |
Collapse
|
4
|
Huang J, Xie X, Zheng W, Xu L, Yan J, Wu Y, Yang M, Yan Y. In silico design of multipoint mutants for enhanced performance of Thermomyces lanuginosus lipase for efficient biodiesel production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:33. [PMID: 38402206 PMCID: PMC10894483 DOI: 10.1186/s13068-024-02478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Biodiesel, an emerging sustainable and renewable clean energy, has garnered considerable attention as an alternative to fossil fuels. Although lipases are promising catalysts for biodiesel production, their efficiency in industrial-scale application still requires improvement. RESULTS In this study, a novel strategy for multi-site mutagenesis in the binding pocket was developed via FuncLib (for mutant enzyme design) and Rosetta Cartesian_ddg (for free energy calculation) to improve the reaction rate and yield of lipase-catalyzed biodiesel production. Thermomyces lanuginosus lipase (TLL) with high activity and thermostability was obtained using the Pichia pastoris expression system. The specific activities of the mutants M11 and M21 (each with 5 and 4 mutations) were 1.50- and 3.10-fold higher, respectively, than those of the wild-type (wt-TLL). Their corresponding melting temperature profiles increased by 10.53 and 6.01 °C, [Formula: see text] (the temperature at which the activity is reduced to 50% after 15 min incubation) increased from 60.88 to 68.46 °C and 66.30 °C, and the optimum temperatures shifted from 45 to 50 °C. After incubation in 60% methanol for 1 h, the mutants M11 and M21 retained more than 60% activity, and 45% higher activity than that of wt-TLL. Molecular dynamics simulations indicated that the increase in thermostability could be explained by reduced atomic fluctuation, and the improved catalytic properties were attributed to a reduced binding free energy and newly formed hydrophobic interaction. Yields of biodiesel production catalyzed by mutants M11 and M21 for 48 h at an elevated temperature (50 °C) were 94.03% and 98.56%, respectively, markedly higher than that of the wt-TLL (88.56%) at its optimal temperature (45 °C) by transesterification of soybean oil. CONCLUSIONS An integrating strategy was first adopted to realize the co-evolution of catalytic efficiency and thermostability of lipase. Two promising mutants M11 and M21 with excellent properties exhibited great potential for practical applications for in biodiesel production.
Collapse
Affiliation(s)
- Jinsha Huang
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoman Xie
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wanlin Zheng
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li Xu
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Jinyong Yan
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ying Wu
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Min Yang
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
5
|
Chen L, He L, Liu Q, Wu A, Shu W, Yu W. Resource Utilization of Waste Cooking Oil Catalyzed by Na 2CO 3/ZSM-5. ACS OMEGA 2024; 9:2752-2757. [PMID: 38250410 PMCID: PMC10795111 DOI: 10.1021/acsomega.3c07817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
A catalyst with a simple synthetic process and good catalytic performance was prepared using Na2CO3 as the active component and ZSM-5 as the carrier for the resource utilization of waste cooking oil. The structure of Na2CO3/ZSM-5 was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy, and the effects of parameters such as Na2CO3 loading, catalyst percentage, and reaction time on the yield of fatty acid methyl esters were investigated. The results showed that the conversion of waste cooking oil to fatty acid methyl esters yielded up to 96.89% when the Na2CO3 loading was 35%, the reaction temperature was 65 °C, the reaction time was 2 h, and the catalyst percentage was 1 wt %. The Na2CO3/ZSM-5 catalyst could be used to replace H2SO4 or NaOCH3 in the industrial treatment of waste cooking oil for its resource utilization.
Collapse
Affiliation(s)
- Liu Chen
- School
of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023, China
| | - Lixiang He
- School
of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023, China
| | - Qiannan Liu
- School
of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023, China
| | - Aibin Wu
- School
of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023, China
- Hubei
Engineering Research Centers for Clean Production and Pollution Control
of Oil and Gas Fields, Jingzhou, Hubei 434023, China
| | - Wenming Shu
- School
of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023, China
| | - Weichu Yu
- School
of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023, China
- Hubei
Engineering Research Centers for Clean Production and Pollution Control
of Oil and Gas Fields, Jingzhou, Hubei 434023, China
| |
Collapse
|
6
|
Yadav G, Yadav N, Ahmaruzzaman M. Advances in biomass derived low-cost carbon catalyst for biodiesel production: preparation methods, reaction conditions, and mechanisms. RSC Adv 2023; 13:23197-23210. [PMID: 37545599 PMCID: PMC10398831 DOI: 10.1039/d3ra03561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023] Open
Abstract
Biodiesel is a less hazardous, environmentally friendly biofuel that has been extensively investigated in modern years to ensure that we lessen our dependency on fossil fuels and mitigate climate change. While fossil fuel substitutes like biodiesel may help transition to a less polluted world, industrial-scale manufacturing still relies highly on chemical catalysis. However, heterogeneous solid catalysts result in less activity for biodiesel production due to their deactivation effects, porosity, surface area, material stability, and lower reactivity under moderate conditions. The "sulfonated carbons" are metal-free solid protonic acids distinguished by their distinctive carbon structure and Brønsted acidity (H0 = 8-11). Heterogeneous sulfonated catalysts derived from waste biomass were a significant focus of the most advanced biodiesel processing techniques for simple and low-cost manufacturing processes. This study discusses the advantages and disadvantages of various catalysts, biomass sources and properties, synthesis of catalysts, and factors influencing the insertion of active sulfonic sites on biomass surfaces. Additionally, transesterification and esterification reaction mechanisms and kinetics are discussed. At last, future directions are provided for young, dynamic researchers.
Collapse
Affiliation(s)
- Gaurav Yadav
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Nidhi Yadav
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| |
Collapse
|
7
|
Notarnicola B, Tassielli G, Renzulli PA, Di Capua R, Astuto F, Riela S, Nacci A, Casiello M, Testa ML, Liotta LF, Pastore C. Life Cycle Assessment of a system for the extraction and transformation of Waste Water Treatment Sludge (WWTS)-derived lipids into biodiesel. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163637. [PMID: 37098396 DOI: 10.1016/j.scitotenv.2023.163637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 06/03/2023]
Abstract
In recent years, the demand for biofuels has been growing exponentially, as has the interest in biodiesel produced from organic matrices. Particularly interesting, due to its economic and environmental advantages, is the use of the lipids present in sewage sludge as a raw material for the synthesis of biodiesel. The possible processes of this biodiesel synthesis, starting from lipid matter, are represented by the conventional process with sulfuric acid, by the process with aluminium chloride hexahydrate and by processes that use solid catalysts such as those consisting of mixed metal oxides, functionalized halloysites, mesoporous perovskite and functionalized silicas. In literature there are numerous Life Cycle Assessment (LCA) studies concerning biodiesel production systems, but not many studies consider processes that start from sewage sludge and that use solid catalysts. In addition, no LCA studies were reported on solid acid catalysts nor on those based on mixed metal oxides which present some precious advantages, over the homogeneous analogous ones, such as higher recyclability, prevention of foams and corrosion phenomena, and an easier separation and purification of biodiesel product. This research work reports the results of a comparative LCA study applied to a system that uses a solvent free pilot plant for the extraction and transformation of lipids from sewage sludge via seven different scenarios that differ in the type of catalyst used. The biodiesel synthesis scenario using aluminium chloride hexahydrate as catalyst has the best environmental profile. Biodiesel synthesis scenarios using solid catalysts are worse due to higher methanol consumption which requires higher electricity consumption. The worst scenario is the one using functionalized halloysites. Further future developments of the research require the passage from the pilot scale to the industrial scale in order to obtain environmental results to be used for a more reliable comparison with the literature data.
Collapse
Affiliation(s)
- B Notarnicola
- Ionian Department of Law, Economics and Environment, University of Bari Aldo Moro, Taranto, Italy
| | - G Tassielli
- Ionian Department of Law, Economics and Environment, University of Bari Aldo Moro, Taranto, Italy
| | - P A Renzulli
- Ionian Department of Law, Economics and Environment, University of Bari Aldo Moro, Taranto, Italy
| | - R Di Capua
- Ionian Department of Law, Economics and Environment, University of Bari Aldo Moro, Taranto, Italy.
| | - F Astuto
- Ionian Department of Law, Economics and Environment, University of Bari Aldo Moro, Taranto, Italy
| | - S Riela
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), V.le delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - A Nacci
- Chemistry Department, University of Bari Aldo Moro, Bari, Italy
| | - M Casiello
- Chemistry Department, University of Bari Aldo Moro, Bari, Italy
| | - M L Testa
- CNR - Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Palermo, Italy
| | - L F Liotta
- CNR - Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Palermo, Italy
| | - C Pastore
- CNR - Istituto di Ricerca Sulle Acque (CNR-IRSA), Bari, Italy
| |
Collapse
|
8
|
Sathish T, Saravanan R, Depoures MV, Palanikumar B, Rajasimman M, Rajkumar S. Environmental remediation at vegetable marketplaces through production of biowaste catalysts for biofuel generation. Sci Rep 2023; 13:5067. [PMID: 36977712 PMCID: PMC10050166 DOI: 10.1038/s41598-023-31687-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Large quantities of vegetable biowaste are generated at marketplaces, usually in highly populated locations. On the other hand, nearby markets, hotels, and street shops generate much cooking oil waste and dispose of them in the sewage. Environmental remediation is mandatory at these places. Hence, this experimental work concentrated on preparing biodiesel using green plant wastes and cooking oil. Biowaste catalysts were produced from vegetable wastes and biofuel generated from waste cooking oil using biowaste catalysts to support diesel demand and Environmental remediation. Other organic plant wastes such as bagasse, papaya stem, banana peduncle and moringa oleifera are used as heterogeneous catalysts of this research work. Initially, the plant wastes are independently considered for the catalyst for biodiesel production; secondary, all plant wastes are mixed to form a single catalyst and used to prepare the biodiesel. In the maximum biodiesel yield analysis, the calcination temperature, reaction temperature, methanol/oil ratio, catalyst loading and mixing speed were considered to control the biodiesel production. The results reveal that the catalyst loading of 4.5 wt% with mixed plant waste catalyst offered a maximum biodiesel yield of 95%.
Collapse
Affiliation(s)
- T Sathish
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - R Saravanan
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Melvin Victor Depoures
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - B Palanikumar
- Department of Civil Engineering, Sethu Institute of Technology, Virudhunagar, Tamil Nadu, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Chidambaram, India
| | - S Rajkumar
- Department of Mechanical Engineering, Faculty of Manufacturing, Institute of Technology, Hawassa University, Hawassa, Ethiopia.
| |
Collapse
|
9
|
Tarigan JB, Perangin-angin S, Simanungkalit SR, Zega NP, Sitepu EK. Utilization of waste banana peels as heterogeneous catalysts in room-temperature biodiesel production using a homogenizer. RSC Adv 2023; 13:6217-6224. [PMID: 36825289 PMCID: PMC9941840 DOI: 10.1039/d3ra00016h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/08/2023] [Indexed: 02/23/2023] Open
Abstract
Banana peels as agro-waste residues contain potassium oxide as the main component after calcination. The calcined waste banana peels (WBPs) successfully transesterified palm oil to biodiesel at room temperature using a homogenizer. The catalyst was characterized by TGA, SEM, XRD and XRF. The catalytic activity of calcined WBPs was determined using parameters of the molar ratio of palm oil to methanol, catalyst weight, reaction time and rotational speed of the homogenizer. The highest biodiesel conversion of 97.7 ± 0.6% was achieved with a molar ratio of 1 : 15, catalyst weight of 7 wt%, reaction time of 30 min and rotational speed of 6000 rpm. Unfortunately, the calcined WBP cannot be reused unless some fresh catalyst is added to defend its catalytic activity, as the concentration of K2O decreases after the reaction. However, the catalyst showed better performance as the transesterification reaction could be carried out at room temperature in a short reaction time using a homogenizer compared with other methods.
Collapse
Affiliation(s)
| | | | | | - Neli P. Zega
- Department of Chemistry, Universitas Sumatera UtaraMedan 20155Indonesia
| | - Eko K. Sitepu
- Department of Chemistry, Universitas Sumatera UtaraMedan 20155Indonesia
| |
Collapse
|
10
|
Devasan R, Ruatpuia JVL, Gouda SP, Kodgire P, Basumatary S, Halder G, Rokhum SL. Microwave-assisted biodiesel production using bio-waste catalyst and process optimization using response surface methodology and kinetic study. Sci Rep 2023; 13:2570. [PMID: 36782046 PMCID: PMC9925450 DOI: 10.1038/s41598-023-29883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Providing sufficient energy supply and reducing the effects of global warming are serious challenges in the present decades. In recent years, biodiesel has been viewed as an alternative to exhaustible fossil fuels and can potentially reduce global warming. Here we report for the first time the production of biodiesel from oleic acid (OA) as a test substrate using porous sulfonic acid functionalized banana peel waste as a heterogeneous catalyst under microwave irradiation. The morphology and chemical composition of the catalyst was investigated using Powder X-ray diffraction (PXRD) analysis, Fourier transform infrared (FTIR) spectroscopy, Thermogravimetric analysis (TGA), Transmission electron microscopy (TEM), and Scanning electron microscopy- Energy dispersive X-ray spectroscopy (SEM-EDX). The SEM-EDX analysis of the catalyst revealed the presence of sulfur in 4.62 wt% amounting to 1.4437 mmol g-1 sulfonic acids, which is accorded to the high acidity of the reported catalyst. Using response surface methodology (RSM), through a central composite design (CCD) approach, 97.9 ± 0.7% biodiesel yield was observed under the optimized reaction conditions (methanol to OA molar ratio of 20:1, the temperature of 80 °C, catalyst loading of 8 wt% for 55 min). The catalyst showed excellent stability on repeated reuse and can be recycled at least 5 times without much activity loss.
Collapse
Affiliation(s)
- Rhithuparna Devasan
- grid.444720.10000 0004 0497 4101Department of Chemistry, National Institute of Technology, Silchar, Assam 788010 India
| | - Joseph V. L. Ruatpuia
- grid.444720.10000 0004 0497 4101Department of Chemistry, National Institute of Technology, Silchar, Assam 788010 India
| | - Shiva Prasad Gouda
- grid.444720.10000 0004 0497 4101Department of Chemistry, National Institute of Technology, Silchar, Assam 788010 India
| | - Pravin Kodgire
- grid.449189.90000 0004 1756 5243Chemical Engineering Department, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426 India ,grid.449189.90000 0004 1756 5243Center for Biofuel and Bioenergy Studies, Pandit Deendayal Energy University, Gandhinagar, 382426 India
| | - Sanjay Basumatary
- grid.466513.30000 0004 7391 0486Department of Chemistry, Bodoland University, Kokrajhar, Assam 783370 India
| | - Gopinath Halder
- grid.444419.80000 0004 1767 0991Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209 India
| | | |
Collapse
|
11
|
Nazloo EK, Moheimani NR, Ennaceri H. Graphene-based catalysts for biodiesel production: Characteristics and performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160000. [PMID: 36368383 DOI: 10.1016/j.scitotenv.2022.160000] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Biodiesel is a promising alternative to reduce the dependency on fossil fuels. However, biodiesel's cost is still higher than its petroleum counterpart, hence its production process must be modified to make it economically viable. Microalgae are an alternative feedstock to replace agricultural crops for biodiesel production, and offer several advantages such as fast growth, use of non-arable land, growth in saline and wastewater, and high lipid yield. Unfortunately, biodiesel production from microalgae is very energy-intensive and costly, mainly due to the high energy consumption required for dewatering and drying. Therefore, utilizing wet microalgal biomass instead of dry biomass can be a promising solution to reduce the biodiesel production cost Furthermore, the use of heterogeneous catalysts offers high efficiency, recoverability, and reusability, and is therefore very promising from the economic and environmental perspectives. The unique characteristics of graphene-based nano-catalysts, such as their high surface area, two-dimensional structure, and functional groups, make them suitable candidates for biodiesel production. In this review, the use of graphene-based catalysts for biodiesel production is analyzed in depth, and their efficiency compared to other heterogeneous catalysts is scrutinized. Moreover, their recoverability, reusability, and economic feasibility are critically discussed, and their potential to produce biodiesel from wet microalgae is explored as a sustainable and cost-effective approach.
Collapse
Affiliation(s)
- Ehsan Khorshidi Nazloo
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Navid Reza Moheimani
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia.
| |
Collapse
|
12
|
Guo X, Xia A, Zhang W, Huang Y, Zhu X, Zhu X, Liao Q. Photoenzymatic decarboxylation: A promising way to produce sustainable aviation fuels and fine chemicals. BIORESOURCE TECHNOLOGY 2023; 367:128232. [PMID: 36332862 DOI: 10.1016/j.biortech.2022.128232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
As one of the fastest-growing carbon emission sources, the aviation sector is severely restricted by carbon emission reduction targets. Sustainable aviation fuel (SAF) has emerged as the most potential alternative to traditional aviation fuel, but harsh production technologies limit its commercialization. Fatty acids photodecarboxylase from Chlorella variabilis NC64A (CvFAP), the latest discovered photoenzyme, provides promising approaches to produce various carbon-neutral biofuels and fine chemicals. This review highlights the state-of-the-art strategies to enhance the application of CvFAP in carbon-neutral biofuel and fine chemicals production, including supplementing alkane as decoy molecular, screening efficient CvFAP variants with directed evolution, constructing genetic strains, employing biphasic catalytic system, and immobilizing CvFAP in an efficient photobioreactor. Furthermore, future opportunities are suggested to enhance photoenzymatic decarboxylation and explore the catalytic mechanism of CvFAP. This review provides a broad context to improve CvFAP catalysis and advance its potential applications.
Collapse
Affiliation(s)
- Xiaobo Guo
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, College of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, College of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, College of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, College of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, College of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, College of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
13
|
Mendes AA, Soares CMF, Tardioli PW. Recent advances and future prospects for biolubricant base stocks production using lipases as environmentally friendly catalysts: a mini-review. World J Microbiol Biotechnol 2022; 39:25. [PMID: 36422728 DOI: 10.1007/s11274-022-03465-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022]
Abstract
In recent years, fluctuating global fossil fuel market prices and growing concern about environmental pollution have increased efforts to obtain novel value-added products from renewable agricultural biomass. To this end, a wide variety of triacylglycerols (edible and non-edible oils and fats) and their derivatives (free fatty acids or monoalkyl esters) stand out as promising feedstocks for the production of biolubricant base stocks, due to their biodegradability, excellent physicochemical properties, and sustainable nature. These raw materials can be transformed into biolubricants using chemical or biochemical (lipases) catalysts, with the enzymatic production of biolubricants using lipases as catalysts being recognized as an environmentally friendly approach. The present mini-review highlights recent advances in this field, published in the last three years. The different chemical modification processes used to develop a wide variety of industrial biolubricant base stocks are comprehensively reviewed, with exploration of future prospects for industrial production via the enzymatic route. This study contributes to the current state-of-the-art, identifying relevant research questions and providing important technical information for new applications of lipases in oleochemical manufacturing industries.
Collapse
Affiliation(s)
- Adriano A Mendes
- Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil.
| | - Cleide M F Soares
- Tiradentes University, Aracaju, Sergipe, 49032-490, Brazil.,Institute of Technology and Research, Aracaju, Sergipe, 49032-490, Brazil
| | - Paulo W Tardioli
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
14
|
Aghababai Beni A, Jabbari H. Nanomaterials for Environmental Applications. RESULTS IN ENGINEERING 2022; 15:100467. [DOI: 10.1016/j.rineng.2022.100467] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
|
15
|
Sanitary Ware Waste as a Source for a Valuable Biodiesel Catalyst. J CHEM-NY 2022. [DOI: 10.1155/2022/1232110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biofuel is a type of fuel that is made from biomass using modern techniques rather than the relatively slow geological processes that lead to the development of fossil fuels. In Europe, biodiesel is the most widely used biofuel. The sanitary ware industry generates a lot of hazardous waste, such as waste gypsum molds. These molds are broken, pulverized, and reacted with NaCO3 to make CaCO3, which is then heated to produce CaO. The resulting CaO catalyzes the reaction between waste frying oil and methanol for biodiesel synthesis. To evaluate the effect of reaction parameters on the production of biodiesel, the independent reaction parameters that were chosen are as follows: reaction temperature in the range 50–70°C, methanol to oil (M:O) molar ratio in the range 9–15, catalyst loading in the range 1–5%, and time in the range 2–6 hrs. The influence of the independent factors on the reaction-dependent responses was evaluated and it was found that reaction temperature and methanol-to-oil ratio have a major effect on the biodiesel yield. Reaction condition optimization has been studied to maximize biodiesel yield at minimum reaction conditions. The optimum process conditions are 93.4% biodiesel yield at an M:O molar ratio of 15 : 1, catalyst loading of 1%, reaction temperature of 53.6°C, and reaction time of 2 h. The results showed that resulted biodiesel catalyst (CaO) can be used one time; then, a fresh catalyst will be used.
Collapse
|
16
|
Synthesis of glycerol carbonate from glycerol and dimethyl carbonate over CaO-SBA-15 catalyst. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Biodiesel Is Dead: Long Life to Advanced Biofuels—A Comprehensive Critical Review. ENERGIES 2022. [DOI: 10.3390/en15093173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Many countries are immersed in several strategies to reduce the carbon dioxide (CO2) emissions of internal combustion engines. One option is the substitution of these engines by electric and/or hydrogen engines. However, apart from the strategic and logistical difficulties associated with this change, the application of electric or hydrogen engines in heavy transport, e.g., trucks, shipping, and aircrafts, also presents technological difficulties in the short-medium term. In addition, the replacement of the current car fleet will take decades. This is why the use of biofuels is presented as the only viable alternative to diminishing CO2 emissions in the very near future. Nowadays, it is assumed that vegetable oils will be the main raw material for replacing fossil fuels in diesel engines. In this context, it has also been assumed that the reduction in the viscosity of straight vegetable oils (SVO) must be performed through a transesterification reaction with methanol in order to obtain the mixture of fatty acid methyl esters (FAMEs) that constitute biodiesel. Nevertheless, the complexity in the industrial production of this biofuel, mainly due to the costs of eliminating the glycerol produced, has caused a significant delay in the energy transition. For this reason, several advanced biofuels that avoid the glycerol production and exhibit similar properties to fossil diesel have been developed. In this way, “green diesels” have emerged as products of different processes, such as the cracking or pyrolysis of vegetable oil, as well as catalytic (hydro)cracking. In addition, some biodiesel-like biofuels, such as Gliperol (DMC-Biod) or Ecodiesel, as well as straight vegetable oils, in blends with plant-based sources with low viscosity have been described as renewable biofuels capable of performing in combustion ignition engines. After evaluating the research carried out in the last decades, it can be concluded that green diesel and biodiesel-like biofuels could constitute the main alternative to addressing the energy transition, although green diesel will be the principal option in aviation fuel.
Collapse
|
18
|
Abstract
Growing environmental concerns, increased population, and the need to meet the diversification of the source of global energy have led to increased demand for biofuels. However, the high cost of raw materials for biofuels production has continued to slow down the acceptability, universal accessibility, and affordability of biofuels. The cost of feedstock and catalysts constitutes a major component of the production cost of biofuels. Potato is one of the most commonly consumed food crops among various populations due to its rich nutritional, health, and industrial benefits. In the current study, the application of potato peel waste (PPW) for biofuel production was interrogated. The present state of the conversion of PPW to bioethanol and biogas, through various techniques, to meet the ever-growing demand for renewable fuels was reviewed. To satisfy the escalating demand for biohydrogen for various applications, the prospects for the synthesis of biohydrogen from PPW were proposed. Additionally, there is the potential to convert PPW to low-cost, ecologically friendly, and biodegradable bio-based catalysts to replace commercial catalysts. The information provided in this review will enrich scholarship and open a new vista in the utilization of PPW. More focused investigations are required to unravel more avenues for the utilization of PPW as a low-cost and readily available catalyst and feedstock for biofuel synthesis. The application of PPW for biofuel application will reduce the pump price of biofuels, ensure the appropriate disposal of waste, and contribute towards environmental cleanliness.
Collapse
|
19
|
Homogenizer-intensified room temperature biodiesel production using heterogeneous palm bunch ash catalyst. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Zhang S, Pan H, Huang J, Li Y, Zhang H. A Highly Effective Biomass-Derived Solid Acid Catalyst for Biodiesel Synthesis Through Esterification. Front Chem 2022; 10:882235. [PMID: 35372280 PMCID: PMC8965869 DOI: 10.3389/fchem.2022.882235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 01/12/2023] Open
Abstract
Efficient valorization of renewable liquid biomass for biodiesel production using the desirable biomass-based catalysts is being deemed to be an environmentally friendly process. Herein, a highly active biomass-based solid acid catalyst (SiO2@Cs-SO3H) with renewable chitosan as raw material through sulfonation procedure under the relatively mild condition was successfully manufactured. The SiO2@Cs-SO3H catalyst was systematically characterized, especially with a large specific surface area (21.82 m2/g) and acidity (3.47 mmol/g). The catalytic activity of SiO2@Cs-SO3H was evaluated by esterification of oleic acid (OA) and methanol for biodiesel production. The best biodiesel yield was acquired by Response Surface Methodology (RSM). The optimized reaction conditions were temperature of 92°C, time of 4.1 h, catalyst dosage of 6.8 wt%, and methanol to OA molar ratio of 31.4, respectively. In this case, the optimal experimental biodiesel yield was found to be 98.2%, which was close to that of the predicted value of 98.4%, indicating the good reliability of RSM employed in this study. Furthermore, SiO2@Cs-SO3H also exhibited good reusability in terms of five consecutive recycles with 87.0% biodiesel yield. As such, SiO2@Cs-SO3H can be considered and used as a bio-based sustainable catalyst of high-efficiency for biodiesel production.
Collapse
Affiliation(s)
- Songdang Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research and Development of Fine Chemicals, Ministry of Education, Guizhou University, Guiyang, China
| | - Hu Pan
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Jinshu Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research and Development of Fine Chemicals, Ministry of Education, Guizhou University, Guiyang, China
| | - Yuncong Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research and Development of Fine Chemicals, Ministry of Education, Guizhou University, Guiyang, China
| | - Heng Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research and Development of Fine Chemicals, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
21
|
Geopolymer catalysts derived from palm oil mill ash for biodiesel production from Calophyllum inophyllum oil. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02180-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Vlnieska V, Muniz AS, Oliveira ARS, César-Oliveira MAF, Kunka D. Synthesis and Chemical Functionalization of Pseudo-Homogeneous Catalysts for Biodiesel Production-Oligocat. Polymers (Basel) 2021; 14:19. [PMID: 35012043 PMCID: PMC8747319 DOI: 10.3390/polym14010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/07/2022] Open
Abstract
With the increase in global demand for biodiesel, first generation feedstock has drawn the attention of governmental institutions due to the correlation with large land farming areas. The second and third feedstock generations are greener feedstock sources, nevertheless, they require different catalytic conditions if compared with first generation feedstock. In this work, we present the synthesis and characterization of oligoesters matrices and their functionalization to act as a pseudo-homogeneous acid catalyst for biodiesel production, named Oligocat. The main advantage of Oligocat is given due to its reactional medium interaction. Initially, oligocat is a solid catalyst soluble in the alcoholic phase, acting as a homogeneous catalyst, providing better mass transfer of the catalytic groups to the reaction medium, and as the course of the reaction happens, Oligocat migrates to the glycerol phase, also providing the advantage of easy separation of the biodiesel. Oligocat was synthesized through polymerization of aromatic hydroxy acids, followed by a chemical functionalization applying the sulfonation technique. Characterization of the catalysts was carried out by infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). The synthesized oligomers presented 5357 g·mol-1 (Mw) and 3909 g·mol-1 (Mn), with a moderate thermal resistance of approximately 175 °C. By sulfonation reaction, it was possible to obtain a high content of sulphonic groups of nearly 70 mol%, which provided the catalytic activity to the oligomeric matrix. With the mentioned physical-chemical properties, Oligocat is chemically designed to convert second generation feedstock to biodiesel efficiently. Preliminary investigation using Oligocat for biodiesel production resulted in conversion rates higher than 96.5 wt.%.
Collapse
Affiliation(s)
- Vitor Vlnieska
- Federal University of Paraná (UFPR), Rua Coronel Francisco Heráclito dos Santos, 100, Jardim das Américas, Curitiba 81531-980, PR, Brazil; (A.S.M.); (A.R.S.O.); (M.A.F.C.-O.)
- EMPA—Swiss Federal Laboratories for Materials Science & Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Aline S. Muniz
- Federal University of Paraná (UFPR), Rua Coronel Francisco Heráclito dos Santos, 100, Jardim das Américas, Curitiba 81531-980, PR, Brazil; (A.S.M.); (A.R.S.O.); (M.A.F.C.-O.)
| | - Angelo R. S. Oliveira
- Federal University of Paraná (UFPR), Rua Coronel Francisco Heráclito dos Santos, 100, Jardim das Américas, Curitiba 81531-980, PR, Brazil; (A.S.M.); (A.R.S.O.); (M.A.F.C.-O.)
| | - Maria A. F. César-Oliveira
- Federal University of Paraná (UFPR), Rua Coronel Francisco Heráclito dos Santos, 100, Jardim das Américas, Curitiba 81531-980, PR, Brazil; (A.S.M.); (A.R.S.O.); (M.A.F.C.-O.)
| | - Danays Kunka
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;
| |
Collapse
|
23
|
Reetz MT, König G. n
‐Butanol: An Ecologically and Economically Viable Extraction Solvent for Isolating Polar Products from Aqueous Solutions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin China
| | - Gerhard König
- Centre for Enzyme Innovation University of Portsmouth St Michael's Building Portsmouth PO1 2DT United Kingdom
| |
Collapse
|
24
|
Zaman F, Ishaq MW, Ul‐Haq N, Rahman WU, Ali MM, Ahmed F, Haq AU. Effect of Different Parameters on Catalytic Production of Biodiesel from Different Oils. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fakhar Zaman
- Beijing University of Chemical Technology Beijing Laboratory of Biomedical Materials 100029 Beijing China
| | - Muhammad Waqas Ishaq
- University of Science and Technology of China Department of Chemical Physics 230026 Hefei Anhui China
| | - Noaman Ul‐Haq
- COMSATS University Islamabad Department of Chemical Engineering Lahore Campus Lahore Pakistan
| | - Wajeeh Ur Rahman
- COMSATS University Islamabad Department of Chemical Engineering Lahore Campus Lahore Pakistan
| | - M. Muzaffar Ali
- COMSATS University Islamabad Department of Chemical Engineering Lahore Campus Lahore Pakistan
| | - Faisal Ahmed
- COMSATS University Islamabad Department of Chemical Engineering Lahore Campus Lahore Pakistan
| | - Anwar ul Haq
- Riphah International University Department of Basic Sciences I-14 Campus 44000 Islamabad Pakistan
| |
Collapse
|
25
|
Fernández A, Longo MA, Deive FJ, Álvarez MS, Rodríguez A. Effective lipase extraction: Designing a natural liquid support for immobilization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Bento HBS, Reis CER, Pinto PA, Cortez DV, Vilas Bôas RN, Costa-Silva TA, Carvalho AKF, de Castro HF. Continuous Synthesis of Biodiesel from Outstanding Kernel Oil in a Packed Bed Reactor Using Burkholderia cepacia Lipase Immobilized on Magnetic Nanosupport. Catal Letters 2021. [DOI: 10.1007/s10562-021-03826-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Jayakumar M, Karmegam N, Gundupalli MP, Bizuneh Gebeyehu K, Tessema Asfaw B, Chang SW, Ravindran B, Kumar Awasthi M. Heterogeneous base catalysts: Synthesis and application for biodiesel production - A review. BIORESOURCE TECHNOLOGY 2021; 331:125054. [PMID: 33832828 DOI: 10.1016/j.biortech.2021.125054] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Recently, much research has been carried out to find a suitable catalyst for the transesterification process during biodiesel production where heterogeneous catalysts play a crucial role. As homogenous catalysts present drawbacks such as slow reaction rate, high-cost due to the use of food grade oils, problems associated with separation process, and environmental pollution, heterogenous catalysts are more preferred. Animal shells and bones are the biowastes suitably calcined for the synthesis of heterogenous base catalyst. The catalysts synthesized using organic wastes are environmentally friendly, and cost-effective. The present review is dedicated to synthesis of heterogeneous basic catalysts from the natural resources or biowastes in biodiesel production through transesterification of oils. Use of calcined catalysts for converting potential feedstocks (vegetable oils and animal fat) into biodiesel/FAME is effective and safe, and the yield could be improved over 98%. There is a vast scope for biowaste-derived catalysts in green production of biofuel.
Collapse
Affiliation(s)
- Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem-636007, Tamil Nadu, India
| | - Marttin Paulraj Gundupalli
- The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut's University of Technology North Bangkok, Bangsue, Bangkok 10800, Thailand
| | - Kaleab Bizuneh Gebeyehu
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Belete Tessema Asfaw
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea; Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
28
|
Catalyst derived from wastes for biofuel production: a critical review and patent landscape analysis. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01948-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Abstract
For the first time, secondary steel slag, the material directly coming from ladle treatments, is used as a catalyst for the biodiesel production without undergoing any preliminary chemical or thermal modifications. Catalytic material 1, which has been pre-ground to sizes below 230 mesh, has been characterized for the surface textural properties and used as a catalyst in the transesterification of triglycerides of soybean oil to produce biodiesel. Reaction conditions were optimized by DOE method, revealing no interdependence between reaction parameters and results, and showed a catalytic activity comparable with that of an analogous slag-deriving catalyst reported in the literature.
Collapse
|
30
|
Mohamed A, Sanchez EPV, Bogdanova E, Bergfeldt B, Mahmood A, Ostvald RV, Hashem T. Efficient Fluoride Removal from Aqueous Solution Using Zirconium-Based Composite Nanofiber Membranes. MEMBRANES 2021; 11:147. [PMID: 33672530 PMCID: PMC7923772 DOI: 10.3390/membranes11020147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022]
Abstract
Herein, composite nanofiber membranes (CNMs) derived from UiO-66 and UiO-66-NH2 Zr-metal-organic frameworks (MOFs) were successfully prepared, and they exhibited high performance in adsorptive fluoride removal from aqueous media. The resultant CNMs were confirmed using different techniques, such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and Brunauer-Emmett-Teller (BET) in addition to Fourier-transform infrared spectroscopy (FTIR). The parameters that govern the fluoride adsorption were evaluated, including adsorbent dose, contact time, and pH value, in addition to initial concentration. The crystalline structures of CNMs exhibited high hydrothermal stability and remained intact after fluoride adsorption. It could also be observed that the adsorbent dose has a significant effect on fluoride removal at high alkaline values. The results show that UiO-66-NH2 CNM exhibited high fluoride removal due to electrostatic interactions that strongly existed between F- and metal sites in MOF in addition to hydrogen bonds formed with MOF amino groups. The fluoride removal efficiency reached 95% under optimal conditions of 20 mg L-1, pH of 8, and 40% adsorbent dose at 60 min. The results revealed that UiO-66-NH2 CNM possesses a high maximum adsorption capacity (95 mg L-1) over UiO-66 CNM (75 mg L-1), which exhibited better fitting with the pseudo-second-order model. Moreover, when the initial fluoride concentration increased from 20 to 100 mg/L, fluoride adsorption decreased by 57% (UiO-66 CNM) and 30% (UiO-66-NH2 CNM) after 60 min. After three cycles, CNM revealed the regeneration ability, demonstrating that UiO-66-NH2 CNMs are auspicious adsorbents for fluoride from an aqueous medium.
Collapse
Affiliation(s)
- Alaa Mohamed
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (E.P.V.S.); (A.M.)
- Egypt Nanotechnology Center, EGNC, Cairo University, Giza 12613, Egypt
| | - Elvia P. Valadez Sanchez
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (E.P.V.S.); (A.M.)
| | - Evgenia Bogdanova
- School of Nuclear Science and Engineering, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; (E.B.); (R.V.O.)
| | - Britta Bergfeldt
- Institute for Technical Chemistry (ITC), Karlsruhe Institute for Technology (KIT), Hermann-von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;
| | - Ammar Mahmood
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (E.P.V.S.); (A.M.)
| | - Roman V. Ostvald
- School of Nuclear Science and Engineering, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; (E.B.); (R.V.O.)
| | - Tawheed Hashem
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (E.P.V.S.); (A.M.)
- International X-ray Optics Lab, Institute of Physics and Technology, National Research Tomsk Polytechnic University (TPU), 30 Lenin Ave., 634050 Tomsk, Russia
| |
Collapse
|