1
|
Fang J, Wang D, Wilkin R, Su C. Realistic and field scale applications of biochar for water remediation: A literature review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 385:125524. [PMID: 40334406 DOI: 10.1016/j.jenvman.2025.125524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 05/09/2025]
Abstract
Biochar has received increasing attention in recent years as a potentially cost-competitive adsorbent for removing various contaminants from surface water and groundwater. However, most published studies have been conducted in the laboratory on a bench scale. Laboratory conditions do not necessarily reflect the complex, heterogeneous, and dynamic field conditions of actual contaminated surface water and groundwater environments. There is a lack of comprehensive literature review regarding the performance of biochar for contaminant removal, especially under realistic field conditions and at field scale. Here, we evaluated 31 studies on realistic applications of biochar for water remediation by searching the keywords: pilot scale, field scale, and mesocosm scale combined with biochar and water remediation. Biochar was found to be incorporated into a variety of water remediation technologies for treating both inorganic and organic contaminants, such as nutrients, heavy metals, pesticides, and pharmaceuticals in polluted waters and wastewaters. Also, biochar showed the potential to be effective on a field scale or in realistic remediation technologies, although it is not always as effective as other sorbents, such as activated carbon (AC). This is partially because AC has better physicochemical characteristics such as higher surface area and more micropores. Effectiveness for contaminant removal varies according to the targeted contaminants, the type and dosage of biochar used, and the treatment technology incorporating biochar. Finally, knowledge gaps and future research areas are identified. For example, more field scale studies are needed to test the effectiveness of biochar as an adsorbent under realistic conditions to pinpoint specific characteristics suitable for target contaminants. Physicochemical characteristics of the biochar can also change over time during the treatment process due to weathering, which may negatively affect the treatment performance. The effects of scaling up production on biochar quality should therefore also be further investigated, as physicochemical characteristics can be affected by varying the synthesis conditions. Regeneration and disposal of spent biochar is another active research area to determine the overall treatment costs.
Collapse
Affiliation(s)
- June Fang
- Oak Ridge Institute for Science and Education Fellow at the U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK, 74820, USA.
| | - Dengjun Wang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA.
| | - Richard Wilkin
- Groundwater Characterization and Remediation Division, Center for Environmental Solutions and Emergency Response, Office of Research and Development, United States Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK, 74820, USA.
| | - Chunming Su
- Groundwater Characterization and Remediation Division, Center for Environmental Solutions and Emergency Response, Office of Research and Development, United States Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK, 74820, USA.
| |
Collapse
|
2
|
Li N, Zhu F, Wang Z, Wu J, Gao Y, Li K, Zhao C, Wang X. Harnessing corn straw biochar: A breakthrough in eco-friendly Cu(II) wastewater treatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 197:25-34. [PMID: 39986044 DOI: 10.1016/j.wasman.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 12/05/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
To investigate an energy-efficient, environmentally friendly, and highly efficient biochar for adsorbing Cu(II)-containing wastewater, corn straw hydrothermal char prepared at 240 °C for 2 h was used as a precursor. Silicon (Si)-Manganese (Mn) impregnation modification was then performed to produce the modified biochar (b-BC). The study found that Si and Mn were loaded onto the b-BC surface in the form of oxides. The distinct hierarchical Si membrane effectively stabilized Mn oxides and increased the specific surface area. Under different pH conditions, the effect of Mn rendered b-BC consistently negatively charged in the solution, facilitating electrostatic attraction with Cu(II). Fourier-transform infrared and X-ray photoelectron spectroscopy results revealed that b-BC's surface had numerous oxygen-containing functional groups, effectively binding with Cu(II). Adsorption experiments showed that, at an addition amount of 1.47 g/L and pH of 7, b-BC displayed a significant adsorption capacity for Cu(II) at 167.884 mg/g. Pseudo-second-order adsorption kinetics and Freundlich isotherm models better described the adsorption behavior of b-BC for Cu(II). The adsorption process was primarily dominated by multilayer chemical adsorption. Webber-Morris analysis indicated that the key adsorption process occurred during the membrane diffusion stage. At this stage, Cu(II) formed bonds with the b-BC surface in the forms of Cu-O, -COOCu, Cu(OH)2, and Si/Mn-O-Cu. Chelation emerged as the most significant mechanism for b-BC adsorbing Cu(II). Due to its environmentally friendly preparation method and high efficiency in adsorbing Cu(II) from water, b-BC can be considered as a feasible rich-carbon adsorbent in the field of waste treatment.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Fuchen Zhu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Zhaowei Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Jinghui Wu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yidi Gao
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Keqing Li
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chunliang Zhao
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Xianze Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
3
|
Wei M, Wang B, Chen M, Wu P, Zhang X. Remediation of antimony and arsenic in co-contaminated soil by electrolytic manganese residue-biochar composite: Effects, mechanisms, and microbial response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125371. [PMID: 39579918 DOI: 10.1016/j.envpol.2024.125371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
Antimony (Sb) mining and smelting activities caused Sb and arsenic (As) pollution in the soil, posing a threat to the ecosystem and human health. To remediate Sb and As in co-contaminated soil and realize the resource utilization of typical industrial solid waste, electrolytic manganese residue (EMR)-biochar composite (EB) was prepared from EMR and distillers grains by a facile one-step pyrolysis method. The immobilization effect of EB on Sb and As in soil was studied using a column leaching experiment. Pot and soil incubation experiments were conducted to investigate the effects of EB on the bioavailability of Sb/As and microbial communities. The results showed that 4 wt% EB treatment reduced the accumulated contents of Sb and As in leachates by 29.21%-55.65% and 53.51%-68.95%, respectively, compared with the control. EB treatment (1 wt%) improved plant height, root length, phytomass, and chlorophyll content of Brassica campestris L. Compared to the untreated soils, 4 wt% EB treatment increased the well-crystallized hydrous oxides and residual fractions of Sb and As by 4.29%-6.23% and 4.09%-7.03%, respectively. The concentrations of bioavailable Sb and As in soil were reduced by 48.01%-71.92% and 52.31%-53.81%, respectively. EB interacted with As/Sb-resistant dominant microorganisms such as Proteobacteria in the soil, promoted their growth, and enhanced the immobilization of Sb/As. EB increased the relative abundance of redox-related bacteria of Sb and As (Thiobacillus and Sulfuriferula) by affecting soil EC and bioavailable Sb/As. The immobilization of As and Sb by EB include complexation, hydrogen bonding, and pore filling. These findings provide novel insights into the remediation of Sb and As co-contaminated soils.
Collapse
Affiliation(s)
- Ming Wei
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| |
Collapse
|
4
|
Feng Y, Xie T, Li F. New challenge: Mitigation and control of antibiotic resistant genes in aquatic environments by biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174385. [PMID: 38960194 DOI: 10.1016/j.scitotenv.2024.174385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
With an increase of diverse contaminants in the environment, particularly antibiotics, the maintenance and propagation of antibiotic resistance genes (ARGs) are promoted by co-selection mechanisms. ARGs are difficult to degrade, cause long-lasting pollution, and are widely transmitted in aquatic environments. Biochar is frequently used to remove various pollutants during environmental remediation. Thus, this review provides a thorough analysis of the current state of ARGs in the aquatic environment as well as their removal by using biochar. This article summarizes the research and application of biochar and modified biochar to remove ARGs in aquatic environments, in order to refine the following contents: 1) fill gaps in the research on the various ARG behaviors mediated by biochar and some influence factors, 2) further investigate the mechanisms involved in effects of biochar on extracellular ARGs (eARGs) and intracellular ARGs (iARGs) in aquatic environments, including direct and the indirect effects, 3) describe the propagation process and resistance mechanisms of ARGs, 4) propose the challenges and prospects of feasibility of application and subsequent treatment in actual aquatic environment. Here we highlight the most recent research on the use of biochar to remove ARGs from aquatic environments and suggest future directions for optimization, as well as current perspectives to guide future studies on the removal of ARGs from aquatic environments.
Collapse
Affiliation(s)
- Yimeng Feng
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Tong Xie
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
5
|
Hasan MS, Karmakar AK. Zn-Al layered double hydroxide supported on waste cow dung-derived biochar as a highly efficient adsorbent for anionic dye removal from contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60401-60425. [PMID: 39379656 DOI: 10.1007/s11356-024-35176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
In this study, Zn-Al-SO42- LDH-functionalized biochar was fabricated using the co-precipitation method. The biochar was synthesized from waste cow dung using a low-temperature pyrolysis process (300 °C). The materials were fully characterized by TGA, FTIR, EDS, SEM, and XRD analysis. Then, a comparative study was performed to investigate the adsorption capacity of the materials against an anionic dye (i.e., methyl orange (MO)). The LDH-functionalized biochar demonstrated high adsorption capacity (400 mg/g in 120 min, at pH 5) compared to the raw biochar (212 mg/g in 120 min, at pH 5). The effect of various adsorption parameters (e.g., pH of the dye solution, temperature, initial concentration, adsorbent dosage, and contact time) was investigated. The adsorption of MO on LDH-functionalized biochar followed the Freundlich isotherm and pseudo-second-order kinetics, while the raw biochar followed the Langmuir isotherm and pseudo-second-order kinetics. The thermodynamic data indicated the endothermic nature of adsorption and an increase in the degree of randomness during adsorption. The enhanced adsorption capacity of the Zn-Al LDH-functionalized char was attributed to the synergistic effect of the surface adsorption into the porous biochar matrix, interlayer adsorption, and ion exchange capacity of the LDHs. Therefore, modification of waste cow dung-derived biochar with Zn-Al LDH can be a promising approach to fabricate a highly efficient adsorbent for toxic dyes from wastewater.
Collapse
Affiliation(s)
- Md Saif Hasan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Aneek Krishna Karmakar
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
6
|
Peng S, Liu J, Pan G, Qin Y, Yang Z, Yang X, Gu M, Zhu Z, Wei Y. Combining SiO 2 NPs with biochar: a novel composite for enhanced cadmium removal from wastewater and alleviation of soil cadmium stress. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:456. [PMID: 39331177 DOI: 10.1007/s10653-024-02243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Cadmium (Cd) pollution in water and soil seriously threatens human health. Biochar and nanomaterials have high potential for solving the cadmium pollution problem due to their abundant pores and high specific surface area. Here, the preparation of the composite material SiO2NPs@BC (SBC) using SiO2 NPs (SN) and silkworm excrement biochar (BC) is described, along with its application in the remediation of cadmium-contaminated water and soil. Characterization experiments (SEM&EDS, BET, FTIR, XRD, and XPS) demonstrated that SiO2NPs@BC has a high specific surface area (46.5767m2/g), a well-developed pore structure (0.608375cm3/g), and abundant surface functional groups (Si-C, Si-O, Si-O-Si), providing active sites for the adsorption of Cd. Batch adsorption experiments in water showed that the adsorption capacity of SBC is higher than that of biochar (BC) and SN, with a maximum Langmuir adsorption capacity of 141.99 mg/g. After five adsorption cycles, the removal rate of SBC was 73.04%, significantly higher than the 64.97% obtained for BC. The application of SBC not only improved the soil physicochemical properties by increasing the soil pH, the cation exchange capacity, and the soil organic matter content but also by reducing the amount of DTPA-Cd (24.6%) and the plant bioconcentration factor (28.28%) in the soil, converting Cd into more stable fractions (Red-Cd, Ox-Cd). Based on the results, SBC can effectively reduce Cd pollution.
Collapse
Affiliation(s)
- Shirui Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources. Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources. Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guofei Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources. Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yan Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources. Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Zhixing Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources. Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xiaomu Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources. Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Minghua Gu
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources. Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Zhiqiang Zhu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| | - Yanyan Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources. Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
7
|
Deng J, Liu Y, Gui S, Yi Q, Nie H. Nano silver oxide-modified activated carbon as a novel catalyst for efficient removal of bacteria and micropollutants in aquatic environment. RSC Adv 2024; 14:30180-30191. [PMID: 39315016 PMCID: PMC11418389 DOI: 10.1039/d4ra04604h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/17/2024] [Indexed: 09/25/2024] Open
Abstract
Heterogeneous Fenton process is a promising water treatment technology for sterilization and degradation of organic pollutants, due to the strong oxidation of hydroxyl radicals (OH˙) generated. However, the low H2O2 activation efficiency and the instability of catalyst leading to low OH˙ production restricted development of this technology. Herein, we synthesized a novel porous activated carbon-loaded nano silver oxide (nAg2O/AC) catalyst to enhance the activation of H2O2 for removing bacteria (E. coli) and micropollutants (Tetracycline, TC) from water. In the nAg2O/AC Fenton system, reductive hydroxyl groups on AC accelerated Ag(i)/Ag cycle through mediated electron transfer, which markedly increased H2O2 activation efficiency to 73.7% (About 2.9 times that of traditional Fenton). Hence, nAg2O/AC Fenton achieved up to 6.0 log and 100% removal efficiency for E. coli and TC, respectively. The OH˙ as the major oxidizing species in nAg2O/AC Fenton system was detected and verified by radical scavenging tests and electron spin resonance (ESR) measurement. After 4 and 5 cycles of experiments, the removal of E. coli and TC still reached 5.2 log and 96%, respectively, confirming good stability of nAg2O/AC for considerable application prospects. This study concluded that nAg2O/AC is a promising H2O2 catalyst for simultaneous removal of bacteria and micropollutants in aqueous environment.
Collapse
Affiliation(s)
- Jianping Deng
- Institute of Energy Research, Jiangxi Academy of Sciences Nanchang 330096 China
- Jiangxi Carbon Neutralization Research Center Nanchang 330096 China
| | - Yong Liu
- Institute of Energy Research, Jiangxi Academy of Sciences Nanchang 330096 China
- Jiangxi Carbon Neutralization Research Center Nanchang 330096 China
| | - Shuanglin Gui
- Institute of Energy Research, Jiangxi Academy of Sciences Nanchang 330096 China
- Jiangxi Carbon Neutralization Research Center Nanchang 330096 China
| | - Qizhen Yi
- Institute of Energy Research, Jiangxi Academy of Sciences Nanchang 330096 China
- Jiangxi Carbon Neutralization Research Center Nanchang 330096 China
| | - Hanbing Nie
- Institute of Energy Research, Jiangxi Academy of Sciences Nanchang 330096 China
- Jiangxi Carbon Neutralization Research Center Nanchang 330096 China
| |
Collapse
|
8
|
Hou R, Zhang J, Fu Q, Li T, Gao S, Wang R, Zhao S, Zhu B. The boom era of emerging contaminants: A review of remediating agricultural soils by biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172899. [PMID: 38692328 DOI: 10.1016/j.scitotenv.2024.172899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/03/2023] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Emerging contaminants (ECs) are widely sourced persistent pollutants that pose a significant threat to the environment and human health. Their footprint spans global ecosystems, making their remediation highly challenging. In recent years, a significant amount of literature has focused on the use of biochar for remediation of heavy metals and organic pollutants in soil and water environments. However, the use of biochar for the remediation of ECs in agricultural soils has not received as much attention, and as a result, there are limited reviews available on this topic. Thus, this review aims to provide an overview of the primary types, sources, and hazards of ECs in farmland, as well as the structure, functions, and preparation types of biochar. Furthermore, this paper emphasizes the importance and prospects of three remediation strategies for ECs in cropland: (i) employing activated, modified, and composite biochar for remediation, which exhibit superior pollutant removal compared to pure biochar; (ii) exploring the potential synergistic efficiency between biochar and compost, enhancing their effectiveness in soil improvement and pollution remediation; (iii) utilizing biochar as a shelter and nutrient source for microorganisms in biochar-mediated microbial remediation, positively impacting soil properties and microbial community structure. Given the increasing global prevalence of ECs, the remediation strategies provided in this paper aim to serve as a valuable reference for future remediation of ECs-contaminated agricultural lands.
Collapse
Affiliation(s)
- Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jian Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Shijun Gao
- Heilongjiang Water Conservancy Research Institute, Harbin, Heilongjiang 150080, China
| | - Rui Wang
- Heilongjiang Province Five building Construction Engineering Co., LTD, Harbin, Heilongjiang 150090, China
| | - Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Bingyu Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
9
|
Nidheesh PV, Kumar M, Venkateshwaran G, Ambika S, Bhaskar S, Vinay, Ghosh P. Conversion of locally available materials to biochar and activated carbon for drinking water treatment. CHEMOSPHERE 2024; 353:141566. [PMID: 38428536 DOI: 10.1016/j.chemosphere.2024.141566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/16/2023] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
For environmental sustainability and to achieve sustainable development goals (SDGs), drinking water treatment must be done at a reasonable cost with minimal environmental impact. Therefore, treating contaminated drinking water requires materials and approaches that are inexpensive, produced locally, and effortlessly. Hence, locally available materials and their derivatives, such as biochar (BC) and activated carbon (AC) were investigated thoroughly. Several researchers and their findings show that the application of locally accessible materials and their derivatives are capable of the adsorptive removal of organic and inorganic contaminants from drinking water. The application of locally available materials such as lignocellulosic materials/waste and its thermo-chemically derived products, including BC and AC were found effective in the treatment of contaminated drinking water. Thus, this review aims to thoroughly examine the latest developments in the use of locally accessible feedstocks for tailoring BC and AC, as well as their features and applications in the treatment of drinking water. We attempted to explain facts related to the potential mechanisms of BC and AC, such as complexation, co-precipitation, electrostatic interaction, and ion exchange to treat water, thereby achieving a risk-free remediation approach to polluted water. Additionally, this research offers guidance on creating efficient household treatment units based on the health risks associated with customized adsorbents and cost-benefit analyses. Lastly, this review work discusses the current obstacles for using locally accessible materials and their thermo-chemically produced by-products to purify drinking water, as well as the necessity for technological interventions.
Collapse
Affiliation(s)
- P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR - National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - Manish Kumar
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - G Venkateshwaran
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, India
| | - S Ambika
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, India
| | - S Bhaskar
- Department of Civil Engineering, National Institute of Technology, Calicut, NIT Campus, P.O 673 601, Kozhikode, India
| | - Vinay
- Environmental Risk Assessment and Management (EnRAM) Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India; Industrial Pollution Control-IV Division, Central Pollution Control Board (CPCB), Ministry of Environment, Forest and Climate Change (MoEF&CC), Parivesh Bhawan, East Arjun Nagar, Delhi, 110032, India
| | - Pooja Ghosh
- Environmental Risk Assessment and Management (EnRAM) Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
10
|
Yao C, Wang B, Zhang J, Faheem M, Feng Q, Hassan M, Zhang X, Lee X, Wang S. Formation mechanisms and degradation methods of polycyclic aromatic hydrocarbons in biochar: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120610. [PMID: 38581889 DOI: 10.1016/j.jenvman.2024.120610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 04/08/2024]
Abstract
Biochar has been widely used in soil amendment and environmental remediation. Polycyclic aromatic hydrocarbons (PAHs) could be produced in preparation of biochar, which may pose potential risks to the environment and human health. At present, most studies focus on the ecotoxicity potential of biochar, while there are few systematic reviews on the formation mechanisms and mitigation strategies of PAHs in biochar. Therefore, a systematical understanding of the distribution, formation mechanisms, risk assessment, and degradation approaches of PAHs in biochar is highly needed. In this paper, the distribution and content of the total and bioavailable PAHs in biochar are reviewed. Then the formation mechanisms, influencing factors, and potential risk assessment of PAHs in biochar are systematically explored. After that, the effective strategies to alleviate PAHs in biochar are summarized. Finally, suggestions and perspectives for future studies are proposed. This review provides a guide for reducing the formation of biochar-associated PAHs and their toxicity, which is beneficial for the development and large-scale safe use of environmentally friendly biochar.
Collapse
Affiliation(s)
- Canxu Yao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Jian Zhang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Muhammad Faheem
- Department of Civil Infrastructure and Environment Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Masud Hassan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| |
Collapse
|
11
|
Zhang X, Xiong Y, Wang X, Wen Z, Xu X, Cui J, Liu Z, Wei L, An X. MgO-modified biochar by modifying hydroxyl and amino groups for selective phosphate removal: Insight into phosphate selectivity adsorption mechanism through experimental and theoretical. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170571. [PMID: 38309336 DOI: 10.1016/j.scitotenv.2024.170571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Metal oxides-modified biochars have been widely studied as promising adsorbents for removing phosphate from wastewater discharge. Yet, the low adsorption selectivity towards phosphate severely limits its potential in practical applications. In this study, MgO-modified biochar modified by hydroxyl and amino groups (OH/NH2@MBC) is developed for selective phosphorus recovery from wastewater. As major results, the OH/NH2@MBC exhibits favorable phosphate adsorption performance is superior to that of MBC resin in the presence of co-existing anions (NO3-, Cl-, HCO3- and SO42-) and natural organic matter (humic acid) even actual wastewater, suggesting its superior selectivity towards phosphate. The OH/NH2@MBC shows an excellent phosphate adsorption capacity (43.27 mg/g) and desorption ratio (82.34 %) after five cycles under the condition of anion coexistence (100 mg/L). The experimental and DFT theoretical study reveals that attaching hydroxyl and amino groups onto the MBC surface, which facilitates to inhibiting the side effects of anions (NO3-, Cl-, HCO3-, and SO42-) through Lewis acid-base sites, hydrogen bonds, and metal affinity, and preferentially select adsorption P, contributing greatly to improve phosphate adsorption selectivity. Importantly, the presence of amino and hydroxyl groups can reduce the Fermi level of OH/NH2@MgO(220) and OH/NH2@MgO(200) and improve the adsorption selection for HPO42-. This study provides an effective strategy for enhancing the adsorption selectivity of metal oxides-modified biochars towards phosphate through modifying functional groups.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Youpeng Xiong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaohao Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhennan Wen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaolin Xu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jianbing Cui
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhongwang Liu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Linna Wei
- Analysis and Testing Institute of Xinjiang Uygur Autonomous Region, 830011 Xinjiang, China
| | - Xiongfang An
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
12
|
Zahmatkesh S, Chen Z, Khan NA, Ni BJ. Removing polyfluoroalkyl substances (PFAS) from wastewater with mixed matrix membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168881. [PMID: 38042200 DOI: 10.1016/j.scitotenv.2023.168881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
Polyfluoroalkyl and perfluoroalkyl (PFAS) chemicals are fluorinated and exhibit complicated behavior. They are determined and highly resistant to ecological modifications that render plants ecologically robust. Thermal stability and water and oil resistance are examples of material qualities. Their adverse consequences are causing increasing worry due to their bioaccumulative nature in humans and other creatures. Direct data indicates that PFAS exposure in humans causes endocrine system disruption, immune system suppression, obesity, increased cholesterol, and cancer. Several PFASs are present in drinking water at low doses and may harm people. These cancer-causing PFAS have caused concern for water bodies all around the globe. Analytical techniques are used to identify and measure PFAS in an aqueous medium (membrane). Furthermore, a deeper explanation is provided for PFAS removal methods, including mixed matrix membrane (MMM) technology. By removing over 99 % of the PFAS from wastewater, MMMs may effectively remove PFAS from sewage when the support matrix contains adsorbing components. Furthermore, we consider several factors affecting the removal of PFAS and practical sorption methods for PFAS onto various adsorbents.
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico
| | - Zhijie Chen
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
13
|
Wang B, Zhao C, Feng Q, Lee X, Zhang X, Wang S, Chen M. Biochar supported nanoscale zerovalent iron-calcium alginate composite for simultaneous removal of Mn(II) and Cr(VI) from wastewater: Sorption performance and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123148. [PMID: 38104766 DOI: 10.1016/j.envpol.2023.123148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Heavy metal pollution in water caused by industrial activities has become a global environmental issue. Among them, manganese mining and smelting activities have caused the combined pollution of Cr(VI) and Mn(II) in water, posing a serious ecotoxicological risk to ecological environments and human health. To efficiently remove Cr(VI) and Mn(II) from wastewater, a novel biochar supported nanoscale zerovalent iron-calcium alginate composite (CA/nZVI/RSBC) was synthesized by liquid-phase reduction and calcium alginate embedding methods. The adsorption performance and mechanisms of Cr(VI) and Mn(II) by CA/nZVI/RSBC were investigated. The maximum adsorption capacities of Cr(VI) and Mn(II) onto CA/nZVI/RSBC fitted by the Langmuir model were 5.38 and 39.78 mg/g, respectively, which were much higher than the pristine biochar. The iron release from CA/nZVI/RSBC was comparatively lower than that of nZVI/RSBC. Mn(II) presence enhanced the reduction of Cr(VI) by CA/nZVI/RSBC. The results of XRD, XPS, and site energy distribution analysis indicated that redox was the predominant mechanism of Cr(VI) adsorption, while electrostatic attraction dominated Mn(II) adsorption. This study provides a novel alternative way for the simultaneous removal of Cr(VI) and Mn(II) in wastewater.
Collapse
Affiliation(s)
- Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Chenxi Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China
| | - Xueyang Zhang
- School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
14
|
Chen A, Wang H, Zhan X, Gong K, Xie W, Liang W, Zhang W, Peng C. Applications and synergistic degradation mechanisms of nZVI-modified biochar for the remediation of organic polluted soil and water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168548. [PMID: 37989392 DOI: 10.1016/j.scitotenv.2023.168548] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/19/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023]
Abstract
Increasing organic pollution in soil and water has garnered considerable attention in recent years. Nano zero-valent iron-modified biochar (nZVI/BC) has been proven to remediate the contaminated environment effectively due to its abundant active sites and unique reducing properties. This paper provides a comprehensive overview of the application of nZVI/BC in organic polluted environmental remediation and its mechanisms. Firstly, the review introduced primary synthetic methods of nZVI/BC, including in-situ synthesis (carbothermal reduction and green synthesis) and post-modification (liquid-phase reduction and ball milling). Secondly, the application effects of nZVI/BC were discussed in remediating soil and water polluted by antibiotics, pesticides, polycyclic aromatic hydrocarbons (PAHs), and dyes. Thirdly, this review explored the mechanisms of the adsorption and chemical degradation of nZVI/BC, and synergistic degradation mechanisms of nZVI/BC-AOPs and nZVI/BC-Microbial interactions. Fourth, the factors that influence the removal of organic pollutants using nZVI/BC were summarized, encompassing synthesis conditions (raw materials, pyrolysis temperature and aging of nZVI/BC) and external factors (reagent dosage, pH, and coexisting substances). Finally, this review proposed future challenges for the application of nZVI/BC in environmental remediation. This review offers valuable insights for advancing technology in the degradation of organic pollutants using nZVI/BC and promoting its on-site application.
Collapse
Affiliation(s)
- Anqi Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haoran Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuping Zhan
- Shanghai Agricultural Technology Extension and Service Center, Shanghai 201103, China
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Xie
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
15
|
Hu Y, Cao Y, Ma C, Yan W. Nano-biochar as a potential amendment for metal(loid) remediation: Implications for soil quality improvement and stress alleviation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119658. [PMID: 38056332 DOI: 10.1016/j.jenvman.2023.119658] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/18/2023] [Indexed: 12/08/2023]
Abstract
Metal(loid) contamination of agricultural soils has become an alarming issue due to its detrimental impacts on soil health and global agricultural production. Therefore, environmentally sustainable and cost-effective solutions are urgently required for soil remediation. Biochar, particularly nano-biochar, exhibits superior and high-performance capabilities in the remediation of metal(loid)-contaminated soil, owing to its unique structure and large surface area. Current researches on nano-biochar mainly focus on safety design and property improvement, with limited information available regarding the impact of nano-biochar on soil ecosystems and crop defense mechanisms in metal(loid)-contaminated soils. In this review, we systematically summarized recent progress in the application of nano-biochar for remediation of metal(loid)-contaminated soil, with a focus on possible factors influencing metal(loid) uptake and translocation in soil-crop systems. Additionally, we conducted the potential/related mechanisms by which nano-biochar can mitigate the toxic impacts of metal(loid) on crop production and security. Furthermore, the application of nano-biochar in field trials and existing challenges were also outlined. Future studies should integrate agricultural sustainability and ecosystem health targets into biochar design/selection. This review highlighted the potential of nano-biochar as a promising soil amendment for enhancing the remediation of metal(loid)-contaminated agricultural soils, thereby promoting the synthesis and development of highly efficient nano-biochar towards achieving environmental sustainability.
Collapse
Affiliation(s)
- Yi Hu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China
| | - Yini Cao
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China.
| | - Chuanxin Ma
- Key Laboratory for City Cluste Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China.
| |
Collapse
|
16
|
Saravanan A, Karishma S, Kumar PS, Thamarai P, Yaashikaa PR. Recent insights into mechanism of modified bio-adsorbents for the remediation of environmental pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122720. [PMID: 37839681 DOI: 10.1016/j.envpol.2023.122720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Rapid industrialization has exacerbated the hazard to health and the environment. Wide spectrums of contaminants pose numerous risks, necessitating their disposal and treatment. There is a need for further remediation methods since pollutant residues cannot be entirely eradicated by traditional treatment techniques. Bio-adsorbents are gaining popularity due to their eco-friendly approach, broad applicability, and improved functional and surface characteristics. Adsorbents that have been modified have improved qualities that aid in their adsorptive nature. Adsorption, ion exchange, chelation, surface precipitation, microbial uptake, physical entrapment, biodegradation, redox reactions, and electrostatic interactions are some of the processes that participate in the removal mechanism of biosorbents. These processes can vary depending on the particular biosorbent and the type of pollutants being targeted. The systematic review focuses on the many modification approaches used to remove environmental contaminants. Different modification or activation strategies can be used depending on the type of bio-adsorbent and pollutant to be remediated. Physical activation procedures such as ultrasonication and pyrolysis are more commonly used to modify bio-adsorbents. Ultrasonication process improves the adsorption efficiency by 15-25%. Acid and alkali modified procedures are the most effective chemical activation strategies for adsorbent modification for pollution removal. Chemical modification increases the removal to around 95-99%. The biological technique involving microbial culture is an emerging field that needs to be investigated further for pollutant removal. A short evaluation of modified adsorbents with multi-pollutant adsorption capability that have been better eliminated throughout the adsorption process has been provided.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
17
|
Jam E, Khomari S, Ebadi A, Goli-Kalanpa E, Ghavidel A. Influences of peanut hull-derived biochar, Trichoderma harzianum and supplemental phosphorus on hairy vetch growth in Pb- and Zn-contaminated soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9411-9432. [PMID: 37246205 DOI: 10.1007/s10653-023-01606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 05/03/2023] [Indexed: 05/30/2023]
Abstract
In the present study, in order to improve the growth performance of hairy vetch (Vicia villosa Roth., Local landrace from Ardabil, Iran) seedlings grown in the soil contaminated with heavy metals Pb and Zn, our attention was directed toward the application of biochar, inoculation with conidial suspension of Trichoderma harzianum Rifai-T22 and management of phosphorus (P) nutrition. Heavy metal toxicity reduced leaf greenness, membrane stability index, maximum quantum yield of PSΙΙ (Fv/Fm), P concentration and uptake in plant tissues and root and shoot biomass, but increased Pb and Zn concentration and uptake in root and leaf, H2O2 and malondialdehyde content and CAT and POX activity in the leaves. The application of biochar, inoculation with Trichoderma fungus and P supplementation increased the shoot P content, which might contribute to the alleviation of P insufficiency and a subsequent elevation in P transfer to aboveground biomass, and eliminated the toxicity of heavy metal on hairy vetch plants, which was revealed in reducing oxidative stress and enhancing plant growth performance. The biochar considerably increased Zn immobilization, while being able to slightly stabilize Pb. Co-application of Trichoderma and 22 mg P/kg soil (22P) increased the concentration and uptake of Zn in the roots and decreased the translocation of this element to the shoots, especially when biochar was not amended. Although the biochar and P inputs could compensate the negative Trichoderma effects, the results suggested that biochar application in combination with fungal inoculation and 22-P supplementation could not only increase hairy vetch growth performance but also decline heavy metal uptake to ensure the production of a forage crop in soils polluted with heavy metals based on the nutritional standards of livestock.
Collapse
Affiliation(s)
- Elham Jam
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saeid Khomari
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Ali Ebadi
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Esmaiel Goli-Kalanpa
- Department of Soil Science Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Akbar Ghavidel
- Department of Soil Science Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
18
|
Yu H, Jang JY, Nam IH, Jo H, Yim GJ, Song H, Cho DW. Carbon dioxide-assisted thermochemical conversion of magnetically harvested harmful algae into syngas and metal biochar. BIORESOURCE TECHNOLOGY 2023; 387:129705. [PMID: 37611813 DOI: 10.1016/j.biortech.2023.129705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
With rising of harmful algae blooming and toxin exposure, practical utilization of harmful algae has been developed. This work aimed to magnetically harvest Microcystis aeruginosa (MA) using iron oxides and investigate the feasibility of algae/iron oxides mixture as feedstock in pyrolytic platform to produce syngas and metal biochar. Carbon dioxide (CO2) was used as a feeding gas to enhance the production efficiency of syngas and also functioned pH controller for better MA harvesting and toxin removal. CO2 support brought multiple benefits: magnetite (Fe3O4) and maghemite (γ-Fe2O3) recovered MA in a relatively short period of time (∼1 min), the recovered biomass generated 34-fold increased carbon monoxide, and metal biochar adsorbed higher amount of toxin from MA (2.8-fold). Pyrolytic utilization of harmful algae supported by CO2 and iron oxides could be one of promising techniques for evolution of metal biochar to remove toxin, while efficiently recover biomass and enhance syngas production.
Collapse
Affiliation(s)
- Hyeonjung Yu
- Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| | - Jeong-Yun Jang
- Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| | - In-Hyun Nam
- Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| | - Hwanju Jo
- Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| | - Gil-Jae Yim
- Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| | - Hocheol Song
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Dong-Wan Cho
- Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea.
| |
Collapse
|
19
|
Cheng N, Wang B, Chen M, Feng Q, Zhang X, Wang S, Zhao R, Jiang T. Adsorption and photocatalytic degradation of quinolone antibiotics from wastewater using functionalized biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122409. [PMID: 37597728 DOI: 10.1016/j.envpol.2023.122409] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
Quinolone antibiotics are emerging environmental contaminants, which cause serious harm to the ecological environment and human health. How to effectively remove these emerging pollutants from water remains a major challenge worldwide. In this study, a novel Fe/Ti biochar composite (Fe/Ti-MBC) was prepared by facile one-step co-pyrolysis of wood chips with hematite and titanium dioxide (TiO2) for adsorption and photocatalytic degradation of ciprofloxacin (CIP) and norfloxacin (NOR) in water. The results showed that the degradation efficiencies of Fe/Ti-MBC to CIP and NOR were 88.4% and 88.0%, respectively. The π-π interactions and polar interactions are the main adsorption mechanisms for CIP and NOR. In the photocatalytic process, h+ and ·OH are the main active substances for the oxidative degradation of CIP and NOR. This study shows that Fe/Ti-MBC is an effective and recyclable composite, providing a novel alternative way for antibiotics degradation.
Collapse
Affiliation(s)
- Ning Cheng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Ruohan Zhao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Tao Jiang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China
| |
Collapse
|
20
|
Ma R, Nie D, Sang M, Wang W, Nie G. Adsorption of Rhodamine B and Pb(II) from aqueous solution by MoS 2 nanosheet modified biochar: Fabrication, performance, and mechanisms. BIORESOURCE TECHNOLOGY 2023; 386:129548. [PMID: 37488014 DOI: 10.1016/j.biortech.2023.129548] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Mediated by polydopamine, MoS2 nanosheets were immobilized on the porous biochar derived from fungus residue, forming a novel biochar-based nanocomposite (MoS2-PDA@FRC) for the removal of Rhodamine B(RhB) and Pb(II) from water. Utilizing MoS2 nanosheets with abundant active adsorption sites, MoS2-PDA@FRC showed higher adsorption capacities than raw biochar, with 2.76 and 1.78 times higher capacities for RhB and Pb(II) respectively. MoS2-PDA@FRC also exhibited fast adsorption kinetics for RhB (120 min) and Pb (180 min) removal, as well as satisfactory adsorption selectivity in the presence of coexisting substances. The underlying removal mechanism was explored via Fourier transform infrared and X-ray photoelectron spectroscopies. Furthermore, during cyclic adsorption-regeneration and the fixed-bed adsorption experiments, the nanocomposite removed RhB and Pb(II) with high effectiveness and stability. Collectively, the results demonstrated the bright prospects of MoS2-PDA@FRC as a highly efficient decontamination agent of RhB and Pb(II) from water.
Collapse
Affiliation(s)
- Rui Ma
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Daoyuan Nie
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Min Sang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weiwei Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Guangze Nie
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
21
|
Thi Luyen N, Van Nguyen K, Van Dang N, Quang Huy T, Hoai Linh P, Thanh Trung N, Nguyen VT, Thanh DV. Facile One-Step Pyrolysis of ZnO/Biochar Nanocomposite for Highly Efficient Removal of Methylene Blue Dye from Aqueous Solution. ACS OMEGA 2023; 8:26816-26827. [PMID: 37546599 PMCID: PMC10398690 DOI: 10.1021/acsomega.3c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023]
Abstract
In this work, we developed a facile one-step pyrolysis method for preparing porous ZnO/biochar nanocomposites (ZBCs) with a large surface area to enhance the removal efficiency of dye from aqueous solution. Peanut shells were pyrolyzed under oxygen-limited conditions with a molten salt ZnCl2, which played the roles of the activating agent and precursor for the formation of nanoparticles. The effects of the mass ratio between the molten salt ZnCl2 and peanut shells as well as pyrolysis temperature on the formation of ZBCs were investigated. Characterization results revealed that the as-synthesized ZBCs exhibited a highly porous structure with a specific surface area of 832.12 m2/g, suggesting a good adsorbent for efficient removal of methylene blue (MB). The maximum adsorption capacity of ZBCs on MB was 826.44 mg/g, which surpassed recently reported adsorbents. The formation mechanism of ZnO nanoparticles on the biochar surface was due to ZnCl2 vaporization and reaction with water molecules extracted from the lignocellulosic structures. This study provides a basis for developing a simple and large-scale synthesis method for wastewater with a high adsorption capacity.
Collapse
Affiliation(s)
- Nguyen Thi Luyen
- TNU
- University of Sciences, Thai
Nguyen, Thainguyen 25000, Vietnam
| | - Khien Van Nguyen
- TNU
- University of Sciences, Thai
Nguyen, Thainguyen 25000, Vietnam
| | - Nguyen Van Dang
- TNU
- University of Sciences, Thai
Nguyen, Thainguyen 25000, Vietnam
| | - Tran Quang Huy
- Phenikaa
University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam
- Faculty
of Electrical and Electronic Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Pham Hoai Linh
- Institute
of Materials Science, Vietnam Academy of Science and Technology, Cau Giay, Hanoi 10072, Vietnam
| | - Nguyen Thanh Trung
- Institute
of Physics, Vietnam Academy of Science and Technology, Vietnam Academy
of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10072, Vietnam
| | - Van-Truong Nguyen
- Faculty of
Fundamental Sciences, Thai Nguyen University
of Technology, Thai Nguyen, Thainguyen 25000, Vietnam
| | - Dang Van Thanh
- TNU-University
of Medicine and Pharmacy, Thai
Nguyen, Thainguyen 25000, Vietnam
| |
Collapse
|
22
|
Liu J, Lin Q, Gao J, Jia X, Cai M, Liang Q. Adsorption properties and mechanisms of methylene blue and tetracycline by nano-silica biochar composites activated by KOH. CHEMOSPHERE 2023:139395. [PMID: 37399993 DOI: 10.1016/j.chemosphere.2023.139395] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Dyestuff wastewater and pharmaceutical wastewater have become typical representatives of water pollution. In this study, a novel nano-silica-biochar composite (NSBC) was synthesized based on corn straw as raw material, by a combination of ball milling, pyrolysis and KOH activation. The modified biochar with rough surface had higher specific surface area (117.67-132.82 m2/g), developed pore structure (0.12-0.15 cm3/g) and abundant surface functional groups (-OH, -COOH, Si-O and aromatic CC were dominated). These provided abundant active sites for the adsorption of pollutants. The adsorption capacities of NSBC for Methylene Blue (MB) and Tetracycline (TC) were both higher than that of other similar products, the maximum adsorption capacity of Langmuir were 247.22 and 86.95 mg/g, respectively. After five adsorption-desorption cycle experiments, the adsorption capacities of NSBC for both were still excellent, reaching 99.30 and 19.87 mg/g, respectively. Due to the different structure and molecular size of MB and TC, the adsorption capacities of NSBC were significantly different, especially the influence of solution pH value. The adsorption mechanisms were comprehensively discussed by FTIR and XPS of the samples before and after adsorption, and combining experimental results of BET and simultaneously, which were manifested as monolayer chemisorption, specifically surface complexation, hydrogen bonding, n-π/π-π conjugation, electrostatic interaction and pore filling.
Collapse
Affiliation(s)
- Juan Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qianji Lin
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Jida Gao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xuping Jia
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Mengfan Cai
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qiaochu Liang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
23
|
Mazarji M, Bayero MT, Minkina T, Sushkova S, Mandzhieva S, Bauer TV, Soldatov A, Sillanpää M, Wong MH. Nanomaterials in biochar: Review of their effectiveness in remediating heavy metal-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163330. [PMID: 37023818 DOI: 10.1016/j.scitotenv.2023.163330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 05/27/2023]
Abstract
Biochar can be used for soil remediation in environmentally beneficial manner, especially when combined with nanomaterials. After a decade of research, still, no comprehensive review was conducted on the effectiveness of biochar-based nanocomposites in controlling heavy metal immobilization at soil interfaces. In this paper, the recent progress in immobilizing heavy metals using biochar-based nanocomposite materials were reviewed and compared their efficacy against that of biochar alone. In details, an overview of results on the immobilization of Pb, Cd, Cu, Zn, Cr, and As was presented by different nanocomposites made by various biochars derived from kenaf bar, green tea, residual bark, cornstalk, wheat straw, sawdust, palm fiber, and bagasse. Biochar nanocomposite was found to be most effective when combined with metallic nanoparticles (Fe3O4 and FeS) and carbonaceous nanomaterials (graphene oxide and chitosan). This study also devoted special consideration to different remediation mechanisms by which the nanomaterials affect the effectiveness of the immobilization process. The effects of nanocomposites on soil characteristics related to pollution migration, phytotoxicity, and soil microbial composition were assessed. A future perspective on nanocomposites' use in contaminated soils was presented.
Collapse
Affiliation(s)
- Mahmoud Mazarji
- Southern Federal University, Rostov-on-Don 344006, Russian Federation; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Muhammad Tukur Bayero
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ondokuz Mayıs University, Samsun 55080, Turkey
| | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don 344006, Russian Federation
| | - Svetlana Sushkova
- Southern Federal University, Rostov-on-Don 344006, Russian Federation
| | | | - Tatiana V Bauer
- Southern Federal University, Rostov-on-Don 344006, Russian Federation
| | | | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang 314213, China; Department of Civil Engineering, University Center for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ming Hung Wong
- Southern Federal University, Rostov-on-Don 344006, Russian Federation; Consortium on Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|
24
|
Malik AQ, Mir TUG, Kumar D, Mir IA, Rashid A, Ayoub M, Shukla S. A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27437-9. [PMID: 37171732 DOI: 10.1007/s11356-023-27437-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Green synthesis of nanoparticles (NPs) using plant materials and microorganisms has evolved as a sustainable alternative to conventional techniques that rely on toxic chemicals. Recently, green-synthesized eco-friendly NPs have attracted interest for their potential use in various biological applications. Several studies have demonstrated that green-synthesized NPs are beneficial in multiple medicinal applications, including cancer treatment, targeted drug delivery, and wound healing. Additionally, due to their photodegradation activity, green-synthesized NPs are a promising tool in environmental remediation. Photodegradation is a process that uses light and a photocatalyst to turn a pollutant into a harmless product. Green NPs have been found efficient in degrading pollutants such as dyes, herbicides, and heavy metals. The use of microbes and flora in green synthesis technology for nanoparticle synthesis is biologically safe, cost-effective, and eco-friendly. Plants and microbes can now use and accumulate inorganic metallic ions in the environment. Various NPs have been synthesized via the bio-reduction of biological entities or their extracts. There are several biological and environmental uses for biologically synthesized metallic NPs, such as photocatalysis, adsorption, and water purification. Since the last decade, the green synthesis of NPs has gained significant interest in the scientific community. Therefore, there is a need for a review that serves as a one-stop resource that points to relevant and recent studies on the green synthesis of NPs and their biological and photocatalytic efficiency. This review focuses on the green fabrication of NPs utilizing diverse biological systems and their applications in biological and photodegradation processes.
Collapse
Affiliation(s)
- Azad Qayoom Malik
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411.
| | - Tahir Ul Gani Mir
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Deepak Kumar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Irtiqa Ashraf Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Adfar Rashid
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Mehnaz Ayoub
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Saurabh Shukla
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| |
Collapse
|
25
|
Sarathchandra SS, Rengel Z, Solaiman ZM. A Review on Remediation of Iron Ore Mine Tailings via Organic Amendments Coupled with Phytoremediation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091871. [PMID: 37176929 PMCID: PMC10181287 DOI: 10.3390/plants12091871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/08/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Mining operations degrade natural ecosystems by generating a large quantity of mine tailings. Mine tailings remain in dams/open ponds without further treatment after valuable metals such as iron ore have been extracted. Therefore, rehabilitation of tailings to mitigate the negative environmental impacts is of the utmost necessity. This review compares existing physical, chemical and amendment-assisted phytoremediation methods in the rehabilitation of mine tailings from the perspective of cost, reliability and durability. After review and discussion, it is concluded that amendment-assisted phytoremediation has received comparatively great attention; however, the selection of an appropriate phytoremediator is the critical step in the process. Moreover, the efficiency of phytoremediation is solely dependent on the amendment type and rate. Further, the application of advanced plant improvement technologies, such as genetically engineered plants produced for this purpose, would be an alternative solution. Further research is needed to determine the suitability of this method for the particular environment.
Collapse
Affiliation(s)
- Sajeevee S Sarathchandra
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Zakaria M Solaiman
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
26
|
Liang H, Wang W, Liu H, Deng X, Zhang D, Zou Y, Ruan X. Porous MgO-modified biochar adsorbents fabricated by the activation of Mg(NO 3) 2 for phosphate removal: Synergistic enhancement of porosity and active sites. CHEMOSPHERE 2023; 324:138320. [PMID: 36905997 DOI: 10.1016/j.chemosphere.2023.138320] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Engineering magnesium oxide (MgO)-modified biochar (MgO-biochar) with high porosity and active MgO load is a feasible pathway to enhance phosphate adsorption capacity. However, the blockage to pores caused by MgO particles is ubiquitous during the preparation, which seriously impaired the enhancement in adsorption performance. In this research, with the intent to enhance phosphate adsorption, an in-situ activation method based on Mg(NO3)2-activated pyrolysis technology was developed to fabricate MgO-biochar adsorbents with abundant fine pores and active sites simultaneously. The SEM image revealed that the tailor-made adsorbent has well-developed porous structure and abundant fluffy MgO active sites. Its maximum phosphate adsorption capacity was coming up to 1809 mg/g. The phosphate adsorption isotherms are in accordance well with the Langmuir model. The kinetic data, which agreed with the pseudo-second-order model, indicated that chemical interaction is existing between phosphate and MgO active sites. This work verified that the phosphate adsorption mechanism on MgO-biochar was composed of protonation, electrostatic attraction, monodentate complexation and bidentate complexation. In general, the facile in-situ activation method using Mg(NO3)2 pyrolysis illuminated biochar activation with fine pores and highly efficient adsorption sites for efficient wastewater treatment.
Collapse
Affiliation(s)
- Hai Liang
- Dalian University of Technology, College of Chemical Engineering, Dalian, 116024, China; Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou, 115014, Liaoning Province, China
| | - Wanting Wang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou, 115014, Liaoning Province, China
| | - Haiyan Liu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou, 115014, Liaoning Province, China.
| | - Xinzhong Deng
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou, 115014, Liaoning Province, China
| | - Dan Zhang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou, 115014, Liaoning Province, China
| | - Yuxuan Zou
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou, 115014, Liaoning Province, China
| | - Xuehua Ruan
- Dalian University of Technology, College of Chemical Engineering, Dalian, 116024, China.
| |
Collapse
|
27
|
Toan TQ, Mai NT, Trang HM, Van Hao P, Van Thanh D. Ultrasonic-assisted synthesis of magnetic recyclable Fe 3O 4/rice husk biochar based photocatalysts for ciprofloxacin photodegradation in aqueous solution. RSC Adv 2023; 13:11171-11181. [PMID: 37056971 PMCID: PMC10086671 DOI: 10.1039/d3ra00178d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
In this work, a new facile one-spot method has been designed to fabricate a magnetic recyclable Fe3O4/rice husk biochar photocatalyst (FBP) for the removal of Ciprofloxacin (CIP) in aqueous solution. This method combines ultrasonic-assisted impregnation and precipitation, which can overcome the difficulties of long-time reactions, complex procedures, and extreme condition requirements. The successful fabrication of the Fe3O4/biochar material has been proven by a series of material characterization techniques, including X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Raman, Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), and vibrating sample magnetometer (VSM). Moreover, the as-product FBP exhibited the excellent ability of photodegrading CIP and the possibility of magnetic recovery from the aqueous solution, suggesting a potential solution for removing antibiotic pollutants in environmental remediation.
Collapse
Affiliation(s)
- Tran Quoc Toan
- Faculty of Chemistry, Thai Nguyen University of Education 20 Luong Ngoc Quyen Thai Nguyen Vietnam
| | - Nguyen Thi Mai
- Faculty of Environmental Sciences, University of Science, Vietnam National University Hanoi 334 Nguyen Trai Road Hanoi Vietnam
- Faculty of Basic Science, Thai Nguyen University of Agriculture and Forestry Quyet Thang ward Thai Nguyen city Thai Nguyen Vietnam
| | - Hoang Minh Trang
- Faculty of Environmental Sciences, University of Science, Vietnam National University Hanoi 334 Nguyen Trai Road Hanoi Vietnam
| | - Pham Van Hao
- TNU-University of Information and Communication Technology Z115 St., Quyet Thang Ward Thai Nguyen City Thai Nguyen Vietnam
| | - Dang Van Thanh
- Faculty of Basic Science, Thai Nguyen University of Medicine and Pharmacy 284 Luong Ngoc Quyen, Thai Nguyen city Thai Nguyen Vietnam
| |
Collapse
|
28
|
Chakraborty R, Mukhopadhyay A, Paul S, Sarkar S, Mukhopadhyay R. Nanocomposite-based smart fertilizers: A boon to agricultural and environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160859. [PMID: 36526196 DOI: 10.1016/j.scitotenv.2022.160859] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/08/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Fertilizers are indispensable agri-inputs to accomplish the growing food demand. The injudicious use of conventional fertilizer products has resulted in several environmental and human health complications. To mitigate these problems, nanocomposite-based fertilizers are viable alternative options. Nanocomposites, a novel class of materials having improved mechanical strength, barrier properties, and mechanical and thermal stability, are suitable candidates to develop eco-friendly slow/controlled release fertilizer formulations. In this review, the use of different nanocomposite materials developed for nutrient management in agriculture has been summarized with a major focus on their synthesis and characterization techniques, and application aspects in plant nutrition, along with addressing constraints and future opportunities of this domain. Further detailed studies on nanocomposite-based fertilizers are required to evaluate the cost-effective synthesis methods, in-depth field efficacy, environmental fate, stability, etc. before commercialization in the field of agriculture. The present review is expected to help the policy makers and all the stakeholders in the large-scale commercialization and application of nanocomposite-based smart fertilizer products with greater societal acceptance and environmental sustainability in near future.
Collapse
Affiliation(s)
- Ranabir Chakraborty
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Arkadeb Mukhopadhyay
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Subhadip Paul
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Subhasis Sarkar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India.
| |
Collapse
|
29
|
Zhao Z, Wang B, Feng Q, Chen M, Zhang X, Zhao R. Recovery of nitrogen and phosphorus in wastewater by red mud-modified biochar and its potential application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160289. [PMID: 36414073 DOI: 10.1016/j.scitotenv.2022.160289] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
A large amount of wastewater containing nitrogen, phosphorus, and fluorine produces in the production of phosphate fertilizer. In this study, to simultaneously recover nitrogen and phosphorus from phosphorus-containing wastewater and realize the resource utilization of red mud and rape straw, red mud-modified rape straw biochar (RM/RSBC) was prepared by facile one step, and the physicochemical properties were characterized by Zeta potential, SEM-EDS, BET specific surface area (SSA), FTIR, XRD, and XPS. The adsorption performance and mechanisms of ammonium and phosphate onto RM/RSBC were explored through static, fixed-bed column adsorption, and practical wastewater experiments. The results showed that pH = 3.0 and 8.0 were favorable for the removal of phosphate and ammonium, respectively. The main adsorption mechanisms of ammonium and phosphate were the interaction between ammonium and surface functional groups and surface precipitation, respectively. The removal efficiencies of ammonium and phosphate by fixed-bed column adsorption mainly depended on the addition amount of RM/RSBC, the concentration of ammonium and phosphate, and the flow rate. The results of the germination experiment showed that adding > 0.5 wt% of RM/RSBC loaded with ammonium and phosphate promoted the growth of mung beans. This study shows that RM/RSBC can not only recover ammonium and phosphate in wastewater, but also realize the resource utilization of red mud and rape straw.
Collapse
Affiliation(s)
- Zhipeng Zhao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 550025, China.
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Xueyang Zhang
- Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Ruohan Zhao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
30
|
Tang H, Chen M, Wu P, Faheem M, Feng Q, Lee X, Wang S, Wang B. Engineered biochar effects on soil physicochemical properties and biota communities: A critical review. CHEMOSPHERE 2023; 311:137025. [PMID: 36374784 DOI: 10.1016/j.chemosphere.2022.137025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/16/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Biochar can be effectively used in soil amendment, environmental remediation as well as carbon sequestration. However, some inherent characteristics of pristine biochars (PBCs) may limit their environmental applications. To improve the physicochemical properties of PBCs and their effects on soil amendment and pollution remediation, appropriate modification methods are needed. Engineered biochars (EBCs) inevitably have a series of effects on soil physicochemical properties and soil biota after being applied to the soil. Currently, most studies focus on the effects of PBCs on soil physicochemical properties and their amendment and remediation effects, while relatively limited studies are available on the impacts of EBCs on soil properties and biota communities. Due to the differences of biochars modified by various methods on soil physicochemical properties and biota communities, the impact mechanisms are different. For a better understanding of the recent advances in the effects of EBCs on soil physicochemical properties and biota communities, a systematic review is highly needed. In this review, the development of EBCs is firstly introduced, and the effects of EBCs on soil physicochemical properties and biota communities are then systematically explored. Finally, the suggestions and perspectives for future research on EBCs are put forward.
Collapse
Affiliation(s)
- Hui Tang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Muhammad Faheem
- Department of Civil Infrastructure and Environment Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
31
|
Ahuja R, Kalia A, Sikka R, P C. Nano Modifications of Biochar to Enhance Heavy Metal Adsorption from Wastewaters: A Review. ACS OMEGA 2022; 7:45825-45836. [PMID: 36570198 PMCID: PMC9774412 DOI: 10.1021/acsomega.2c05117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Biochar (BC) is a carbon-rich material that can be obtained by thermal decomposition of agricultural solid waste under oxygen-limited conditions. It has received increasing attention as a cost-effective sorbent to treat metal-contaminated water due to attributes such as high porosity and the presence of various functional groups. The heavy metal (HM) sorption and removal capacity of BC can be enhanced by developing novel biochar nanohybrids (BNHs) that can be produced via surface modification of BC with nanomaterials. Loading of nanomaterials on the biochar surface can improve its physicochemical properties through alterations in the functional group profile, porosity, and availability of active sites on the BC surface which can enhance the HM adsorption ability. This manuscript provides information on preparation of nano-based biochar hybrids emanating from the type of modifying agent for the removal of different HM ions from wastewaters, and the underlying mechanisms have been discussed. Further, this compilation discusses published literature depicting the influence of different processes of preparation on the physicochemical properties and adsorption capacity of nanobiochar hybrids. The potential risks of BNHs have been reviewed to effectively avoid the possible harmful impacts on the environment, and future research directions have been proposed.
Collapse
Affiliation(s)
- Radha Ahuja
- Department
of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Anu Kalia
- Electron
Microscopy and Nanoscience Laboratory, Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Rajeev Sikka
- Electron
Microscopy and Nanoscience Laboratory, Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Chaitra P
- Electron
Microscopy and Nanoscience Laboratory, Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| |
Collapse
|
32
|
Qiu M, Liu L, Ling Q, Cai Y, Yu S, Wang S, Fu D, Hu B, Wang X. Biochar for the removal of contaminants from soil and water: a review. BIOCHAR 2022; 4:19. [DOI: doi.org/10.1007/s42773-022-00146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 06/25/2023]
Abstract
AbstractBiochar shows significant potential to serve as a globally applicable material to remediate water and soil owing to the extensive availability of feedstocks and conducive physio-chemical surface characteristics. This review aims to highlight biochar production technologies, characteristics of biochar, and the latest advancements in immobilizing and eliminating heavy metal ions and organic pollutants in soil and water. Pyrolysis temperature, heat transfer rate, residence time, and type of feedstock are critical influential parameters. Biochar’s efficacy in managing contaminants relies on the pore size distribution, surface groups, and ion-exchange capacity. The molecular composition and physical architecture of biochar may be crucial when practically applied to water and soil. In general, biochar produced at relatively high pyrolysis temperatures can effectively manage organic pollutants via increasing surface area, hydrophobicity and microporosity. Biochar generated at lower temperatures is deemed to be more suitable for removing polar organic and inorganic pollutants through oxygen-containing functional groups, precipitation and electrostatic attraction. This review also presents the existing obstacles and future research direction related to biochar-based materials in immobilizing organic contaminants and heavy metal ions in effluents and soil.
Graphical Abstract
Collapse
|
33
|
Lu Y, Cai Y, Zhang S, Zhuang L, Hu B, Wang S, Chen J, Wang X. Application of biochar-based photocatalysts for adsorption-(photo)degradation/reduction of environmental contaminants: mechanism, challenges and perspective. BIOCHAR 2022; 4:45. [DOI: doi.org/10.1007/s42773-022-00173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/17/2022] [Indexed: 06/25/2023]
Abstract
AbstractThe fast increase of population results in the quick development of industry and agriculture. Large amounts of contaminants such as metal ions and organic contaminants are released into the natural environment, posing a risk to human health and causing environment ecosystem problems. The efficient elimination of contaminants from aqueous solutions, photocatalytic degradation of organic pollutants or the in-situ solidification/immobilization of heavy metal ions in solid phases are the most suitable strategies to decontaminate the pollution. Biochar and biochar-based composites have attracted multidisciplinary interests especially in environmental pollution management because of their porous structures, large amounts of functional groups, high adsorption capacities and photocatalysis performance. In this review, the application of biochar and biochar-based composites as adsorbents and/or catalysts for the adsorption of different contaminants, adsorption-photodegradation of organic pollutants, and adsorption-(photo)reduction of metal ions are summarized, and the mechanism was discussed from advanced spectroscopy analysis and DFT calculation in detail. The doping of metal or metal oxides is the main strategy to narrow the band gap, to increase the generation and separation of photogenerated e−-h+pairs, to produce more superoxide radicals (·O2−) and hydroxyl radicals (·OH), to enhance the visible light absorption and to increase photocatalysis performance, which dominate the photocatalytic degradation of organic pollutants and (photo)reduction of high valent metals to low valent metals. The biochar-based composites are environmentally friendly materials, which are promising candidates in environmental pollution cleanup. The challenge and perspective for biochar-based catalysts are provided in the end.Graphical Abstract
Collapse
|
34
|
Liu Z, Xu Z, Xu L, Buyong F, Chay TC, Li Z, Cai Y, Hu B, Zhu Y, Wang X. Modified biochar: synthesis and mechanism for removal of environmental heavy metals. CARBON RESEARCH 2022; 1:8. [DOI: doi.org/10.1007/s44246-022-00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 06/25/2023]
Abstract
AbstractWith social progress and industrial development, heavy metal pollution in water and soils environment is becoming more serious. Although biochar is a low-cost and environmentally friendly adsorbent for heavy metal ions, its adsorption and immobilization efficiency still need to be improved. As an upgraded version of biochar, modified biochar has attracted extensive attention in the scientific community. This review summarized the recent research progress on the treatment methods on heavy metal pollutants in water and soils using biochar. The features and advantages of biochar modification techniques such as physical modification, chemical modification, biological modification and other categories of biochar were discussed. The mechanism of removing heavy metals from soil and water by modified biochar was summarized. It was found that biochar had better performance after modification, which provided higher surface areas and more functional groups, and had enough binding sites to combine heavy metal ions. Biochar is a very promising candidate for removing heavy metals in environment. Furthermore, some high valent metal ions could be reduced to low valent metals, such as Cr(VI) reduction to Cr(III), and form precipitates on biochar by in-situ sorption-reduction-precipitation strategy. However, it is still the direction of efforts to develop high-efficiency modified biochar with low-cost, high sorption capacity, high photocatalytic performance, environmentally friendly and no secondary pollution in future.
Collapse
|
35
|
Chan YH, Lock SSM, Wong MK, Yiin CL, Loy ACM, Cheah KW, Chai SYW, Li C, How BS, Chin BLF, Chan ZP, Lam SS. A state-of-the-art review on capture and separation of hazardous hydrogen sulfide (H 2S): Recent advances, challenges and outlook. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120219. [PMID: 36150621 DOI: 10.1016/j.envpol.2022.120219] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen sulfide (H2S) is a flammable, corrosive and lethal gas even at low concentrations (ppm levels). Hence, the capture and removal of H2S from various emitting sources (such as oil and gas processing facilities, natural emissions, sewage treatment plants, landfills and other industrial plants) is necessary to prevent and mitigate its adverse effects on human (causing respiratory failure and asphyxiation), environment (creating highly flammable and explosive environment), and facilities (resulting in corrosion of industrial equipment and pipelines). In this review, the state-of-the-art technologies for H2S capture and removal are reviewed and discussed. In particular, the recent technologies for H2S removal such as membrane, adsorption, absorption and membrane contactor are extensively reviewed. To date, adsorption using metal oxide-based sorbents is by far the most established technology in commercial scale for the fine removal of H2S, while solvent absorption is also industrially matured for bulk removal of CO2 and H2S simultaneously. In addition, the strengths, limitations, technological gaps and way forward for each technology are also outlined. Furthermore, the comparison of established carbon capture technologies in simultaneous and selective removal of H2S-CO2 is also comprehensively discussed and presented. It was found that the existing carbon capture technologies are not adequate for the selective removal of H2S from CO2 due to their similar characteristics, and thus extensive research is still needed in this area.
Collapse
Affiliation(s)
- Yi Herng Chan
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000, Kajang, Selangor, Malaysia
| | - Serene Sow Mun Lock
- CO(2) Research Center (CO(2)RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Mee Kee Wong
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000, Kajang, Selangor, Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia; Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| | | | - Kin Wai Cheah
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, TS1 3BX, United Kingdom
| | - Slyvester Yew Wang Chai
- Biomass Waste-to-Wealth Special Interest Group, Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, 93350, Kuching, Sarawak, Malaysia
| | - Claudia Li
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Bing Shen How
- Biomass Waste-to-Wealth Special Interest Group, Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, 93350, Kuching, Sarawak, Malaysia
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia; Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Zhe Phak Chan
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000, Kajang, Selangor, Malaysia
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
36
|
Chen XL, Li H, Lai L, Zhang Y, Chen Y, Li X, Liu B, Wang H. Peroxymonosulfate activation using MnFe2O4 modified biochar for organic pollutants degradation: Performance and mechanisms. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Wei Y, Chen T, Qiu Z, Liu H, Xia Y, Wang Z, Zou R, Liu C. Enhanced lead and copper removal in wastewater by adsorption onto magnesium oxide homogeneously embedded hierarchical porous biochar. BIORESOURCE TECHNOLOGY 2022; 365:128146. [PMID: 36261111 DOI: 10.1016/j.biortech.2022.128146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Removing non-biodegradable Pb2+ and Cu2+ is the top priority in wastewater purification, while adsorption is a green technology to remove them. Herein, MgO-embedded granular hierarchical porous biochar (HP-MgO@BC) was fabricated by pyrolysis of porous Mg-infused chitosan beads. MgO nanoparticles were homogeneously embedded throughout the hierarchical porous biochar matrix in a high-density and accessible manner, thus providing a large number of easily accessible adsorption sites. Pb2+ and Cu2+ sorption capacities on HP-MgO@BC are 1044.8 and 811.2 mg/g at pH 5, respectively. It could effectively remove Pb2+ and Cu2+ across a broad pH range of 2-7, and show excellent adsorption efficiency in the presence of interfering cations. It also possessed excellent reusability. In the fixed-bed operation, 7880 BV (78.80 L) and 1610 BV (16.10 L) of synthetic Pb2+ and Cu2+ wastewater could be purified by HP-MgO@BC packed column, respectively. The adsorption mechanism involves mineral precipitation, ion exchange, and surface coordination.
Collapse
Affiliation(s)
- Yuanfeng Wei
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Tao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Zhiyuan Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Huiling Liu
- School of Science, Hunan University of Technology and Business, Changsha 410205, PR China
| | - Yufen Xia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Zhimin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Ruiying Zou
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Chengbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
38
|
Qiu B, Shao Q, Shi J, Yang C, Chu H. Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121925] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Saravanan A, Kumar PS. Biochar derived carbonaceous material for various environmental applications: Systematic review. ENVIRONMENTAL RESEARCH 2022; 214:113857. [PMID: 35835170 DOI: 10.1016/j.envres.2022.113857] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/19/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Biochar is the solid material produced from the carbonization of organic feedstock biomass. This material has several unique characteristics such as greater carbon content, good electrical conductivity, high stability and large surface area, which can be applied in several research areas such as generation of power and wastewater treatment. In connection with this, recently, the investigations on biochar significantly focus on the removal of toxic heavy metals since the biochar material is easily available and environmentally friendly. According to an environmental analytical device, biochar-derived carbonaceous material has been additionally applied to the synthesis of an effective, sensitive, and low-cost electrochemical sensor. Biochar with an assessment of electrochemical properties has engaged with different redox reactions in water. In this survey, electrochemical ways of behaving of biochar in light of the electrochemical structures were analytically compiled as well as the impact from biomass sources and manufacturing process including carbonization strategies, pre-treatment/changed techniques. This review emphasizes the various synthesis methods of biochar form organic feedstock, properties and different modulations of biochar for the bioremediation of heavy metals. This review study emphasizes the utilization of biochar as sensing platform and supercapacitor for electrode fabrication in electrochemical biosensor to enhance the remediation of toxic contaminants from water streams and by switching the less ecological traditional materials. Brief information on the techniques employed for packaging biochar as carbon electrode is summarized. Scope in the aspect of environmental concern of biochar, future challenges and prospects are proposed in detail.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India.
| |
Collapse
|
40
|
Li M, Wang Y, Shen Z, Chi M, Lv C, Li C, Bai L, Thabet HK, El-Bahy SM, Ibrahim MM, Chuah LF, Show PL, Zhao X. Investigation on the evolution of hydrothermal biochar. CHEMOSPHERE 2022; 307:135774. [PMID: 35921888 DOI: 10.1016/j.chemosphere.2022.135774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The objective of this study was to visualize trends and current research status of hydrothermal biochar research through a bibliometric analysis by using CiteSpace software. The original article data were collected from the Web of Science core database published between 2009 and 2020. A visual analysis network of national co-authored, institutional co-authored and author co-authored articles was created, countries, institutions and authors were classified accordingly. By visualizing the cited literature and journal co-citation networks, the main subject distribution and core journals were identified respectively. By visualizing journal co-citations, the main research content was identified. Further the cluster analysis revealed the key research directions of knowledge structure. Keyword co-occurrence analysis and key occurrence analysis demonstrate current research hotspots and new research frontiers. Through the above analysis, the cooperation and contributions of hydrothermal biochar research at different levels, from researchers to institutions to countries to macro levels, were explored, the disciplinary areas of knowledge and major knowledge sources of hydrothermal biochar were discovered, and the development lineage, current status, hotspots and trends of hydrothermal biochar were clarified. The results obtained from the study can provide a reference for scholars to gain a deeper understanding of hydrothermal biochar.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, College of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, PR China; College of New Energy and Environmental Engineering, Nanchang Institute of Technology, Nanchang, 330044, PR China
| | - Yang Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, College of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Zhangfeng Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Mingshu Chi
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, College of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Chen Lv
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, College of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, PR China.
| | - Chenyang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, College of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Li Bai
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, College of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, PR China.
| | - Hamdy Khamees Thabet
- Chemistry Department, Faculty of Arts and Science, Northern Border University, Rafha, 91911, PO 840, Saudi Arabia.
| | - Salah M El-Bahy
- Department of Chemistry, Turabah University College, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed M Ibrahim
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Lai Fatt Chuah
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Xiaolin Zhao
- Shenzhen Automotive Research Institute, Beijing Institute of Technology, Shenzhen, 518118, Guangdong, China
| |
Collapse
|
41
|
Du T, Bogush A, Mašek O, Purton S, Campos LC. Algae, biochar and bacteria for acid mine drainage (AMD) remediation: A review. CHEMOSPHERE 2022; 304:135284. [PMID: 35691393 DOI: 10.1016/j.chemosphere.2022.135284] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Acid mine drainage (AMD) is a global issue and causes harmful environmental impacts. AMD has high acidity and contains a high concentration of heavy metals and metalloids, making it toxic to plants, animals, and humans. Traditional treatments for AMD have been widely used for a long time. Nevertheless, some limitations, such as low efficacy and secondary contamination, have led them to be replaced by other methods such as bio-based AMD treatments. This study reviewed three bio-based treatment methods using algae, biochar, and bacteria that can be used separately and potentially in combination for effective and sustainable AMD treatment to identify the removal mechanisms and essential parameters affecting AMD treatment. All bio-based methods, when applied as a single process and in combination (e.g. algae-biochar and algae-bacteria), were identified as effective treatments for AMD. Also, all these bio-based methods were found to be affected by some parameters (e.g. pH, temperature, biomass concentration and initial metal concentration) when removing heavy metals from AMD. However, we did not identify any research focusing on the combination of algae-biochar-bacteria as a consortium for AMD treatment. Therefore, due to the excellent performance in AMD treatment of algae, biochar and bacteria and the potential synergism among them, this review provides new insight and discusses the feasibility of a combination of algae-biochar-bacteria for AMD treatment.
Collapse
Affiliation(s)
- Tianhao Du
- Department of Civil, Environmental & Geomatic Engineering, Faculty of Engineering, University College London, London, WC1E 6BT, United Kingdom
| | - Anna Bogush
- Centre for Agroecology, Water and Resilience, Coventry University, Coventry, CV8 3LG, United Kingdom
| | - Ondřej Mašek
- UK Biochar Research Centre, School of Geoscience, The University of Edinburgh, Edinburgh, EH8 9YL, United Kingdom
| | - Saul Purton
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Luiza C Campos
- Department of Civil, Environmental & Geomatic Engineering, Faculty of Engineering, University College London, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
42
|
Liu B, Chen T, Wang B, Zhou S, Zhang Z, Li Y, Pan X, Wang N. Enhanced removal of Cd 2+ from water by AHP-pretreated biochar: Adsorption performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129467. [PMID: 35779399 DOI: 10.1016/j.jhazmat.2022.129467] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 04/12/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
The sesame straw-derived biochar was successfully prepared via alkaline hydrogen peroxide (AHP) pretreatment in this study. Systematic experimental characterizations, 15 relevant batch and column adsorption models, combined with density functional theory (DFT) calculation were used to investigate the performances and micro-mechanisms of Cd2+ adsorption onto biochar. We found AHP-pretreatment could greatly improve the adsorption performance of biochar for Cd2+. The maximum Cd2+ adsorption capacity of AHP-pretreated biochar (87.13 mg g-1) was much larger than that of unpretreated biochar. Cd2+ adsorption was mainly dominated by the chemisorption of the homogeneous surface monolayer. The hydroxyl and carboxyl groups on the surface of biochar provided preferential adsorption sites, and liquid film diffusion and intra-particle diffusion were two dominant rate-controlling steps. Our results showed that ion exchange, co-precipitation, surface complexation, and Cd2+-π interaction were the dominant adsorption mechanisms. Especially, DFT calculations well-identified that lone-pair electrons during complexation and π electrons during coordination were provided by oxygen-containing functional groups and aromatic rings, respectively. The experimental breakthrough curves fitted better with the theoretical value of the BJP model, compared to Thomas, Yoon-Nelson, and EXY models. Overall, our study provides a promising method for Cd2+ removal from wastewater and resource utilization of agricultural wastes.
Collapse
Affiliation(s)
- Bingxiang Liu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China; Guizhou Academy of Sciences, Guiyang 550001, China.
| | - Tong Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Bing Wang
- College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China
| | - Shaoqi Zhou
- College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China.
| | - Zihang Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Yucheng Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Xiaoxue Pan
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Ning Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| |
Collapse
|
43
|
Li A, Ge W, Liu L, Qiu G. Preparation, adsorption performance and mechanism of MgO-loaded biochar in wastewater treatment: A review. ENVIRONMENTAL RESEARCH 2022; 212:113341. [PMID: 35460638 DOI: 10.1016/j.envres.2022.113341] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/04/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Biochar is a low cost, porous and solid material with an extremely high carbon content, various types of functional groups, a large specific surface area and many other desirable characteristics. Thus, it is often used as an adsorbent or a loading matrix. Nano-magnesium oxide is a crystalline material with small particles and strong ion exchangeability. However, due to the high surface chemical energy, it easily forms agglomerates of particles. Therefore, to combine the advantages of biochar and magnesium, metal magnesium nanoparticles can be loaded onto the surface of biochar with different modification techniques, resulting in biochars with low cost and high adsorption performance to be used as an adsorption matrix (collectively referred to as Mg@BC). This review presents the effects of different Mg@BC preparation methods and synthesis conditions and summarizes the removal capabilities and adsorption mechanisms of Mg@BC for different types of pollutants in water. In addition, the review proposes the prospects for the development of Mg@BC to solve various problems in the future.
Collapse
Affiliation(s)
- Anyu Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenzhan Ge
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
44
|
Use of Green Chemistry for Amputation of Chromium Ions from Wastewater by Alkali-Treated Composts of Fruit Peels in Economical Way. J CHEM-NY 2022. [DOI: 10.1155/2022/9924164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this work, removal of chromium (VI) using alkali-treated composted peels of lemon (Citrus limonum), mango (Mangifera indica), water melon (Citrullus lanatus), and melon (Cucumis melo) has been studied in batch mode. Physico-chemical characteristics of each sorbent material were determined together with their subsequent characterization by scanning electron microscopic, FTIR, and TGA. The selected sorbent materials were chemically modified using nitric acid and sodium hydroxide solutions. Adsorption efficacy of the selected sorbent materials for Cr (VI) was investigated by optimizing different parameters. The most favorable conditions were as follows: adsorbent dosage = 1.2 g/50mL, pH = 4.0, agitation speed = 170 rpm, 60 minutes = contact time, and temperature = 313°K. Base-treated adsorbents were found to be better adsorbents as compared to the acid treated form which in turn are better than raw adsorbents (adsorbents without chemical modification). Overall, the chosen sorbents removed Cr (VI) in the range of 53.62–96%, whereas the maximum sorption is with base-treated water melon peels (BWMP), that is, 95.98%. The kinetic studies discovered that the results fitted with pseudo-second-order model. Thermodynamic parameters also support that under optimal conditions, all the selected sorbents specifically base-treated sorbents are good enough for the elimination of Cr (VI) ions in an eco-friendly way.
Collapse
|
45
|
Zhang X, Cao L, Xiang W, Xu Y, Gao B. Preparation and evaluation of fine-tuned micropore biochar by lignin impregnation for CO2 and VOCs adsorption. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Abstract
Nowadays, biochar is being studied to a great degree because of its potential for carbon sequestration, soil improvement, climate change mitigation, catalysis, wastewater treatment, energy storage, and waste management. The present review emphasizes on the utilization of biochar and biochar-based nanocomposites to play a key role in decontaminating dyes from wastewater. Numerous trials are underway to synthesize functionalized, surface engineered biochar-based nanocomposites that can sufficiently remove dye-contaminated wastewater. The removal of dyes from wastewater via natural and modified biochar follows numerous mechanisms such as precipitation, surface complexation, ion exchange, cation–π interactions, and electrostatic attraction. Further, biochar production and modification promote good adsorption capacity for dye removal owing to the properties tailored from the production stage and linked with specific adsorption mechanisms such as hydrophobic and electrostatic interactions. Meanwhile, a framework for artificial neural networking and machine learning to model the dye removal efficiency of biochar from wastewater is proposed even though such studies are still in their infancy stage. The present review article recommends that smart technologies for modelling and forecasting the potential of such modification of biochar should be included for their proper applications.
Collapse
|
47
|
Gao Y, Wu P, Jeyakumar P, Bolan N, Wang H, Gao B, Wang S, Wang B. Biochar as a potential strategy for remediation of contaminated mining soils: Mechanisms, applications, and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:114973. [PMID: 35398638 DOI: 10.1016/j.jenvman.2022.114973] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Soil heavy metal contamination caused by mining activities is a global issue. These heavy metals can be enriched in plants and animals through the food chain, and eventually transferred to the human system and threatening public health. Biochar, as an environmentally friendly soil remediation agent, can effectively immobilize heavy metals in soil. However, most researchers concern more about the remediation effect and mechanism of biochar for industrial and agricultural contaminated soil, while related reviews focusing on mining soil remediation are limited. Furthermore, the remediation effect of soil in mining areas is affected by many factors, such as physicochemical properties of biochar, pyrolysis conditions, soil conditions, mining environment and application method, which can lead to great differences in the remediation effect of biochar in diverse mining areas. Therefore, it is necessary to systematically unravel the relevant knowledge of biochar remediation, which can also provide a guide for future studies on biochar remediation of contaminated soils in mining areas. The present paper first reviews the negative effects of mining activities on soil and the advantages of biochar relative to other remediation methods, followed by the mechanism and influencing factors of biochar on reducing heavy metal migration and bioavailability in mining soil were systematically summarized. Finally, the main research directions and development trends in the future are pointed out, and suggestions for future development are proposed.
Collapse
Affiliation(s)
- Yining Gao
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Pan Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Key Laboratory of Karst Environment and Geohazard, Ministry of Natural Resources, Guiyang, 550025, Guizhou, China
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Nanthi Bolan
- The Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, USA
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Bing Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Key Laboratory of Karst Environment and Geohazard, Ministry of Natural Resources, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
48
|
Liu Y, Chen Y, Li Y, Chen L, Jiang H, Li H, Luo X, Tang P, Yan H, Zhao M, Yuan Y, Hou S. Fabrication, application, and mechanism of metal and heteroatom co-doped biochar composites (MHBCs) for the removal of contaminants in water: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128584. [PMID: 35359100 DOI: 10.1016/j.jhazmat.2022.128584] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The potential risk of various contaminants in water has recently attracted public attention. Biochars and modified biochars have been widely developed for environmental remediation. Metal and heteroatom co-doped biochar composites (MHBCs) quickly caught the interest of researchers with more active sites and higher affinity for contaminants compared to single-doped biochar by metal or heteroatoms. This study provides a comprehensive review of MHBCs in wastewater decontamination. Firstly, the main fabrication methods of MHBCs were external doping and internal doping, with external doping being the most common. Secondly, the applications of MHBCs as adsorbents and catalysts in water treatment were introduced emphatically, which mainly included the removal of metals, antibiotics, dyes, pesticides, phenols, and other organic contaminants. Thirdly, the removal mechanisms of contaminants by MHBCs were deeply discussed in adsorption, oxidation and reduction, and degradation. Furthermore, the influencing factors for the removal of contaminants by MHBCs were also summarized, including the physicochemical properties of MHBCs, and environmental variables of pH and co-existing substance. Finally, futural challenges of MHBCs are proposed in the leaching toxicity of metal from MHBCs, the choice of heteroatoms on the fabrication for MHBCs, and the application in the composite system and soil remediation.
Collapse
Affiliation(s)
- Yihuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yuanping Li
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, China
| | - Xinli Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ping Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Haoqin Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Mengyang Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yu Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Suzhen Hou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
49
|
Zhao Z, Wang B, Zhang X, Xu H, Cheng N, Feng Q, Zhao R, Gao Y, Wei M. Release characteristics of phosphate from ball-milled biochar and its potential effects on plant growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153256. [PMID: 35065117 DOI: 10.1016/j.scitotenv.2022.153256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/15/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Ball-milled biochar could potentially supply phosphorus, an essential element for plant growth. To realize resource reuse and phosphorus recovery, three feedstocks (rice straw, distillers grains, and Eupatorium adenophorum) were used to prepare ball-milled biochar to evaluate its release characteristics of phosphorus and potential effects on germination and growth. The results showed that the phosphate release performance of ball-milled distillers grains biochar (DM) at 300 and 600 °C was better than that of other biochars ball-milled for 12 h. The DM prepared at 600 °C and incubated for 12 (DM-12) or 24 h (DM-24) had the best phosphate release capacity. The solution with pH 3.0 was beneficial to the release of phosphate from DM-12. The pseudo-second-order model could better fit the phosphate release of DM-12. A germination and seedling growth experiment suggested that adding 2.5 wt% DM-12 was beneficial to the height of mung beans. This study shows that DM-12 can be used as a slow-release fertilizer for the growth of mung beans, which provides a new way for resource utilization of distillers grains and phosphorus-rich biochar.
Collapse
Affiliation(s)
- Zhipeng Zhao
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Bing Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 550025, Guizhou, China.
| | - Xueyang Zhang
- Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, Jiangsu, China
| | - Huajie Xu
- Moutai Institute, Renhuai 564500, Guizhou, China
| | - Ning Cheng
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Qianwei Feng
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Ruohan Zhao
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yining Gao
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Ming Wei
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
50
|
Avcı RN, Oymak T, Bağda E. Determination of Sulfadiazine in Natural Waters by Pine Needle Biochar – Derivatized Magnetic Nanocomposite Based Solid-Phase Extraction (SPE) with High-Performance Liquid Chromatography (HPLC). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2059668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Remziye Nur Avcı
- Department of Basic Pharmaceutical Sciences, Analytical Chemistry Division, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Tülay Oymak
- Department of Basic Pharmaceutical Sciences, Analytical Chemistry Division, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Esra Bağda
- Department of Basic Pharmaceutical Sciences, Analytical Chemistry Division, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|