1
|
Li J, Liu J, Pan Z, Gao W, Zhang Y, Li J, Meng J. Efficient methane fermentation from the waste of a novel straw alkali-heat pretreatment-butyric acid fermentation process. ENVIRONMENTAL TECHNOLOGY 2025; 46:2011-2021. [PMID: 39410838 DOI: 10.1080/09593330.2024.2416092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/21/2024] [Indexed: 04/07/2025]
Abstract
ABSTRACTThe butyric acid biorefinery technology for straw is highly significant for environmental protection and the restructuring of the energy system. However, this process produces waste from alkali-heat pretreatment (PW) and butyric acid fermentation (FW). In this study, the feasibility of methane fermentation from the wastes was confirmed, with the methane production from PW and FW of 351.1 ± 11.8 and 741.5 ± 14.2 mLCH4/gVS, respectively. The initial pH and VFW/VPW of methane fermentation using the mixed waste of PW and FW were optimized at 7.5 and 1.8, respectively. The methane fermentation using the mixed waste was also verified by operating two anaerobic digesters in sequencing batch mode. At the VFW/VPW of 0.25 (actual ratio), methane production was 301.20 mLCH4/gVS with the waste load of 0.64 kgVS/m³/d. When the VFW/VPW was 1.8 (optimal ratio), methane production reached 396.45 mLCH4/gVS at the waste load of 1.20 kgVS/m3/d. This study facilitates the comprehensive utilization of all components within rice straw.
Collapse
Affiliation(s)
- Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Jiazhi Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Zhen Pan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Wenlin Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Yupeng Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Jiuling Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Australia
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| |
Collapse
|
2
|
Salvatori G, Giampaoli O, Marchetti A, Miccheli A, Virdis B, Sciubba F, Villano M. 13C-Labelled Glucose Reveals Shifts in Fermentation Pathway During Cathodic Electro-Fermentation with Mixed Microbial Culture. CHEMSUSCHEM 2025; 18:e202401033. [PMID: 39222403 PMCID: PMC11739826 DOI: 10.1002/cssc.202401033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Cathodic Electro-Fermentation (CEF) is an innovative approach to manage the spectrum of products deriving from anaerobic fermentation. Herein, mixed microbial culture fermentation using a ternary mixture containing labelled 13C glucose and non-labelled acetate and ethanol was studied to identify the role of polarization on the metabolic pathways of glucose fermentation. CEF at an applied potential of -700 mV (vs. SHE, Standard Hydrogen Electrode) enhanced the production yield of acetate, propionate, and butyrate (0.90±0.10, 0.22±0.03, and 0.34±0.05 mol/mol; respectively) compared to control tests performed at open circuit potential (OCP) (0.54±0.09, 0.15±0.04, and 0.20±0.001 mol/mol, respectively). Results indicate that CEF affected the 13C labelled fermented product levels and their fractional 13C enrichments, allowing to establish metabolic pathway models. This work demonstrates that, under cathodic polarization, the abundance of both fully 13C labelled propionate and butyrate isotopomers increased compared to control tests. The effect of CEF is mainly due to intermediates initially produced from the glucose metabolic transformation in the presence of non-labelled acetate and ethanol as external substrates. These findings represent a significant advancement in current knowledge of CEF, which offers a promising tool to control mixed cultures bioprocesses.
Collapse
Affiliation(s)
- Gaia Salvatori
- Department of ChemistrySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| | - Ottavia Giampaoli
- NMR-Based Metabolomics LaboratorySapienza University of RomeP.le Aldo Moro 500185RomeItaly
- Department of Environmental BiologySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| | - Angela Marchetti
- Department of ChemistrySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| | - Alfredo Miccheli
- NMR-Based Metabolomics LaboratorySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| | - Bernardino Virdis
- Australian Centre for Water and Environmental BiotechnologyThe University of QueenslandBrisbaneQLD 4072Australia
| | - Fabio Sciubba
- NMR-Based Metabolomics LaboratorySapienza University of RomeP.le Aldo Moro 500185RomeItaly
- Department of Environmental BiologySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| | - Marianna Villano
- Department of ChemistrySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| |
Collapse
|
3
|
Zhang Y, Li J, Lian X, Li L, Yong YC, Meng J. Efficient caproate production from lignocellulose via single-step electro-fermentation platform without organic electron donor. BIORESOURCE TECHNOLOGY 2024; 411:131319. [PMID: 39173961 DOI: 10.1016/j.biortech.2024.131319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Caproate production by microbial fermentation gained the advantages of sustainability and eco-friendliness, but challenged by sterile fermentation environment, necessity of organic electron donors. Here, a single-step electro-fermentation (EF) process of mixed culture was proposed for caprate production from rice straw. At the optimal potential of -0.8 V, caproate concentration, yield and selectivity in the neutral red (NR)-mediated EF system were 2.4 g/L, 0.2 g/g and 26.6%. Long-term operation accumulated 5.3 g/L caproate with the yield and selectivity of 0.2 g/g and 34.2% in the EF+NR system. Bioaugmentation by dosing chain-elongation microbial consortium further improved the caproate production, yield and selectivity to 9.1 g/L, 0.3 g/g and 41.5%, respectively. The improved caproate production in the bioaugmented EF+NR system was likely due to the enhanced interspecies electron transfer, reconstructed microbial community, multiple electron donors and suitable pH environment. Present study offers a feasible strategy for cost-effective caprate production directly from waste biomass.
Collapse
Affiliation(s)
- Yafei Zhang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Xu Lian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Lin Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| |
Collapse
|
4
|
Leininger A, Lu S, Jiang J, Bian Y, May HD, Ren ZJ. The convergence of lactic acid microbiomes and metabolites in long-term electrofermentation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100459. [PMID: 39262839 PMCID: PMC11387266 DOI: 10.1016/j.ese.2024.100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/20/2024] [Accepted: 07/20/2024] [Indexed: 09/13/2024]
Abstract
Regulating electron transfer in predominantly fermentative microbiomes has broad implications in environmental, chemical, food, and medical fields. Here we demonstrate electrochemical control in fermenting food waste, digestate, and wastewater to improve lactic acid production. We hypothesize that applying anodic potential will expedite and direct fermentation towards lactic acid. Continued operation that introduced epi/endophytic communities (Lactococcus, Lactobacillus, Weissella) to pure culture Lactiplantibacillus plantarum reactors with static electrodes was associated with the loss of anode-induced process intensification despite 80% L. plantarum retention. Employing fluidized electrodes discouraged biofilm formation and extended electrode influence to planktonic gram-positive fermenters using mediated extracellular electron transfer. While short-term experiments differentially enriched Lactococcus and Klebsiella spp., longer-term operations indicated convergent microbiomes and product spectra. These results highlight a functional resilience of environmental fermentative microbiomes to perturbations in redox potential, underscoring the need to better understand electrode induced polymicrobial interactions and physiological impacts to engineer tunable open-culture or synthetic consortia.
Collapse
Affiliation(s)
- Aaron Leininger
- Department of Civil and Environmental Engineering, Princeton University, USA
- Andlinger Center for Energy and the Environment, Princeton University, USA
| | - Sidan Lu
- Department of Civil and Environmental Engineering, Princeton University, USA
- Andlinger Center for Energy and the Environment, Princeton University, USA
| | - Jinyue Jiang
- Department of Civil and Environmental Engineering, Princeton University, USA
- Andlinger Center for Energy and the Environment, Princeton University, USA
| | - Yanhong Bian
- Department of Civil and Environmental Engineering, Princeton University, USA
- Andlinger Center for Energy and the Environment, Princeton University, USA
| | - Harold D May
- Andlinger Center for Energy and the Environment, Princeton University, USA
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering, Princeton University, USA
- Andlinger Center for Energy and the Environment, Princeton University, USA
| |
Collapse
|
5
|
Lu Y, Chen R, Huang L, Wang X, Chou S, Zhu J. Acidogenic fermentation of potato peel waste for volatile fatty acids production: Effect of initial organic load. J Biotechnol 2023; 374:114-121. [PMID: 37579845 DOI: 10.1016/j.jbiotec.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/16/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
As a renewable carbon source produced from organic wastes by acidogenic fermentation, volatile fatty acids (VFAs) are important intermediates in chemical and biological fields and beneficial to resource recovery and carbon neutrality. Maximizing VFA production by some strategies without additional chemicals is critical to increasing economic and environmental benefits. In this study, the effects of initial organic load (OL) on the performance of VFA production, variations of intermediate metabolites, and the thermogravimetric properties of potato peel waste (PPW) during batch acidogenic fermentation were studied. The results showed that the concentration of VFAs increased with the increase of initial OL, while the VFA yield decreased with the increase of initial OL. When the initial OL was in the range of 28.4 g VS/L-91.3 g VS/L, the fermentation type of PPW was butyric acid fermentation. The highest butyric acid proportion of 61.3% was achieved with the initial OL of 71.5 g VS/L. With the increase of initial OL, the proportion of acetic acid and the utilization rate of protein in the PPW decreased. VFAs were produced from proteins and carbohydrates in the early stage and mainly produced from carbohydrates in the later stage. The production efficiency of VFA was relatively high with the initial OL of 71.5 g VS/L, because more easily-biodegradable compounds were solubilized. The results showed that suitably increased initial OL could accelerate acidogenesis, reduce hydrolysis time, and increase the proportion of butyric acid. The findings in this work suggest that PPW is a promising feedstock for butyric acid biosynthesis and appropriate initial OL is beneficial to VFA production.
Collapse
Affiliation(s)
- Yu Lu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Jiasixie Agronomy College of Weifang University of Science and Technology, Shouguang 262700, China
| | - Ranran Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Liu Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Santao Chou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Jiying Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
6
|
Zhang Y, Li J, Yong YC, Fang Z, Liu W, Yan H, Jiang H, Meng J. Efficient butyrate production from rice straw in an optimized cathodic electro-fermentation process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117695. [PMID: 36907062 DOI: 10.1016/j.jenvman.2023.117695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Butyrate production from renewable biomass shows great potential against climate change and over-consumption of fossil fuels. Herein, key operational parameters of a cathodic electro-fermentation (CEF) process were optimized for efficient butyrate production from rice straw by mixed culture. The cathode potential, controlled pH and initial substrate dosage were optimized at -1.0 V (vs Ag/AgCl), 7.0 and 30 g/L, respectively. Under the optimal conditions, 12.50 g/L butyrate with yield of 0.51 g/g-rice straw were obtained in batch-operated CEF system. In fed-batch mode, butyrate production significantly increased to 19.66 g/L with the yield of 0.33 g/g-rice straw, but 45.99% butyrate selectivity still needs to be improved in future. Enriched butyrate producing bacteria (Clostridium cluster XIVa and IV) with proportion of 58.75% on the 21st day of the fed-batch fermentation, contributed to the high-level butyrate production. The study provides a promising approach for efficient butyrate production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Yafei Zhang
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China; Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jianzheng Li
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen Fang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Wenbin Liu
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China
| | - Han Yan
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China
| | - Haicheng Jiang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Jia Meng
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
7
|
Zhang Y, Li J, Yong YC, Fang Z, Yan H, Li J, Meng J. Highly selective butanol production by manipulating electron flow via cathodic electro-fermentation. BIORESOURCE TECHNOLOGY 2023; 374:128770. [PMID: 36822560 DOI: 10.1016/j.biortech.2023.128770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Butanol production by solventogenic Clostridia shows great potential to combat the energy crisis, but is still challenged by low butanol selectivity and high downstream cost. In this study, a novel cathodic electro-fermentation (CEF) system mediated by methyl viologen (MV) was proposed and sequentially optimized to obtain highly selective butanol production. Under the optimal conditions (-0.60 V cathode potential, 0.50 mM MV, 30 g/L glucose), 7.17 ± 0.55 g/L butanol production were achieved with the yield of 0.32 ± 0.02 g/g. With the supplement of 4 g/L butyric acid as co-substrate, butanol production further improved to 13.14 ± 1.14 g/L with butanol yield and selectivity as high as 0.43 ± 0.01 g/g and 90.44 ± 1.66%, respectively. The polarized electrode enabled the unbalanced fermentation towards butanol formation and MV further inhibited hydrogen production, both of which contributed to the high-level butanol production and selectivity. The MV-mediated CEF system is a promising approach for cost-effective bio-butanol production.
Collapse
Affiliation(s)
- Yafei Zhang
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzheng Li
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Fang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Han Yan
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiuling Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jia Meng
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
8
|
Zhao W, Yan B, Ren ZJ, Wang S, Zhang Y, Jiang H. Highly selective butyric acid production by coupled acidogenesis and ion substitution electrodialysis. WATER RESEARCH 2022; 226:119228. [PMID: 36244139 DOI: 10.1016/j.watres.2022.119228] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Selective production of carboxylic acids (CAs) from mixed culture fermentation remains a difficult task in organic waste valorization. Herein, we developed a facile and sustainable carbon loop strategy to regulate the fermentation micro-environment and steer acidogenesis towards selective butyric acid production. This new ion substitution electrodialysis-anaerobic membrane bioreactor (ISED-AnMBR) integrated system demonstrated a high butyric acid production at 11.19 g/L with a mass fraction of 76.05%. In comparison, only 1.04 g/L with a mass fraction of 30.56% was observed in the uncoupled control reactor. The carbon recovery reached a maximum of 96.09% with the assistance of ISED. Inorganic carbon assimilation was believed to be an important contributor, which was verified by 13C isotopic tracing. Microbial community structure shows the dominance of Clostridia (80.16%) in the unique micro-environment (e.g., pH 4.80-5.50) controlled by ISED, which is believed beneficial to the growth of such fermentative bacteria with main products of butyric acid and acetic acid. In addition, the emergence of chain elongators such as Clostridium sensu stricto 12 was observed to have a great influence on butyric acid production. This work provides a new approach to generate tailored longer chain carboxylic acids from organic waste with high titer thus contributing to a circular economy.
Collapse
Affiliation(s)
- Wenyan Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, China.
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yang Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| | - Heqing Jiang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
9
|
Sriram S, Wong JWC, Pradhan N. Recent advances in electro-fermentation technology: A novel approach towards balanced fermentation. BIORESOURCE TECHNOLOGY 2022; 360:127637. [PMID: 35853590 DOI: 10.1016/j.biortech.2022.127637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Biotransformation of organic substrates via acidogenic fermentation (AF) to high-value products such as C1-C6 carboxylic acids and alcohol serves as platform chemicals for various industrial applications. However, the AF technology suffers from low product titers due to thermodynamic constraints. Recent studies suggest that augmenting AF redox potential can regulate the metabolic pathway and provide seamless electron flow by lowering the activation energy barrier, thus positively influencing the substrate utilization rate, product yield, and speciation. Hence, the augmented AF system with an exogenous electricity supply is termed as electro-fermentation (EF), which has enormous potential to strengthen the fermentation technology domain. Therefore, this critical review systematically discusses the current understanding of EF with a special focus on the extracellular electron transfer mechanism of electroactive bacteria and provides perspectives and research gaps to further improve the technology for green chemical synthesis, sustainable waste management, and circular bio-economy.
Collapse
Affiliation(s)
- Saranya Sriram
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, SAR
| | - Jonathan W C Wong
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, SAR; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR.
| | - Nirakar Pradhan
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, SAR; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR.
| |
Collapse
|
10
|
Food Waste Biorefinery: Pathway towards Circular Bioeconomy. Foods 2021; 10:foods10061174. [PMID: 34073698 PMCID: PMC8225055 DOI: 10.3390/foods10061174] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Food waste biorefineries for the production of biofuels, platform chemicals and other bio-based materials can significantly reduce a huge environmental burden and provide sustainable resources for the production of chemicals and materials. This will significantly contribute to the transition of the linear based economy to a more circular economy. A variety of chemicals, biofuels and materials can be produced from food waste by the integrated biorefinery approach. This enhances the bioeconomy and helps toward the design of more green, ecofriendly, and sustainable methods of material productions that contribute to sustainable development goals. The waste biorefinery is a tool to achieve a value-added product that can provide a better utilization of materials and resources while minimizing and/or eliminating environmental impacts. Recently, food waste biorefineries have gained momentum for the production of biofuels, chemicals, and bio-based materials due to the shifting of regulations and policies towards sustainable development. This review attempts to explore the state of the art of food waste biorefinery and the products associated with it.
Collapse
|