1
|
Siddiqui AJ, Patel M, Jahan S, Abdelgadir A, Alam MJ, Alshahrani MM, Alturaiki W, Sachidanandan M, Khan A, Badraoui R, Adnan M. Silver Nanoparticles Derived from Probiotic Lactobacillus casei-a Novel Approach for Combating Bacterial Infections and Cancer. Probiotics Antimicrob Proteins 2025; 17:1277-1294. [PMID: 38085438 DOI: 10.1007/s12602-023-10201-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 05/07/2025]
Abstract
In the face of rising antibiotic resistance and the need for novel therapeutic approaches against cancer, the present study delves into the various facets of biosynthesized silver nanoparticles (AgNPs) derived from the probiotic strain Lactobacillus casei (AgNPs-LC), assessing their efficacy in combating bacterial infections, disrupting biofilm formation, interfering with quorum sensing mechanisms, and exhibiting anti-cancer properties. The results showed that the AgNPs-LC had a spherical shape with an average size of 15 nm. The biosynthesized AgNPs-LC showed a symmetrical absorption spectrum with a peak at 458 nm with a diameter of 5-20 nm. AgNPs-LC exhibited significant antibacterial activity against Gram-positive and Gram-negative bacteria and inhibited the biofilm formation (> 50% at sub-MIC) and quorum sensing-mediated virulence factors, such as the production of violacein in C. violaceum (> 80% at sub-MIC), pyocyanin in P. aeruginosa (> 70% at sub-MIC), and prodigiosin in S. marcescens (> 80% at sub-MIC). The exopolysaccharides (EPS) were also found to reduce in the presence of AgNPs-LC. Furthermore, the AgNPs-LC showed anti-cancer and anti-metastasis activity via inhibiting cell migration and invasion of human lung cancer (A-549) cells. Overall, the present study brings out the multifaceted therapeutic capabilities of AgNPs-LC which offer exciting prospects for the development of innovative biomedical and pharmaceutical interventions, making AgNPs-LC a versatile and promising candidate for a wide range of applications in healthcare and medicine. However, further research is essential to fully harness their therapeutic potential.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia.
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, 11952, Saudi Arabia
| | - Abdelmushin Abdelgadir
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mohammad Jahoor Alam
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran, 61441, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, 11952, Saudi Arabia
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Andleeb Khan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, 22602, India
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, 1017 La Rabta, Tunis, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| |
Collapse
|
2
|
Gelaye Y, Luo H. Green-Synthesized Nanomaterials for Aflatoxin Mitigation: A Review. Nanotechnol Sci Appl 2025; 18:211-223. [PMID: 40357523 PMCID: PMC12067452 DOI: 10.2147/nsa.s520121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
Aflatoxin contamination poses a significant challenge to global food safety, public health, and agricultural sustainability. Traditional methods for mitigating aflatoxins, such as chemical and physical detoxification techniques, often raise concerns about environmental harm, nutrient loss, and potential toxicity. In contrast, green-synthesized nanomaterials have emerged as an environmentally friendly and effective solution for controlling aflatoxins. This study explores the potential of green-synthesized nanomaterials for aflatoxin mitigation, focusing on their mechanisms of action, effectiveness, and long-term applicability in agricultural and food safety contexts. A comprehensive review of 116 articles on the latest developments in green nanotechnology was used, focusing on the creation, characterization, and application of nanoparticles, including silver, zinc oxide, titanium dioxide, and iron-based nanomaterials. Green nanoparticles reduce aflatoxin load primarily through their antioxidant properties, which neutralize oxidative stress, and their high adsorption capacity, which binds aflatoxins and reduces their bioavailability. Photocatalytic degradation, adsorption, and enzymatic detoxification were also evaluated. The results indicate that green-synthesized nanoparticles exhibit high efficacy, biocompatibility, and minimal environmental impact, especially when compared to traditional detoxification methods. However, challenges such as nanoparticle stability, large-scale production, regulatory issues, and potential long-term toxicity still require further investigation. To advance this field, future studies should focus on refining green synthesis processes, enhancing nanoparticle stability, and exploring the integration of nanotechnology with biosensors and smart packaging for real-time aflatoxin monitoring. By advancing these sustainable technologies, this research aims to contribute to the development of effective and safe methods for aflatoxin mitigation, thereby supporting global food security, public health, and environmental sustainability.
Collapse
Affiliation(s)
- Yohannes Gelaye
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, People’s Republic of China
- Department of Horticulture, College of Agriculture and Natural Resources, Debre Markos University, Debre Markos, Ethiopia
| | - Huaiyong Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, People’s Republic of China
| |
Collapse
|
3
|
Nadeem M, Shakoor N, Adeel M, Azeem I, Zain M, Li Y, Zaheer U, Javed J, Khalid R, Zhang P, Lynch I, Rui Y. Environmental and safety aspects of nanotechnology in genetically modified crops for sustainable agriculture. PHYSIOLOGIA PLANTARUM 2025; 177:e70239. [PMID: 40313036 DOI: 10.1111/ppl.70239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 05/03/2025]
Abstract
The rising global demand for food poses a significant threat to environmental health through both biotic (e.g., pests, pathogens) and abiotic (e.g., drought, salinity) stresses. Therefore, the adoption of innovative strategies is essential to ensure the sustainability of agricultural practices and to enhance crop resilience against environmental challenges. This review investigates how the integration of nanotechnology with genetically modified (GM) crops can offer solutions to agricultural challenges by improving crop resilience and productivity. While genetic modification has faced limitations in achieving consistent results due to environmental variability and species-specific differences, nanotechnology has emerged as a transformative tool to enhance GM crop performance. In this study we critically explore the underlying mechanisms of combining nanotechnology with GM crops to enhance plant growth and development and their resilience against biotic and abiotic stresses. Furthermore, nanotechnology also play a crucial role in targeted gene delivery, precise genome editing, and controlled regulation of gene expression in GM plant cells. Overall, the emerging role of nanotechnology in GM crops is paving the way for innovative solutions in agriculture. By leveraging nanotechnology, researchers are exploring novel approaches to enhance productivity, combat plant diseases, and improve plant resilience to environmental stress for sustainable agriculture. Furthermore, in this review we also highlighted the environmental impacts and safety issues associated with using nanotechnology in crops in order to establish more resilient and sustainable farming practices.
Collapse
Affiliation(s)
- Muhammad Nadeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, PR China
| | - Noman Shakoor
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, P. R. China
| | - Imran Azeem
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Muhammad Zain
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, PR China
| | - Usama Zaheer
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, PR China
| | - Jazib Javed
- Wheat Genetics and Genomics Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, PR China
| | - Rabia Khalid
- Institute of Soil and Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, PR China
| |
Collapse
|
4
|
Zhang T, Xu Z, Xu Z, Ma Y, Niu Z, Chen J, Zhang M, Shi F. Progress on layered double hydroxides as green materials in sustainable agricultural production. ENVIRONMENTAL RESEARCH 2025; 271:121031. [PMID: 39922260 DOI: 10.1016/j.envres.2025.121031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
As the global population continues to grow, there is increasing demand for high-quality and high-yield food. However, traditional agrochemicals such as fertilizers and pesticides suffer from low utilization rates and can be hazardous to non-target organisms and the soil environment. Two-dimensional layered double hydroxides (LDHs) have attracted considerable attention in the agricultural sector owing to their excellent properties. To alleviate the general concern about the use of LDH materials in combination with agrochemicals, this paper presents a comprehensive overview of the structure, properties, preparation methods, and cytotoxicity of LDHs, with a focus on the advantages and disadvantages of different synthesis methods. In addition, the current research status of the application of LDHs as green materials in modern agricultural production is presented, and the applications of nano fertilizers for promoting crop growth, nano pesticides for efficient herbicide and insecticide, efficient adsorption of pollutants and soil heavy metal ions to maintain soil stability, and applications in genetic modification and enhancement of plant photosynthesis are discussed in detail. Finally, future research directions for LDH are envisioned. We hope that this study will promote the use of LDH materials in agricultural practices.
Collapse
Affiliation(s)
- Tongtong Zhang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Zhenghong Xu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Zhihua Xu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Yu Ma
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Zhihan Niu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jiaqi Chen
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Min Zhang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Feng Shi
- College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
5
|
Cheng Z, Yuan X, Cao X, Jia Z, Hao F, Chen J, Yue L, Wang Z. Preharvest and Postharvest Applications of Fe-Based Nanomaterials: A Potent Strategy for Improving Pepper Storage. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:497. [PMID: 40214542 PMCID: PMC11990499 DOI: 10.3390/nano15070497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025]
Abstract
Nanomaterials (NMs) hold significant potential for enhancing agricultural production, extending the shelf life, and maintaining the quality of postharvest vegetables and fruits. In this study, after foliar spraying with 1, 10, and 50 mg of L-1 Fe-P NMs at different stages (seedling, flowering, and fruit stage), the pepper plant growth was significantly improved. In particular, the foliar application of 10 mg of L-1 Fe-P NMs during the flowering stage was found to be an optimal cultivation approach to promote the growth, yield, and freshness of peppers. Compared with the control group, Fe-P NMs increased net photosynthetic rate, plant height, and fruit number by 132.7%, 40.4%, and 265.7%, respectively. The applied Fe-P NMs, at the flowering stage, altered the capsaicin metabolic pathway, upregulating the genes for the synthesis of total phenols, flavonoids, lignans, and capsaicinoids. Consequently, these metabolites, which are beneficial for maintaining the freshness of pepper fruits, were increased. Furthermore, Fe-P NMs at the flowering stage downregulated the abundance of rot-causing microorganisms (Enterobacter and Chryseobacterium) and upregulated beneficial microorganisms (Pseudomonas, Arthrobacter, Sphingobacterium, and Paenibacillus) to change the microbial community structure. This ultimately created a micro-ecological environment conducive to the preservation of pepper fruits. For comparison, during pepper fruit storage, dipping and spraying with Fe-P NM suspensions effectively delayed weight loss and enhanced the growth of beneficial bacteria. Nevertheless, the effect was less pronounced than preharvest foliar application. This study provides insights into the pre- or postharvest application of NMs for improving the preservation performance of pepper fruits.
Collapse
Affiliation(s)
- Zhuang Cheng
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Zhemin Jia
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Fang Hao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Jiayi Chen
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| |
Collapse
|
6
|
Raza MAS, Muhammad F, Farooq M, Aslam MU, Akhter N, Toleikienė M, Binobead MA, Ali MA, Rizwan M, Iqbal R. ZnO-nanoparticles and stage-based drought tolerance in wheat (Triticum aestivum L.): effect on morpho-physiology, nutrients uptake, grain yield and quality. Sci Rep 2025; 15:5309. [PMID: 39939384 PMCID: PMC11822009 DOI: 10.1038/s41598-025-89718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/07/2025] [Indexed: 02/14/2025] Open
Abstract
Drought-stressed and zinc-deficient soils are major contributors to reduced wheat yields and low-quality grains, especially in semi-arid regions of the world. Zinc-oxide nanoparticles (ZnO-NPs) are adept enough to avoid these losses if applied under the right dose at the right growth stage of many crops including wheat (Triticum aestivum L.). Therefore, a pot experiment was conducted with four levels of ZnO-NPs (0, 50, 100 and 150 ppm), and drought imposed at tillering (D1) and grain filling (D2) stages, considering normal irrigation as control (D0), to explore interactive effects of ZnO-NPs and drought episodes on growth, eco-physiology, yield, and grain quality of wheat. The results depicted dose and growth stage-dependent variations in all recorded parameters. ZnO-NPs (150 ppm) significantly increased the number of grains (12.5%), grain weight (12.4%), total yield (25.5%), and zinc contents (58.6%) when the crop was exposed to drought stress at tillering stage, compared to the control treatment. Likewise, drought at grain filling stage with ZnO-NPs (150 ppm) significantly enhanced plant height, spike length, biomass, zinc contents, and grain protein by 15.5%, 3.2%, 16.7%, 100.0%, and 53.8%, respectively, when compared with control treatment. Thus, ZnO-NPs emerged as a potential drought alleviator and yield-oriented safe nano-fertilizer for wheat in semi-arid regions facing irrigation challenges.
Collapse
Affiliation(s)
- Muhammad Aown Sammar Raza
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Faqeer Muhammad
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Farooq
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Muhammad Usman Aslam
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Naseem Akhter
- Department of Chemistry, Government Sadiq College Women University, Bahawalpur, 63100, Pakistan
| | - Monika Toleikienė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituo Al. 1, LT- 58344, Akademija, Kedainiai, Lithuania
| | - Manal Abdulaziz Binobead
- Department of Food Science and Nutrition, College of Agriculture Food Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Rizwan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| |
Collapse
|
7
|
Zhou X, El-Sappah AH, Khaskhoussi A, Huang Q, Atif AM, Elhamid MAA, Ihtisham M, El-Maati MFA, Soaud SA, Tahri W. Nanoparticles: a promising tool against environmental stress in plants. FRONTIERS IN PLANT SCIENCE 2025; 15:1509047. [PMID: 39931338 PMCID: PMC11808028 DOI: 10.3389/fpls.2024.1509047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025]
Abstract
With a focus on plant tolerance to environmental challenges, nanotechnology has emerged as a potent instrument for assisting crops and boosting agricultural production in the face of a growing worldwide population. Nanoparticles (NPs) and plant systems may interact molecularly to change stress response, growth, and development. NPs may feed nutrients to plants, prevent plant diseases and pathogens, and detect and monitor trace components in soil by absorbing their signals. More excellent knowledge of the processes of NPs that help plants survive various stressors would aid in creating more long-term strategies to combat these challenges. Despite the many studies on NPs' use in agriculture, we reviewed the various types of NPs and their anticipated molecular and metabolic effects upon entering plant cells. In addition, we discussed different applications of NPs against all environmental stresses. Lastly, we introduced agricultural NPs' risks, difficulties, and prospects.
Collapse
Affiliation(s)
- Xu Zhou
- International Faculty of Applied Technology, Yibin University, Yibin, Sichuan, China
| | - Ahmed H. El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Amani Khaskhoussi
- Key Laboratory for Green and Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Amr M. Atif
- Department of Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Muhammad Ihtisham
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Mohamed F. Abo El-Maati
- Agriculture Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Salma A. Soaud
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Walid Tahri
- International Faculty of Applied Technology, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
8
|
Alam MW, Junaid PM, Gulzar Y, Abebe B, Awad M, Quazi SA. Advancing agriculture with functional NM: "pathways to sustainable and smart farming technologies". DISCOVER NANO 2024; 19:197. [PMID: 39636344 PMCID: PMC11621287 DOI: 10.1186/s11671-024-04144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
The integration of nanotechnology in agriculture offers a transformative approach to improving crop yields, resource efficiency, and ecological sustainability. This review highlights the application of functional NM, such as nano-formulated agrochemicals, nanosensors, and slow-release fertilizers, which enhance the effectiveness of fertilizers and pesticides while minimizing environmental impacts. By leveraging the unique properties of NM, agricultural practices can achieve better nutrient absorption, reduced chemical runoff, and improved water conservation. Innovations like nano-priming can enhance seed germination and drought resilience, while nanosensors enable precise monitoring of soil and crop health. Despite the promising commercial potential, significant challenges persist regarding the safety, ecological impact, and regulatory frameworks for nanomaterial use. This review emphasizes the need for comprehensive safety assessments and standardized risk evaluation protocols to ensure the responsible implementation of nanotechnology in agriculture.
Collapse
Affiliation(s)
- Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, 31982, Al-Ahsa, Saudi Arabia.
| | - Pir Mohammad Junaid
- Department of Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Yonis Gulzar
- Department of Management Information Systems, College of Business Administration, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
| | - Buzuayehu Abebe
- Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, P.O. Box: 1888, Adama, Ethiopia.
| | - Mohammed Awad
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, ON, Canada
| | - S A Quazi
- Bapumiya Sirajoddin Patel Arts, Commerce and Science College, Pimpalgaon Kale, Jalgaon Jamod Dist, Buldhana, Maharashtra, India
| |
Collapse
|
9
|
Wang C, Jiang Y, He K, Wāng Y. Eco-friendly synthesis of silver nanoparticles against mosquitoes: Pesticidal impact and indispensable biosafety assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176006. [PMID: 39241875 DOI: 10.1016/j.scitotenv.2024.176006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The emergence of nanotechnology has opened new avenues for enhancing pest control strategies through the development of nanopesticides. Green-fabricated nanoparticles, while promising due to their eco-friendly synthesis methods, may still pose risks to biodiversity and ecosystem stability. The potential toxic effects of nanomaterials on ecosystems and human health raise important questions about their real-world application. Understanding the dose-response relationships of nanopesticides, both in terms of pest control efficacy and non-target organism safety, is crucial for ensuring their sustainable use in agricultural settings. This review delves into the complexities of silver nanopesticides, exploring their interactions with arthropod species, modes of action, and underlying mechanisms of toxicity. It discusses critical issues concerning the emergence of silver nanopesticides, spanning their mosquitocidal efficacy to environmental impact and safety considerations. While nano‑silver has shown promise in targeting insect pests, there is a lack of systematic research comparing its effects on different arthropod subclasses. Moreover, factors influencing nanotoxicity, such as nanoparticle size, charge, and surface chemistry, require further investigation to optimize the design of eco-safe nanoparticles for pest control. By elucidating the mechanisms by which nanoparticles interact with pests and non-target organisms, we can enhance the specificity and effectiveness of nanopesticides while minimizing unintended ecological consequences.
Collapse
Affiliation(s)
- Chunzhi Wang
- Department of Urology, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University; School of Public Health, Anhui Medical University, Hefei, Anhui 230601, China
| | - Yang Jiang
- Department of Urology, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University; School of Public Health, Anhui Medical University, Hefei, Anhui 230601, China
| | - Keyu He
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Blood Transfusion Department, Clinical Laboratory, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yán Wāng
- Department of Urology, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University; School of Public Health, Anhui Medical University, Hefei, Anhui 230601, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
10
|
Abdelgadir A, Adnan M, Patel M, Saxena J, Alam MJ, Alshahrani MM, Singh R, Sachidanandan M, Badraoui R, Siddiqui AJ. Probiotic Lactobacillus salivarius mediated synthesis of silver nanoparticles (AgNPs-LS): A sustainable approach and multifaceted biomedical application. Heliyon 2024; 10:e37987. [PMID: 39347420 PMCID: PMC11437860 DOI: 10.1016/j.heliyon.2024.e37987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Biogenic synthesis of silver nanoparticles (AgNPs) has emerged as an eco-friendly and sustainable approach with diverse biological applications. This study presents synthesis of AgNPs-LS using a probiotic strain Lactobacillus salivarius (L. salivarius) and explores their multifaceted biological activities, including antibacterial, antibiofilm, anti-quorum sensing, antifungal, antioxidant, anticancer, anticoagulant and thrombolytic properties. The biosynthesis of AgNPs-LS was successfully achieved using L. salivarius cell free supernatants, resulting in well-characterized nanoparticles as confirmed by UV-Vis spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS) and zeta potential analysis. The AgNPs-LS demonstrated potent antibacterial activity against different pathogenic bacteria (C. violaceum, P. aeruginosa, S. aureus, E. coli and S. marcescens), emphasizing their potential in combating bacterial infections. Moreover, these AgNPs-LS were effective in inhibiting biofilm formation (>60 % at 1/2 MIC), a key mechanism of bacterial virulence, highlighting their utility in preventing biofilm-related infections. AgNPs-LS exhibited anti-quorum sensing activity, disrupting bacterial communication systems and potentially reducing virulence factor such as, violacein production in C. violaceum, pyocyanin production in P. aeruginosa and prodigiosin production in S. marcescens. Additionally, AgNPs-LS also exhibited notable antifungal activity towards a different pathogenic fungus (F. proliferatum, P. purpurogenum, A. niger and R. stolonifer). In terms of health applications, the AgNPs-LS displayed significant antioxidant activity, effectively scavenging DPPH• (IC50 = 42.65 μg/mL) and ABTS•+ (IC50 = 53.77 μg/mL) free radicals. Furthermore, AgNPs-LS showed cytotoxicity against breast cancer cells (MCF-7) (IC50 = 52.29 μg/mL), positioning them as promising candidates for cancer therapy. Moreover, AgNPs-LS were also shown promising anticoagulant and thrombolytic activities under practical conditions. Therefore, the biogenic synthesis of AgNPs-LS using L. salivarius offers a sustainable and cost-effective route for producing AgNPs with an array of biological activities. These AgNPs-LS have the potential to address various challenges in healthcare, ranging from antimicrobial, anticancer applications to biofilm inhibition, antioxidant therapy, anticoagulant and thrombolytic agents.
Collapse
Affiliation(s)
- Abdelmushin Abdelgadir
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Juhi Saxena
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara, 391760, India
| | - Mohammad Jahoor Alam
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran, 61441, Saudi Arabia
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail, P.O. Box 2440, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| |
Collapse
|
11
|
Özgören Can T, Aydin Y, Utkan G, Altınkut Uncuoğlu A. Green synthesis and characterization of Fe 2O 3, ZnO and TiO 2 nanoparticles and searching for their potential use as biofertilizer on sunflower. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1429-1447. [PMID: 39310700 PMCID: PMC11413282 DOI: 10.1007/s12298-024-01508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024]
Abstract
Nanoparticles, thanks to their superior properties such as large surface area and high reactivity, can be an alternative to traditional fertilizers for improving nutrient uptake. Furthermore, considering that chemical and physical synthesis methods require high energy consumption and cause environmental pollution, plant-mediated green synthesis of NPs has attracted great attention since it provides eco-friendly, biocompatible, and inexpensive solutions. In this present study, plant mediated green synthesis of Iron Oxide (Fe2O3), Zinc Oxide (ZnO) and Titanium Dioxide (TiO2) nanoparticles by using Laurus nobilis leaves (bay leaves) were carried out and their structural properties were characterized by UV visible spectra, Dynamic Light Scattering (DLS), Fourier Transform Infrared (FTIR), X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). UV spectrum and FTIR analysis exhibited characteristic peaks indicating the presence of the desired NPs, while DLS analysis and TEM images confirmed that synthesized particles are in nano-scale. The potential of nanoparticles as biofertilizer in agricultural uses were assessed by investigating their effects on sunflower growth in hydroponic system. TEM images of the NP applied plant tissues proved the uptake and translocation of NPs from root to leaf. Furthermore, Fe2O3, ZnO and TiO2 NP applications on sunflower up to 5 ppm generally improved physiological growth parameters such as root length, fresh weight and leaf surface area while 20 ppm of Fe2O3 and ZnO NPs application cause a significant decrease. Graphical abstract
Collapse
Affiliation(s)
- Tuğba Özgören Can
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Türkiye
| | - Yıldız Aydin
- Department of Biology, Faculty of Science, Marmara University, Istanbul, Türkiye
| | - Güldem Utkan
- SUNUM Nanotechnology Research Center, Sabanci University, Istanbul, Türkiye
| | - Ahu Altınkut Uncuoğlu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Türkiye
| |
Collapse
|
12
|
Francis DV, Abdalla AK, Mahakham W, Sarmah AK, Ahmed ZFR. Interaction of plants and metal nanoparticles: Exploring its molecular mechanisms for sustainable agriculture and crop improvement. ENVIRONMENT INTERNATIONAL 2024; 190:108859. [PMID: 38970982 DOI: 10.1016/j.envint.2024.108859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Metal nanoparticles offer promising prospects in agriculture, enhancing plant growth and ensuring food security. Silver, gold, copper, and zinc nanoparticles possess unique properties making them attractive for plant applications. Understanding molecular interactions between metal nanoparticles and plants is crucial for unlocking their potential to boost crop productivity and sustainability. This review explores metal nanoparticles in agriculture, emphasizing the need to understand these interactions. By elucidating mechanisms, it highlights the potential for enhancing crop productivity, stress tolerance, and nutrient-use efficiency, contributing to sustainable agriculture and food security. Quantifying benefits and risks reveal significant advantages. Metal nanoparticles enhance crop productivity by 20% on average and reduce disease incidence by up to 50% when used as antimicrobial agents. They also reduce nutrient leaching by 30% and enhance soil carbon sequestration by 15%, but concerns about toxicity, adverse effects on non-target organisms, and nanoparticle accumulation in the food chain must be addressed. Metal nanoparticles influence cellular processes including sensing, signaling, transcription, translation, and post-translational modifications. They act as signaling molecules, activate stress-responsive genes, enhance defense mechanisms, and improve nutrient uptake. The review explores their catalytic role in nutrient management, disease control, precision agriculture, nano-fertilizers, and nano-remediation. A bibliometric analysis offers insights into the current research landscape, highlighting trends, gaps, and future directions. In conclusion, metal nanoparticles hold potential for revolutionizing agriculture, enhancing productivity, mitigating environmental stressors, and promoting sustainability. Addressing risks and gaps is crucial for their safe integration into agricultural practices.
Collapse
Affiliation(s)
- Dali V Francis
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Abdelmoneim K Abdalla
- Food Science and Technology Department, College of Agriculture, South Valley University, Qena 83523, Egypt
| | - Wuttipong Mahakham
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Zienab F R Ahmed
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
13
|
Assunção LS, Ribeiro CDF, de Souza CO, Danielski R, Kumari S, Nunes IL, Shahidi F. Nanoencapsulation of hybrid crude palm oil Unaué HIE OxG with jackfruit by-products as encapsulants: A study of cellular antioxidant activity and cytotoxicity in Caco-2 cells. Food Chem 2024; 448:139009. [PMID: 38522297 DOI: 10.1016/j.foodchem.2024.139009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Hybrid crude palm oil (HCPO) HIE OxG is notable for its abundance of carotenoids, tocopherols, and tocotrienols. Investigating cellular antioxidant activity (CAA) and the non-cytotoxicity of oil nanoparticles is crucial for understanding the behavior of these phytochemicals in biological systems and ensuring the safety of products. Nanoparticles of HCPO, encapsulated with jackfruit by-products were produced and characterized for CAA and cytotoxicity in Caco-2 cells. The nanoparticles exhibited nanoscale diameters (<250 nm), uniform distribution and stability (polydispersity index < 0.25; zeta potential JSF-NP -12.46 ± 0.15 mV and JAF-NP -13.73 ± 1.28 mV). JSF-NP and JAF-NP demonstrated superior CAA compared to the free HCPO across all concentrations, without inducing cytotoxic effects on differentiated Caco-2 cells. This study underscores the importance of investigating the CAA of edible oil nanoparticles, with non-cytotoxicity indicating biological safety and the potential to safeguard intestinal epithelial cells. Thus, JSF-NP and JAF-NP emerge as promising delivery systems for future HCPO applications.
Collapse
Affiliation(s)
- Larissa Santos Assunção
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada; Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Rua Barão de Jeremoabo, 147, Ondina, Salvador, Bahia CEP: 40170-115, Brazil
| | - Camila Duarte Ferreira Ribeiro
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Rua Barão de Jeremoabo, 147, Ondina, Salvador, Bahia CEP: 40170-115, Brazil; Nutrition School, Federal University of Bahia, Basílio da Gama Street, -w/n-Campus Canela, Salvador, Bahia 40110-907, Brazil
| | - Carolina Oliveira de Souza
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Rua Barão de Jeremoabo, 147, Ondina, Salvador, Bahia CEP: 40170-115, Brazil
| | - Renan Danielski
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Sarika Kumari
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Itaciara Larroza Nunes
- Graduate Program in Food Science, Department of Food Science and Technology, Federal University of Santa Catarina, Admar Gonzaga Highway, 1346, Itacorubi, Florianópolis, Santa Catarina 88034-000, Brazil
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
14
|
Tolisano C, Priolo D, Brienza M, Puglia D, Del Buono D. Do Lignin Nanoparticles Pave the Way for a Sustainable Nanocircular Economy? Biostimulant Effect of Nanoscaled Lignin in Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1839. [PMID: 38999679 PMCID: PMC11243829 DOI: 10.3390/plants13131839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Agriculture has a significant environmental impact and is simultaneously called to major challenges, such as responding to the need to develop more sustainable cropping systems with higher productivity. In this context, the present study aimed to obtain lignin nanoparticles (LNs) from pomace, a waste product of the olive oil chain, to be used as a nanobiostimulant in tomato plants. The biostimulant effect of this biopolymer is known, but its reduction to nanometer size can emphasize this property. Tomato plants were subjected to different LN dosages (25, 50, and 100 mg L-1) by foliar application, and inductive effects on photosynthetic machinery, aerial and root biomass production, and root morphology were observed. The treated plants showed increased efficiency in catching and using light, while they reduced the fraction dissipated as heat or potentially toxic to cells for the possibility of creating reactive oxygen species (ROS). Finally, this benefit was matched by increased pigment content and a stimulatory action on the content of nitrogen (NBI) and antioxidant substances such as flavonoids. In conclusion, the present study broadens the horizon of substances with biostimulant action by demonstrating the validity and efficacy of nanobiostimulants obtained from biological residues from the olive oil production chain.
Collapse
Affiliation(s)
- Ciro Tolisano
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Dario Priolo
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Monica Brienza
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Debora Puglia
- Department of Civil and Environmental Engineering, University of Perugia, Strada di Pentima 5, 05100 Terni, Italy
| | - Daniele Del Buono
- Department of Civil and Environmental Engineering, University of Perugia, Strada di Pentima 5, 05100 Terni, Italy
| |
Collapse
|
15
|
Tripathi S, Tiwari K, Mahra S, Victoria J, Rana S, Tripathi DK, Sharma S. Nanoparticles and root traits: mineral nutrition, stress tolerance and interaction with rhizosphere microbiota. PLANTA 2024; 260:34. [PMID: 38922515 DOI: 10.1007/s00425-024-04409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 04/07/2024] [Indexed: 06/27/2024]
Abstract
MAIN CONCLUSION This review article highlights a broader perspective of NPs and plant-root interaction by focusing on their beneficial and deleterious impacts on root system architecture (RSA). The root performs a vital function by securing itself in the soil, absorbing and transporting water and nutrients to facilitate plant growth and productivity. In dicots, the architecture of the root system (RSA) is markedly shaped by the development of the primary root and its branches, showcasing considerable adaptability in response to changes in the environment. For promoting agriculture and combating global food hunger, the use of nanoparticles (NPs) may be an exciting option, for which it is essential to understand the behaviour of plants under NPs exposure. The nature of NPs and their physicochemical characteristics play a significant role in the positive/negative response of roots and shoots. Root morphological features, such as root length, root mass and root development features, may regulated positively/negatively by different types of NPs. In addition, application of NPs may also enhance nutrient transport and soil fertility by the promotion of soil microorganisms including plant growth-promoting rhizobacteria (PGPRs) and also soil enzymes. Interestingly the interaction of nanomaterials (NMs) with rhizospheric bacteria can enhance plant development and soil health. However, some studies also suggested that the increased use of several types of engineered nanoparticles (ENPs) may disrupt the equilibrium of the soil-root interface and unsafe morphogenesis by causing the browning of roots and suppressing the growth of root and soil microbes. Thus, this review article has sought to compile a broader perspective of NPs and plant-root interaction by focusing on their beneficial or deleterious impacts on RSA.
Collapse
Affiliation(s)
- Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Kavita Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shivani Mahra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - J Victoria
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shweta Rana
- Departments of Physical and Natural Sciences, FLAME University, Pune, India
| | - Durgesh Kumar Tripathi
- Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India.
| |
Collapse
|
16
|
Wahab A, Muhammad M, Ullah S, Abdi G, Shah GM, Zaman W, Ayaz A. Agriculture and environmental management through nanotechnology: Eco-friendly nanomaterial synthesis for soil-plant systems, food safety, and sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171862. [PMID: 38527538 DOI: 10.1016/j.scitotenv.2024.171862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Through the advancement of nanotechnology, agricultural and food systems are undergoing strategic enhancements, offering innovative solutions to complex problems. This scholarly essay thoroughly examines nanotechnological innovations and their implications within these critical industries. Traditional practices are undergoing radical transformation as nanomaterials emerge as novel agents in roles traditionally filled by fertilizers, pesticides, and biosensors. Micronutrient management and preservation techniques are further enhanced, indicating a shift towards more nutrient-dense and longevity-oriented food production. Nanoparticles (NPs), with their unique physicochemical properties, such as an extraordinary surface-to-volume ratio, find applications in healthcare, diagnostics, agriculture, and other fields. However, concerns about their potential overuse and bioaccumulation raise unanswered questions about their health effects. Molecule-to-molecule interactions and physicochemical dynamics create pathways through which nanoparticles cause toxicity. The combination of nanotechnology and environmental sustainability principles leads to the examination of green nanoparticle synthesis. The discourse extends to how nanomaterials penetrate biological systems, their applications, toxicological effects, and dissemination routes. Additionally, this examination delves into the ecological consequences of nanomaterial contamination in natural ecosystems. Employing robust risk assessment methodologies, including the risk allocation framework, is recommended to address potential dangers associated with nanotechnology integration. Establishing standardized, universally accepted guidelines for evaluating nanomaterial toxicity and protocols for nano-waste disposal is urged to ensure responsible stewardship of this transformative technology. In conclusion, the article summarizes global trends, persistent challenges, and emerging regulatory strategies shaping nanotechnology in agriculture and food science. Sustained, in-depth research is crucial to fully benefit from nanotechnology prospects for sustainable agriculture and food systems.
Collapse
Affiliation(s)
- Abdul Wahab
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Murad Muhammad
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, China
| | - Shahid Ullah
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran
| | | | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
17
|
Qian J, Shan R, Shi Y, Li H, Xue L, Song Y, Zhao T, Zhu S, Chen J, Jiang M. Zinc Oxide Nanoparticles Alleviate Salt Stress in Cotton ( Gossypium hirsutum L.) by Adjusting Na +/K + Ratio and Antioxidative Ability. Life (Basel) 2024; 14:595. [PMID: 38792616 PMCID: PMC11121869 DOI: 10.3390/life14050595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Soil salinization poses a threat to the sustainability of agricultural production and has become a global issue. Cotton is an important cash crop and plays an important role in economic development. Salt stress has been harming the yield and quality of many crops, including cotton, for many years. In recent years, soil salinization has been increasing. It is crucial to study the mechanism of cotton salt tolerance and explore diversified materials and methods to alleviate the salt stress of cotton for the development of the cotton industry. Nanoparticles (NPs) are an effective means to alleviate salt stress. In this study, zinc oxide NPs (ZnO NPs) were sprayed on cotton leaves with the aim of investigating the intrinsic mechanism of NPs to alleviate salt stress in cotton. The results show that the foliar spraying of ZnO NPs significantly alleviated the negative effects of salt stress on hydroponic cotton seedlings, including the improvement of above-ground and root dry and fresh weight, leaf area, seedling height, and stem diameter. In addition, ZnO NPs can significantly improve the salt-induced oxidative stress by reducing the levels of MDA, H2O2, and O2- and increasing the activities of major antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Furthermore, RNA-seq showed that the foliar spraying of ZnO NPs could induce the expressions of CNGC, NHX2, AHA3, HAK17, and other genes, and reduce the expression of SKOR, combined with the CBL-CIPK pathway, which alleviated the toxic effect of excessive Na+ and reduced the loss of excessive K+ so that the Na+/K+ ratio was stabilized. In summary, our results indicate that the foliar application of ZnO NPs can alleviate high salt stress in cotton by adjusting the Na+/K+ ratio and regulating antioxidative ability. This provides a new strategy for alleviating the salt stress of cotton and other crops, which is conducive to the development of agriculture.
Collapse
Affiliation(s)
- Jiajie Qian
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China; (J.Q.); (R.S.); (Y.S.); (Y.S.); (T.Z.); (S.Z.)
- College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.L.); (L.X.)
| | - Ren Shan
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China; (J.Q.); (R.S.); (Y.S.); (Y.S.); (T.Z.); (S.Z.)
- College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.L.); (L.X.)
| | - Yiqi Shi
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China; (J.Q.); (R.S.); (Y.S.); (Y.S.); (T.Z.); (S.Z.)
- College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.L.); (L.X.)
| | - Huazu Li
- College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.L.); (L.X.)
| | - Longshuo Xue
- College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.L.); (L.X.)
| | - Yue Song
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China; (J.Q.); (R.S.); (Y.S.); (Y.S.); (T.Z.); (S.Z.)
- College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.L.); (L.X.)
| | - Tianlun Zhao
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China; (J.Q.); (R.S.); (Y.S.); (Y.S.); (T.Z.); (S.Z.)
- College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.L.); (L.X.)
| | - Shuijin Zhu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China; (J.Q.); (R.S.); (Y.S.); (Y.S.); (T.Z.); (S.Z.)
- College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.L.); (L.X.)
| | - Jinhong Chen
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China; (J.Q.); (R.S.); (Y.S.); (Y.S.); (T.Z.); (S.Z.)
- College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.L.); (L.X.)
| | - Meng Jiang
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China; (J.Q.); (R.S.); (Y.S.); (Y.S.); (T.Z.); (S.Z.)
- College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.L.); (L.X.)
| |
Collapse
|
18
|
Xing YY, Pu XM, Pan JF, Xu JY, Liu C, Lu DC. From antioxidant defense to genotoxicity: Deciphering the tissue-specific impact of AgNPs on marine clam Ruditapes philippinarum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106883. [PMID: 38503038 DOI: 10.1016/j.aquatox.2024.106883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
The escalating use of silver nanoparticles (AgNPs) across various sectors for their broad-spectrum antimicrobial capabilities, has raised concern over their potential ecotoxicological effects on aquatic life. This study explores the impact of AgNPs (50 μg/L) on the marine clam Ruditapes philippinarum, with a particular focus on its gills and digestive glands. We adopted an integrated approach that combined in vivo exposure, biochemical assays, and transcriptomic analysis to evaluate the toxicity of AgNPs. The results revealed substantial accumulation of AgNPs in the gills and digestive glands of R. philippinarum, resulting in oxidative stress and DNA damage, with the gills showing more severe oxidative damage. Transcriptomic analysis further highlights an adaptive up-regulation of peroxisome-related genes in the gills responding to AgNP-induxed oxidative stress. Additionally, there was a noteworthy enrichment of differentially expressed genes (DEGs) in key biological processes, including ion binding, NF-kappa B signaling and cytochrome P450-mediated metabolism of xenobiotics. These insights elucidate the toxicological mechanisms of AgNPs to R. philippinarum, emphasizing the gill as a potential sensitive organ for monitoring emerging nanopollutants. Overall, this study significantly advances our understanding of the mechanisms driving nanoparticle-induced stress responses in bivalves and lays the groundwork for future investigations into preventing and treating such pollutants in aquaculture.
Collapse
Affiliation(s)
- Yang-Yang Xing
- Key Laboratory of Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao, Shandong 266100, PR China; Research Center of Marine Ecology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong 266061, PR China
| | - Xin-Ming Pu
- Research Center of Marine Ecology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong 266061, PR China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, Shandong 266200, PR China.
| | - Jin-Fen Pan
- Key Laboratory of Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao, Shandong 266100, PR China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, Shandong 266200, PR China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, PR China.
| | - Jia-Yin Xu
- Key Laboratory of Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao, Shandong 266100, PR China; Research Center of Marine Ecology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong 266061, PR China
| | - Chen Liu
- Key Laboratory of Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao, Shandong 266100, PR China; Research Center of Marine Ecology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong 266061, PR China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, PR China
| | - De-Chi Lu
- Key Laboratory of Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao, Shandong 266100, PR China; Research Center of Marine Ecology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong 266061, PR China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, PR China
| |
Collapse
|
19
|
Bhatt S, Pathak R, Punetha VD, Punetha M. Chitosan nanocomposites as a nano-bio tool in phytopathogen control. Carbohydr Polym 2024; 331:121858. [PMID: 38388036 DOI: 10.1016/j.carbpol.2024.121858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/06/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
Chitosan, an economically viable and versatile biopolymer, exhibits a wide array of advantageous physicochemical and biological properties. Chitosan nanocomposites, formed by the amalgamation of chitosan or chitosan nanoparticles with other nanoparticles or materials, have garnered extensive attention across agricultural, pharmaceutical, and biomedical domains. These nanocomposites have been rigorously investigated due to their diverse applications, notably in combatting plant pathogens. Their remarkable efficacy against phytopathogens has positioned them as a promising alternative to conventional chemical-based methods in phytopathogen control, thus exploring interest in sustainable agricultural practices with reduced reliance on chemical interventions. This review aims to highlight the anti-phytopathogenic activity of chitosan nanocomposites, emphasizing their potential in mitigating plant diseases. Additionally, it explores various synthesis methods for chitosan nanoparticles to enhance readers' understanding. Furthermore, the analysis delves into elucidating the intricate mechanisms governing the antimicrobial effectiveness of these composites against bacterial and fungal phytopathogens.
Collapse
Affiliation(s)
- Shalini Bhatt
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, Surat 394125, Gujarat, India.
| | - Rakshit Pathak
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, Surat 394125, Gujarat, India
| | - Vinay Deep Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, Surat 394125, Gujarat, India
| | - Mayank Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, Surat 394125, Gujarat, India
| |
Collapse
|
20
|
Rahman S, Sadaf S, Hoque ME, Mishra A, Mubarak NM, Malafaia G, Singh J. Unleashing the promise of emerging nanomaterials as a sustainable platform to mitigate antimicrobial resistance. RSC Adv 2024; 14:13862-13899. [PMID: 38694553 PMCID: PMC11062400 DOI: 10.1039/d3ra05816f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
The emergence and spread of antibiotic-resistant (AR) bacterial strains and biofilm-associated diseases have heightened concerns about exploring alternative bactericidal methods. The WHO estimates that at least 700 000 deaths yearly are attributable to antimicrobial resistance, and that number could increase to 10 million annual deaths by 2050 if appropriate measures are not taken. Therefore, the increasing threat of AR bacteria and biofilm-related infections has created an urgent demand for scientific research to identify novel antimicrobial therapies. Nanomaterials (NMs) have emerged as a promising alternative due to their unique physicochemical properties, and ongoing research holds great promise for developing effective NMs-based treatments for bacterial and viral infections. This review aims to provide an in-depth analysis of NMs based mechanisms combat bacterial infections, particularly those caused by acquired antibiotic resistance. Furthermore, this review examines NMs design features and attributes that can be optimized to enhance their efficacy as antimicrobial agents. In addition, plant-based NMs have emerged as promising alternatives to traditional antibiotics for treating multidrug-resistant bacterial infections due to their reduced toxicity compared to other NMs. The potential of plant mediated NMs for preventing AR is also discussed. Overall, this review emphasizes the importance of understanding the properties and mechanisms of NMs for the development of effective strategies against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Sazedur Rahman
- Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology Dhaka Bangladesh
| | - Somya Sadaf
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology Dhaka Bangladesh
| | - Akash Mishra
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei Bandar Seri Begawan BE1410 Brunei Darussalam
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University Jalandhar Punjab India
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute Urutaí GO Brazil
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University Mohali-140413 India
| |
Collapse
|
21
|
Bolan S, Sharma S, Mukherjee S, Zhou P, Mandal J, Srivastava P, Hou D, Edussuriya R, Vithanage M, Truong VK, Chapman J, Xu Q, Zhang T, Bandara P, Wijesekara H, Rinklebe J, Wang H, Siddique KHM, Kirkham MB, Bolan N. The distribution, fate, and environmental impacts of food additive nanomaterials in soil and aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170013. [PMID: 38242452 DOI: 10.1016/j.scitotenv.2024.170013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/21/2024]
Abstract
Nanomaterials in the food industry are used as food additives, and the main function of these food additives is to improve food qualities including texture, flavor, color, consistency, preservation, and nutrient bioavailability. This review aims to provide an overview of the distribution, fate, and environmental and health impacts of food additive nanomaterials in soil and aquatic ecosystems. Some of the major nanomaterials in food additives include titanium dioxide, silver, gold, silicon dioxide, iron oxide, and zinc oxide. Ingestion of food products containing food additive nanomaterials via dietary intake is considered to be one of the major pathways of human exposure to nanomaterials. Food additive nanomaterials reach the terrestrial and aquatic environments directly through the disposal of food wastes in landfills and the application of food waste-derived soil amendments. A significant amount of ingested food additive nanomaterials (> 90 %) is excreted, and these nanomaterials are not efficiently removed in the wastewater system, thereby reaching the environment indirectly through the disposal of recycled water and sewage sludge in agricultural land. Food additive nanomaterials undergo various transformation and reaction processes, such as adsorption, aggregation-sedimentation, desorption, degradation, dissolution, and bio-mediated reactions in the environment. These processes significantly impact the transport and bioavailability of nanomaterials as well as their behaviour and fate in the environment. These nanomaterials are toxic to soil and aquatic organisms, and reach the food chain through plant uptake and animal transfer. The environmental and health risks of food additive nanomaterials can be overcome by eliminating their emission through recycled water and sewage sludge.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Canberra, Australia
| | - Shailja Sharma
- School of Biological & Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Santanu Mukherjee
- School of Biological & Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Pingfan Zhou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jajati Mandal
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, UK
| | - Prashant Srivastava
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Environment, Urrbrae, South Australia, Australia
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Randima Edussuriya
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Vi Khanh Truong
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - James Chapman
- University of Queensland, St Lucia, Queensland 4072, Australia
| | - Qing Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Pramod Bandara
- Department of Food Science and Technology, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States of America
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Canberra, Australia.
| |
Collapse
|
22
|
Mmereke KM, Venkataraman S, Moiketsi BN, Khan MR, Hassan SH, Rantong G, Masisi K, Kwape TE, Gaobotse G, Zulfiqar F, Kumar Sharma S, Malik S, Makhzoum A. Nanoparticle elicitation: A promising strategy to modulate the production of bioactive compounds in hairy roots. Food Res Int 2024; 178:113910. [PMID: 38309862 DOI: 10.1016/j.foodres.2023.113910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 02/05/2024]
Abstract
Hairy root culture is one of the promising biotechnological tools to obtain the stable and sustainable production of specialized metabolites from plants under controlled environment conditions. Various strategies have been adopted to enhance the accumulation of bioactive compounds in hairy roots yet their utilization at the commercial scale is restricted to only a few products. Recently, nanotechnology has been emerged as an active technique that has revolutionized the many sectors in an advantageous way. Elicitation using nanoparticles has been recognized as an effective strategy for enhancing the bioactive compounds of interest in plants. Nanoparticles elicit the activity of defense-related compounds through activation of the specific transcription factors involved in specialized metabolites production. This review discusses the recent progress in using nanoparticles to enhance specialized metabolite biosynthesis using hairy root culture system and the significant achievements in this area of research. Biotic and abiotic elicitors to improve the production of bioactive compounds in hairy roots, different types of nanoparticles as eliciting agents, their properties as dependent on shape, most widely used nanoparticles in plant hairy root systems are described in detail. Further challenges involved in application of nanoparticles, their toxicity in plant cells and risks associated to human health are also envisaged. No doubt, nanoparticle elicitation is a remarkable approach to obtain phytochemicals from hairy roots to be utilized in various sectors including food, medicines, cosmetics or agriculture but it is quite essential to understand the inter-relationships between the nanoparticles and the plant systems in terms of specifics such as type, dosage and time of exposure as well as other important parameters.
Collapse
Affiliation(s)
- Kamogelo M Mmereke
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Srividhya Venkataraman
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Bertha Nametso Moiketsi
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Muhammad Rehan Khan
- Department of Agricultural Science, University of Naples Federico II, Via Università 133, 80055 Portici, Italy; URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 3 Rue des Rouges-Terres, 51110 Pomacle, France
| | - Sayyeda Hira Hassan
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Gaolathe Rantong
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Kabo Masisi
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Tebogo E Kwape
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Goabaone Gaobotse
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Sonia Malik
- Physiology, Ecology and Environment (P2E) Laboratory, University of Orleans, INRAE, USC1328, 45067 Orleans, France.
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana.
| |
Collapse
|
23
|
Shruti A, Bage N, Kar P. Nanomaterials based sensors for analysis of food safety. Food Chem 2024; 433:137284. [PMID: 37703589 DOI: 10.1016/j.foodchem.2023.137284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
The freshnessof the food is a major issue because spoiled food lacks critical nutrients for growth and could be harmful to human health if consumed directly. Nanomaterials are captivating due to their unique properties like large surface area, high selectivity, small dimension, great biocompatibility and conductivity, real-time onsite analysis, etc. which give them an advantage over conventional evaluation techniques. Despite these advantages of nanomaterials used in food safety and their preservation, food products can still get affected by various environmental factors (like pH, temperature, etc.), making the use of time-temperature indicators more condescending. This review is a comprehensive study on food safety, its causes, the responsible analytes, their remedies by various nanomaterials, the development of various nanosensors, and the various challenges faced in maintaining food safety standards to reduce the risk of contaminants.
Collapse
Affiliation(s)
- Asparshika Shruti
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Nirgaman Bage
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Pradip Kar
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
24
|
Summiya S. Nanotechnology in the agricultural sector. SUSTAINABLE AGRICULTURAL PRACTICES 2024:223-261. [DOI: 10.1016/b978-0-443-19150-3.00014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Hou X, Nan H, Chen X, Ge F, Liu Y, Li F, Zhang D, Tian J. Slow release of attapulgite based nano-enabled glyphosate improves soil phosphatase activity, organic P-pool and proliferation of dominant bacterial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122408. [PMID: 37597734 DOI: 10.1016/j.envpol.2023.122408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
Glyphosate (Glp) was encapsulated onto the dopamine-modified attapulgite to develop an attapulgite-based nano-enabled Glp (DGlp) in this study with comparable weed control effects to pure Glp and commercial Glp solutions. Within 24 hours, the active Glp molecule was slowly released from DGlp at a maximum remaining rate of over 90%, and then degraded similarly to Glp solution in soil. The addition of DGlp improved soil available phosphorus (P) contents, phosphatase activity, and enzyme extractable P fraction. However, compared to Glp solution, DGlp addition had no effect on the transformation of soil inorganic P fractions. The 16S rRNA sequencing and co-occurrence network results revealed that DGlp had no significant effect on the soil bacterial diversity but diminished the complexity of soil bacterial network. According to the Mantel test, DGlp addition stimulated soil phosphatase activity and proliferation of dominant bacterial taxa (Proteobacteria and Firmicutes) capable of degrading Glp. Proteobacteria and Firmicutes that had been extensively recruited and enriched for their phosphatase activities may have mobilized reactive enzyme-P, significantly enhancing the transformation of reactive organic P and P-pool in soil. These results contributed to our understanding of the ecotoxicity and environmental impacts of nano-enabled Glp prior to its successful and sustainable application in agriculture.
Collapse
Affiliation(s)
- Xuejuan Hou
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Hui Nan
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Xin Chen
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Fei Ge
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Yun Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Feng Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, PR China
| | - Jiang Tian
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China.
| |
Collapse
|
26
|
Wang Q, Xu S, Zhong L, Zhao X, Wang L. Effects of Zinc Oxide Nanoparticles on Growth, Development, and Flavonoid Synthesis in Ginkgo biloba. Int J Mol Sci 2023; 24:15775. [PMID: 37958760 PMCID: PMC10649971 DOI: 10.3390/ijms242115775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Ginkgo biloba is a highly valuable medicinal plant known for its rich secondary metabolites, including flavonoids. Zinc oxide nanoparticles (ZnO-NPs) can be used as nanofertilizers and nano-growth regulators to promote plant growth and development. However, little is known about the effects of ZnO-NPs on flavonoids in G. biloba. In this study, G. biloba was treated with different concentrations of ZnO-NPs (25, 50, 100 mg/L), and it was found that 25 mg/L of ZnO-NPs enhanced G. biloba fresh weight, dry weight, zinc content, and flavonoids, while 50 and 100 mg/L had an inhibitory effect on plant growth. Furthermore, quantitative reverse transcription (qRT)-PCR revealed that the increased total flavonoids and flavonols were mainly due to the promotion of the expression of flavonol structural genes such as GbF3H, GbF3'H, and GbFLS. Additionally, when the GbF3H gene was overexpressed in tobacco and G. biloba calli, an increase in total flavonoid content was observed. These findings indicate that 25 mg/L of ZnO-NPs play a crucial role in G. biloba growth and the accumulation of flavonoids, which can potentially promote the yield and quality of G. biloba in production.
Collapse
Affiliation(s)
| | | | | | | | - Li Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Q.W.); (S.X.); (L.Z.); (X.Z.)
| |
Collapse
|
27
|
Santás-Miguel V, Arias-Estévez M, Rodríguez-Seijo A, Arenas-Lago D. Use of metal nanoparticles in agriculture. A review on the effects on plant germination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122222. [PMID: 37482337 DOI: 10.1016/j.envpol.2023.122222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Agricultural nanotechnology has become a powerful tool to help crops and improve agricultural production in the context of a growing world population. However, its application can have some problems with the development of harvests, especially during germination. This review evaluates nanoparticles with essential (Cu, Fe, Ni and Zn) and non-essential (Ag and Ti) elements on plant germination. In general, the effect of nanoparticles depends on several factors (dose, treatment time, application method, type of nanoparticle and plant). In addition, pH and ionic strength are relevant when applying nanoparticles to the soil. In the case of essential element nanoparticles, Fe nanoparticles show better results in improving nutrient uptake, improving germination, and the possibility of magnetic properties could favor their use in the removal of pollutants. In the case of Cu and Zn nanoparticles, they can be beneficial at low concentrations, while their excess presents toxicity and negatively affects germination. About nanoparticles of non-essential elements, both Ti and Ag nanoparticles can be helpful for nutrient uptake. However, their potential effects depend highly on the crop type, particle size and concentration. Overall, nanotechnology in agriculture is still in its early stages of development, and more research is needed to understand potential environmental and public health impacts.
Collapse
Affiliation(s)
- Vanesa Santás-Miguel
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola. Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain; Department of Biology, Microbial Ecology, Lund University, Ecology Building, Lund, SE-223 62, Sweden.
| | - Manuel Arias-Estévez
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola. Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain.
| | - Andrés Rodríguez-Seijo
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola. Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain.
| | - Daniel Arenas-Lago
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola. Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain.
| |
Collapse
|
28
|
Garg D, Sridhar K, Stephen Inbaraj B, Chawla P, Tripathi M, Sharma M. Nano-Biofertilizer Formulations for Agriculture: A Systematic Review on Recent Advances and Prospective Applications. Bioengineering (Basel) 2023; 10:1010. [PMID: 37760112 PMCID: PMC10525541 DOI: 10.3390/bioengineering10091010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
In the twenty-first century, nanotechnology has emerged as a potentially game-changing innovation. Essential minerals are mostly unavailable in modern cropping systems without the application of synthetic fertilizers, which have a serious negative impact on the ecosystem. This review focuses on the coupling of nanoparticles with biofertilizers to function as nano-biofertilizers (NBFs), which may ensure world food security in the face of the rising population. The inoculation of plants with NBFs improves plant development and resistance to stress. Metallic nanoparticles as well as organic components comprising polysaccharide and chitosan may be encapsulated, utilizing microbe-based green synthesis to make NBFs, which circumvents the limitations of conventional chemical fertilizers. The application of NBFs is just getting started, and shows more promise than other approaches for changing conventional farming into high-tech "smart" farming. This study used bibliographic analysis using Web of Science to find relevant papers on "nano biofertilizers", "plants", and "agriculture". These subjects have received a lot of attention in the literature, as shown by the co-citation patterns of these publications. The novel use of nanotechnology in agriculture is explored in this research work, which makes use of the unique characteristics of nanoscale materials to address urgent concerns including nutrient delivery, crop protection, and sustainable farming methods. This study attempts to fill in some of the gaps in our knowledge by discussing the formulation, fabrication, and characterization of NBFs, as well as elucidating the mechanisms by which NBFs interact with plants and how this benefits the ability of the plant to withstand biotic and abiotic stress brought about by climate change. This review also addresses recent developments and future directions in farming using NBF formulations in the field.
Collapse
Affiliation(s)
- Diksha Garg
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | | | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | | |
Collapse
|
29
|
Liu L, Cheng L, Liu K, Yu T, Liu Q, Gong Z, Cai Z, Liu J, Zhao X, Nian H, Ma Q, Lian T. Transgenic soybean of GsMYB10 shapes rhizosphere microbes to promote resistance to aluminum (Al) toxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131621. [PMID: 37187122 DOI: 10.1016/j.jhazmat.2023.131621] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Plant resistance genes could affect rhizosphere microbiota, which in turn enhanced plant resistance to stresses. Our previous study found that overexpression of the GsMYB10 gene led to enhanced tolerance of soybean plants to aluminum (Al) toxicity. However, whether GsMYB10 gene could regulate rhizosphere microbiota to mitigate Al toxicity remains unclear. Here, we analyzed the rhizosphere microbiomes of HC6 soybean (WT) and transgenic soybean (trans-GsMYB10) at three Al concentrations, and constructed three different synthetic microbial communities (SynComs), including bacterial, fungal and cross-kingdom (bacteria and fungi) SynComs to verify their role in improving Al tolerance of soybean. Trans-GsMYB10 shaped the rhizosphere microbial communities and harbored some beneficial microbes, such as Bacillus, Aspergillus and Talaromyces under Al toxicity. Fungal and cross-kingdom SynComs showed a more effective role than the bacterial one in resistance to Al stress, and these SynComs helped soybean resist Al toxicity via affecting some functional genes that involved cell wall biosynthesis and organic acid transport etc. Overall, this study reveals the mechanism of soybean functional genes regulating the synergistic resistance of rhizosphere microbiota and plants to Al toxicity, and also highlights the possibility of focusing on the rhizobial microbial community as a potential molecular breeding target to produce crops.
Collapse
Affiliation(s)
- Lingrui Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lang Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Kun Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Taobing Yu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qi Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhihui Gong
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Junjie Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Xueqiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
30
|
Gupta A, Rayeen F, Mishra R, Tripathi M, Pathak N. Nanotechnology applications in sustainable agriculture: An emerging eco-friendly approach. PLANT NANO BIOLOGY 2023; 4:100033. [DOI: 10.1016/j.plana.2023.100033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Godínez-García FJ, Guerrero-Rivera R, Martínez-Rivera JA, Gamero-Inda E, Ortiz-Medina J. Advances in two-dimensional engineered nanomaterials applications for the agro- and food-industries. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 36922737 DOI: 10.1002/jsfa.12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional nanomaterials, such as graphene, transition metal dichalcogenides, MXenes, and other layered compounds, are the subject of intense theoretical and experimental research for applications in a wide range of advanced technological solutions, given their outstanding physical, chemical, and mechanical properties. In the context of food science and technology, their contributions are starting to appear, based on the advantages that two-dimensional nanostructures offer to agricultural- and food-related key topics, such as sustainable water use, nano-agrochemicals, novel nanosensing devices, and smart packaging technologies. These application categories facilitate the grasping of the current and potential uses of such advanced nanomaterials in the field, backed by their advantageous physical, chemical, and structural properties. Developments for water cleaning and reuse, efficient nanofertilizers and pesticides, ultrasensitive sensors for food contamination, and intelligent nanoelectronic disposable food packages are among the most promising application examples reviewed here and demonstrate the tremendous impact that further developments would have in the area as the fundamental and applied research of two-dimensional nanostructures continues. We expect this work will contribute to a better understanding of the promising characteristics of two-dimensional nanomaterials that could be used for the design of novel and feasible solutions in the agriculture and food areas. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francisco Javier Godínez-García
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - Rubén Guerrero-Rivera
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - José Antonio Martínez-Rivera
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - Eduardo Gamero-Inda
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - Josué Ortiz-Medina
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| |
Collapse
|
32
|
Shi J, Xun M, Song J, Li J, Zhang W, Yang H. Multi-walled carbon nanotubes promote the accumulation, distribution, and assimilation of 15N-KNO 3 in Malus hupehensis by entering the roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1131978. [PMID: 36968357 PMCID: PMC10033859 DOI: 10.3389/fpls.2023.1131978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Multi-walled nanotubes (MWCNTs) consist of multiple rolled layers of graphene. Nitrogen plays an important role in apple growth. The effect of MWCNTs on nitrogen utilization in apple needs to be further investigated. METHODS In this study, the woody plant Malus hupehensis seedlings were used as plant materials, the distribution of MWCNTs in the roots was observed, and the effects of MWCNTs on the accumulation, distribution, and assimilation of nitrate by the seedlings were explored. RESULTS The results showed that MWCNTs could penetrate the roots of Malus hupehensis seedlings, and the 50, 100, and 200 µg·mL-1 MWCNTs significantly promoted the root growth of seedlings, increased root number, root activity, fresh weight, and nitrate content of seedlings, and also increased nitrate reductase activity, free amino acid, and soluble protein content of roots and leaves. 15N tracer experiments indicated that MWCNTs decreased the distribution ratio of 15N-KNO3 in Malus hupehensis roots but increased its distribution ratio in stems and leaves. MWCNTs improved the utilization ratio of 15N-KNO3 in Malus hupehensis seedlings, with the values being increased by 16.19%, 53.04%, and 86.44% following the 50, 100, and 200 µg·mL-1 MWCNTs, respectively. The RT-qPCR analysis showed that MWCNTs significantly affected the expression of genes (MhNRTs) related to nitrate uptake and transport in roots and leaves, and MhNRT1.4, MhNRT1.7, MhNRT1.8, MhNRT2.1, MhNRT2.5, and MhNRT2.7 were notably up-regulated in response to 200 µg·mL-1 MWCNTs. Raman analysis and transmission electron microscopy images indicated that MWCNTs could enter the root tissue of Malus hupehensis and were distributed between the cell wall and cytoplasmic membrane. Pearson correlation analysis showed that root tip number, root fractal dimension, and root activity were the main factors affecting root uptake and assimilation of nitrate. CONCLUSIONS These findings suggest that MWCNTs promoted root growth by entering the root, stimulated the expression of MhNRTs, and increased NR activity, thereby enhancing the uptake, distribution, and assimilation of nitrate by root, and ultimately improved the utilization of 15N-KNO3 by Malus hupehensis seedlings.
Collapse
Affiliation(s)
| | | | | | | | - Weiwei Zhang
- *Correspondence: Hongqiang Yang, ; Weiwei Zhang,
| | | |
Collapse
|
33
|
Stavropoulos P, Mavroeidis A, Papadopoulos G, Roussis I, Bilalis D, Kakabouki I. On the Path towards a "Greener" EU: A Mini Review on Flax ( Linum usitatissimum L.) as a Case Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:1102. [PMID: 36903961 PMCID: PMC10005532 DOI: 10.3390/plants12051102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Due to the pressures imposed by climate change, the European Union (EU) has been forced to design several initiatives (the Common Agricultural Policy, the European Green Deal, Farm to Fork) to tackle the climate crisis and ensure food security. Through these initiatives, the EU aspires to mitigate the adverse effects of the climate crisis and achieve collective prosperity for humans, animals, and the environment. The adoption or promotion of crops that would facilitate the attaining of these objectives is naturally of high importance. Flax (Linum usitatissimum L.) is a multipurpose crop with many applications in the industrial, health, and agri-food sectors. This crop is mainly grown for its fibers or its seed and has recently gained increasing attention. The literature suggests that flax can be grown in several parts of the EU, and potentially has a relatively low environmental impact. The aim of the present review is to: (i) briefly present the uses, needs, and utility of this crop and, (ii) assess its potential within the EU by taking into account the sustainability goals the EU has set via its current policies.
Collapse
Affiliation(s)
| | | | | | | | - Dimitrios Bilalis
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Ioanna Kakabouki
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
34
|
Singh DP, Packirisamy G. Applications of nanotechnology to combat the problems associated with modern food. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:479-487. [PMID: 35870139 DOI: 10.1002/jsfa.12146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Currently, modern lifestyle diseases (LSD) such as cancer, diabetes, hypertension, cardiovascular and thyroid disease are commonly seen among people of different age groups. One of the root causes of this LSD is the type of food that we are eating. Staple crops like rice, sugarcane, vegetables and wheat are grown with the application of agrochemicals (e.g., glyphosate), traces of which are found in our food; after that, it gets ultra-processed in factories; e.g., chips and snacks are fried using saturated fats (trans fat); sugar and wheat (derivatives bread, buns, cookies) are processed using toxic chemicals (bleaching agents). As a result, the nutritional value of food is compromised due to low dietary fiber content and synthetic additives - e.g., sucralose (artificial sweetener) - which promotes inflammation and weakens our immune system, causing our body to become sensitive to microbial infection and many other LSDs. To strengthen the immune system, people start taking synthetically prepared supplements and drugs for a prolonged time, which further deteriorates the body organs and their normal function; e.g., prolonged medication for hypothyroidism poses a risk of heart attack and joint pain. Nanotechnology solves the above problems in the food, nutraceuticals and agriculture sectors. Nanotechnology-based naturally processed products such as nano-nutraceuticals, nanofood, nanofertilizers and nanopesticides will benefit our health. They possess desirable properties such as high bioavailability, targeted delivery, least processing and sustained release. With the help of nanotechnology, we can get nutritional and agrochemical-free food. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dravin Pratap Singh
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
35
|
Wypij M, Trzcińska-Wencel J, Golińska P, Avila-Quezada GD, Ingle AP, Rai M. The strategic applications of natural polymer nanocomposites in food packaging and agriculture: Chances, challenges, and consumers' perception. Front Chem 2023; 10:1106230. [PMID: 36704616 PMCID: PMC9871319 DOI: 10.3389/fchem.2022.1106230] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
Natural polymer-based nanocomposites have received significant attention in both scientific and industrial research in recent years. They can help to eliminate the consequences of application of petroleum-derived polymeric materials and related environmental concerns. Such nanocomposites consist of natural biopolymers (e.g., chitosan, starch, cellulose, alginate and many more) derived from plants, microbes and animals that are abundantly available in nature, biodegradable and thus eco-friendly, and can be used for developing nanocomposites for agriculture and food industry applications. Biopolymer-based nanocomposites can act as slow-release nanocarriers for delivering agrochemicals (fertilizers/nutrients) or pesticides to crop plants to increase yields. Similarly, biopolymer-based nanofilms or hydrogels may be used as direct product coating to extend product shelf life or improve seed germination or protection from pathogens and pests. Biopolymers have huge potential in food-packaging. However, their packaging properties, such as mechanical strength or gas, water or microbial barriers can be remarkably improved when combined with nanofillers such as nanoparticles. This article provides an overview of the strategic applications of natural polymer nanocomposites in food and agriculture as nanocarriers of active compounds, polymer-based hydrogels, nanocoatings and nanofilms. However, the risk, challenges, chances, and consumers' perceptions of nanotechnology applications in agriculture and food production and packaging have been also discussed.
Collapse
Affiliation(s)
- Magdalena Wypij
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Joanna Trzcińska-Wencel
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Patrycja Golińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | | | - Avinash P. Ingle
- Department of Agricultural Botany, Biotechnology Centre, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, India
| | - Mahendra Rai
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, India
| |
Collapse
|
36
|
Marine macroalgae polysaccharides-based nanomaterials: an overview with respect to nanoscience applications. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00335-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Background
Exploration of marine macroalgae poly-saccharide-based nanomaterials is emerging in the nanotechnology field, such as wound dressing, water treatment, environmental engineering, biosensor, and food technology.
Main body
In this article, the current innovation and encroachments of marine macroalgae polysaccharide-based nanoparticles (NPs), and their promising opportunities, for future prospect in different industries are briefly reviewed. The extraction and advancement of various natural sources from marine polysaccharides, including carrageenan, agarose, fucoidan, and ulvan, are highlighted in order to provide a wide range of impacts on the nanofood technology. Further, seaweed or marine macroalgae is an unexploited natural source of polysaccharides, which involves numerous different phytonutrients in the outermost layer of the cell and is rich in sulphated polysaccharides (SP), SP-based nanomaterial which has an enhanced potential value in the nanotechnology field.
Conclusion
At the end of this article, the promising prospect of SP-based NPs and their applications in the food sector is briefly addressed.
Collapse
|
37
|
Liu L, Song W, Zheng W, Li F, Lv H, Wang Y, Chen Y, Wang Y. Dual-responsive multilayer beads with zero leakage and controlled release triggered by near-infrared light. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Mobeen H, Safdar M, Fatima A, Afzal S, Zaman H, Mehdi Z. Emerging applications of nanotechnology in context to immunology: A comprehensive review. Front Bioeng Biotechnol 2022; 10:1024871. [PMID: 36619389 PMCID: PMC9815620 DOI: 10.3389/fbioe.2022.1024871] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous benefits of nanotechnology are available in many scientific domains. In this sense, nanoparticles serve as the fundamental foundation of nanotechnology. Recent developments in nanotechnology have demonstrated that nanoparticles have enormous promise for use in almost every field of life sciences. Nanoscience and nanotechnology use the distinctive characteristics of tiny nanoparticles (NPs) for various purposes in electronics, fabrics, cosmetics, biopharmaceutical industries, and medicines. The exclusive physical, chemical, and biological characteristics of nanoparticles prompt different immune responses in the body. Nanoparticles are believed to have strong potential for the development of advanced adjuvants, cytokines, vaccines, drugs, immunotherapies, and theranostic applications for the treatment of targeted bacterial, fungal, viral, and allergic diseases and removal of the tumor with minimal toxicity as compared to macro and microstructures. This review highlights the medical and non-medical applications with a detailed discussion on enhanced and targeted natural and acquired immunity against pathogens provoked by nanoparticles. The immunological aspects of the nanotechnology field are beyond the scope of this Review. However, we provide updated data that will explore novel theragnostic immunological applications of nanotechnology for better and immediate treatment.
Collapse
Affiliation(s)
- Hifsa Mobeen
- Department of Allied Health Sciences, Superior University, Lahore, Pakistan
| | - Muhammad Safdar
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Asma Fatima
- Pakistan Institute of Quality Control, Superior University, Lahore, Pakistan
| | - Samia Afzal
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hassan Zaman
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Zuhair Mehdi
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
39
|
Akintelu SA, Olabemiwo OM, Ibrahim AO, Oyebamiji JO, Oyebamiji AK, Olugbeko SC. Biosynthesized nanoparticles as a rescue aid for agricultural sustainability and development. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Gonçalves RF, Madalena DA, Fernandes JM, Marques M, Vicente AA, Pinheiro AC. Application of nanostructured delivery systems in food: From incorporation to detection and characterization. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Nongbet A, Mishra AK, Mohanta YK, Mahanta S, Ray MK, Khan M, Baek KH, Chakrabartty I. Nanofertilizers: A Smart and Sustainable Attribute to Modern Agriculture. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192587. [PMID: 36235454 PMCID: PMC9573764 DOI: 10.3390/plants11192587] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 05/27/2023]
Abstract
The widespread use of fertilizers is a result of the increased global demand for food. The commonly used chemical fertilizers may increase plant growth and output, but they have deleterious effects on the soil, the environment, and even human health. Therefore, nanofertilizers are one of the most promising solutions or substitutes for conventional fertilizers. These engineered materials are composed of nanoparticles containing macro- and micronutrients that are delivered to the plant rhizosphere in a regulated manner. In nanofertilizers, the essential minerals and nutrients (such as N, P, K, Fe, and Mn) are bonded alone or in combination with nano-dimensional adsorbents. This review discusses the development of nanotechnology-based smart and efficient agriculture using nanofertilizers that have higher nutritional management, owing to their ability to increase the nutrient uptake efficiency. Additionally, the synthesis and mechanism of action of the nanofertilizers are discussed, along with the different types of fertilizers that are currently available. Furthermore, sustainable agriculture can be realised by the targeted delivery and controlled release of nutrients through the application of nanoscale active substances. This paper emphasises the successful development and safe application of nanotechnology in agriculture; however, certain basic concerns and existing gaps in research need to be addressed and resolved.
Collapse
Affiliation(s)
- Amilia Nongbet
- Department of Botany, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi 793101, Meghalaya, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi 793101, Meghalaya, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati Centre, Guwahati 781008, Assam, India
| | - Manjit Kumar Ray
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi 793101, Meghalaya, India
| | - Maryam Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
| | - Ishani Chakrabartty
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi 793101, Meghalaya, India
| |
Collapse
|
42
|
Baka ZA, El-Zahed MM. Antifungal activity of silver/silicon dioxide nanocomposite on the response of faba bean plants (Vicia faba L.) infected by Botrytis cinerea. BIORESOUR BIOPROCESS 2022; 9:102. [PMID: 38647774 PMCID: PMC10992879 DOI: 10.1186/s40643-022-00591-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/03/2022] [Indexed: 11/10/2022] Open
Abstract
Silicon (Si) and its nanomaterials could help plants cope with different negative effects of abiotic and/or biotic stresses. In this study, the antifungal role of silver/silicon dioxide nanocomposite (Ag/SiO2NC) biosynthesized using a free-cell supernatant of Escherichia coli D8 was investigated for controlling the growth parameters and yield of faba bean (Vicia faba L.) infected by Botrytis cinerea. This nanocomposite was characterized using UV-Vis spectroscopy, Fourier transform-infrared (FTIR), transmission electron microscopy (TEM), zeta analysis, and X-ray diffraction pattern (XRD). Positively charged Ag/SiO2NC (+ 31.0 mV) with spherical-shaped silver nanoparticles (AgNPs) showed strong in vitro antifungal activity with minimal inhibition concentration (MIC) value equal to 40 ppm. In vivo experiments revealed the good resistance of Ag/SiO2NC-treated plants against the B. cinerea infection due to the increase of total phenolic content, peroxidase, and polyphenol oxidase activity. The ultrastructure of Ag/SiO2NC-treated plants showed normal morphology of cells including cell membranes and ellipsoidal-shaped chloroplasts with big starch grains. The concentration of silver content in Ag/SiO2NC-treated plants was similar to the untreated control plant indicating the low realizability of AgNPs. All of these results are promising outcomes for the application of the biosynthesized Ag/SiO2NC as a safe and effective antifungal agent against B. cinerea.
Collapse
Affiliation(s)
- Zakaria A Baka
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Mohamed M El-Zahed
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| |
Collapse
|
43
|
Nano-Based Co-Delivery System for Treatment of Rheumatoid Arthritis. Molecules 2022; 27:molecules27185973. [PMID: 36144709 PMCID: PMC9503141 DOI: 10.3390/molecules27185973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
A systemic autoimmune condition known as rheumatoid arthritis (RA) has a significant impact on patients’ quality of life. Given the complexity of RA’s biology, no single treatment can totally block the disease’s progression. The combined use of co-delivery regimens integrating various diverse mechanisms has been widely acknowledged as a way to make up for the drawbacks of single therapy. These days, co-delivery systems have been frequently utilized for co-treatment, getting over drug limitations, imaging of inflammatory areas, and inducing reactions. Various small molecules, nucleic acid drugs, and enzyme-like agents intended for co-delivery are frequently capable of producing the ability to require positive outcomes. In addition, the excellent response effect of phototherapeutic agents has led to their frequent use for delivery together with chemotherapeutics. In this review, we discuss different types of nano-based co-delivery systems and their advantages, limitations, and future directions. In addition, we review the prospects and predicted challenges for the combining of phototherapeutic agents with conventional drugs, hoping to provide some theoretical support for future in-depth studies of nano-based co-delivery systems and phototherapeutic agents.
Collapse
|
44
|
Vijeata A, Chaudhary S, Chaudhary GR, Umar A, Baskoutas S. Sustainable agronomic response of carbon quantum dots on Allium sativum: Translocation, physiological responses and alternations in chromosomal aberrations. ENVIRONMENTAL RESEARCH 2022; 212:113559. [PMID: 35660407 DOI: 10.1016/j.envres.2022.113559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The revolutionary growth in the usage of carbon quantum dots (CQDs) in different areas have ultimately directed their discharge in the environment and further augmented the exposure of agricultural crops to these released particles. Therefore, the aim of current study is to evaluate the uptake, translocation and phytotoxicity of blue emissive CQDs on Allium sativum plant. The genotoxicity and cytotoxicity assessment of CQDs towards Allium sativum roots was estimated as function of three different concentrations. Considering the role of CQDs in promoting seed germination at 50 ppm concentration, a greenhouse experiment was performed to evaluate their effect on plant growth. Systematic investigations have shown the translocation of CQDs and their physiological response in terms of increased shoot length wherein P-CQDs exhibited more accumulation into Allium sativum parts. Our investigations unfold the opportunity to utilize Aegle marmelos fruit derived CQDs as a growth regulator in variety of other food plants.
Collapse
Affiliation(s)
- Anjali Vijeata
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Savita Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, Najran University, Najran, 11001, Saudi Arabia; Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia.
| | | |
Collapse
|
45
|
Liu L, Nian H, Lian T. Plants and rhizospheric environment: Affected by zinc oxide nanoparticles (ZnO NPs). A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:91-100. [PMID: 35667318 DOI: 10.1016/j.plaphy.2022.05.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 05/27/2023]
Abstract
Nowadays, there are many critical concerns in the agricultural sector, including reduced productivity of plants due to various environmental factors. Hence, a continuous innovation of existing technologies is necessary. Among the available technologies for sustainable agriculture, nanotechnology is one of the more promising technologies and has a great scope for development in agriculture. Zinc oxide nanoparticles (ZnO NPs) have attracted much attention due to their good properties and can be put into agriculture as nano-fertilizers, nano-growth regulators and nano-pesticides, although much remains to be explored about their mechanisms. Here, we review the literature on the interaction of ZnO NPs with plants through (i) uptake and transport pathways of ZnO NPs in plants. (ii) The mechanisms involved in improving growth, development and resistance. (iii) their effects on the rhizospheric environment. (iv) The toxic effects and mechanisms in plants. Our major conclusions are as follows: (1) they can be absorbed by the plant through the roots and leaves, with subsequent transformation. (2) moderate application can promote plant growth and mitigate stress, while excessive application can produce toxic effects. (3) the effects of them on the rhizospheric environment cannot be ignored. This study may provide a reference for the safe and effective use of ZnO NPs in agricultural production.
Collapse
Affiliation(s)
- Lingrui Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Argo-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Argo-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Argo-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
46
|
Xiao S, He Z, Zhang W, Qin X. The Agricultural Green Production following the Technological Progress: Evidence from China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19169876. [PMID: 36011508 PMCID: PMC9408531 DOI: 10.3390/ijerph19169876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 06/12/2023]
Abstract
This study performs the spatial Durbin model (SDM) and threshold model to analyze the efficiency of agricultural green production following technological progress from 1998 through 2019. The SDM supports a nonlinear contribution of technological progress spillover to agricultural green total factor productivity (GTFP), exacerbated by upgrading agricultural structure. Moreover, the threshold model confirms that technological progress has a single threshold effect on agricultural GTFP with the rationalization of the agrarian system as a threshold variable; meanwhile, the contribution of technological progress to agricultural GTFP is less than that of agricultural total factor productivity. Out of the expanded application of dissipative structure theory in agricultural GTFP systems innovatively, this study reveals the urgency to strengthen the innovation of independent technology, lower the threshold for introducing technology, and optimize the agrarian structure in the long-term sustainable agriculture for the economies that are undergoing a similar development stage as China.
Collapse
Affiliation(s)
- Shuxing Xiao
- School of Public Administration and Law, Hunan Agricultural University, Changsha 410128, China
- School of Teacher Education, Shaoguan University, Shaoguan 512005, China
| | - Zuxin He
- School of Economics, Guangdong University of Finance & Economics, Guangzhou 510320, China
| | - Weikun Zhang
- School of Social and Public Administration, Lingnan Normal University, Zhanjiang 524088, China
| | - Xiaoming Qin
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
47
|
Zheng L, Seidi F, Liu Y, Wu W, Xiao H. Polymer-based and stimulus-responsive carriers for controlled release of agrochemicals. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
48
|
Wu Z, Huang C, Dong Y, Zhao B, Chen Y. Gold core @ platinum shell nanozyme-mediated magnetic relaxation switching DNA sensor for the detection of Listeria monocytogenes in chicken samples. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
49
|
Gelaw TA, Sanan-Mishra N. Nanomaterials coupled with microRNAs for alleviating plant stress: a new opening towards sustainable agriculture. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:791-818. [PMID: 35592477 PMCID: PMC9110591 DOI: 10.1007/s12298-022-01163-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/21/2021] [Accepted: 03/06/2022] [Indexed: 06/15/2023]
Abstract
Plant growth and development is influenced by their continuous interaction with the environment. Their cellular machinery is geared to make rapid changes for adjusting the morphology and physiology to withstand the stressful changes in their surroundings. The present scenario of climate change has however intensified the occurrence and duration of stress and this is getting reflected in terms of yield loss. A number of breeding and molecular strategies are being adopted to enhance the performance of plants under abiotic stress conditions. In this context, the use of nanomaterials is gaining momentum. Nanotechnology is a versatile field and its application has been demonstrated in almost all the existing fields of science. In the agriculture sector, the use of nanoparticles is still limited, even though it has been found to increase germination and growth, enhance physiological and biochemical activities and impact gene expression. In this review, we have summarized the use and role of nanomaterial and small non-coding RNAs in crop improvement while highlighting the potential of nanomaterial assisted eco-friendly delivery of small non-coding RNAs as an innovative strategy for mitigating the effect of abiotic stress.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Group Leader, Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India
- Department of Biotechnology, College of Natural and Computational Science, Debre Birhan University, 445, Debre Birhan, Ethiopia
| | - Neeti Sanan-Mishra
- Group Leader, Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India
| |
Collapse
|
50
|
Berini F, Orlandi V, Gornati R, Bernardini G, Marinelli F. Nanoantibiotics to fight multidrug resistant infections by Gram-positive bacteria: hope or reality? Biotechnol Adv 2022; 57:107948. [PMID: 35337933 DOI: 10.1016/j.biotechadv.2022.107948] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022]
Abstract
The spread of antimicrobial resistance in Gram-positive pathogens represents a threat to human health. To counteract the current lack of novel antibiotics, alternative antibacterial treatments have been increasingly investigated. This review covers the last decade's developments in using nanoparticles as carriers for the two classes of frontline antibiotics active on multidrug-resistant Gram-positive pathogens, i.e., glycopeptide antibiotics and daptomycin. Most of the reviewed papers deal with vancomycin nanoformulations, being teicoplanin- and daptomycin-carrying nanosystems much less investigated. Special attention is addressed to nanoantibiotics used for contrasting biofilm-associated infections. The status of the art related to nanoantibiotic toxicity is critically reviewed.
Collapse
Affiliation(s)
- Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Viviana Orlandi
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| |
Collapse
|