1
|
Liu Q, Xie Z, Tang S, Xie Q, He X, Li D. Synthetic microbial community enhances lignocellulose degradation during composting by assembling fungal communities. BIORESOURCE TECHNOLOGY 2025; 419:132068. [PMID: 39814153 DOI: 10.1016/j.biortech.2025.132068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/11/2024] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Inoculating synthetic microbial community (SynCom) has been proposed as an eco-friendly approach for lignocellulose degradation in composting to enhance organic fertilizer quality. However, the mechanisms responsible for SynCom-regulated lignocellulose degradation during composting remain unclear. Here the SynCom inoculation decreased cellulose and hemicellulose contents by 26.2% and 14.3%, respectively, at the mature phase, while increasing endoglucanase, exoglucanase, and β-glucosidase activities significantly. SynCom inoculation increased the abundance of Cephaliophoras and Thermomyces at the mesophilic phase, Sordariomycetes at the thermophilic phase, and Thermomyces, Acremonium, Aspergillus, and Sordariomycetes at the mature phase, as well as increased the abundance of numerous Operational Taxonomic Units (OTUs), with OTU10 (Hydropisphaera) being responsible for lignocellulose degradation. The altered fungal community stimulated functions of the wood saprotroph, undefined saprotroph, and litter saprotroph were responsible for lignocellulose degradation via changing microbial community. The results suggest that SynCom inoculation effectively stimulate lignocellulose degradation, so that benefits quality improvement of organic fertilizer.
Collapse
Affiliation(s)
- Qiumei Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 China; Guangxi Industrial Technology Researc Institute for Karst Rocky Desertification Control, Nanning 530000 China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100 China
| | - Zhouling Xie
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 China; Guangxi Industrial Technology Researc Institute for Karst Rocky Desertification Control, Nanning 530000 China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100 China
| | - Siyu Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 China; Institutional Center for Shared Technologies and Facilities of Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 China
| | - Qingquan Xie
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 China; Guangxi Industrial Technology Researc Institute for Karst Rocky Desertification Control, Nanning 530000 China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100 China
| | - Xunyang He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 China; Guangxi Industrial Technology Researc Institute for Karst Rocky Desertification Control, Nanning 530000 China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100 China.
| | - Dejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 China; Guangxi Industrial Technology Researc Institute for Karst Rocky Desertification Control, Nanning 530000 China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100 China.
| |
Collapse
|
2
|
Liu C, Li H, Ni JQ, Zhuo G, Zhang Q, Zheng Y, Zhen G. Synergistic effects of heterogeneous mature compost and aeration rate on humification and nitrogen fixing during kitchen waste composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123743. [PMID: 39693993 DOI: 10.1016/j.jenvman.2024.123743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024]
Abstract
Sludge mature compost (SMC) is notable for its high production, easy accessibility, and stable supply. This study investigated the impact of the SMC addition and different aeration rates on the humification and nitrogen fixing process during kitchen waste composting. The results demonstrated that addition of SMC prolonged the thermophilic phase, as a comparison, increased aeration shortened this phase. The addition of SMC and increased aeration enhanced humus formation and nitrogen retention. SMC introduced more amide and polysaccharide compounds into the compost, promoting the Maillard humification pathway. Additionally, both SMC and high aeration inhibited denitrification: the SMC reduced the abundance of the nirK gene, while high aeration decreased the abundance of nosZ gene. Network analysis revealed that higher aeration enhanced fungal interactions but diminished bacterial interactions. Conversely, SMC addition bolstered both bacterial and fungal interactions. The final compost product with SMC addition showed a 11.56%-44.19% reduction in antibiotic resistance gene content compared with the control group, and heavy metal contents remained within safe application limits. The combination of high SMC addition and high aeration achieved optimal humification and nitrogen retention, underscoring its potential as a promising solution for kitchen waste composting.
Collapse
Affiliation(s)
- Changqing Liu
- College of Geographical Sciences, College of Carbon Neutral Future Technology, Fujian Normal University, Fuzhou, 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou, 350007, Fujian, China
| | - Haimin Li
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University, Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou, 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou, 350007, Fujian, China
| | - Ji-Qin Ni
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Guihua Zhuo
- Fujian Provincial Academy of Environmental Science, Fuzhou, 350013, China
| | - Qingyi Zhang
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University, Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou, 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou, 350007, Fujian, China
| | - Yuyi Zheng
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University, Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou, 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou, 350007, Fujian, China.
| | - Guangyin Zhen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
3
|
Gao M, Liu B, Li J, Deng Y, Zhang Y, Zhang N, Li F, Li C, Huang X, Hu Z. Diversity and Distribution of Fungi in the Marine Sediments of Zhanjiang Bay, China. J Fungi (Basel) 2024; 10:867. [PMID: 39728363 DOI: 10.3390/jof10120867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Fungi are one of the major components of the eukaryotic microbial community in marine ecosystems, playing a significant role in organic matter cycling and food web dynamics. However, the diversity and roles of fungi in marine sediments remain poorly documented. To elucidate the diversity and spatial distribution of fungal communities in the marine sediments of an estuary-coast continuum across three distinct salinity regions in Zhanjiang Bay, China, the variations in fungal diversity, abundance, community structure, and distribution in the sediments were investigated through the application of high-throughput amplicon sequencing using the internal transcribed spacer (ITS) primers. Additionally, the FUNGuild database was employed to assess the potential functional traits of fungi. A total of 1242 ASV sequences, affiliated to 144 genera and five phyla, were identified. Ascomycota (68.97%) and Basidiomycota (6.41%) were the dominant fungal groups, together accounting for 75.38% of the total relative abundance of the fungal community. Significant differences were observed in the α-diversity indices (Shannon index and richness) and β-diversity of fungal communities across the three distinct salinity regions. The fungal molecular network exhibited primarily positive species interactions, with notable structural differences across salinity gradients. The low-salinity group had a large network with high modularity; the medium-salinity group a small, simple network with high centralization, and the high-salinity group a compact, moderately complex network. Symbiotrophs, saprotrophs, and pathotrophs, being the three trophic types with the highest proportions, were estimated based on ITS. A redundancy analysis (RDA) indicated that salinity was the primary factor influencing the distribution of Ascomycota communities, while the distributions of Basidiomycota, Chytridiomycota, Mucoromycota, and Rozellomycota were more strongly affected by environmental factors such as chlorophyll a, chemical oxygen demand (COD), pH, and temperature. Our work provides new scientific data on the diversity, composition, and distribution of fungal communities in Zhanjiang Bay, which helps to understand the biodiversity of fungi in the estuary-coast ecosystems.
Collapse
Affiliation(s)
- Menghan Gao
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Laboratory of Marine Ecology Environment Monitoring and Warning, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bihong Liu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Laboratory of Marine Ecology Environment Monitoring and Warning, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jianming Li
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Laboratory of Marine Ecology Environment Monitoring and Warning, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Yulei Zhang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Laboratory of Marine Ecology Environment Monitoring and Warning, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ning Zhang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Laboratory of Marine Ecology Environment Monitoring and Warning, Guangdong Ocean University, Zhanjiang 524088, China
| | - Feng Li
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Laboratory of Marine Ecology Environment Monitoring and Warning, Guangdong Ocean University, Zhanjiang 524088, China
| | - Changling Li
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Laboratory of Marine Ecology Environment Monitoring and Warning, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xianghu Huang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Laboratory of Marine Ecology Environment Monitoring and Warning, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhangxi Hu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Laboratory of Marine Ecology Environment Monitoring and Warning, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
4
|
Tidimalo C, Maximiliano O, Karen J, Lebre PH, Bernard O, Michelle G, Oagile D, Cowan DA. Microbial diversity in the arid and semi-arid soils of Botswana. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70044. [PMID: 39535358 PMCID: PMC11558117 DOI: 10.1111/1758-2229.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
To date, little research has been conducted on the landscape-scale distribution of soil microbial communities and the factors driving their community structures in the drylands of Africa. We investigated the influence of landscape-scale variables on microbial community structure and diversity across different ecological zones in Botswana. We used amplicon sequencing of bacterial 16S rRNA gene and fungal internal transcribed spacers (ITS) and a suite of environmental parameters to determine drivers of microbial community structure. Bacterial communities were dominated by Actinomycetota (21.1%), Pseudomonadota (15.9%), and Acidobacteriota (10.9%). The dominant fungal communities were Ascomycota (57.3%) and Basidiomycota (7.5%). Soil pH, mean annual precipitation, total organic carbon, and soil ions (calcium and magnesium) were the major predictors of microbial community diversity and structure. The co-occurrence patterns of bacterial and fungal communities were influenced by soil pH, with network-specific fungi-bacteria interactions observed. Potential keystone taxa were identified for communities in the different networks. Most of these interactions were between microbial families potentially involved in carbon cycling, suggesting functional redundancy in these soils. Our findings highlight the significance of soil pH in determining the landscape-scale structure of microbial communities in Botswana's dryland soils.
Collapse
Affiliation(s)
- Coetzee Tidimalo
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Ortiz Maximiliano
- Clemson University Genomics & Bioinformatics FacilityClemson UniversitySouth CarolinaUSA
| | - Jordaan Karen
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Pedro H. Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Olivier Bernard
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Greve Michelle
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Dikinya Oagile
- Department of Environmental ScienceUniversity of BotswanaGaboroneBotswana
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
5
|
Wei TJ, Li G, Cui YR, Xie J, Liang ZW, Guan FC, Li ZH. Response of Alfalfa Leaf Traits and Rhizosphere Fungal Communities to Compost Application in Saline-Sodic Soil. Microorganisms 2024; 12:2287. [PMID: 39597677 PMCID: PMC11596975 DOI: 10.3390/microorganisms12112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Soil salinization is considered a major global environmental problem due to its adverse effects on agricultural sustainability and production. Compost is an environmentally friendly and sustainable measure used for reclaiming saline-sodic soil. However, the responses of the physiological characteristics of alfalfa and the structure and function of rhizosphere fungal communities after compost application in saline-sodic soil remain elusive. Here, a pot experiment was conducted to explore the effect of different compost application rates on soil properties, plant physiological traits, and rhizosphere fungal community characteristics. The results showed that compost significantly increased soil nutrients and corresponding soil enzyme activities, enhanced leaf photosynthesis traits, and ion homeostasis compared with the control treatment. We further found that the rhizosphere fungal communities were dominated by Sodiomyces at the genus level, and the relative abundance of pathogenic fungi, such as Botryotrichum, Plectosphaerella, Pseudogymnoascus, and Fusarium, declined after compost application. Moreover, the α-diversity indexes of the fungal community under compost application rates of 15% and 25% significantly decreased in comparison to the control treatment. The soil SOC, pH, TP, and TN were the main environmental factors affecting fungal community composition. The leaf photosynthetic traits and metal ion contents showed significantly positive correlations with Sodiomyces and Aspergillus. The fungal trophic mode was dominated by Pathotroph-Saprotroph-Symbiotroph and Saprotroph. Overall, our findings provide an important basis for the future application of microbial-based strategies to improve plant tolerance to saline-alkali stress.
Collapse
Affiliation(s)
- Tian-Jiao Wei
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun 130033, China; (T.-J.W.); (G.L.); (Y.-R.C.); (J.X.)
| | - Guang Li
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun 130033, China; (T.-J.W.); (G.L.); (Y.-R.C.); (J.X.)
| | - Yan-Ru Cui
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun 130033, China; (T.-J.W.); (G.L.); (Y.-R.C.); (J.X.)
| | - Jiao Xie
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun 130033, China; (T.-J.W.); (G.L.); (Y.-R.C.); (J.X.)
| | - Zheng-Wei Liang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
| | - Fa-Chun Guan
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun 130033, China; (T.-J.W.); (G.L.); (Y.-R.C.); (J.X.)
| | - Zhong-He Li
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun 130033, China; (T.-J.W.); (G.L.); (Y.-R.C.); (J.X.)
| |
Collapse
|
6
|
Lori M, Kundel D, Mäder P, Singh A, Patel D, Sisodia BS, Riar A, Krause HM. Organic farming systems improve soil quality and shape microbial communities across a cotton-based crop rotation in an Indian Vertisol. FEMS Microbiol Ecol 2024; 100:fiae127. [PMID: 39289000 PMCID: PMC11503945 DOI: 10.1093/femsec/fiae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024] Open
Abstract
The adverse effects of intensified cropland practices on soil quality and biodiversity become especially evident in India, where nearly 60% of land is dedicated to cultivation and almost 30% of soil is already degraded. Intensive agricultural practice significantly contributes to soil degradation, highlighting the crucial need for effective countermeasures to support sustainable development goals. A long-term experiment, established in the semi-arid Nimar Valley (India) in 2007, monitors the effect of organic and conventional management on the plant-soil system in a Vertisol. The focus of our study was to assess how organic and conventional farming systems affect biological and chemical soil quality indicators. Additionally, we followed the community structure of the soil microbiome throughout the vegetation phase under soya or cotton cultivation in the year 2019. We found that organic farming enhanced soil organic carbon and nitrogen content, increased microbial abundance and activity, and fostered distinct microbial communities associated with traits in nutrient mineralization. In contrast, conventional farming enhanced the abundance of bacteria involved in ammonium oxidation suggesting high nitrification and subsequent nitrogen losses with regular mineral fertilization. Our findings underscore the value of adopting organic farming approaches in semi-arid subtropical regions to rectify soil quality and minimize nitrogen losses.
Collapse
Affiliation(s)
- Martina Lori
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | - Dominika Kundel
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | - Paul Mäder
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | - Akanksha Singh
- Department of International Cooperation, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | | | | | - Amritbir Riar
- Department of International Cooperation, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | - Hans-Martin Krause
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| |
Collapse
|
7
|
Verma S, Awasthi MK, Liu T, Awasthi SK, Syed A, Bahkali AH, Verma M, Zhang Z. Influence of biochar on succession of fungal communities during food waste composting. BIORESOURCE TECHNOLOGY 2023; 385:129437. [PMID: 37399966 DOI: 10.1016/j.biortech.2023.129437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
This study aims to examine the effects of biochar on fungal dynamics during food waste composting. The different dosage of wheat straw biochar from 0 to 15% (0%, 2.5%, 5%, 7.5%, 10%, and 15%) were used as an additive to composting and examined for 42 days. The results showed that Ascomycota (94.64%) and Basidiomycota (5.36%) were the most dominant phyla. The most common fungal genera were Kluyveromyces (3.76%), Candida (5.34%), Trichoderma (2.30%), Fusarium (0.46%), Mycothermus-thermophilus (5.67%), Trametes (0.46%), and Trichosporon (3.38%). The average number of operational taxonomic units were 469, with the greatest abundance seen in the 7.5% and 10% treatments. Redundancy analysis revealed that different concentrations of biochar applied treatments have significantly distinct fungal communities. Additionally, correlation analyses of fungal interactions with environmental elements, performed through a heatmap, also indicate a distinct difference among the treatments. The study clearly demonstrates that 15% of biochar has a positive impact on fungal diversity and improves the food waste composting.
Collapse
Affiliation(s)
- Shivpal Verma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Meenakshi Verma
- University Centre for Research & Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
8
|
Perdomo-González A, Pérez-Reverón R, Goberna M, León-Barrios M, Fernández-López M, Villadas PJ, Reyes-Betancort JA, Díaz-Peña FJ. How harmful are exotic plantations for soils and its microbiome? A case study in an arid island. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163030. [PMID: 36963683 DOI: 10.1016/j.scitotenv.2023.163030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
The plantation of exotic species has been a common practice in (semi-) arid areas worldwide aiming to restore highly degraded habitats. The effects of these plantations on plant cover or soil erosion have been widely studied, while little attention has been paid to the consequences on soil quality and belowground biological communities. This study evaluates the long-term (>60 years) effects of the exotic species Acacia cyclops and Pinus halepensis revegetation on soil properties, including microbiome, in an arid island. Soils under exotic plantation were compared to both degraded soils with a very low cover of native species and soils with well-preserved native plant communities. Seven scenarios were selected in a small area (~25 ha) with similar soil type but differing in the plant cover. Topsoils (0-15 cm) were analyzed for physical, chemical and biochemical properties, and amplicon sequencing of bacterial and fungal communities. Microbial diversity was similar among soils with exotic plants and native vegetation (Shannon's index = 5.26 and 5.34, respectively), while the most eroded soils exhibited significantly lower diversity levels (Shannon's index = 4.72). Bacterial and fungal communities' composition in degraded soils greatly differed from those in vegetated soils (Canberra index = 0.85 and 0.92, respectively) likely due to high soil sodicity, fine textures and compaction. Microbial communities' composition also differed in soils covered with exotic and native species, to a greater extent for fungi than for bacteria (Canberra index = 0.94 and 0.89, respectively), due to higher levels of nutrients, microbial biomass and activity in soils with native species. Results suggest that reforestation succeeded in avoiding further soil degradation but still leading to relevant changes in soil microbial community that may have negative effects on ecosystem stability. Information gained in this research could be useful for environmental agencies and decision makers about the controversial replacement of exotic plants in insular territories.
Collapse
Affiliation(s)
- Adolfo Perdomo-González
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain.
| | - Raquel Pérez-Reverón
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Marta Goberna
- Departamento de Medio Ambiente y Agronomía, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Milagros León-Barrios
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Manuel Fernández-López
- Grupo de Microbiología de Ecosistemas Agroforestales, Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Pablo J Villadas
- Grupo de Microbiología de Ecosistemas Agroforestales, Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - J Alfredo Reyes-Betancort
- Jardín de Aclimatación de La Orotava, Instituto Canario de Investigaciones Agrarias (ICIA), 38400 Puerto de la Cruz, Spain
| | - Francisco J Díaz-Peña
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain.
| |
Collapse
|
9
|
Cheng L, Wang L, Wang X, Ou Y, Liu H, Hou X, Yan L, Li X. The various effect of cow manure compost on the degradation of imazethapyr in different soil types. CHEMOSPHERE 2023:139325. [PMID: 37356585 DOI: 10.1016/j.chemosphere.2023.139325] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Adding compost to soil is an effective strategy to promote the degradation of organic pollutants and reduce ecological risks. However, the effect of compost on the degradation of imazethapyr (IMET) in different soil types is not clear. To address this issue, a pot experiment was conducted, and high-throughput sequencing and mass spectrometry technology were used to identify the influence of cow manure compost on the degradation efficiency of IMET in black soil and saline-alkali soil and the role of key microorganisms. The results showed that adding compost to black soil increased the degradation rate of IMET by 12.58% and shortened the half-life by 53.37%, while in saline-alkali soil, the degradation rate of IMET decreased by 6.99% with no significant change in the half-life. High-throughput sequencing results showed that adding cow manure compost (mass ratio of 4%) significantly increased the abundance of bacterial families capable of degrading organic pollutants in black soil, but had an inhibitory effect on this bacterial community in saline-alkali soil. Redundancy analysis (RDA) results showed that total organic carbon (TOC), alkali-hydrolyzable nitrogen (AN), ammonia nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) were the main factors driving microbial community variation. Mass spectrometry analysis indicated that IMET generated three metabolites during the degradation process. Sphingomonadaceae and Vicinamibacteraceae could accelerate the breaking of side-chain alkyl groups, while Chitinophagaceae could cause the rearrangement of the imidazole ring structure, gradually metabolizing IMET into small organic molecules. The application of appropriate cow manure compost can promote the development of IMET-degrading bacteria by adjusting the organic carbon and dissolved nitrogen content in black soil. In the future, the quantitative effects of organic fertilizer application on the IMET degradation process in different soil types should be further analyzed, and microbial isolation and purification should be used to enhance the ability of microorganisms to degrade herbicides.
Collapse
Affiliation(s)
- Lei Cheng
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| | - Lixia Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| | - Xinhong Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China.
| | - Yang Ou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China.
| | - Huiping Liu
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| | - Xia Hou
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Liming Yan
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xinyi Li
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| |
Collapse
|
10
|
Matheri F, Kambura AK, Mwangi M, Karanja E, Adamtey N, Wanjau K, Mwangi E, Tanga CM, Bautze D, Runo S. Evolution of fungal and non-fungal eukaryotic communities in response to thermophilic co-composting of various nitrogen-rich green feedstocks. PLoS One 2023; 18:e0286320. [PMID: 37256894 DOI: 10.1371/journal.pone.0286320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
Thermophilic composting is a promising soil and waste management approach involving diverse micro and macro-organisms, including eukaryotes. Due to sub-optimal amounts of nutrients in manure, supplemental feedstock materials such as Lantana camara, and Tithonia diversifolia twigs are used in composting. These materials have, however, been reported to have antimicrobial activity in in-vitro experiments. Furthermore, the phytochemical analysis has shown differences in their complexities, thus possibly requiring various periods to break down. Therefore, it is necessary to understand these materials' influence on the biological and physical-chemical stability of compost. Most compost microbiome studies have been bacterial-centric, leaving out eukaryotes despite their critical role in the environment. Here, the influence of different green feedstock on the fungal and non-fungal eukaryotic community structure in a thermophilic compost environment was examined. Total community fungal and non-fungal eukaryotic DNA was recovered from triplicate compost samples of four experimental regimes. Sequencing for fungal ITS and non-fungal eukaryotes; 18S rDNA was done under the Illumina Miseq platform, and bioinformatics analysis was done using Divisive Amplicon Denoising Algorithm version 2 workflow in R version 4.1. Samples of mixed compost and composting day 84 recorded significantly (P<0.05) higher overall fungal populations, while Lantana-based compost and composting day 84 revealed the highest fungal community diversity. Non-fungal eukaryotic richness was significantly (P< 0.05) more abundant in Tithonia-based compost and composting day 21. The most diverse non-fungal eukaryotic biome was in the Tithonia-based compost and composting day 84. Sordariomycetes and Holozoa were the most contributors to the fungal and non-fungal community interactions in the compost environment, respectively. The findings of this study unravel the inherent influence of diverse composting materials and days on the eukaryotic community structure and compost's biological and chemical stability.
Collapse
Affiliation(s)
- Felix Matheri
- Department of Biochemistry, Microbiology, and Biotechnology, Kenyatta University (KU), Nairobi, Kenya
- International Centre for Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Anne Kelly Kambura
- Department of Agricultural Sciences, Taita Taveta University (TTU), Voi, Kenya
| | - Maina Mwangi
- Department of Biochemistry, Microbiology, and Biotechnology, Kenyatta University (KU), Nairobi, Kenya
| | - Edward Karanja
- International Centre for Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Noah Adamtey
- Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Kennedy Wanjau
- International Livestock Research Institute (ILRI), Department Animal and Human Health, Nairobi, Kenya
| | - Edwin Mwangi
- International Centre for Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | | | - David Bautze
- Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Steven Runo
- Department of Biochemistry, Microbiology, and Biotechnology, Kenyatta University (KU), Nairobi, Kenya
| |
Collapse
|
11
|
Verma S, Kumar Awasthi M, Liu T, Kumar Awasthi S, Yadav V, Ravindran B, Syed A, Eswaramoorthy R, Zhang Z. Biochar as smart organic catalyst to regulate bacterial dynamics during food waste composting. BIORESOURCE TECHNOLOGY 2023; 373:128745. [PMID: 36796733 DOI: 10.1016/j.biortech.2023.128745] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The impact of wheat straw biochar (WSB) on bacterial dynamics succession during food waste (FW) composting was analyzed. Six treatments [0(T1), 2.5(T2), 5 (T3), 7.5 (T4), 10 (T5), and 15 %(T6)] dry weight WSB were used with FW and saw dust for composting. At the highest thermal peak at 59 ℃ in T6, the pH varied from 4.5 to 7.3, and electrical conductivity among the treatments varied from 1.2 to 2.0 mScm1. Firmicutes (25-97 %), Proteobacteria (8-45 %), and Bacteroidota (5-50 %) were among the dominate phyla of the treatments. Whereas, Bacillus (5-85 %), Limoslactobacillus (2-40 %), and Sphingobacterium (2-32 %) were highest among the identified genus in treatments but surprisingly Bacteroides was in greater abundance in the control treatments. Moreover, heatmap constructed with 35 various genera in all the treatments showed that Gammaproteobacterial genera contributed in large proportion after 42 days in T6. Additionally, a dynamic shift from Lactobacillus fermentum to higher abundance of Bacillus thermoamylovorans was reported on 42 days of FW composting. Biochar 15 % amendment can improve FW composting by influencing bacterial dynamics.
Collapse
Affiliation(s)
- Shivpal Verma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Rajalakshmanan Eswaramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
12
|
Maria SB, Krystyna P, Monika L, Aleksandra J, Patrycja T, Kornelia K, Aleksandra BB, Joanna Ś, Piotr J, Katarzyna P, Agnieszka K. Natural compounds derived from Brassicaceae plants as an alternative to synthetic fungicides and their influence on soil fungus diversity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:317-327. [PMID: 35866526 DOI: 10.1002/jsfa.12143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/26/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The study aimed to develop a new formulation based on active substances of natural origin to protect plant seedlings against fungal pathogens, and to evaluate the effect of this formulation on fungal communities in arable soil. RESULTS Coating seeds of common crop plants with a p-coumaric acid (p-CA)-based preparation resulted in a significant reduction in the growth of most of the tested pathogens. When applied to soil, both the p-CA-based formulation and Porter 250 EC had a similar overall effect on soil fungal communities and significantly altered the structure of fungal communities at all of the times examined. Shifts in the fungal community composition concerned less than 2% of the total number of amplicon sequence variants (ASVs). The strongest impact of the formulations on soil microbiota was recorded at the fourth week of treatment. Two ASVs assigned to Botrytis and Chromelosporium, known as plant pathogens, and an unidentified ASV from Diversisporales encompassing the arbuscular mycorrhizal fungi (AMF), were significantly depleted in soil samples treated with p-CA in comparison with Porter 250 EC. CONCLUSION The p-CA-based preparation has the potential to be used as an alternative to synthetic fungicides. It shows a similar effect to Porter 250 EC on the organization of soil communities, determining changes in the character of the communities of fungi in general, at any given time. Moreover, p-CA caused a reduction in ASVs belonging to Botrytis and Chromelosporium (plant pathogens) and ASVs of Diversisporales (containing arbuscular mycorrhizal fungi) in comparison with the commercial compound that was analyzed. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Swiontek Brzezinska Maria
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Pałubicka Krystyna
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Latos Monika
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Janik Aleksandra
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Tarnawska Patrycja
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Krajnik Kornelia
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Burkowska-But Aleksandra
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Świątczak Joanna
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Jedziniak Piotr
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Pulawy, Poland
| | - Pietruszka Katarzyna
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Pulawy, Poland
| | - Kalwasińska Agnieszka
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| |
Collapse
|
13
|
Wu K, Liu Y, Liao X, Yang X, Chen Z, Mo L, Zhong S, Zhang X. Fungal Diversity and Its Relationship with Environmental Factors in Coastal Sediments from Guangdong, China. J Fungi (Basel) 2023; 9:jof9010101. [PMID: 36675922 PMCID: PMC9866456 DOI: 10.3390/jof9010101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
As one core of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), Guangdong is facing some serious coastal environmental problems. Fungi are more vulnerable to changes in coastal environments than bacteria and archaea. This study investigated the fungal diversity and composition by high-throughput sequencing and detected basic parameters of seven environmental factors (temperature, dissolved oxygen, pH, salinity, total organic carbon, total nitrogen, and total phosphorus) at 11 sites. A total of 2056 fungal operational taxonomic units (OTUs) belonging to 147 genera in 6 phyla were recovered; Archaeorhizomyces (17.5%) and Aspergillus (14.19%) were the most dominant genera. Interestingly, a total of 14 genera represented the first reports of coastal fungi in this study. Furthermore, there were nine genera of fungi that were significantly correlated with environmental factors. FUNGuild analysis indicated that saprotrophs and pathogens were the two trophic types with the highest proportions. Saprotrophs were significantly correlated with total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP), while pathogens were significantly correlated with pH. This study provides new scientific data for the study of the diversity and composition of fungal communities in coastal ecosystems.
Collapse
Affiliation(s)
- Keyue Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongchun Liu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinyu Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinyue Yang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zihui Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Li Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence: (S.Z.); (X.Z.)
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (S.Z.); (X.Z.)
| |
Collapse
|
14
|
Li X, Skillman V, Dung J, Frost K. Legacy effects of fumigation on soil bacterial and fungal communities and their response to metam sodium application. ENVIRONMENTAL MICROBIOME 2022; 17:59. [PMID: 36461097 PMCID: PMC9719244 DOI: 10.1186/s40793-022-00454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Soil microorganisms are integral to maintaining soil health and crop productivity, but fumigation used to suppress soilborne diseases may affect soil microbiota. Currently, little is known about the legacy effects of soil fumigation on soil microbial communities and their response to fumigation at the production scale. Here, 16S rRNA gene and internal transcribed spacer amplicon sequencing was used to characterize the bacterial and fungal communities in soils from intensively managed crop fields with and without previous exposure to metam sodium (MS) fumigation. The effect of fumigation history, soil series, and rotation crop diversity on microbial community variation was estimated and the response of the soil microbiome to MS application in an open microcosm system was documented. RESULTS We found that previous MS fumigation reduced soil bacterial diversity but did not affect microbial richness and fungal diversity. Fumigation history, soil series, and rotation crop diversity were the main contributors to the variation in microbial β-diversity. Between fumigated and non-fumigated soils, predominant bacterial and fungal taxa were similar; however, their relative abundance varied with fumigation history. In particular, the abundance of Basidiomycete yeasts was decreased in fumigated soils. MS fumigation also altered soil bacterial and fungal co-occurrence network structure and associations. In microcosms, application of MS reduced soil microbial richness and bacterial diversity. Soil microbial β-diversity was also affected but microbial communities of the microcosm soils were always similar to that of the field soils used to establish the microcosms. MS application also induced changes in relative abundance of several predominant bacterial and fungal genera based on a soil's previous fumigation exposure. CONCLUSIONS The legacy effects of MS fumigation are more pronounced on soil bacterial diversity, β-diversity and networks. Repeated fumigant applications shift soil microbial compositions and may contribute to differential MS sensitivity among soil microorganisms. Following MS application, microbial richness and bacterial diversity decreases, but microbial β-diversity was similar to that of the field soils used to establish the microcosms in the short-term (< 6 weeks). The responses of soil microbiome to MS fumigation are context dependent and rely on abiotic, biotic, and agricultural management practices.
Collapse
Affiliation(s)
- Xiaoping Li
- Virginia Tech, Hampton Roads Agricultural Research and Extension Center, Virginia Beach, VA, 23455, USA
| | - Victoria Skillman
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, 97838, USA
| | - Jeremiah Dung
- Central Oregon Agricultural Research and Extension Center, Oregon State University, Madras, OR, 97741, USA
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97333, USA
| | - Kenneth Frost
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, 97838, USA.
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97333, USA.
| |
Collapse
|
15
|
Li K, Hayes F, Chadwick DR, Wang J, Zou J, Jones DL. Changes in microbial community composition drive the response of ecosystem multifunctionality to elevated ozone. ENVIRONMENTAL RESEARCH 2022; 214:114142. [PMID: 35995222 DOI: 10.1016/j.envres.2022.114142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Increasing tropospheric ozone poses a potential threat to both above- and belowground components of the terrestrial biosphere. Microorganisms are the main drivers of soil ecological processes, however, the link between soil microbial communities and ecological functions under elevated ozone remains poorly understood. In this study, we assessed the responses of three crop seedlings (i.e., soybean, maize, and wheat) growth and soil microbial communities to elevated ozone (40 ppb O3 above ambient air) in a pot experiment in the solardomes. Results showed that elevated ozone adversely affected ecosystem multifunctionality by reducing crop biomass, inhibiting soil extracellular enzyme activities, and altering nutrient availability. Elevated ozone increased bacterial and fungal co-occurrence network complexity, negatively correlated with ecosystem multifunctionality. Changes in the relative abundance of some specific bacteria and fungi were associated with multiple ecosystem functioning. In addition, elevated ozone significantly affected fungal community composition but not bacterial community composition and microbial alpha-diversity. Crop type played a key role in determining bacterial alpha-diversity and microbial community composition. In conclusion, our findings suggest that short-term elevated ozone could lead to a decrease in ecosystem multifunctionality associated with changes in the complexity of microbial networks in soils.
Collapse
Affiliation(s)
- Kejie Li
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Felicity Hayes
- UK Centre for Ecology and Hydrology, Environment Centre Wales, Bangor, Gwynedd, LL57 2UW, UK
| | - David R Chadwick
- School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Jinyang Wang
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| | - Jianwen Zou
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Davey L Jones
- School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor, Gwynedd, LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| |
Collapse
|
16
|
Liu X, Li X, Hua Y, Sinkkonen A, Romantschuk M, Lv Y, Wu Q, Hui N. Meat and bone meal stimulates microbial diversity and suppresses plant pathogens in asparagus straw composting. Front Microbiol 2022; 13:953783. [PMID: 36204619 PMCID: PMC9530395 DOI: 10.3389/fmicb.2022.953783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Meat and bone meal (MBM), as slaughterhouse waste, is a potential biostimulating agent, but its efficiency and reliability in composting are largely unknown. To access the MBM application to the composting process of asparagus straw rice, we followed the composting process for 60 days in 220-L composters and another 180 days in 20-L buckets in treatments applied with MBM or urea. The microbial succession was investigated by high-throughput sequencing. Compared with urea treatments, MBM addition stabilized pH and extended the thermophilic phase for 7 days. The germination index of MBM treatments was 24.76% higher than that of urea treatments. MBM also promoted higher microbial diversity and shifted community compositions. Organic matter and pH were the most significant factors that influence the bacterial and fungal community structure. At the genus level, MBM enriched relative abundances of organic matter-degrading bacteria (Alterococcus) and lignocellulose-degrading fungi (Trichoderma), as well as lignocellulolytic enzyme activities. Notably, MBM addition decreased sum abundances of plant pathogenic fungi of Phaeoacremonium, Acremonium, and Geosmithia from 17.27 to 0.11%. This study demonstrated the potential of MBM as an effective additive in asparagus straw composting, thus providing insights into the development of new industrial aerobic fermentation.
Collapse
Affiliation(s)
- Xinxin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, China
| | - Xiaoxiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yinfeng Hua
- Shanghai Pudong Development (Group) CO., Ltd., Shanghai, China
| | - Aki Sinkkonen
- Department of Garden Technologies, Horticulture Technologies, Natural Resources Institute Finland, Helsinki, Finland
| | - Martin Romantschuk
- Faculty of Biological and Environmental Science, University of Helsinki, Lahti, Finland
| | - Yanfang Lv
- Food Safety Key Lab of Liaoning Province, College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Qian Wu
- Boda Environmental Protection Co., Ltd., Yixing, China
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Biological and Environmental Science, University of Helsinki, Lahti, Finland
- *Correspondence: Nan Hui
| |
Collapse
|
17
|
Lin WF, Guo HQ, Zhu LJ, Yang K, Li HZ, Cui L. Temporal variation of antibiotic resistome and pathogens in food waste during short-term storage. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129261. [PMID: 35739780 DOI: 10.1016/j.jhazmat.2022.129261] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
The massive food wastes pose a growing health concern for spreading of antibiotic resistance and pathogens due to food spoilage. However, little is known about these microbial hazards during collection, classification, and transportation before eventual treatment. Here, we profiled the temporal variations of antibiotic resistance genes (ARGs), pathogens, bacterial and fungal communities across four typical food wastes (vegetable, fish, meat, and rice) during storage at room temperature in summer (maximum 28-29 °C) of typical southeast city in China. A total of 171 ARGs and 32 mobile genetic elements were detected, and the absolute abundance of ARGs significantly increased by up to 126-fold with the storage time. Additionally, five bacterial pathogens containing virulence factor genes were detected, and Klebsiella pneumoniae was persistently detected throughout the storage time in all food types except rice. Moreover, fungal pathogens (e.g., Aspergillus, Penicillium, and Fusarium) were also frequently detected. Notably, animal food wastes were demonstrated to harbor higher abundance of ARGs and more types of pathogens, indicating a higher level of hazard. Mobile genetic elements and food types were demonstrated to mainly impact ARG profiles and pathogens, respectively. This work provides a comprehensive understanding of the microbial hazards associated with food waste recycling, and will contribute to optimize the food waste management to ensure biosecurity and benefit human health.
Collapse
Affiliation(s)
- Wen-Fang Lin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong-Qin Guo
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long-Ji Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kai Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong-Zhe Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
18
|
Leaf-Associated Epiphytic Fungi of Gingko biloba, Pinus bungeana and Sabina chinensis Exhibit Delicate Seasonal Variations. J Fungi (Basel) 2022; 8:jof8060631. [PMID: 35736114 PMCID: PMC9225447 DOI: 10.3390/jof8060631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Plant-leaf surface on Earth harbors complex microbial communities that influence plant productivity and health. To gain a detailed understanding of the assembly and key drivers of leaf microbial communities, especially for leaf-associated fungi, we investigated leaf-associated fungal communities in two seasons for three plant species at two sites by high-throughput sequencing. The results reveal a strong impact of growing season and plant species on fungal community composition, exhibiting clear temporal patterns in abundance and diversity. For the deciduous tree Gingko biloba, the number of enriched genera in May was much higher than that in October. The number of enriched genera in the two evergreen trees Pinus bungeana and Sabina chinensis was slightly higher in October than in May. Among the genus-level biomarkers, the abundances of Alternaria, Cladosporium and Filobasidium were significantly higher in October than in May in the three tree species. Additionally, network correlations between the leaf-associated fungi of G. biloba were more complex in May than those in October, containing extra negative associations, which was more obvious than the network correlation changes of leaf-associated fungi of the two evergreen plant species. Overall, the fungal diversity and community composition varied significantly between different growing seasons and host plant species.
Collapse
|
19
|
Dang Q, Zhao X, Yang T, Gong T, He X, Tan W, Xi B. Coordination of bacterial biomarkers with the dominant microbes enhances triclosan biodegradation in soil amended with food waste compost and cow dung compost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153837. [PMID: 35181369 DOI: 10.1016/j.scitotenv.2022.153837] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Increasing concerns regarding the micropollutant triclosan (TCS) derive from its potential threats to human health and ecological security. Compost addition have been verified to be effective in soil remediation, however, the biodegradation of TCS under compost amendment in soil remain unclear. This study investigated the removal of TCS in soils amended with food waste compost (FS), cow dung compost (CS) and sludge compost (SS), respectively, explored the key TCS-degraders and biological mechanisms of TCS removal. Compost addition significantly enhanced the removal of TCS (p < 0.05) in the order of FS > CS > SS. The dosage of 20% (w/w) was the most efficient one and the ultimate concentrations of TCS were decreased by 76.67%, 67.90% and 56.79% compared with CK, respectively. The abundance of key dominant bacterial genus (7 in FS and 4 in CS) and fungal genus (3 in FS and CS) was stimulated due to the increase of soil nutrient factors (including dissolved organic carbon, DOC; soil organic matter, SOM; ammonium nitrogen, NH4+; nitrate nitrogen, NO3-) and the decrease of pH. A negative correlation between these dominant microbes and TCS concentration indicated their potential effect on TCS degradation. A total of four bacterial biomarkers, namely Saccharomonospora, Aequorivita, Bacillaceae and Fodinicurvataceae (both at family level) were the key TCS-degraders. Structural equation model (SEM) indicated that the improvement of soil nutrient factors in FS and CS promoted TCS biodegradation by improving the activity of bacterial biomarkers, as while, the key dominant microbes showed good tolerance to TCS stress. However, there were no significant biological effects on TCS in SS group. Network analysis further confirmed that it was the coordination of bacterial biomarkers with the dominant microbes that enhanced TCS biodegradation in soil amended with food waste compost and cow dung compost.
Collapse
Affiliation(s)
- Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tianxue Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tiancheng Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaosong He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
20
|
Rusli LS, Abdullah R, Yaacob JS, Osman N. Organic Amendments Effects on Nutrient Uptake, Secondary Metabolites, and Antioxidant Properties of Melastoma malabathricum L. PLANTS 2022; 11:plants11020153. [PMID: 35050041 PMCID: PMC8778759 DOI: 10.3390/plants11020153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 11/19/2022]
Abstract
Amelioration of soil acidity can boost soil fertility, hence increasing nutrient uptake, secondary metabolite, and its antioxidant potential. In the present study, the effectiveness of food waste compost and palm kernel biochar was assessed as soil amendments for Melastoma malabathricum L. grown in acidic soil conditions. A six-month greenhouse study was conducted using completely randomized design (CRD) with three treatment groups, including control plants (T1), plants amended with palm kernel biochar (T2), and plants amended with food waste compost (T3). Data analysis revealed that Melastoma malabathricum L. amended with T3 recorded the highest total chlorophyll content (433.678 ± 13.224 µg g−1 DW), followed by T2 and T1. The increase in chlorophyll content was contributed by the increase in soil pH. This was shown by the positive significant correlations between soil pH and chlorophyll a (r2 = 0.96; p ≤ 0.01) and chlorophyll b (r2 = 0.778; p ≤ 0.01). In addition, the same treatment exhibited the highest total anthocyanin content (leaves; 36.1 × 10−2 ± 0.034 mg/g DW and root extract; 8.9 × 10−2 ± 0.020 mg/g DW), total phenolic content (stem extract; 4930.956 ± 16.025 mg GAE/g DE), and total flavonoid content (stem extract; 209.984 ± 0.572 mg QE/g DE). Moreover, this study also found that the highest antioxidant potential against 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2-Azinobis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals was exhibited by samples supplemented with food waste compost (T3), followed by palm kernel biochar (T2). This indicates that the soil amendments have the capacity to enhance the secondary metabolites that protect plants, therefore ameliorating Melastoma malabathricum L.’s response towards acidic stress, and resulting in better antioxidant properties. Furthermore, this study also recorded better nutrient uptake in T3. With the significantly higher levels of macronutrient in the soil, the food waste compost could enhance the nutrient properties, secondary metabolites, and antioxidant capacity of Melastoma malabathricum L. grown in acidic soil conditions.
Collapse
Affiliation(s)
- Lili Syahani Rusli
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (L.S.R.); (R.A.)
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, Kuala Pilah 72000, Malaysia
| | - Rosazlin Abdullah
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (L.S.R.); (R.A.)
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jamilah Syafawati Yaacob
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (L.S.R.); (R.A.)
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (J.S.Y.); (N.O.); Tel.: +60-37967-4090 (J.S.Y.); +60-37967-4185 (N.O.)
| | - Normaniza Osman
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (L.S.R.); (R.A.)
- Correspondence: (J.S.Y.); (N.O.); Tel.: +60-37967-4090 (J.S.Y.); +60-37967-4185 (N.O.)
| |
Collapse
|
21
|
Li Y, Sun B, Deng T, Lian P, Chen J, Peng X. Safety and efficiency of sewage sludge and garden waste compost as a soil amendment based on the field application in woodland. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112497. [PMID: 34273850 DOI: 10.1016/j.ecoenv.2021.112497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/09/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Sewage sludge (SS) and garden waste (GW) compost can be used as soil amendments to improve the soil environment. Studies done till date have been focused on the changes of harmful substances during sludge composting, but the safety and efficacy of SS and GW composting on woodland soil environment are still unclear. In the study, a field experiment was performed using to investigate the safety and efficacy of SS and GW compost as a soil amendment on woodland soil. Soil nutrients (such as nitrogen, phosphorus and potassium), organic matter and electrical conductivity were significantly increased after the addition of the SS and GW compost, while there were no significant changes in soil heavy metals content and soil enzyme activities. From these soil properties, it was found that SS and GW compost was safe and efficacious in improving the soil environment. The application of SS and GW compost had no significant effect on microbial diversity. Co-occurrence network analysis revealed that SS and GW compost efficaciously enhanced the interaction between bacterial communities, which proved that it was safe and efficacious. Furthermore, SS and GW compost enhanced ABC transporters and carbohydrate metabolism of bacterial community, while reduced the pathotroph action (such as the plant pathogen) and wood saprotrophs. Overall, these results proved the safety and efficacy of SS and GW compost as soil amendments after being added to the soil. This study contributes to the use of harmless treatments and reutilization processes of SS and GW.
Collapse
Affiliation(s)
- Yongshuang Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Bo Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyue Deng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Peng Lian
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Juhong Chen
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Xiawei Peng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
22
|
Wu X, Liu P, Wegner CE, Luo Y, Xiao KQ, Cui Z, Zhang F, Liesack W, Peng J. Deciphering microbial mechanisms underlying soil organic carbon storage in a wheat-maize rotation system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147798. [PMID: 34034165 DOI: 10.1016/j.scitotenv.2021.147798] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 05/14/2023]
Abstract
A link between microbial life history strategies and soil organic carbon storage in agroecosystems is presumed, but largely unexplored at the gene level. We aimed to elucidate whether and how differential organic material amendments (manure versus peat-vermiculite) affect, relative to sole chemical fertilizer application, the link between microbial life history strategies and soil organic carbon storage in a wheat-maize rotation field experiment. To achieve this goal, we combined bacterial 16S rRNA gene and fungal ITS amplicon sequencing, metagenomics and the assembly of genomes. Fertilizer treatments had a significantly greater effect on microbial community composition than aggregate size, with soil available phosphorus and potassium being the most important community-shaping factors. Limitation in labile carbon was linked to a K-selected oligotrophic life history strategy (Gemmatimonadetes, Acidobacteria) under sole chemical fertilizer application; defined by a significant enrichment of genes involved in resource acquisition, polymer hydrolysis, and competition. By contrast, excess of labile carbon promoted an r-selected copiotrophic life history strategy (Cytophagales, Bacillales, Mortierellomycota) under manure treatment; defined by a significant enrichment of genes involved in cellular growth. A distinct life history strategy was not observed under peat-vermiculite treatment, but rather a mix of both K-selected (Acidobacteria) and r-selected (Actinobacteria, Mortierellomycota) microorganisms. Compared to sole chemical fertilizer application, soil organic carbon storage efficiency was significantly increased by 26.5% and 50.0% under manure and peat-vermiculite treatments, respectively. Taken together, our results highlight the importance of organic material amendments, but in particular a one-time peat-vermiculite application, to promote soil organic carbon storage as a potential management strategy for sustainable agriculture.
Collapse
Affiliation(s)
- Xingjie Wu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Pengfei Liu
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Carl-Eric Wegner
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Yu Luo
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Ke-Qing Xiao
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Zhenling Cui
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Werner Liesack
- Research Group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Jingjing Peng
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China.
| |
Collapse
|