1
|
Han Z, Xiong J, Zhou J, Wang Z, Hu T, Xu J. Microplastics removal from stormwater runoff by bioretention cells: A review. J Environ Sci (China) 2025; 154:73-90. [PMID: 40049912 DOI: 10.1016/j.jes.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 05/13/2025]
Abstract
Microplastics (MPs), as a new category of environmental pollutant, have been the hotspot of eco-friendly issues nowadays. Studies based on the aging process, the migration pattern of MPs in runoff rainwater, and the use of bioretention cells to remove MPs from runoff rainwater are beginning to attract widespread attention. This review analyses the migration patterns of MPs in rainwater runoff through their sources, structure and characteristics. The mechanism of removing MPs from runoff stormwater, the purification efficiency of different fillers and their influencing factors, and the accumulation, fate, and aging of MPs in bioretention cells are described. Furthermore, the hazards of MP accumulation on the performance of bioretention cells are summarised. Future directions for removing MPs in bioretention cells are proposed: (1) research on MPs smaller than 100 µm; (2) influence of MPs aging process on bioretention cells; (3) exploration of more effective fillers to enhance their removal efficiency; (4) research on synergistic removal mechanism of MPs and other pollution.
Collapse
Affiliation(s)
- Zhaolong Han
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiaqing Xiong
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jiajia Zhou
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhenyao Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tuanping Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiaxing Xu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
2
|
Khan A, Araminienė V, Uogintė I, Varnagirytė-Kabašinskienė I, Černiauskas V, Gudynaitė-Franckevičienė V, Džiugys A, Davulienė L, Misiulis E, Davtalab M, Byčenkienė S. Evaluating the role of urban green infrastructure in combating traffic-related microplastic pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 983:179688. [PMID: 40394788 DOI: 10.1016/j.scitotenv.2025.179688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
As cities grapple with the invisible threat of airborne microplastics (MPs), non-exhaust emissions, especially traffic-related MPs, contribute significantly to urban air pollution. While emission regulations have reduced exhaust pollutants, non-exhaust sources remain a significant challenge. Urban green infrastructure (UGI), valued for aesthetic and ecological functions, remains underexplored for MP mitigation. This study assesses the role of a Thuja occidentalis hedge in Kaunas, Lithuania, as a natural barrier against traffic-related MPs. Over a four-month seasonal campaign, passive deposition sampling was conducted at four distances from the street, with additional sampling in the hedge's absence for an experimental-control comparison. Optical microscopy revealed distinct size and shape distributions, while μ-FTIR spectroscopy confirmed dominant polymer compositions: PE (69.05 %) in spring, PIR (35.96 %) in winter, and ACRs (28.52 %) in summer. The highest average fragment concentration occurred in spring (98.25 %), while fibers peaked in winter (12.75 %). Black was dominant year-round, with the highest average in spring (55.35 %), followed by white in winter (42.16 %) and brown in spring (26.98 %). MPs in the 50-100 μm range were most abundant, reaching 55.26 % in spring. A similar trend appeared in vertical MP distribution. The most pronounced difference was noticed at (+1 m) behind the hedge, where MP concentration was 4.59 particles cm-2 day-1, significantly lower than 9.2 particles cm-2 day-1 in the control. The hedge showed peak removal efficiencies in summer (64.5 % total MPs, 64.3 % fragments, 71.4 % fibers). The 50-100 μm range exhibited the highest efficiency, averaging 67.25 % with a seasonal high of 94.24 % in spring. Strong Mantel (rm) and Pearson's (r) correlations of very small MPs (<20 μm) at -1 m suggest a significant influence from tire wear, brake wear, and road dust resuspension. This study highlights Thuja hedge as an active defender against MP pollution, advocating for its strategic integration into urban design to enhance public health protection.
Collapse
Affiliation(s)
- Abdullah Khan
- Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, Vilnius, Lithuania.
| | - Valda Araminienė
- Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Instituto av. 1, Akademija, Kėdainiai distr., Lithuania
| | - Ieva Uogintė
- Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, Vilnius, Lithuania
| | | | - Valentinas Černiauskas
- Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Instituto av. 1, Akademija, Kėdainiai distr., Lithuania
| | - Valda Gudynaitė-Franckevičienė
- Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Instituto av. 1, Akademija, Kėdainiai distr., Lithuania
| | - Algis Džiugys
- Lithuanian Energy Institute (LEI), Breslaujos str. 3, Kaunas, Lithuania
| | - Lina Davulienė
- Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, Vilnius, Lithuania
| | - Edgaras Misiulis
- Lithuanian Energy Institute (LEI), Breslaujos str. 3, Kaunas, Lithuania
| | - Mehri Davtalab
- Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, Vilnius, Lithuania
| | - Steigvilė Byčenkienė
- Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, Vilnius, Lithuania
| |
Collapse
|
3
|
Thuan PM, Nguyen MK, Nguyen DD. The potential release of microplastics from paint fragments: Characterizing sources, occurrence and ecological impacts. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:207. [PMID: 40375036 DOI: 10.1007/s10653-025-02525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Accepted: 04/23/2025] [Indexed: 05/18/2025]
Abstract
Paint fragments have become a significant environmental pollutant in our era. These particles pose environmental and health risks, with microplastics (MPs) being a major component. This review critically examines the sources, occurrence, and ecological impacts of paint particles (PPs) on terrestrial and aquatic ecosystems. Land-based paint fragments from disturbed or deteriorating coatings on roads and buildings are carried to the ocean along with MP items through urban runoff, wastewater, and atmospheric deposition. In the ocean, paint fragments mainly originate from boating, shipping activities, and road markings. Beyond the direct effects on biota, biocides, and heavy metals from antifouling paint formulations can be released into the environment, impacting various organisms. Future research should focus on developing solutions to address the contamination of paint-related MPs in the environment. Efficient control of paint-originated MPs should encompass a blend of approaches, such as minimizing emissions via novel paint designs and deploying cutting-edge treatment technologies to intercept released particles.
Collapse
Affiliation(s)
- Pham Minh Thuan
- Faculty of Environment and Labour Safety, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City, Vietnam
| | - Minh-Ky Nguyen
- Department of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Gialai Campus, Hamlet 1, Dien Phu Commune, Pleiku City, 600000, Vietnam.
| | - D Duc Nguyen
- Department of Civil & Energy Systems Engineering, Kyonggi University, Suwon, 16227, South Korea.
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam.
| |
Collapse
|
4
|
Kovochich M, Oh SC, Ferrari BJD, Masset T, Breider F, Unice K. Characterization of tire and road wear particles in experimental biota samples. Sci Rep 2025; 15:15372. [PMID: 40316704 PMCID: PMC12048514 DOI: 10.1038/s41598-025-98902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 04/15/2025] [Indexed: 05/04/2025] Open
Abstract
There is a growing interest in the development of reliable analytical methods for characterizing tire and road wear particles (TRWP). The current research extends the use of single particle analysis techniques to various experimental biota samples. TRWP and cryogenically milled tire tread (CMTT) were identified using a weight of evidence framework including density separation, optical microscopy, and chemical mapping (scanning electron microscopy coupled with energy dispersive X-ray spectroscopy). Our techniques successfully identified CMTT particles in laboratory earthworms exposed to soil spiked with CMTT. A river biota sample (bivalves) collected from the Seine with no detectable TRWP was spiked with road dust containing TRWP. Particle identification was performed after a biota digestion protocol and density separation of particles > 1.5 g/cm3 and < 2.2 g/cm3 which resulted in sufficient TRWP for identification and characterization. The average TRWP particle size from the road dust spiked biota sample was 126 μm by number and 220 μm by volume (range: 9 -572 μm). The size distribution overlay of TRWP identified from spiked biota were consistent with TRWP identified from the original road dust sample suggesting that the current method for biota digestion, dual density separation, and TRWP characterization is feasible for similar samples.
Collapse
Grants
- N/A The work presented here was funded by TIP which operates under the umbrella of WBCSD, is comprised of 10 leading tire companies and serves as a global, voluntary, CEO-led initiative which aims to proactively identify and address the potential human health and environmental impacts of tires to contribute to a more sustainable future.
- N/A The work presented here was funded by TIP which operates under the umbrella of WBCSD, is comprised of 10 leading tire companies and serves as a global, voluntary, CEO-led initiative which aims to proactively identify and address the potential human health and environmental impacts of tires to contribute to a more sustainable future.
- N/A The work presented here was funded by TIP which operates under the umbrella of WBCSD, is comprised of 10 leading tire companies and serves as a global, voluntary, CEO-led initiative which aims to proactively identify and address the potential human health and environmental impacts of tires to contribute to a more sustainable future.
- N/A The work presented here was funded by TIP which operates under the umbrella of WBCSD, is comprised of 10 leading tire companies and serves as a global, voluntary, CEO-led initiative which aims to proactively identify and address the potential human health and environmental impacts of tires to contribute to a more sustainable future.
- N/A The work presented here was funded by TIP which operates under the umbrella of WBCSD, is comprised of 10 leading tire companies and serves as a global, voluntary, CEO-led initiative which aims to proactively identify and address the potential human health and environmental impacts of tires to contribute to a more sustainable future.
- N/A The work presented here was funded by TIP which operates under the umbrella of WBCSD, is comprised of 10 leading tire companies and serves as a global, voluntary, CEO-led initiative which aims to proactively identify and address the potential human health and environmental impacts of tires to contribute to a more sustainable future.
Collapse
Affiliation(s)
- Michael Kovochich
- Stantec, 350 North Orleans Street Suite 8000N, Chicago, IL, 60654-1610, USA.
| | - Su Cheun Oh
- Exponent, Unit 802-803, 12 Science Park West Avenue, Shatin, New Territories, Hong Kong
| | - Benoit J D Ferrari
- Ecotox Centre, EPFL ENAC IIE-GE, Station 2, CH-1015, Lausanne, Switzerland
| | - Thibault Masset
- Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne - EPFL, IIE, ENAC, Station 2, CH-1015, Lausanne, Switzerland
| | - Florian Breider
- Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne - EPFL, IIE, ENAC, Station 2, CH-1015, Lausanne, Switzerland
| | - Kenneth Unice
- Stantec, 600 Grant Street Suite 4940, Pittsburgh, PA, 15219, USA
| |
Collapse
|
5
|
Polukarova M, Gaggini EL, Rødland E, Sokolova E, Bondelind M, Gustafsson M, Strömvall AM, Andersson-Sköld Y. Tyre wear particles and metals in highway roadside ditches: Occurrence and potential transport pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125971. [PMID: 40043875 DOI: 10.1016/j.envpol.2025.125971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 04/01/2025]
Abstract
Tyre wear particles (TWP) pose significant environmental concerns, necessitating a comprehensive understanding of their environmental distribution for accurate risk assessment. Roadside soil has not been extensively studied for TWP occurrence and distribution. This study aims to characterise the occurrence and distribution of TWP and associated metals in roadside soils and to investigate the correlations between these contaminants. Soil samples were collected from two road ditches along a Swedish national motorway at varying depths and distances from the contamination source. TWP in fractions <500 μm were analysed using PYR-GC/MS. Results indicated that TWP concentrations in soil samples ranged from 0.74 ± 0.20 to 12.40 ± 1.88 mg/kg d.w., consistent with other studies, and decreased with distance from the road, similar to Zn. In one ditch, TWP concentrations remained constant with depth, unlike concentrations of Co and Cr, which increased, while in the other ditch, TWP and most metals did not decrease with depth or distance from the outlet. Strong correlations were found between concentrations of TWP and Zn in one, but not the other, where Zn might have followed different transport due to leaching. Metal correlations in both ditches suggest traffic-related but not necessarily tyre wear origins. These findings are crucial for risk assessments of traffic-related pollutants, particularly TWP, and their spread into soils.
Collapse
Affiliation(s)
- Maria Polukarova
- Swedish National Road and Transport Research Institute Gothenborg (VTI), Regnbågsgatan 1, 417 55, Gothenburg, Sweden; Chalmers University of Technology, Department of Architecture and Civil Engineering, Water Environment Technology, SE-412 96, Gothenburg, Sweden.
| | - Elly Lucia Gaggini
- Chalmers University of Technology, Department of Architecture and Civil Engineering, Water Environment Technology, SE-412 96, Gothenburg, Sweden
| | - Elisabeth Rødland
- Norwegian Institute for Water Research, Økernveien 94, NO-0579, Oslo, Norway
| | - Ekaterina Sokolova
- Uppsala University, Department of Earth Sciences, SE-752 36, Uppsala, Sweden
| | - Mia Bondelind
- Chalmers University of Technology, Department of Architecture and Civil Engineering, Water Environment Technology, SE-412 96, Gothenburg, Sweden
| | - Mats Gustafsson
- Swedish National Road and Transport Research Institute Linköping (VTI), SE-581 95, Linköping, Sweden
| | - Ann-Margret Strömvall
- Chalmers University of Technology, Department of Architecture and Civil Engineering, Water Environment Technology, SE-412 96, Gothenburg, Sweden
| | - Yvonne Andersson-Sköld
- Swedish National Road and Transport Research Institute Gothenborg (VTI), Regnbågsgatan 1, 417 55, Gothenburg, Sweden; Chalmers University of Technology, Department of Architecture and Civil Engineering, Division of Geology and Geotechnics, SE-412 96, Gothenburg, Sweden
| |
Collapse
|
6
|
Parker-Jurd FNF, Abbott GD, Conley DC, Xavier CM, Pohl F, Thompson RC. Characterisation of tyre wear particle transport from road runoff to sea in coastal environments. MARINE POLLUTION BULLETIN 2025; 214:117811. [PMID: 40073528 DOI: 10.1016/j.marpolbul.2025.117811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Data on the fate of tyre wear particles (TWPs) within aquatic environments is limited. This study quantified TWPs entering estuaries in stormwater drainage and atmospheric fallout, and once they have reached the marine environment, within surface waters and sediments. TWPs were found at concentrations of 0.4 mg/L, 2.55 mg/m2/d, 0.00063 mg/L, and 0.96 g/kg respectively. Samples were partitioned by size to examine the distribution of TWP mass. 80-90% of TWP mass entering marine systems (stormwater and atmospheric fallout) lay between 31-125 µm. Larger particles preferentially accumulated in sediments where ∼50 % of TWP mass was >250 μm, compared to surface waters where the size class 15-63 μm accounted for ∼80 %. This study provides novel data on the sizes and concentrations of TWP pollution in coastal environments. Such data are of importance in determining biological exposures. Notably, the presence of TWPs in surface waters demonstrates their potential for transport over longer distances.
Collapse
Affiliation(s)
- Florence N F Parker-Jurd
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth PL4 8AA, UK.
| | - Geoffrey D Abbott
- School of Natural and Environmental Sciences, Drummond Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Daniel C Conley
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth PL4 8AA, UK
| | - Cijo M Xavier
- School of Natural and Environmental Sciences, Drummond Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Florian Pohl
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth PL4 8AA, UK; Faculty of Geosciences, University of Bayreuth, Bayreuth 95447, Germany
| | - Richard C Thompson
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
7
|
Hosseinzadeh SS, Balighi N, Saeidi J, Azimi‐Nezhad M, Mohtashami M, Hojat Bonab Z, Dehghani M, Ariamanesh M, Naimabadi A, Ghasemi A, Momtazi‐Borojeni AA. Preventive Effects of Vanillic Acid Against Lung Inflammation and Oxidative Stress Induced by Dust Particles in Wistar Rats. J Cell Mol Med 2025; 29:e70573. [PMID: 40289540 PMCID: PMC12034852 DOI: 10.1111/jcmm.70573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
To evaluate dose-dependent cytotoxicity effects of indoor dust particles (DPs) collected from Neyshabur, Iran, in vitro on A545 cells and in vivo on lungs of healthy male Wistar rats, as well as the antioxidant effects of vanillic acid (VA) against DP inhalation. Heavy metal levels in DPs collected from high-traffic (HT), medium-traffic, low-traffic or rural (LT) zones were measured, and their cytotoxicity effects were evaluated by MTT assay. In vivo evaluations were conducted after rats were exposed to DPs collected from HT or LT in the presence or absence of VA. Exposure to DPs increased the activity of serum superoxide dismutase; the serum level of malondialdehyde; and mRNA expression of TNFα, IL6, CXCL15 and CYP1A1 in the lung homogenate groups receiving HT and LT compared to the control group. DP effects in the groups receiving HT were higher than those of LT. Concomitant VA intake attenuated the adverse effects mediated by DPs in the HT and LT groups. DPs had adverse effects on the lungs of healthy rats, probably because of the accumulated oxidative stress agents. VA could ameliorate the effects of DPs and may be considered as a protective substance against the undesirable effects of DPs.
Collapse
Affiliation(s)
| | - Nazanin Balighi
- Department of Biology, School of Basic ScienceNeyshabur Branch, Islamic Azad UniversityNeyshaburIran
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur BranchIslamic Azad UniversityNeyshaburIran
| | - Mohsen Azimi‐Nezhad
- Healthy Ageing Research CentreNeyshabur University of Medical SciencesNeyshaburIran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic ScienceNeyshabur Branch, Islamic Azad UniversityNeyshaburIran
| | - Zahra Hojat Bonab
- Department of Microbiology, School of Basic Science, Bonab BranchIslamic Azad UniversityBonabIran
| | - Mansoureh Dehghani
- Department of Radiation OncologyNeyshabur University of Medical SciencesNeyshaburIran
| | - Mona Ariamanesh
- Department of PathologyNeyshabur University of Medical SciencesNeyshaburIran
| | - Abolfazl Naimabadi
- Department of Environmental Health Engineering, School of Public HealthNeyshabur University of Medical SciencesNeyshaburIran
| | - Ahmad Ghasemi
- Department of Biochemistry, Nutrition and Food Sciences, School of MedicineGonabad University of Medical SciencesGonabadIran
| | - Amir Abbas Momtazi‐Borojeni
- Department of Medical Biotechnology, School of MedicineNeyshabur University of Medical SciencesNeyshaburIran
| |
Collapse
|
8
|
Reshadi MAM, Rezanezhad F, Shahvaran AR, Ghajari A, Kaykhosravi S, Slowinski S, Van Cappellen P. Assessment of environmental and socioeconomic drivers of urban stormwater microplastics using machine learning. Sci Rep 2025; 15:6299. [PMID: 39984553 PMCID: PMC11845695 DOI: 10.1038/s41598-025-90612-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025] Open
Abstract
Microplastics (MPs) are ubiquitous environmental contaminants with urban landscapes as major source areas of MPs and stormwater runoff as an important transport pathway to receiving aquatic environments. To better delineate the drivers of urban stormwater MP loads, we created a global dataset of stormwater MP concentrations extracted from 107 stormwater catchments (SWCs). Using this dataset, we trained and tested three optimized gradient boosting Machine Learning (ML) models. Twenty hydrometeorological and socioeconomic variables, as well as the MP size definitions considered in the individual SWCs, were included as potential predictors of the observed MP concentrations. CatBoost emerged as the best-performing ML model. Shapley additive explanations revealed that features related to hydrometeorological conditions, watershed characteristics and human activity, and plastic waste management practices contributed 34, 25, and 4.8%, respectively, to the model's predictive performance. The MP size definition, that is, the lower size limit and the width of the size range, accounted for the remaining 36% variability in the predicted MP concentrations. The lack of a consistent definition of the MP size range among studies therefore represents a major source of uncertainty in the comparative analysis of urban stormwater MP concentrations. The proposed ML modeling approach can generate first estimates of MP concentrations in urban stormwater when data are sparse and serve as a quantitative tool for benchmarking the added value of including further data layers and applying uniform definitions of size classes of environmental MPs.
Collapse
Affiliation(s)
- Mir Amir Mohammad Reshadi
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| | - Fereidoun Rezanezhad
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Water Institute, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Ali Reza Shahvaran
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Amirhossein Ghajari
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | | | - Stephanie Slowinski
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Philippe Van Cappellen
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Water Institute, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
9
|
Hoppstock-Mattson B, Weis D, Maton J, Hublet G, Mattielli N. Local honey reflects environmental changes in metal concentrations and lead isotope ratios during COVID-19 restrictions in Brussels, Belgium, and Vancouver, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178077. [PMID: 39721527 DOI: 10.1016/j.scitotenv.2024.178077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Effective methods for measuring sudden environmental changes are crucial for understanding how cities respond to shifts in human activity. This study examines atmospheric metal outputs during the COVID-19 restrictions using honey samples collected from three land use types in Brussels Capital Region (BCR), Belgium, and Metro Vancouver Regional District (MVRD), Canada to study changes as the result of restrictions. By comparing these cities with distinct sizes, ages, and structures, we assess how urban environments responded to pandemic-induced restrictions. We present honey samples, analyzed for metal concentration and Pb isotope ratios, to provide insights into the impacts of reduced human activity in different land use types. In BCR, significant increases of Al, Cd, Cr, Cu, Fe, Ni, Pb, Ti, and V were observed in suburban sites, while in MVRD, significant decreases of Cr, Pb, Sb, Ti, and V were observed in suburban sites. The increase in metal concentrations in BCR suburban sites indicates a shift in metal emission patterns due to changes in human activity during the restrictions. Conversely, the decrease in metal concentrations in MVRD suburban areas aligns with expectations of reduced pollution during restrictions. Pb isotope ratios of BCR vary more widely and do not show any spatial trends by land use, suggesting that Pb concentrations in BCR may be more homogenized. In MVRD, significant differences in 208Pb/206Pb were observed during the restrictions, wherein honey sampled from rural sites had more radiogenic (lower 208Pb/206Pb) Pb isotope ratios. This difference suggests that honey may be more sensitive to Pb isotope ratio changes in environments with a less extensive history of metal use, such as rural British Columbia. This research demonstrates the potential of honey as a biomonitor for sudden environmental shifts. This study contributes to a global geochemical honey database, enabling tracking of environmental trends across diverse urban settings worldwide.
Collapse
Affiliation(s)
- Brooke Hoppstock-Mattson
- Pacific Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Dominique Weis
- Pacific Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Joséphine Maton
- Laboratoire G-Time, Department of Geosciences, Environment and Society, Université Libre de Bruxelles, ULB, CP 160/02, Avenue F.D. Roosevelt, 50, B-1050 Brussels, Belgium
| | - Geneviève Hublet
- Laboratoire G-Time, Department of Geosciences, Environment and Society, Université Libre de Bruxelles, ULB, CP 160/02, Avenue F.D. Roosevelt, 50, B-1050 Brussels, Belgium
| | - Nadine Mattielli
- Laboratoire G-Time, Department of Geosciences, Environment and Society, Université Libre de Bruxelles, ULB, CP 160/02, Avenue F.D. Roosevelt, 50, B-1050 Brussels, Belgium
| |
Collapse
|
10
|
Diana ZT, Chen Y, Rochman CM. Paint: a ubiquitous yet disregarded piece of the microplastics puzzle. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:26-44. [PMID: 39887286 PMCID: PMC11790211 DOI: 10.1093/etojnl/vgae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 02/01/2025]
Abstract
Microplastics are widespread pollutants. Microplastics generated from the wear and tear of paints and coatings have recently been modeled to be a large source of microplastics to the environment. Yet, studies focused on microplastics broadly frequently overlook paint microplastics. In this article, we systematically reviewed the primary literature (turning up 53 relevant articles) on paint microplastic sources, identification methods, environmental concentrations, and toxicity to model organisms. Examples of sources of paint microplastics include paints from buildings and murals, crafts and hobbies, cars and roads, marine boats and structures, and industrial systems like pipes, sewers, and other infrastructure. Paint microplastics have been quantified in several marine samples from Europe and, to a lesser extent, East Asia. Reported concentrations of paint microplastics are up to 290,000 particles per kilogram of sediments, with the greatest concentration reported near a graffiti wall. Out of the toxicity studies testing paint microplastics, there have been 68 tested effects in total across all endpoints and organisms and 17 quantified lethal concentration 50% doses (ranging from 0.001 to 20 g/L). Of the tested effects, 45 observed endpoint values in the paint treatment were significantly different from the control (66%)-most of which were tests using antifouling paints. Overall, the number of studies on paint microplastics is small, limiting a holistic understanding of microplastics. Based on our synthesis of the state of the science on paint microplastics, we suggest a research agenda moving forward informed by research gaps.
Collapse
Affiliation(s)
- Zoie T Diana
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Yuying Chen
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Chelsea M Rochman
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
De Oliveira T, Dang DPT, Chaillou M, Roy S, Caubrière N, Guillon M, Mabilais D, Ricordel S, Jean-Soro L, Béchet B, Paslaru BM, Poirier L, Gasperi J. Tire and road wear particles in infiltration pond sediments: Occurrence, spatial distribution, size fractionation and correlation with metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176855. [PMID: 39414040 DOI: 10.1016/j.scitotenv.2024.176855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Stormwater systems, such as infiltration ponds or basins, play a critical role in managing runoff water and reducing particulate pollution loads in downstream environments through decantation. Road runoff carries several pollutants, including trace metals and tire and road wear particles (TRWP). To improve our understanding of infiltration ponds as regards TRWP and their capacity to reduce TRWP loads, we have studied the occurrence, spatial distribution and size distribution of TRWP, as well as their relationship with metals, in considering the input of metals as tire additives, in the sediments of an infiltration pond located along the Nantes urban ring road (Western France), which happens to be a high-traffic roadway site. The sediment was analyzed using pyrolysis coupled with gas chromatography-mass spectrometry to determine the polymeric content of tires, specifically in quantifying the styrene-butadiene rubber (SBR) and butadiene rubber (BR) pyrolytic markers. By applying an SBR + BR-to-TRWP conversion factor, the results showed significant TRWP contamination, up to 65 mg/g, with a spatial enrichment from the entrance to the overflow section of the pond. Size fractionation revealed a bimodal distribution, indicating two distinct types of TRWP. The first type is characterized by small diameters (63-160 μm), suggesting the presence of TRWP less integrated with mineral and organic particles. The second type, characterized by larger diameters (200-500 μm), suggests a more pronounced integration with these same mineral and organic particles. A significant positive correlation between TRWP and metals (As, Cd, Cr, Cu, Li, Mo, Ni, Sb, V, Zn) was found (r > 0.739, p < 0.05). This correlation implies that TRWP and/or their associated phases may act as an indicator of metal contamination in the pond sediments. Lastly, a mass balance between TRWP inputs and the amount retained in the sediments underscores the role of infiltration ponds as "sinks" for TRWP.
Collapse
Affiliation(s)
| | | | | | - Sampriti Roy
- Univ Gustave Eiffel, GERS-LEE, F-44344 Bouguenais, France
| | | | - Martin Guillon
- Univ Gustave Eiffel, GERS-LEE, F-44344 Bouguenais, France
| | - David Mabilais
- Univ Gustave Eiffel, GERS-LEE, F-44344 Bouguenais, France
| | | | | | | | | | | | - Johnny Gasperi
- Univ Gustave Eiffel, GERS-LEE, F-44344 Bouguenais, France
| |
Collapse
|
12
|
Thodhal Yoganandham S, Daeho K, Heewon J, Shen K, Jeon J. Unveiling the environmental impact of tire wear particles and the associated contaminants: A comprehensive review of environmental and health risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136155. [PMID: 39423645 DOI: 10.1016/j.jhazmat.2024.136155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
This review offers a novel perspective on the environmental fate and ecotoxicological effects of tire wear particles (TWPs), ubiquitous environmental contaminants ranging in size from micrometers to millimeters (averaging 10-100 micrometers). These particles pose a growing threat due to their complex chemical composition and potential toxicity. Human exposure primarily occurs through inhalation, ingesting contaminated food and water, and dermal contact. Our review delves into the dynamic interplay between TWP composition, transformation products (TPs), and ecological impacts, highlighting the importance of considering both individual chemical effects and potential synergistic interactions. Notably, our investigation reveals that degradation products of certain chemicals, such as diphenylguanidine (DPG) and diphenylamine (DPA), can be more toxic than the parent compounds, underscoring the need to fully understand these contaminants' environmental profile. Furthermore, we explore the potential human health implications of TWPs, emphasizing the need for further research on potential respiratory, cardiovascular, and endocrine disturbances. Addressing the challenges in characterizing TWPs, assessing their environmental fate, and understanding their potential health risks requires a multidisciplinary approach. Future research should prioritize standardized TWP characterization and leachate analysis methods, conduct field studies to enhance ecological realism, and utilize advanced analytical techniques to decipher complex mixture interactions and identify key toxicants. By addressing these challenges, we can better mitigate the environmental and health risks associated with TWPs and ensure a more sustainable future.
Collapse
Affiliation(s)
- Suman Thodhal Yoganandham
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Kang Daeho
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Jang Heewon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Kailin Shen
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea.
| |
Collapse
|
13
|
Shi H, Wang S, Xu X, Huang L, Gu Q, Liu H. Spatial distribution and risk assessment of heavy metal pollution from enterprises in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136147. [PMID: 39405711 DOI: 10.1016/j.jhazmat.2024.136147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 12/01/2024]
Abstract
Heavy metal pollution (HMP) directly affects the safety of agricultural products, thereby impacting human health. Industrial emissions, as the main source of soil HMP in China, require in-depth research on their pollution risks. Based on national heavy metal (HM) enterprise data, this paper analyzes the spatial distribution characteristics of key enterprises involved in the HMP across the country. It constructs the risk assessment index system of enterprise HMP based on the "source-pathway-receptor" (SPR) process of the HMP, evaluates and partitions the risk of the HMP from enterprises nationwide. The results show that: (1) Enterprises and pollutant discharge outlets are mainly distributed in the eastern and southeastern coastal regions. Jiangxi, Yunnan, Guangdong, and Hunan Province are the main distribution regions of smelting enterprises, with the most types of HM pollutants. The hazard of pollution sources shows a spatial distribution pattern of higher risk in the southwest and north, and lower risk in the central region. Counties with high-risk pollution sources are mainly distributed in Yunnan, Hunan, Guangdong, Inner Mongolia, and Jiangxi Province. (2) The hazard of pollutant transmission pathways shows a spatial distribution pattern of higher risk in the southeast and lower risk in the central region. About 31.5 % of counties are at extremely high risk, mainly distributed in the southeastern coastal regions of Guangdong, Jiangsu, Zhejiang, Jiangxi, Shandong, and Fujian Province. (3) The vulnerability of the receptors shows significant clustering characteristics in the northeast and central regions. About 3.3 % of counties have a receptor vulnerability level of "extremely high," mainly distributed in Inner Mongolia, Jilin, Heilongjiang, Liaoning Province in the northeast, as well as Hubei and Jiangsu Province. (4) About 1.55 % of counties nationwide have a comprehensive risk level of the HMP classified as "extremely high," mainly distributed in Guangdong Province and Inner Mongolia. Additionally, some counties in Yunnan, Hunan, Jiangsu, Jiangxi, and Zhejiang Province have a risk of exceeding pollution standards, requiring further preventive measures to reduce pollution risks in the future. This paper can provide a scientific basis for the prevention and control (P&C) of the HMP in China.
Collapse
Affiliation(s)
- Huading Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Shihao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Xinliang Xu
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Huang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingbao Gu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Hanbing Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| |
Collapse
|
14
|
Zhang HY, Liu YH, Wei LN, Zhu RQ, Zhao JL, Liu S, Xu XR, Ying GG. Unveiling spatiotemporal distribution, partitioning, and transport mechanisms of tire additives and their transformation products in a highly urbanized estuarine region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176804. [PMID: 39389126 DOI: 10.1016/j.scitotenv.2024.176804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Numerous tire additives are high-production volume chemicals that are used extensively worldwide. However, their presence and partitioning behavior remain largely unknown, particularly in marine environments. This study is the first to reveal the spatiotemporal distribution, multimedia partitioning, and transport processing of 22 tire additives and their transformation products (TATPs) in a highly urbanized estuary (n = 166). Nineteen, 18, and 20 TATPs were detectable in water, suspended particulate matter (SPM), and sediments, respectively, with total levels of 59.7-2021 ng/L, 164-6935 ng/g, and 4.66-58.4 ng/g, respectively. The multimedia partitioning mechanisms of TATPs are governed by their molecular weight, hydrophobicity, and biodegradation rate. Mass inventories coupled with model simulations have revealed that substantial quantities of TATPs accumulate within estuarine environments, and these compounds can be continuously transported into the ocean, particularly during the wet season. According to the multi-criteria evaluation approach, four and three TATPs were identified as high-priority pollutants during the dry and wet seasons, respectively. Unexpectedly, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone was only listed as a medium-priority pollutant. This study underscores the importance of marine surveillance and advocates for particular attention to these ubiquitous but underexplored TATPs in future studies.
Collapse
Affiliation(s)
- Hai-Yan Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yue-Hong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Li-Ni Wei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Rui-Qi Zhu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
15
|
Lin Y, Wang Y, Ho YW, Fang JKH, Li Y. Characterization and ecological risks of microplastics in urban road runoff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176590. [PMID: 39343395 DOI: 10.1016/j.scitotenv.2024.176590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Microplastics (MPs) deposited on urban roads are often flushed into water bodies via drainage systems without treatment, and MP concentrations in the initial road runoff may be particularly high. Yet, there is only a limited understanding of the characteristics, dynamics, and impacts of MPs in urban road runoff. In this study, stormwater and rainwater samples were collected from seven different locations in Hong Kong across 11 rainfall events between February 2021 and September 2022. Characteristics of MPs in the collected samples were analyzed in detail, along with the dynamics of MP concentration in rainfall events, possible influencing factors, and ecological risks. The results show that MP concentration in the initial road runoff is particularly high during a rainfall episode. Overall, the median MP abundance in the collected runoff samples (185 particles/L) was 4.6 times higher than that in rainwater (40 particles/L). The most common polymers identified were polyethylene, polypropylene, and polystyrene, with fragments being the dominant shape. Over 60 % of MP sizes were smaller than 300 μm in the runoff samples. Additionally, risk assessments based on the Polymer Risk Index (PRI) classified most road sites in pollution classes II to III (PRI = 13.3-138.0), indicating moderate to high ecological risks. It appears that MP abundance in the initial runoff was significantly influenced by seasonal changes. These findings highlight urban roads as a major source of MP pollution in stormwater runoff and emphasize the importance of addressing the initial runoff in pollution control.
Collapse
Affiliation(s)
- Yinghong Lin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Yuhong Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong.
| | - Yuen-Wa Ho
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong.
| | - Yuan Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
16
|
Triantafyllaki M, Chalvatzaki E, Torres-Agullo A, Karanasiou A, Lacorte S, Drossinos Y, Lazaridis M. The fate of airborne microfibers in the human respiratory tract in different microenvironments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176000. [PMID: 39233080 DOI: 10.1016/j.scitotenv.2024.176000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Αirborne microplastics (MPs) are considered an important exposure hazard to humans, especially in the indoor environment. Deposition and clearance of MPs in the human respiratory tract (HRT) was investigated using the ExDoM2 dosimetry model, modified to incorporate the deposition and clearance of MPs fibers. Fiber deposition was calculated via the fiber equivalent aerodynamic diameter determined using their properties such as size, density and dynamic shape factor. Scenario simulations were performed for elongated particles of cylindrical (base) diameters 1 μm and 10 μm and aspect ratios (ratio of fiber length to base diameter) 3, 10 and 100. Modelling results showed that the highest fiber deposition occurred in the extra-thoracic region due to large particles (fiber cylindrical diameter dp > 0.1 μm), whereas particle length (via the aspect ratio) had an influence mainly on smaller base-diameter fibers (dp < 0.1 μm) that deposited predominantly in the alveolar region. The ExDoM2 dosimetry model was also used to calculate fiber deposition in the HRT using experimental data for microplastic fiber and fragment concentrations in different microenvironments. The highest deposited number dose (220 fibers) after a 24-hour exposure was calculated in the microenvironment (bus) that had the highest fiber concentration (17.3 ± 2.4 fibers/m3). After clearance, the majority (66.4 %) of the average deposited fiber mass was transferred from the respiratory tract to the esophagus via mucociliary clearance, 32.6 % was retained in the respiratory tract, 1 % passed into the blood, and a very small amount (0.0004 %) was transferred to the lymph nodes.
Collapse
Affiliation(s)
- M Triantafyllaki
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| | - E Chalvatzaki
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| | - A Torres-Agullo
- Institute of Environmental Assessment and Water Research of the Spanish Research Council (IDAEA-CSIC), Barcelona, Spain
| | - A Karanasiou
- Institute of Environmental Assessment and Water Research of the Spanish Research Council (IDAEA-CSIC), Barcelona, Spain
| | - S Lacorte
- Institute of Environmental Assessment and Water Research of the Spanish Research Council (IDAEA-CSIC), Barcelona, Spain
| | - Y Drossinos
- Thermal Hydraulics & Multiphase Flow Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, N.C.S.R. "Demokritos", 15341 Agia Paraskevi, Greece
| | - M Lazaridis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece.
| |
Collapse
|
17
|
Adamu H, Bello U, IbrahimTafida U, Garba ZN, Galadima A, Lawan MM, Abba SI, Qamar M. Harnessing bio and (Photo)catalysts for microplastics degradation and remediation in soil environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122543. [PMID: 39305881 DOI: 10.1016/j.jenvman.2024.122543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
Soil pollution by microplastics (MPs) is an escalating environmental crisis with far-reaching consequences. However, current research on the degradation and/or remediation of MPs has mainly focused on water-simulated environments, with little attention given to soil MPs. Therefore, the review explores such terrestrial territory, exploring the potential of biodegradation and novel photocatalytic technologies for MPs degradation/remediation in soil. This review comprehensively investigates the potential of biological and photocatalytic approaches for soil MPs degradation and remediation. A temporal analysis of research from 2004 to 2024 highlights the increasing focus on this critical issue. The review explores the biocatalytic roles of diverse enzymes, including cutinase, PETase, MHETase, hydrolase, lipase, laccase, lignin peroxidase, and Mn-peroxidase, in MPs degradation. Strategies for enzyme engineering, such as protein engineering and immobilization, are explored to enhance catalytic efficiency. The potential for developing enzyme consortia for optimized MP degradation is also discussed. Photocatalytic remediation using TiO2, ZnO, clay, hydrogel, and other photocatalysts is examined, emphasizing their mechanisms and effectiveness. Computational modeling is proposed to deepen understanding of soil MPs-catalyst interactions, primarily aiming to develop novel catalysts tailored for soil environments for environmental safety and sustainable restoration. A comparative analysis of biological and photocatalytic approaches evaluates their environmental implications and the potential for synergistic combinations, with emphasis on soil quality protection, restoration and impact on soil ecosystems. Hence, this review accentuates the urgent need for innovative solutions to address MPs pollution in soil and provides a foundational understanding of the current knowledge gaps, as well as paves the way for future research and development.
Collapse
Affiliation(s)
- Haruna Adamu
- Department of Environmental Management Technology, Abubakar Tafawa Balewa University, Yelwa Campus, 740272, Bauchi, Nigeria; Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria.
| | - Usman Bello
- Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria; Biofuel and Biochemical Research Group, Department of Chemical Engineering, Universiti Teknologi, PETRONAS, Seri Iskandar, 32610, Malaysia
| | - Usman IbrahimTafida
- Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria
| | | | - Ahmad Galadima
- Department of Chemistry, Federal University Gusau, Nigeria
| | | | - Sani Isah Abba
- Department of Chemical Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia; Water Research Centre, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Mohammad Qamar
- Department of Materials Science and Engineering (MSE), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
18
|
Öborn L, Österlund H, Lorenz C, Vianello A, Lykkemark J, Vollertsen J, Viklander M. Composition and concentrations of microplastics including tyre wear particles in stormwater retention pond sediments. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:2857-2869. [PMID: 39612178 DOI: 10.2166/wst.2024.368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/24/2024] [Indexed: 11/30/2024]
Abstract
Stormwater is recognised as a vector for microplastics (MPs), including tyre wear particles (TWPs) from land-based sources to receiving waterbodies. Before reaching the waterbodies, the stormwater may be treated. In this study, sediments from six treatment facilities (five retention ponds and a subsurface sedimentation tank) were analysed to understand MP occurrence, concentrations, sizes, polymer types and distribution between inlet and outlet. The concentrations of MPs showed large variations between and within different facilities with MP concentrations of 1,440-72,209 items/kg (analysed by μFTIR) corresponding to 120-2,950 μg/kg and TWP concentrations from
Collapse
Affiliation(s)
- Lisa Öborn
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden; Environment and Health Administration, City of Stockholm, Fleminggatan 4, Box 8136, Stockholm SE-104 20, Sweden
| | - Heléne Österlund
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden E-mail:
| | - Claudia Lorenz
- Division of Civil and Environmental Engineering, Department of the Built Environment, Aalborg University, Thomas Manns Vej 23 Aalborg Øst, 9220 Denmark; Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde 4000, Denmark
| | - Alvise Vianello
- Division of Civil and Environmental Engineering, Department of the Built Environment, Aalborg University, Thomas Manns Vej 23 Aalborg Øst, 9220 Denmark
| | - Jeanette Lykkemark
- Division of Civil and Environmental Engineering, Department of the Built Environment, Aalborg University, Thomas Manns Vej 23 Aalborg Øst, 9220 Denmark
| | - Jes Vollertsen
- Division of Civil and Environmental Engineering, Department of the Built Environment, Aalborg University, Thomas Manns Vej 23 Aalborg Øst, 9220 Denmark
| | - Maria Viklander
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| |
Collapse
|
19
|
Lee JY, Chia RW, Veerasingam S, Uddin S, Jeon WH, Moon HS, Cha J, Lee J. A comprehensive review of urban microplastic pollution sources, environment and human health impacts, and regulatory efforts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174297. [PMID: 38945237 DOI: 10.1016/j.scitotenv.2024.174297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Microplastic (MP) pollution in urban environments is a pervasive and complex problem with significant environmental and human health implications. Although studies have been conducted on MP pollution in urban environments, there are still research gaps in understanding the exact sources, regulation, and impact of urban MP on the environment and public health. Therefore, the goal of this study is to provide a comprehensive overview of the complex pathways, harmful effects, and regulatory efforts of urban MP pollution. It discusses the research challenges and suggests future directions for addressing MPs related to environmental issues in urban settings. In this study, original research papers published from 2010 to 2024 across ten database categories, including PubMed, Google Scholar, Scopus, and Web of Science, were selected and reviewed to improve our understanding of urban MP pollution. The analysis revealed multifaceted sources of MPs, including surface runoff, wastewater discharge, atmospheric deposition, and biological interactions, which contribute to the contamination of aquatic and terrestrial ecosystems. MPs pose a threat to marine and terrestrial life, freshwater organisms, soil health, plant communities, and human health through ingestion, inhalation, and dermal exposure. Current regulatory measures for MP pollution include improved waste management, upgraded wastewater treatment, stormwater management, product innovation, public awareness campaigns, and community engagement. Despite these regulatory measures, several challenges such as; the absence of standardized MPs testing methods, MPs enter into the environment through a multitude of sources and pathways, countries struggle in balancing trade interests with environmental concerns have hindered effective policy implementation and enforcement. Addressing MP pollution in urban environments is essential for preserving ecosystems, safeguarding public health, and advancing sustainable development. Interdisciplinary collaboration, innovative research, stringent regulations, and public participation are vital for mitigating this critical issue and ensuring a cleaner and healthier future for urban environments and the planet.
Collapse
Affiliation(s)
- Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Rogers Wainkwa Chia
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea; Research Institute for Earth Resources, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - S Veerasingam
- Environmental Science Center, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Saif Uddin
- Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Woo-Hyun Jeon
- Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
| | - Hee Sun Moon
- Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
| | - Jihye Cha
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea; School of Science and Engineering, University of Missouri, Kansas City, MO 64110, USA
| | - Jejung Lee
- School of Science and Engineering, University of Missouri, Kansas City, MO 64110, USA
| |
Collapse
|
20
|
Battulga B, Nakanishi T, Atarashi-Andoh M, Otosaka S, Koarashi J. Biofilm-mediated interactions between plastics and radiocesium in coastal environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60080-60092. [PMID: 39367219 DOI: 10.1007/s11356-024-35164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024]
Abstract
A ubiquitous distribution of plastic debris has been reported in aquatic and terrestrial environments; however, the interactions between plastics and radionuclides and the radioactivity of environmental plastics remain largely unknown. Here, we characterize biofilms developing on the surface of plastic debris to explore the role of plastic-associated biofilms as an interaction medium between plastics and radiocesium (137Cs) in the environment. Biofilm samples were extracted from plastics (1-50 mm in size) collected from two contrasting coastal areas in Japan. The radioactivity of plastics was estimated based on the 137Cs activity concentration of the biofilms and compared seasonally with surrounding environmental samples (i.e., sediment and sand). 137Cs traces were detected in biofilms with activity concentrations of 21-1300 Bq·kg-1 biofilm (dry weight), corresponding to 0.04-4.5 Bq·kg-1 plastic (dry weight). Our results reveal the interaction between 137Cs and plastics and provide evidence that organic and mineral components in biofilms are essential in 137Cs retention in environmental plastics. Given the ubiquitous distribution of plastic debris in the environment, more attention should be directed to bioaccumulation and the radioecological impacts of plastic-associated radionuclides on ecosystems.
Collapse
Affiliation(s)
- Batdulam Battulga
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Naka City, Ibaraki Prefecture, 319-1195, Japan.
| | - Takahiro Nakanishi
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Naka City, Ibaraki Prefecture, 319-1195, Japan
| | - Mariko Atarashi-Andoh
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Naka City, Ibaraki Prefecture, 319-1195, Japan
| | - Shigeyoshi Otosaka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa City, Chiba Prefecture, 277-0882, Japan
| | - Jun Koarashi
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Naka City, Ibaraki Prefecture, 319-1195, Japan
| |
Collapse
|
21
|
Reppas-Chrysovitsinos E, Svanström M, Peters G. Estimating fossil carbon contributions from chemicals and microplastics in Sweden's urban wastewater systems: A model-based approach. Heliyon 2024; 10:e37665. [PMID: 39323797 PMCID: PMC11422550 DOI: 10.1016/j.heliyon.2024.e37665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/31/2024] [Accepted: 09/07/2024] [Indexed: 09/27/2024] Open
Abstract
The importance of including fossil carbon in greenhouse gas emission assessments from wastewater treatment plants (WWTPs) is highlighted in the 2019 Intergovernmental Panel for Climate Change (IPCC) guidelines revision and underpinned by an increasing number of experimental studies. The present study introduces a model-based approach to estimate fossil carbon flows within Sweden's urban wastewater system, employing data on chemical and polymeric material flows as a starting point. Our findings show that fossil carbon constitutes approximately 12-17 % of the total carbon emissions to sewer systems. This result aligns with experimental data, which shows fossil carbon contributions to WWTP influents ranging from 4 to 28 %. Our analysis further indicates that microplastics contribute about 13 % of the fossil carbon influx to Swedish WWTPs, while organic chemicals account for the remaining 83 %.
Collapse
Affiliation(s)
- Efstathios Reppas-Chrysovitsinos
- Division of Environmental Systems Analysis, Department of Technology Management and Economics, Chalmers University of Technology, Gothenburg, SE412 96, Sweden
| | - Magdalena Svanström
- Division of Environmental Systems Analysis, Department of Technology Management and Economics, Chalmers University of Technology, Gothenburg, SE412 96, Sweden
| | - Gregory Peters
- Division of Environmental Systems Analysis, Department of Technology Management and Economics, Chalmers University of Technology, Gothenburg, SE412 96, Sweden
| |
Collapse
|
22
|
Roy D, Kim J, Lee M, Kim S, Park J. PM10-bound microplastics and trace metals: A public health insight from the Korean subway and indoor environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135156. [PMID: 39079300 DOI: 10.1016/j.jhazmat.2024.135156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024]
Abstract
Inhalable airborne microplastics (MPs) presented in indoor and outdoor environments, can deeply penetrate the lungs, potentially triggering inflammation and respiratory illnesses. The present study aims to evaluate human health risks from respirable particulate matter (PM)-bound trace metals and MPs in indoor (SW- subway and IRH- indoor residential houses) and outdoor (OD) environments. This research provides an initial approach to human respiratory tract (HRT) mass depositions of PM10-bound total MPs and nine specific MP types to predict potential human health threats from inhalation exposure. Results indicate that PM-bound trace metals and MPs were around 4 times higher in SW microenvironments compared to OD locations. In IRH, cancer risk (CR) levels were estimated 9 and 4 times higher for PM10 and PM2.5, respectively. Additionally, MP particle depositions per gram of lung cell weight were highest in IRH (23.77), followed by OD and SW. Whereas, lifetime alveoli depositions of MPs were estimated at 13.73 MP/g, which exceeds previously reported respiratory disease fatality cases by 10 to 5 times. Prolonged exposure duration at IRH emerged as a key factor contributing to increased CR and MP lung deposition levels. This research highlights severe lung risks from inhaling PM-bound MPs and metals, offering valuable health insights.
Collapse
Affiliation(s)
- Debananda Roy
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jayun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Minjoo Lee
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunga Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Joonhong Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
23
|
Öborn L, Österlund H, Viklander M. Microplastics in gully pot sediment in urban areas: Presence, quantities and characteristics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 353:124155. [PMID: 38750809 DOI: 10.1016/j.envpol.2024.124155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Stormwater is widely recognized as a pathway for transporting pollutants, including microplastics, from sources in urban environments to receiving waters. Gully pots are often where urban runoff drains into the piped network; they typically include a trap where sediments accumulate. The aim of this work was to contribute to a better understanding of the fate of microplastics as they enter into the urban drainage system, and the role of gully pots in trapping microplastics. Sediment samples collected from 29 gully pots were analysed for non-carbon-black and carbon-black (e.g. tire wear particles) microplastics larger than 40 μm using μ-FTIR and ATR-FTIR, respectively. Commonly found polymers in descending order were PP > EPDM > EVA > PS > SBR, PP was most common both by mass and by number of microplastics. The total concentration of carbon black and non-carbon black microplastics ranged from 709 to 10 600 items/100 g dry matter (DM), (median: 2960 items/100 g). Estimated mass of non-carbon black microplastics ranged from 0.19 to 490 mg/100 g, (median: 3.66 mg/100 g). In total 21 different types of microplastics were detected, the majority of these (13) were carbon black and eight non-carbon black polymer types. By number and the carbon black particles accounted for up to 68% of the microplastics (average 30%), this stress the importance of using analytical methods enabling the detection of both carbon-black and non-carbon black microplastics. Furthermore, the results indicate that gully pots can act as temporary sinks for microplastics, mainly for microplastics larger than 125 μm. The amount of microplastics found in gully pots, together with the very large number of gully pots sited in urban areas, indicates that gully pots can potentially trap large amounts of microplastics, and thus if gully pots are fitted and maintained properly they could significantly contribute to reducing the amount of microplastics reaching receiving waters.
Collapse
Affiliation(s)
- Lisa Öborn
- Urban Water Engineering, Luleå University of Technology, 971 87, Luleå, Sweden; Environment and Health Administration, City of Stockholm, Box 8136, 104 20 Stockholm, Sweden.
| | - Heléne Österlund
- Urban Water Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Maria Viklander
- Urban Water Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| |
Collapse
|
24
|
Li Y, Tang Y, Qiang W, Xiao W, Lian X, Yuan S, Yuan Y, Wang Q, Liu Z, Chen Y. Effect of tire wear particle accumulation on nitrogen removal and greenhouse gases abatement in bioretention systems: Soil characteristics, microbial community, and functional genes. ENVIRONMENTAL RESEARCH 2024; 251:118574. [PMID: 38452911 DOI: 10.1016/j.envres.2024.118574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Tire wear particles (TWPs), as predominant microplastics (MPs) in road runoff, can be captured and retained by bioretention systems (BRS). This study aimed to investigate the effect of TWPs accumulation on nitrogen processes, focusing on soil characteristics, microbial community, and functional genes. Two groups of lab-scale bioretention columns containing TWPs (0 and 100 mg g-1) were established. The removal efficiencies of NH4+-N and TN in BRS significantly decreased by 7.60%-24.79% and 1.98%-11.09%, respectively, during the 101 days of TWPs exposure. Interestingly, the emission fluxes of N2O and CO2 were significantly decreased, while the emission flux of CH4 was substantially increased. Furthermore, prolonged TWPs exposure significantly influenced the contents of soil organic matter (increased by 27.07%) and NH4+-N (decreased by 42.15%) in the planting layer. TWPs exposure also significantly increased dehydrogenase activity and substrate-induced respiration rate, thereby promoting microbial metabolism. Microbial sequencing results revealed that TWPs decreased the relative abundance of nitrifying bacteria (Nitrospira and Nitrosomonas) and denitrifying bacteria (Dechloromonas and Thauera), reducing the nitrification rate by 42.24%. PICRUSt2 analysis further indicated that TWPs changed the relative abundance of functional genes related to nitrogen and enzyme-coding genes.
Collapse
Affiliation(s)
- Yunqing Li
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yinghui Tang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Weibo Qiang
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan, 430010, China
| | - Wenyu Xiao
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Xiaoke Lian
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Shaochun Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ying Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Qinyi Wang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Zhen Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China.
| |
Collapse
|
25
|
García-Haba E, Benito-Kaesbach A, Hernández-Crespo C, Sanz-Lazaro C, Martín M, Andrés-Doménech I. Removal and fate of microplastics in permeable pavements: An experimental layer-by-layer analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172627. [PMID: 38653422 DOI: 10.1016/j.scitotenv.2024.172627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The increasing prevalence of microplastics (MP) in urban environments has raised concerns over their negative effects on ecosystems and human health. Stormwater runoff, and road dust and sediment, act as major vectors of these pollutants into natural water bodies. Sustainable urban drainage systems, such as permeable pavements, are considered as potential tools to retain particulate pollutants. This research evaluates at laboratory scale the efficiency of permeable interlocking concrete pavements (PICP) and porous concrete pavements (PCP) for controlling microplastics, including tire wear particles (TWP) which constitute a large fraction of microplastics in urban environments, simulating surface pollution accumulation and Mediterranean rainfall conditions. Microplastic levels in road dust and sediments and stormwater runoff inputs were 4762 ± 974 MP/kg (dry weight) and 23.90 ± 17.40 MP/L. In infiltrated effluents, microplastic levels ranged from 2.20 ± 0.61 to 5.17 ± 1.05 MP/L; while tire wear particle levels ranged between 0.28 ± 0.28 and 3.30 ± 0.89 TWP/L. Distribution of microplastics within the layers of PICP and PCP were also studied and quantified. Microplastics tend to accumulate on the pavements surface and in geotextile layers, allowing microplastic retention efficiencies from 89 % to 99.6 %. Small sized (< 0.1 mm) fragment shaped microplastics are the most common in effluent samples. The results indicate that permeable pavements are a powerful tool to capture microplastics and tire wear particles, especially by surface and geotextile layers. The study aims to shed light on the complex mobilisation mechanisms of microplastics, providing valuable insights for addressing the growing environmental concern of microplastic pollution in urban areas.
Collapse
Affiliation(s)
- Eduardo García-Haba
- Instituto Universitario de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain.
| | | | - Carmen Hernández-Crespo
- Instituto Universitario de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| | - Carlos Sanz-Lazaro
- Departamento de Ecología, Universidad de Alicante, 99, E-03080 Alicante, Spain; Multidisciplinary Institute for Environmental Studies (MIES), Universidad de Alicante, 99, E-03080 Alicante, Spain
| | - Miguel Martín
- Instituto Universitario de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| | - Ignacio Andrés-Doménech
- Instituto Universitario de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| |
Collapse
|
26
|
Zhang Y, Frimpong AJ, Tang J, Olayode IO, Kyei SK, Owusu-Ansah P, Agyeman PK, Fayzullayevich JV, Tan G. An explicit review and proposal of an integrated framework system to mitigate the baffling complexities induced by road dust-associated contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123957. [PMID: 38631446 DOI: 10.1016/j.envpol.2024.123957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/03/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Road dust-associated contaminants (RD-AC) are gradually becoming a much thornier problem, as their monotonous correlations render them carcinogenic, mutagenic, and teratogenic. While many studies have examined the harmful effects of road dust on both humans and the environment, few studies have considered the co-exposure risk and gradient outcomes given the spatial extent of RD-AC. In this spirit, this paper presents in-depth elucidation into the baffling complexities induced by both major and emerging contaminants of road dust through a panorama-to-profile up-to-date review of diverse studies unified by the goal of advancing innovative methods to mitigate these contaminants. The paper thoroughly explores the correlations between RD-AC and provides insights to understand their potential in dispersing saprotrophic microorganisms. It also explores emerging challenges and proposes a novel integrated framework system aimed at thermally inactivating viruses and other pathogenic micro-organisms commingled with RD-AC. The main findings are: (i) the co-exposure risk of both major and emerging contaminants add another layer of complexity, highlighting the need for more holistic framework strategies, given the geospatial morphology of these contaminants; (ii) road dust contaminants show great potential for extended prevalence and severity of viral particles pollution; (iii) increasing trend of environmentally persistent free radicals (EPFRs) in road dust, with studies conducted solely in China thus far; and (iv) substantial hurdle exists in acquiring data concerning acute procedural distress and long-term co-exposure risk to RD-ACs. Given the baffling complexities of RD-ACs, co-exposure risk and the need for innovative mitigation strategies, the study underscore the significance of establishing robust systems for deep road dust contaminants control and future research efforts while recognizing the interconnectivity within the contaminants associated with road dust.
Collapse
Affiliation(s)
- Yuxiao Zhang
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China
| | - Alex Justice Frimpong
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China; Department of Automotive and Agricultural Mechanization Engineering, Kumasi Technical University, Kumasi, Ghana
| | - Jingning Tang
- National Special Purpose Vehicle Product Quality Inspection and Testing Center, Suizhou City, Hubei Province, China
| | - Isaac Oyeyemi Olayode
- Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, P. O. Box 2028, Johannesburg, South Africa
| | - Sampson Kofi Kyei
- Department of Chemical Engineering, Kumasi Technical University, Kumasi, Ghana
| | - Prince Owusu-Ansah
- Department of Automotive and Agricultural Mechanization Engineering, Kumasi Technical University, Kumasi, Ghana
| | - Philip Kwabena Agyeman
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China
| | - Jamshid Valiev Fayzullayevich
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China; School of Automobile and Automotive Economy, Tashkent State Transport University, Tashkent, Uzbekistan
| | - Gangfeng Tan
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China.
| |
Collapse
|
27
|
Chen J, Tang T, Li Y, Wang R, Chen X, Song D, Du X, Tao X, Zhou J, Dang Z, Lu G. Non-targeted screening and photolysis transformation of tire-related compounds in roadway runoff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171622. [PMID: 38467255 DOI: 10.1016/j.scitotenv.2024.171622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Roadway runoff serves as a crucial pathway for transporting contaminants of emerging concern (CECs) from urban environments to receiving water bodies. Tire-related compounds originating from tire wear particles (TWPs) have been frequently detected, posing a potential ecological threat. Yet, the photolysis of tire-related compounds within roadway runoff remains inadequately acknowledged. Addressing this deficit, our study utilized high-resolution mass spectrometry (HRMS) to characterize the chemical profile of roadway runoff across eight strategically selected sites in Guangzhou, China. 219 chemicals were identified or detected within different confidence levels. Among them, 29 tire-related contaminants were validated with reference standards, including hexa(methoxymethyl)melamine (HMMM), 1,3-diphenylguanidine (DPG), dicyclohexylurea (DCU), and N-cyclohexyl-2-benzothiazol-amine (DCMA). HMMM exhibited with the abundance ranging from 2.30 × 104-3.10 × 106, followed by DPG, 1.69 × 104-8.34 × 106. Runoff sample were exposed to irradiation of 500 W mercury lamp for photodegradation experiment. Photolysis results indicated that tire-related compounds with a low photolysis rate, notably DCU, DCMA, and DPG, are more likely to persist within the runoff. The photolytic rates were significantly correlated with the spatial distribution patterns of these contaminants. Our findings underscore TWPs as a significant source of pollution in water bodies, emphasizing the need for enhanced environmental monitoring and assessment strategies.
Collapse
Affiliation(s)
- Jinfan Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ting Tang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Yanxi Li
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Rui Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xingcai Chen
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Dehao Song
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiangmin Zhou
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
28
|
Johansson G, Fedje KK, Modin O, Haeger-Eugensson M, Uhl W, Andersson-Sköld Y, Strömvall AM. Removal and release of microplastics and other environmental pollutants during the start-up of bioretention filters treating stormwater. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133532. [PMID: 38387172 DOI: 10.1016/j.jhazmat.2024.133532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
Untreated stormwater is a major source of microplastics, organic pollutants, metals, and nutrients in urban water courses. The aim of this study was to improve the knowledge about the start-up periods of bioretention filters. A rain garden pilot facility with 13 bioretention filters was constructed and stormwater from a highway and adjacent impervious surfaces was used for irrigation for ∼12 weeks. Selected plants (Armeria maritima, Hippophae rhamnoides, Juncus effusus, and Festuca rubra) was planted in ten filters. Stormwater percolated through the filters containing waste-to-energy bottom ash, biochar, or Sphagnum peat, mixed with sandy loam. Influent and effluent samples were taken to evaluate removal of the above-mentioned pollutants. All filters efficiently removed microplastics >10 µm, organic pollutants, and most metals. Copper leached from all filters initially but was significantly reduced in the biochar filters at the end of the period, while the other filters showed a declining trend. All filters leached nutrients initially, but concentrations decreased over time, and the biochar filters had efficiently reduced nitrogen after a few weeks. To conclude, all the filters effectively removed pollutants during the start-up period. Before being recommended for full-scale applications, the functionality of the filters after a longer period of operation should be evaluated.
Collapse
Affiliation(s)
- Glenn Johansson
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| | - Karin Karlfeldt Fedje
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; Recycling and Waste Management, Renova AB, Box 156, Gothenburg SE-40122, Sweden
| | - Oskar Modin
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | | | - Wolfgang Uhl
- Aquateam COWI AS, Karvesvingen 2, 0579 Oslo, Norway
| | - Yvonne Andersson-Sköld
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; Swedish National Road and Transport Research Institute Linköping (VTI), Box 8072, SE-40278 Gothenburg, Sweden
| | - Ann-Margret Strömvall
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
29
|
Parker-Jurd FNF, Abbott GD, Guthery B, Parker-Jurd GMC, Thompson RC. Features of the highway road network that generate or retain tyre wear particles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26675-26685. [PMID: 38451457 DOI: 10.1007/s11356-024-32769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
The environmental accumulation of microplastics poses a formidable global challenge, with tyre wear particles (TWPs) emerging as major and potentially harmful contributors to this particulate pollution. A critical pathway for TWPs to aquatic environments is via road drainage. While drainage assets are employed worldwide, their effectiveness in retaining microplastics of highly variable densities (TWP ~ 1-2.5 g cm3) remains unknown. This study examines their ability to impede the transfer of TWPs from the UK Strategic Road Network (SRN) to aquatic ecosystems. Samples were collected from the influent, effluent and sediments of three retention ponds and three wetlands. The rate of TWP generation is known to vary in response to vehicle speed and direction. To ascertain the significance of this variability, we further compared the mass of TWPs in drainage from curved and straight sections of the SRN across eight drainage outfalls. Pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) was used to quantify tyre wear using benzothiazole as a molecular marker for TWPs (with an internal standard benzothiazole-D4). Tyre wear was present in drainage from the SRN at concentrations of 2.86 ± 6 mg/L and was found within every sample analysed. Drainage from curved sections of the SRN contained on average a 40% greater TWP mass than straight sections but this was not significant. The presence of wetlands and retention ponds generally led to a reduction in TWP mass (74.9% ± 8.2). This effect was significant for retention ponds but not for wetlands; most probably due to variability among sites and sampling occasions. Similar drainage assets are used on a global scale; hence our results are of broad relevance to the management of TWP pollution.
Collapse
Affiliation(s)
- Florence N F Parker-Jurd
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth, PL4 8AA, UK.
| | - Geoffrey D Abbott
- School of Natural and Environmental Sciences, Drummond Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Bill Guthery
- School of Natural and Environmental Sciences, Drummond Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Gustav M C Parker-Jurd
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth, PL4 8AA, UK
| | - Richard C Thompson
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
30
|
Fan X, Cao B, Wang S, Li H, Zhu M, Sha H, Yang Y. Effects of tire-road wear particles on the adsorption of tetracycline by aquatic sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29232-29245. [PMID: 38573573 DOI: 10.1007/s11356-024-33132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Tire-road wear particles (TRWPs) are formed by friction between the tire and the road. TRWPs are ubiquitous across the globe, especially in sediments. However, the possible effects of TRWPs on tetracycline (TC) in aquatic sediments are unknown. To investigate the potential role of TRWPs as carriers of co-pollutants, this study investigated the pore surface properties and TC adsorption behavior of TRWP-contaminated sediments and explored the TC behavior in water sediments, as well as the role of aging processes and TRWPs abundance. The results showed that the surface morphology of TRWP-contaminated sediments changed and the adsorption capacity of sediments to TC increased. The TC adsorption capacity of sediments contaminated by 2% TRWPs increased from 3.15 to 3.48 mg/g. Moreover, the surface physical and chemical properties of TRWPs after UV aging changed, which further increased the TC adsorption capacity. The TC adsorption capacity of the sediments contaminated by aged TRWPs increased from 3.48 to 3.65 mg/g. Changing the proportion of aged TRWPs, we found that the adsorption capacity of sediments contaminated by different proportions of TRWPs for TC was 2% > 1% > 0.5% > 4% > blank sediment. These results may contribute to predicting the potential environmental risks of TRWPs in aquatic sediments.
Collapse
Affiliation(s)
- Xiulei Fan
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Binwen Cao
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Shenpeng Wang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Huixian Li
- Xuzhou River and Lake Management Center, Xuzhou, China
| | - Mingxian Zhu
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Haidi Sha
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Yangyang Yang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China.
| |
Collapse
|
31
|
Argamino CRA, Sebben BG, da Costa G, Towers S, Bogush A, Stevanovic S, Godoi RHM, Kourtchev I. Development and validation of a GC Orbitrap-MS method for the analysis of phthalate esters (PAE) and bis(2-ethylhexyl)adipate (DEHA) in atmospheric particles and its application for screening PM 2.5 from Curitiba, Brazil. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1579-1592. [PMID: 38407576 DOI: 10.1039/d3ay02197a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Phthalates or phthalic acid esters (PAE) and bis(2-ethylhexyl)adipate (DEHA) are ubiquitous chemicals often used as plasticisers and additives in many industrial products and are classified as both persistent organic pollutants (POPs) and new emerging pollutants (NEPs). Exposure to these chemicals, especially through inhalation, is linked to a wide range of negative health effects, including endocrine disruption. Air particulate matter (PM) with an aerodynamic diameter ≤ 2.5 μm can be enriched with PAEs and DEHA and if inhaled can cause multi-system human toxicity. Therefore, proper monitoring of PAEs and DEHA in PM is required to assess human exposure to these pollutants. In this work, we developed and validated a new and sensitive gas-chromatography high-resolution mass spectrometry (GC-HRMS) method for targeted analysis of PAEs including dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), bis(2-ethylhexyl)adipate (DEHA), bis(2-ethylhexyl)phthalate (DEHP), di-n-octyl phthalate (DOP), in PM. Analytical aspects including sample preparation steps and GC-HRMS parameters, e.g., quadrupole isolation window, to enhance method sensitivity have been assessed. The estimated limit of detection (LODs) of target PAEs and DEHA ranged from 5.5 to 17 pg μL-1, allowing their trace-level detection in PM. Extraction efficiencies of 78-101% were obtained for the target compounds. Low DMP and DEP extraction efficiencies from the spiked filter substrates indicated that significant losses of higher volatility PAEs can occur during the sample collection when filter-based techniques are used. This work is the first targeted method based on GC-Orbitrap MS for PAEs and DEHA in environmental samples. The validated method was successfully applied for the targeted analysis of PAEs and DEHA in PM2.5 samples from the eighth most populous city in Brazil, Curitiba. This work is the first to report DBP, DEHA, DEHP, and DOP in urban PM from Brazil. The observed concentrations of PAEs (up to 29 ng m-3) in PM2.5 from Curitiba may not represent the extent of pollution by these toxic compounds since the analysed samples were collected during a COVID-19 restriction when anthropogenic activities were reduced.
Collapse
Affiliation(s)
- Cristian Ryan A Argamino
- Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton-on-Dunsmore, CV8 3LG, UK.
- School of Engineering, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3220, Australia
| | - Bruna G Sebben
- Environmental Engineering Department, Federal University of Parana (UFPR), Curitiba, PR, Brazil
| | - Gabriela da Costa
- Environmental Engineering Department, Federal University of Parana (UFPR), Curitiba, PR, Brazil
| | - Sam Towers
- Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton-on-Dunsmore, CV8 3LG, UK.
| | - Anna Bogush
- Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton-on-Dunsmore, CV8 3LG, UK.
| | - Svetlana Stevanovic
- School of Engineering, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3220, Australia
| | - Ricardo H M Godoi
- Environmental Engineering Department, Federal University of Parana (UFPR), Curitiba, PR, Brazil
| | - Ivan Kourtchev
- Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton-on-Dunsmore, CV8 3LG, UK.
| |
Collapse
|
32
|
Shafi M, Lodh A, Khajuria M, Ranjan VP, Gani KM, Chowdhury S, Goel S. Are we underestimating stormwater? Stormwater as a significant source of microplastics in surface waters. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133445. [PMID: 38198866 DOI: 10.1016/j.jhazmat.2024.133445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Stormwater represent a critical pathway for transporting microplastics (MPs) to surface waters. Due to complex dynamics of MPs in stormwater, its dispersion, weathering, risk, and transport are poorly understood. This review bridges those gaps by summarizing the latest findings on sources, abundance, characteristics, and dynamics involved in stormwater MP pollution. Weathering starts before or after MPs enter stormwater and is more pronounced on land due to continuous heat and mechanical stress. Land use patterns, rainfall intensity, MPs size and density, and drainage characteristics influence the transport of MPs in stormwater. Tire and road wear particles (TRWPs), littering, and road dust are major sources of MPs in stormwater. The concentrations of MPs varies from 0.38-197,000 particles/L globally. Further MP concentrations showed regional variations, highlighting the importance of local monitoring efforts needed to understand local pollution sources. We observed unique signatures associated with the shape and color of MPs. Fibers and fragments were widely reported, with transparent and black being the predominant colors. We conclude that the contribution of stormwater to MP pollution in surface waters is significantly greater than wastewater treatment plant effluents and demands immediate attention. Field and lab scale studies are needed to understand its behavior in stormwater and the risk posed to the downstream water bodies.
Collapse
Affiliation(s)
- Mozim Shafi
- Environmental Engineering and Management Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Ayan Lodh
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Medha Khajuria
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir 190006, India
| | - Ved Prakash Ranjan
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, India
| | - Khalid Muzamil Gani
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir 190006, India
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Sudha Goel
- Environmental Engineering and Management Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| |
Collapse
|
33
|
Liu K, Li Q, Andrady AL, Wang X, He Y, Li D. Underestimated activity-based microplastic intake under scenario-specific exposures. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 18:100316. [PMID: 37860830 PMCID: PMC10583090 DOI: 10.1016/j.ese.2023.100316] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Despite increasing alarms over the health impacts of microplastics (MPs) due to their detection in human organs and feces, precise exposure evaluations remain scarce. To comprehend their risks, there is a distinct need to prioritize quantitive estimates in MP exposome, particularly at the environmentally-realistic level. Here we used a method rooted in real-world MP measurements and activity patterns to determine the daily intake of MPs through inhalation and from ground dust/soil ingestion. We found that nearly 80% of this intake comes from residential sectors, with activity intensity and behavioral types significantly affecting the human MP burden. The data showed a peak in MP exposure for those aged 18-64. When compared to dietary MP intake sources like seafood, salt, and water, we identified a previously underestimated exposure from inhalation and dust/soil ingestion, emphasizing the need for more realistic evaluations that incorporate activity factors. This discovery raises questions about the accuracy of past studies and underscores MP's potential health risks. Moreover, our time-based simulations revealed increased MP intake during the COVID-19 lockdown due to more surface dust ingestion, shedding light on how global health crises may inadvertently elevate MP exposure risks.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200062, China
- Plastic Marine Debris Research Center, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 500 Dongchuan Road, Shanghai, 200241, China
| | - Qingqing Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200062, China
- Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 500 Dongchuan Road, Shanghai, 200241, China
| | - Anthony L. Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xiaohui Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200062, China
- Plastic Marine Debris Research Center, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yinan He
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200062, China
- Plastic Marine Debris Research Center, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 500 Dongchuan Road, Shanghai, 200241, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200062, China
- Plastic Marine Debris Research Center, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 500 Dongchuan Road, Shanghai, 200241, China
| |
Collapse
|
34
|
Peller JR, Tabor G, Davis C, Iceman C, Nwachukwu O, Doudrick K, Wilson A, Suprenant A, Dabertin D, McCool JP. Distribution and Fate of Polyethylene Microplastics Released by a Portable Toilet Manufacturer into a Freshwater Wetland and Lake. WATER 2024; 16:11. [PMID: 39219624 PMCID: PMC11361013 DOI: 10.3390/w16010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A portable toilet manufacturer in northwest Indiana (USA) released polyethylene microplastic (MP) pollution into a protected wetland for at least three years. To assess the loads, movement, and fate of the MPs in the wetland from this point source, water and sediment samples were collected in the fall and spring of 2021-2023. Additional samples, including sediment cores and atmospheric particulates, were collected during the summer of 2023 from select areas of the wetland. The MPs were isolated from the field samples using density separation, filtration, and chemical oxidation. Infrared and Raman spectroscopy analyses identified the MPs as polyethylene, which were quantified visually using a stereomicroscope. The numbers of MPs in 100 mL of the marsh water closest to the source ranged from several hundred to over 400,000, while the open water samples contained few microplastics. Marsh surface sediments were highly contaminated with MPs, up to 18,800 per 30.0 g dry mass (dm), compared to core samples in the lower depths (>15 cm) that contained only smaller MPs (<200 µm), numbering 0-480 per 30.0 g (dm). The wide variations in loads of MP contaminants indicate the influence of numerous factors, such as proximity to the point source pollution, weather conditions, natural matter, and pollution sinks, namely sediment deposition. As proof of concept, we demonstrated a novel remediation method using these real-world samples to effectively agglomerate and remove MPs from contaminated waters.
Collapse
Affiliation(s)
- Julie R. Peller
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - Gavin Tabor
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - Christina Davis
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - Chris Iceman
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - Ozioma Nwachukwu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kyle Doudrick
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Antigone Wilson
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - Alyssa Suprenant
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - David Dabertin
- Dabertin Law Offices, 5246 Hohman Avenue Suite 302, Hammond, IN 46320, USA
| | - Jon-Paul McCool
- Department of Geography and Meteorology, Valparaiso University, 1809 Chapel Drive, Valparaiso, IN 46383, USA
| |
Collapse
|
35
|
Parameswarappa Jayalakshmamma M, Na Nagara V, Borgaonkar A, Sarkar D, Sadik O, Boufadel M. Characterizing microplastics in urban runoff: A multi-land use assessment with a focus on 1-125 μm size particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166685. [PMID: 37652378 DOI: 10.1016/j.scitotenv.2023.166685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Urban areas play a significant role in generating microplastics (MPs) through increased vehicular and human activities, making urban runoff a key source of MP pollution in receiving waterways. The composition of MPs is anticipated to vary with land use; hence, identifying the hotspots of contamination within urban areas is imperative for the targeted interventions to reduce MPs at their sources. This study collected one-liter stormwater runoffs from three different land uses as sheet flow during two storm events to quantify the MPs and identify the polymers transported from land-based sources. The analytical method included a combination of Fourier transform infrared spectrometer, Raman microscope, and Nile red staining techniques. This study analyzed the broad spectrum of MPs, i.e., 1 μm-5 mm, and tire wear and bitumen particles, considered the two major research gaps in stormwater studies. The MP concentrations were 67.7 ± 11.3 pL-1in commercial, 23 ± 10.3 pL-1 in residential, and 168.7 ± 37.1 pL-1in highways. The trend of MP concentrations followed an order of highway > commercial > residential with an exclusive presence of polymethylmethacrylate and ethylene-vinyl acetate in highways; cellophane, methylcellulose, polystyrene, polyamide, and polytetrafluorethylene in commercial; and high-density polyethylene in residential areas. The dominant MP morphology consisted of fragments, accounting for 89 % of the identified MPs, followed by 10 % fibers and 1 % films. This study observed a prevalence of MPs sizes <125 μm constituting 49 % of the total composition. These findings underscore the vital role of land use patterns in shaping MP abundance and reinforce the urgency of implementing effective management strategies to mitigate MP pollution in stormwater runoff.
Collapse
Affiliation(s)
- Meghana Parameswarappa Jayalakshmamma
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, NJ 07102, USA
| | - Viravid Na Nagara
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, NJ 07102, USA
| | - Ashish Borgaonkar
- School of Applied Engineering and Technology, New Jersey Institute of Technology, 323 MLK Blvd., Newark, NJ 07102, USA
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
| | - Omowunmi Sadik
- Chemistry and Environmental Science, New Jersey Institute of Technology, 323 MLK Blvd., Newark, NJ 07102, USA
| | - Michel Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, NJ 07102, USA.
| |
Collapse
|
36
|
Gehrke I, Schläfle S, Bertling R, Öz M, Gregory K. Review: Mitigation measures to reduce tire and road wear particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166537. [PMID: 37640075 DOI: 10.1016/j.scitotenv.2023.166537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/03/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
The generation of tire wear is an inevitable outcome of the friction between the road and the tire which is necessary for the safe operation of vehicles on roadways. Tire wear particles form agglomerates with road surface material. These agglomerates are called tire and road wear particles (TRWP). Due to their persistence in the environmental compartments and their potentially harmful effects, research on preventative and end-of-pipe mitigation strategies for TRWP is essential. The major goal of this study is to summarize and assess the state of the art in science and technology of mitigation measures for TRWP as the basis for further research activities. Approximately 500 literature sources were found and analyzed in terms of the efficiency, maturity, implementation, and impact of the mitigation measures. Generally, technological and management mitigation measures to reduce the generation of TRWP are beneficial since they prevent TRWP from entering the environment. Once released into environmental compartments, their mobility and dispersion would increase, making removing the particles more challenging. Technological and management mitigation measures after the release of TRWP into the environment are mainly well established in industrialized countries. Street cleaning and wastewater technologies show good removal efficiencies for TRWP and microplastics. In any case, no individual measure can solely solve the TRWP issue, but a set of combined measures could potentially be more effective. The absence of fully-developed and standardized methods for tire abrasion testing and measuring TRWP in the environment makes it impossible to reliably compare the tire abrasion behavior of different tire types, determine thresholds, and control mitigation actions. Field tests and pilot studies are highly needed to demonstrate the effectiveness of the abatement measures under real conditions.
Collapse
Affiliation(s)
- Ilka Gehrke
- Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Straße 3, 46047 Oberhausen, Germany.
| | - Stefan Schläfle
- Karlsruhe Institute of Technology (KIT), Institute of Vehicle System Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany.
| | - Ralf Bertling
- Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Straße 3, 46047 Oberhausen, Germany.
| | - Melisa Öz
- Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Straße 3, 46047 Oberhausen, Germany.
| | - Kelvin Gregory
- Carnegie Mellon University, Civil & Environmental Engineering, 5000 Forbes Avenue, Porter Hall 119, Pittsburgh, PA 15213, United States.
| |
Collapse
|
37
|
Díaz-Jaramillo M, Gonzalez M, Tomba JP, Silva LI, Islas MS. Occurrence and dynamics of microplastics and emerging concern microparticles in coastal sediments: Impact of stormwater upgrade and port-associated facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165724. [PMID: 37487895 DOI: 10.1016/j.scitotenv.2023.165724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Urban runoff is a significant source of microplastic pollution in aquatic environments, especially in coastal areas. Despite urban stormwater runoff being considered a major pathway of anthropogenic particles there's no studies about the impact of stormwater upgrades on microparticle transport. Moreover, due to the influence of anthropogenic activities, including maritime traffic and maintenance, on coastal environments, it is crucial to identify plastic debris from both inland and in-shore sources. This study evaluates characteristics, abundance, and distribution of microplastics in subtidal sediments from the southwestern Atlantic region, influenced by a recently upgraded stormwater outfall and port facilities. Herein, we have analyzed temporal trends, including seasonal dynamics and their relation with the pre- and post-upgrade of the stormwater outfall. Three main types of anthropogenic microparticles were observed: common plastic (MPs), paints (Pps), and tire wear particles (TWPs). Microparticle groups varied in morphology, color, and size distribution, including uncommon microparticle debris. Analysis by FTIR and Raman spectroscopies allows the identification of polyethylene, polypropylene, polyethylene terephthalate, polyvinyl chloride, polystyrene, polyamide, and polyacrylonitrile polymers for MPs mainly. Pigments such as Naphthol AS, phthalocyanine, and quinacridone have been identified in Pps. SEM-EDS and FTIR analysis of collected TWPs revealed similar trace metals constituents and infrared signals to those observed in tire road samples. Spatial and temporal abundances of microparticle groups were significantly different (p < 0.05), mainly related to the distance from the stormwater outfall and seasons. TWPs showed the most significant seasonal increment rate among pre and post-upgrade periods. Furthermore, the upgrades made to the stormwater system have been observed to intensify the transport and increase the presence of specific anthropogenic microparticles in subtidal sediments. Based on these findings, the occurrence of TWPs emerges as a reliable urban runoff indicator to differentiate ex and in-situ sources in multipolluted coastal environments.
Collapse
Affiliation(s)
- M Díaz-Jaramillo
- IIMyC, Estresores Múltiples en el Ambiente (EMA), FCEyN, UNMDP, CONICET, Funes 3350 (B7602AYL), Mar del Plata, Buenos Aires, Argentina; Red de Investigación de los Estresores Marino Costeros de Latinoamérica y el Caribe-REMARCO, Mar del Plata 7600, Argentina.
| | - M Gonzalez
- IIMyC, Estresores Múltiples en el Ambiente (EMA), FCEyN, UNMDP, CONICET, Funes 3350 (B7602AYL), Mar del Plata, Buenos Aires, Argentina; Red de Investigación de los Estresores Marino Costeros de Latinoamérica y el Caribe-REMARCO, Mar del Plata 7600, Argentina
| | - J P Tomba
- Ciencia e Ingeniería de Polímeros, INTEMA (CONICET-UNMDP), Avda. Colón 10850, (B7606BWV), Mar del Plata, Buenos Aires, Argentina
| | - L I Silva
- Ciencia e Ingeniería de Polímeros, INTEMA (CONICET-UNMDP), Avda. Colón 10850, (B7606BWV), Mar del Plata, Buenos Aires, Argentina
| | - M S Islas
- IIMyC, Estresores Múltiples en el Ambiente (EMA), FCEyN, UNMDP, CONICET, Funes 3350 (B7602AYL), Mar del Plata, Buenos Aires, Argentina; Red de Investigación de los Estresores Marino Costeros de Latinoamérica y el Caribe-REMARCO, Mar del Plata 7600, Argentina; Departamento de Química y Bioquímica, FCEyN, UNMDP, Funes 3350 (B7602AYL), Mar del Plata 7600, Buenos Aires, Argentina
| |
Collapse
|
38
|
Bayo J, López-Castellanos J, Olmos S, Rojo D. Characterization and removal efficiencies of microplastics discharged from sewage treatment plants in Southeast Spain. WATER RESEARCH 2023; 244:120479. [PMID: 37634462 DOI: 10.1016/j.watres.2023.120479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
Microplastics (MPs) are ubiquitous pollutants that can effectively harm different ecosystems. The information on the relative contribution of wastewater treatment plants (WWTPs) to the surrounding environment is important, in order to understand ecological health risks and implement measures to reduce their presence. This focus article presents a quantitative assessment on the relative concentration and types of MPs delivered from four WWTPs located at the Southeast of Spain. Samples from WWTPs were collected throughout a four-year period, comprising more than 1,200 L of analyzed wastewater and 3,215 microparticles isolated. Density extraction with 1.08 g/mL NaCl salt solution was systematically used as the main separation method, in a simple and reliable manner, and repeat extraction cycles did not play any significant impact on the study outcomes. The four WWTPs had removal efficiencies between 64.3% and 89.2% after primary, secondary, and tertiary treatment phases, without diurnal or daily variations. Advanced treatment methods displayed a lower removal rate for fibers than for particulate MPs. The abundance of MPs was always higher and with a lower mean size in wastewater samples collected in Autumn than for the rest of seasons. MPs dumped from WWTPs in large quantities into the environment are meant to be regarded as an important point source for aquatic and terrestrial environments.
Collapse
Affiliation(s)
- Javier Bayo
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203 Cartagena, Spain.
| | - Joaquín López-Castellanos
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203 Cartagena, Spain
| | - Sonia Olmos
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203 Cartagena, Spain
| | - Dolores Rojo
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203 Cartagena, Spain
| |
Collapse
|
39
|
Bournaka E, Almeda R, Koski M, Page TS, Mejlholm REA, Nielsen TG. Lethal effect of leachates from tyre wear particles on marine copepods. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106163. [PMID: 37678098 DOI: 10.1016/j.marenvres.2023.106163] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/24/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
With thousands of tons of Tyre Wear Particles (TWP) entering the aquatic environment every year, TWP are considered a major contributor to microplastic pollution. TWP leach organic compounds and metals in water, potentially affecting the marine food web. However, little is known about the toxicity of TWP leachates on marine copepods, a major food web constituent, and a key group to determine the environmental risk of pollution in marine ecosystems. In this study, we determined the lethal effect of TWP leachates on marine copepods after 24, 48, and 72-h of exposure to 0.05-100% leachate solutions prepared using a concentration of 5 g TWP L-1. The calanoids Acartia tonsa, Temora longicornis and Centropages hamatus, the cyclopoid Oithona davisae and the harpacticoid Amonardia normanni were used as experimental species. TWP leachates were toxic to all the studied species, with toxicity increasing as leachate solution and exposure time increased. Median lethal concentration (LC50, 72-h) ranged from 0.22 to 3.43 g L-1 and calanoid copepods were more sensitive to TWP leachates than the cyclopoid O. davisae and the harpacticoid A. normanni. Toxicity of TWP leachates was not related to the copepod body size, which suggests that other traits such as foraging behaviour or adaptation to contaminants could explain the higher tolerance of cyclopoid and harpacticoid to TWP leachates compared to calanoid copepods. Although field data on the concentration of TWP and their chemical additives are still limited, our results suggest that TWP leachates can negatively impact planktonic food webs in coastal areas after road runoff events.
Collapse
Affiliation(s)
- Evanthia Bournaka
- National Institute of Aquatic Resources-DTU Aqua, Kemitorvet, Building 202, DK-2800, Kgs. Lyngby, Denmark.
| | - Rodrigo Almeda
- EOMAR, IU-ECOAQUA, University of Las Palmas de Gran Canaria, Spain
| | - Marja Koski
- National Institute of Aquatic Resources-DTU Aqua, Kemitorvet, Building 202, DK-2800, Kgs. Lyngby, Denmark
| | - Thomas Suurlan Page
- National Institute of Aquatic Resources-DTU Aqua, Kemitorvet, Building 202, DK-2800, Kgs. Lyngby, Denmark
| | | | - Torkel Gissel Nielsen
- National Institute of Aquatic Resources-DTU Aqua, Kemitorvet, Building 202, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
40
|
Li X, Wu H, Gong J, Li Q, Li Z, Zhang J. Improvement of biodegradation of PET microplastics with whole-cell biocatalyst by interface activation reinforcement. ENVIRONMENTAL TECHNOLOGY 2023; 44:3121-3130. [PMID: 35293270 DOI: 10.1080/09593330.2022.2052359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Polyethylene terephthalate (PET) is an important basic polymer, which was used widely in variety of fields. Due to its high crystallinity, compact structure and strong surface hydrophobicity, PET has prominent resistance to biodegradation. In recent years, microplastics, especially polyethylene terephthalate (PET) microplastics, was considered as serious threaten to ecosystems. In this study, alkali-resistant bacteria were used as whole-cell catalysts to try to improve the biodegradation of PET microplastics by increasing the bio-interfacial activity of the polymer substrate. Surfactants were applicated to enhance interfacial activation of enzyme and PET interactions. And an integrated strategy was constructed based on alkali resistant bacteria to catalysis the hydrolysis of PET. The results showed that Tween 20 had the most obvious promoting effect among the four interfacial biocatalysts on biological-chemical combined hydrolysis of PET microplastics with whole-cell biocatalysts in alkaline environment. Obvious etching and fracture were observed on the PET fibre surface after biodegradation in presence of surfactant. The weight loss rate of PET substrate can reach 11.04% after 5 days of biodegradation. Thus, this research provides a promising method for efficient degradation of PET microplastics.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory for Advanced Textile Composites of the Education Ministry, School of Textile Science and Engineering, Tiangong University, Tianjin, People's Republic of China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, People's Republic of China
| | - Haodong Wu
- Key Laboratory for Advanced Textile Composites of the Education Ministry, School of Textile Science and Engineering, Tiangong University, Tianjin, People's Republic of China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, People's Republic of China
| | - Jixian Gong
- Key Laboratory for Advanced Textile Composites of the Education Ministry, School of Textile Science and Engineering, Tiangong University, Tianjin, People's Republic of China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, People's Republic of China
| | - Qiujin Li
- Key Laboratory for Advanced Textile Composites of the Education Ministry, School of Textile Science and Engineering, Tiangong University, Tianjin, People's Republic of China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, People's Republic of China
| | - Zheng Li
- Key Laboratory for Advanced Textile Composites of the Education Ministry, School of Textile Science and Engineering, Tiangong University, Tianjin, People's Republic of China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, People's Republic of China
| | - Jianfei Zhang
- Key Laboratory for Advanced Textile Composites of the Education Ministry, School of Textile Science and Engineering, Tiangong University, Tianjin, People's Republic of China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, People's Republic of China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, People's Republic of China
| |
Collapse
|
41
|
Beryani A, Flanagan K, Viklander M, Blecken GT. Occurrence and concentrations of organic micropollutants (OMPs) in highway stormwater: a comparative field study in Sweden. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:77299-77317. [PMID: 37253915 PMCID: PMC10299930 DOI: 10.1007/s11356-023-27623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/10/2023] [Indexed: 06/01/2023]
Abstract
This study details the occurrence and concentrations of organic micropollutants (OMPs) in stormwater collected from a highway bridge catchment in Sweden. The prioritized OMPs were bisphenol-A (BPA), eight alkylphenols, sixteen polycyclic aromatic hydrocarbons (PAHs), and four fractions of petroleum hydrocarbons (PHCs), along with other global parameters, namely, total organic carbon (TOC), total suspended solids (TSS), turbidity, and conductivity (EC). A Monte Carlo (MC) simulation was applied to estimate the event mean concentrations (EMC) of OMPs based on intra-event subsamples during eight rain events, and analyze the associated uncertainties. Assessing the occurrence of all OMPs in the catchment and comparing the EMC values with corresponding environmental quality standards (EQSs) revealed that BPA, octylphenol (OP), nonylphenol (NP), five carcinogenic and four non-carcinogenic PAHs, and C16-C40 fractions of PHCs can be problematic for freshwater. On the other hand, alkylphenol ethoxylates (OPnEO and NPnEO), six low molecule weight PAHs, and lighter fractions of PHCs (C10-C16) do not occur at levels that are expected to pose an environmental risk. Our data analysis revealed that turbidity has a strong correlation with PAHs, PHCs, and TSS; and TOC and EC highly associated with BPA concentrations. Furthermore, the EMC error analysis showed that high uncertainty in OMP data can influence the final interpretation of EMC values. As such, some of the challenges that were experienced in the presented research yielded suggestions for future monitoring programs to obtain more reliable data acquisition and analysis.
Collapse
Affiliation(s)
- Ali Beryani
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå, Sweden.
| | - Kelsey Flanagan
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå, Sweden
| | - Maria Viklander
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå, Sweden
| | - Godecke-Tobias Blecken
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå, Sweden
| |
Collapse
|
42
|
Liu Y, Shen C, Li Z. Bibliometric analysis of global research on bioretention from 2007 to 2021. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27616-8. [PMID: 37204577 DOI: 10.1007/s11356-023-27616-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Bioretention is a typical low impact development (LID) practice that helps reduce peak urban stormwater runoff and runoff pollutant concentrations (e.g., heavy metals, suspended solids, organic pollutants), which has become an important part of urban stormwater management over the past 15 years. To understand the research hotspots and frontiers in the field of bioretention facility research and provide a reference for research into bioretention facilities, we conduct a statistical analysis of global bioretention literature published during 2007-2021 using the Web of Science core database and the data visualization and analysis software VOSviewer and HistCite. The number of published articles related to bioretention facilities shows a rising trend over the study period, with research from China contributing greatly to global research on bioretention facilities. However, the influence of articles needs to be increased. Recent studies mainly focus on the hydrologic effect and water purification effect of bioretention facilities and on the removal of nitrogen and phosphorus nutrients from runoff rainwater. Further studies should focus on the interaction of fillers, microorganisms, and plants in bioretention facilities and its impact on the migration, transformation, and concentrations of nitrogen and phosphorus; the purification effect and mechanism of specific emerging contaminants in runoff; the selection and configuration optimization of filler materials and plant species; and the optimization of the design parameters of the model for bioretention systems.
Collapse
Affiliation(s)
- Yang Liu
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Shen
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhonghong Li
- School Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
43
|
Mahjoub A, Hashemi SH, Petroody SSA. The role of baseflow and stormwater in transport of tire and bitumen particles in Tehran city: A dense urban environment. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 256:104180. [PMID: 37040678 DOI: 10.1016/j.jconhyd.2023.104180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 03/12/2023] [Accepted: 04/03/2023] [Indexed: 06/09/2023]
Abstract
Urban stormwater runoff is the main terrestrial source of tire and bitumen particles as emerging pollutants, which have adverse effects on receiving aquatic and terrestrial environments. In this study, the occurrence and characteristics of tire and bitumen particles in four rainfall events and three baseflow had been measured at the end of a dense urban catchment in Tehran metropolis. Particles were classified to 37-300, 300-500, and 500-5000 μm with stainless steel sieves, and hydrogen peroxide 30% was used for digestion of organic matter, following density separation with ZnCl2 (1.7-1.75 g/mL) to separate tire and bitumen particles from minerals. The type of tire and bitumen particles was determined by Micro-Raman and FTIR ATR. The number of tire and bitumen particles in rainfall events was 3.3-60.5 and 3.5-73 particles/L, respectively, and in the base flow were 0.5-3 and 0.8-6.5 particles/L, respectively. The most abundant size of tire and bitumen particles was 37-300 μm. The highest abundance of tire and bitumen particles was observed during a rainfall event in peak discharge. The results indicate the important role of urban stormwater runoff, where there are high vehicle traffic and high road density, in the release into the environment of bitumen and rubber.
Collapse
Affiliation(s)
- Afshin Mahjoub
- Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Seyed Hossein Hashemi
- Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran.
| | | |
Collapse
|
44
|
Lange K, Furén R, Österlund H, Winston R, Tirpak RA, Nordqvist K, Smith J, Dorsey J, Viklander M, Blecken GT. Abundance, distribution, and composition of microplastics in the filter media of nine aged stormwater bioretention systems. CHEMOSPHERE 2023; 320:138103. [PMID: 36775039 DOI: 10.1016/j.chemosphere.2023.138103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Bioretention systems are designed for quality treatment of stormwater. Particulate contaminants are commonly treated efficiently and accumulate mainly in the surface layer of the bioretention filter material. However, concerns exist that microplastic particles may not show equal accumulation behavior as other sediment particles. So far only two field and two laboratory studies are available on the fate of microplastics in few relatively newly built bioretention systems. Therefore, this study investigated the abundance and distribution of microplastics in nine 7-12 years old stormwater bioretention systems. It was found that microplastics generally accumulate on the surface of bioretention systems. Microplastic median particle concentrations decreased significantly from the surface layer (0-5 cm) of the filter material to the 10-15 cm depth layer from 448 to 136 particles/100 g, respectively. The distance to the inlet did not significantly affect the surface accumulation of microplastic particles, suggesting modest spatial variability in microplastics accumulation in older bioretention systems. Further, this study investigated the polymer composition in bioretention systems. It was shown that PP, EVA, PS and EPDM rubber are the most abundant polymer types in bioretention systems. Also, it was found that large percentages of microplastic particles are black particles (median percentage of black particles: 39%) which were found in 28 of the 33 investigated samples. This underlines the importance of including black particles in microplastic studies on stormwater, which has been overlooked in most previous studies.
Collapse
Affiliation(s)
- Katharina Lange
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden.
| | - Robert Furén
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden; NCC Sverige AB, Department of Research and Innovation, Herrjärva Torg 4, 170 80, Solna, Sweden
| | - Helene Österlund
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Ryan Winston
- Department of Food, Agricultural, and Biological Engineering, Ohio State University, Agricultural Engineering Building AE, Building 298, 590 Woody Hayes Dr, Columbus, OH, 43210, USA; Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH, 43210, USA; Core Faculty, Sustainability Institute, Ohio State University, 3018 Smith Lab 174 W, 18th Avenue, Columbus, OH, 43210, USA
| | - R Andrew Tirpak
- Department of Food, Agricultural, and Biological Engineering, Ohio State University, Agricultural Engineering Building AE, Building 298, 590 Woody Hayes Dr, Columbus, OH, 43210, USA
| | - Kerstin Nordqvist
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Joseph Smith
- Department of Food, Agricultural, and Biological Engineering, Ohio State University, Agricultural Engineering Building AE, Building 298, 590 Woody Hayes Dr, Columbus, OH, 43210, USA
| | - Jay Dorsey
- Department of Food, Agricultural, and Biological Engineering, Ohio State University, Agricultural Engineering Building AE, Building 298, 590 Woody Hayes Dr, Columbus, OH, 43210, USA
| | - Maria Viklander
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Godecke-Tobias Blecken
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| |
Collapse
|
45
|
Maurer L, Carmona E, Machate O, Schulze T, Krauss M, Brack W. Contamination Pattern and Risk Assessment of Polar Compounds in Snow Melt: An Integrative Proxy of Road Runoffs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4143-4152. [PMID: 36862848 PMCID: PMC10018729 DOI: 10.1021/acs.est.2c05784] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
To assess the contamination and potential risk of snow melt with polar compounds, road and background snow was sampled during a melting event at 23 sites at the city of Leipzig and screened for 489 chemicals using liquid chromatography high-resolution mass spectrometry with target screening. Additionally, six 24 h composite samples were taken from the influent and effluent of the Leipzig wastewater treatment plant (WWTP) during the snow melt event. 207 compounds were at least detected once (concentrations between 0.80 ng/L and 75 μg/L). Consistent patterns of traffic-related compounds dominated the chemical profile (58 compounds in concentrations from 1.3 ng/L to 75 μg/L) and among them were 2-benzothiazole sulfonic acid and 1-cyclohexyl-3-phenylurea from tire wear and denatonium used as a bittern in vehicle fluids. Besides, the analysis unveiled the presence of the rubber additive 6-PPD and its transformation product N-(1.3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) at concentrations known to cause acute toxicity in sensitive fish species. The analysis also detected 149 other compounds such as food additives, pharmaceuticals, and pesticides. Several biocides were identified as major risk contributors, with a more site-specific occurrence, to acute toxic risks to algae (five samples) and invertebrates (six samples). Ametryn, flumioxazin, and 1,2-cyclohexane dicarboxylic acid diisononyl ester are the main compounds contributing to toxic risk for algae, while etofenprox and bendiocarb are found as the main contributors for crustacean risk. Correlations between concentrations in the WWTP influent and flow rate allowed us to discriminate compounds with snow melt and urban runoff as major sources from other compounds with other dominant sources. Removal rates in the WWTP showed that some traffic-related compounds were largely eliminated (removal rate higher than 80%) during wastewater treatment and among them was 6-PPDQ, while others persisted in the WWTP.
Collapse
Affiliation(s)
- Loïc Maurer
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Eric Carmona
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Oliver Machate
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Tobias Schulze
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Martin Krauss
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Werner Brack
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
- Institute
of Ecology, Evolution and Diversity, Goethe
University, Max-von-Laue-Str.
13, 60438 Frankfurt
am Main, Germany
| |
Collapse
|
46
|
Kontchou JA, Baetz N, Grabner D, Nachev M, Tuerk J, Sures B. Pollutant load and ecotoxicological effects of sediment from stormwater retention basins to receiving surface water on Lumbriculus variegatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160185. [PMID: 36395831 DOI: 10.1016/j.scitotenv.2022.160185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The overflow of stormwater retention basins during intense and prolonged precipitation events may result in the direct input of particulate pollutants and remobilization of already sedimented particle-bound pollutants to receiving freshwater bodies. Particle-bound pollutants may cause adverse effects on aquatic biota, particularly sediment dwellers. Therefore, we investigated the sediment pollution load of a stream connected to the outfalls of two stormwater basins to determine the impact of the basins' discharges on the metal and organic pollutant content of the sediment. Also, the possible adverse effects of the pollutant load on benthic dwellers were evaluated in sediment toxicity tests with Lumbriculus variegatus and the effects on its growth, reproduction and the biomarkers catalase, acetylcholinesterase and metallothionein were analyzed. The results showed that the retention basins contained the highest load of pollutants. The pollutant load in the stream did not show a clear pollution pattern from the inlets. However, metal enrichment ratios revealed contamination with Cu, Pb and Zn with Pb and Zn above threshold effect concentrations in all sites. Ecotoxicity results showed that the retention basin samples were the most toxic compared to sediment from the stream. Exposure experiments with the stream sediment did not show considerable effects on reproduction, catalase activity and metallothionein concentration. However, modest inhibitions of growth and activity of acetylcholinesterase were detected. Based on the observed results, it cannot be concluded that overflows of the retention basin are responsible for the pollutant contents downstream of their inlet. Other sources that were not considered in this study, such as diffuse input, historic pollution and point sources further upstream as well as along the stream, are likely the major contributors of pollutant load in the sediment of the studied transects of the stream. Additionally, the observed results in the stormwater basin sediment further highlight their importance in retaining particle-bound pollutants and preventing ecotoxicological effects from receiving surface water bodies.
Collapse
Affiliation(s)
- Julios Armand Kontchou
- Department of Aquatic Ecology, University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre of Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany.
| | - Nicolai Baetz
- Centre of Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany; Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany
| | - Daniel Grabner
- Department of Aquatic Ecology, University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre of Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Milen Nachev
- Department of Aquatic Ecology, University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre of Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Jochen Tuerk
- Centre of Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany; Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany
| | - Bernd Sures
- Department of Aquatic Ecology, University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre of Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| |
Collapse
|
47
|
Österlund H, Blecken G, Lange K, Marsalek J, Gopinath K, Viklander M. Microplastics in urban catchments: Review of sources, pathways, and entry into stormwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159781. [PMID: 36309285 DOI: 10.1016/j.scitotenv.2022.159781] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Urban areas play a key role in the production of microplastics (MPs) and their entry into water bodies. This article reviews the literature on the sources, transport, and control of MPs in urban environments with the aim of clarifying the mechanisms underlying these processes. Major MP sources include atmospheric deposition, micro-litter, and tire and road wear particles (TRWPs). MPs deposited from the atmosphere are mostly fibers and may be particularly important in catchments without traffic. Littering and attrition of textiles and plastic products is another important MP source. However, the quantities of MPs originating from this source may be hard to estimate. TRWPs are a significant source of MPs in urban areas and are arguably the best quantified source. The mobilization of MPs in urban catchments is poorly understood but it appears that dry unconsolidated sediments and MP deposits are most readily mobilized. Sequestration of MPs occurs in green areas and is poorly understood. Consequently, some authors consider green/pervious parts of urban catchments to be MP sinks. Field studies have shown that appreciable MP removal occurs in stormwater quality control facilities. Street cleaning and snow removal also remove MPs (particularly TRWPs), but the efficacy of these measures is unknown. Among stormwater management facilities, biofiltration/retention units seem to remove MPs more effectively than facilities relying on stormwater settling. However, knowledge of MP removal in stormwater facilities remains incomplete. Finally, although 13 research papers reported MP concentrations in stormwater, the total number of field samples examined in these studies was only 189. Moreover, the results of these studies are not necessarily comparable because they are based on relatively small numbers of samples and differ widely in terms of their objectives, sites, analytical methods, size fractions, examined polymers, and even terminology. This area of research can thus be considered "data-poor" and offers great opportunities for further research in many areas.
Collapse
Affiliation(s)
- Heléne Österlund
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Godecke Blecken
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden.
| | - Katharina Lange
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Jiri Marsalek
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Kalpana Gopinath
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Maria Viklander
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| |
Collapse
|
48
|
Thomas J, Cutright T, Pugh C, Soucek MD. Quantitative assessment of additive leachates in abiotic weathered tire cryogrinds and its application to tire wear particles in roadside soil samples. CHEMOSPHERE 2023; 311:137132. [PMID: 36343731 DOI: 10.1016/j.chemosphere.2022.137132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Tire and road wear particles (TRWP) are becoming an important research question with potential risks on ecological system. A comprehensive understanding of their detection and quantification in soils are challenged by the inherent technological inconsistencies, lack of well-set standardized methods, and generalized protocols. Reference tire cryogrinds were subjected to abiotic weathering. Next, the total environmental availability from parent elastomers and the release of additives from tire tread compounds were evaluated using mass concentration factors obtained from abiotic weathered tire cryogrinds. Headspace Gas chromatography-mass spectroscopy (HS-GC-MS) was employed as a nontargeted, suspect screening analysis technique to identify the tire related intermediates. Benzothiazole, 1,2-dihydro-2,2,4-trimethylquinoline (TMQ), aniline, phenol and benzoic acid were detected as tire tetrahydrofuran leachates. Total environmental availability of TMQ and benzothiazole were in the range of 1.7 × 10-3 and 0.11, respectively. Benzene and benzoic acid derivatives were identified as marker compounds for environmental samples. A TRWP content evaluation was made possible by quantifying marker concentrations and reference tire cryogrind formulation. TRWP content in the size range of 1-5 mm was between 800 and 1300 μg/g and 1200-3100 μg/g TRWP in Ohio and Kansas soil. For TRWP less than 1 mm, 0.15-2.1 wt% content was observed in Kansas and Ohio samples and were seemingly dependent on the locations and the traffic. This simple, widely applicable quantification method for TRWP analysis provides a database of tire degradation and TRWP intermediates. The TRWP content research is critical for further TRWP research development in terrestrial environment.
Collapse
Affiliation(s)
- Jomin Thomas
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Teresa Cutright
- Department of Civil Engineering, College of Engineering and Polymer Science, University of Akron, Akron, OH, 44325, USA.
| | - Coleen Pugh
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS, 67260, USA
| | - Mark D Soucek
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
49
|
Zhang HY, Huang Z, Liu YH, Hu LX, He LY, Liu YS, Zhao JL, Ying GG. Occurrence and risks of 23 tire additives and their transformation products in an urban water system. ENVIRONMENT INTERNATIONAL 2023; 171:107715. [PMID: 36577297 DOI: 10.1016/j.envint.2022.107715] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Tire wear particles (TWPs) enter road surface with the friction between tires and road surfaces. Under the volatilization, leaching, and transformation action on TWPs by sunlight and rain, tire additives are released into urban water systems, such as surface rainfall runoff, wastewater treatment plants (WWTPs), receiving surface waters, and drinking water treatment plant (DWTP). In this study, we investigated the occurrence of 23 tire additives and their transformation products in the urban water system of the Pearl River Delta region, South China. Nineteen target compounds were detected in the surface runoff, with 1,3-Diphenylguanidine (DPG) showing highest maximum concentration of 58780 ng/L. Benzothiazole and its transformation products are detected at the frequency of 100 % with the total concentrations of 480-42160 ng/L. The antioxidant derivative N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) was also detected up to 1562 ng/L, which was considerably higher than that of the parent compound 6PPD (the maximum concentration of 7.52 ng/L). Eleven and 8 compounds were detected in WWTPs influents and effluents, respectively, with removal rates of - 62-100 %. Seventeen compounds were detected in the receiving Zhujiang and Dongjiang rivers, while 9 compounds were detected in drinking water sources and DWTP samples. Road runoff, with total concentrations of target compounds up to 79200 ng/L, is suggested as the main non-point source for receiving rivers, while WWTPs effluents are the point sources due to incomplete removal of target compounds after accepting the initial runoff. 6PPD-Q and other 10 compounds displayed median to high ecological risks in surface waters, and the human daily intake of tire additives was estimated to be 2.63 × 10-8-3.16 × 10-5 mg/(kg d) via drinking water. This is the first report of the 6PPD-Q and 1,3-Diphenylurea levels in surface waters in China.
Collapse
Affiliation(s)
- Hai-Yan Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zheng Huang
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yue-Hong Liu
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
50
|
Xu Y, Jia W, Hu A, Wang J, Huang Y, Xu J, He Y, Lu Z. Co-occurrence of light microplastics and phthalate esters in soils of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158384. [PMID: 36055488 DOI: 10.1016/j.scitotenv.2022.158384] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The terrestrial environment is both a critical source and sink for microplastics (MPs). However, further efforts into the risk assessment, management, and mitigation activities of MPs in the terrestrial environment were limited by the scant data on their occurrence. In this study, we investigated the co-occurrence and correlations of light MPs and phthalate esters (PAEs) in the soils of China's hotspots and non-hotspot regions. Light MPs and PAEs were detected in all agricultural and urban soils (n = 125). In soils from hotspots (Shihezi, Xinjiang) where intense plastic mulching was used, the concentrations of MPs and phthalate diesters (di-PAEs) were 650-36,450 pcs kg-1 and 55.60-1236.64 μg kg-1, respectively. In hotspots but not in non-hotspot regions of China, a positive correlation between MPs and PAEs was established, suggesting PAEs may serve as an indicator of MP contamination in hotspots. High quantities of MPs (1143-5911 pcs kg-1) and PAEs (67.3-1236.64 μg kg-1) were also detected in urban park soils, demonstrating a need for future research on MP in urban soils. In addition, the ubiquitous co-occurrence of MPs and PAEs in all 125 investigated soils revealed that potential joint toxicity, co-transformation, and co-transportation of MPs and PAEs should not be disregarded.
Collapse
Affiliation(s)
- Yiwen Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weiqian Jia
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ailun Hu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Huang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Zhijiang Lu
- Department of Environmental Science and Geology, Wayne State University, Detroit, MI 48201, United States.
| |
Collapse
|