1
|
Liu Y, Qi H, Zhang J, Wang L, Wang Z. Lewis acid sites-regulated microscopic interface on graphite felt surface for enhanced heterogeneous electro-Fenton process: Formation of confinement effect and generation of singlet oxygen. J Colloid Interface Sci 2025; 694:137720. [PMID: 40306124 DOI: 10.1016/j.jcis.2025.137720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/21/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
The short lifetime and limited diffusion capability of hydroxyl radicals (•OH) restrict the further development of heterogeneous electro-Fenton (Hetero-EF) technology. In contrast, singlet oxygen (1O2) demonstrates many advantages over •OH. In the present work, a porous confined graphite felt (PCGF) was prepared through in-situ etching of nickel oxide (NiOx) and used as the cathode for Hetero-EF, aiming at constructing a 1O2-dominated Hetero-EF system to enhance its degradation performance for various antibiotic pollutants in wastewater. The in-situ etching of NiOx introduced abundant Lewis acid sites within the porous architecture of PCGF, enabling the modulation of electrode's interfacial properties and selective adsorption of Lewis basic substances, thereby generating a characteristic "confinement effect". This enhanced interfacial interaction achieved 50.23 % adsorptive removal of oxytetracycline within 30 min without external power supply, facilitating the enrichment of pollutants at the cathode interface. Meanwhile, the "confinement effect" significantly enhanced the utilization efficiency of reactive oxygen species and the selectivity of 1O2. The PCGF electrode demonstrated excellent degradation performance across a wide range of pH and exhibited strong anti-interference capability. The results from radical quenching experiments and density functional theory calculations revealed that the generation of 1O2 proceeded through multiple routes involving hydrogen peroxide, •OH, and superoxide anions. The present study presents a novel strategy for advancing the development of 1O2-dominated Hetero-EF systems for treating antibiotic-containing wastewaters.
Collapse
Affiliation(s)
- Yihao Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Haiqiang Qi
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Jian Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Liguo Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Zhongpeng Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
2
|
Xie Y, Chen W, Ye Z, Yan J, Yu X, Feng M. Mechanistic insight into the environmental fate of highly concerned transformation products of aqueous micropollutants during the solar/chlorine treatment. WATER RESEARCH 2025; 278:123413. [PMID: 40043573 DOI: 10.1016/j.watres.2025.123413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/14/2025] [Accepted: 02/27/2025] [Indexed: 04/14/2025]
Abstract
Transformation products (TPs) arising from the degradation of micropollutants have been frequently detected in various water bodies and may exhibit higher toxicity than their parent compounds. However, the current understanding of their chemical reactivity remains limited, and the mechanisms underlying the solar-driven oxidation processes (e.g., solar/chlorine system) of TPs have not been well investigated. This study explored the elimination of six typical TPs derived from carbamazepine (CBZ) and atrazine (ATZ) by solar/oxidant systems. It was observed that these TPs could be effectively degraded in the solar/oxidant systems, except for the solar/hydrogen peroxide system. The reactivity evaluation and quantitative contribution analysis revealed that hydroxyl radicals (•OH) and ozone played pivotal roles in the removal of all six typical TPs by the solar/chlorine system, whereas the reactive chlorine species contributed minimally. The transformation mechanisms of carbamazepine 10, 11-epoxide (CBZ-EP) involved hydroxyl addition and electron transfer, while the TPs of ATZ underwent dealkylation only. The computational study indicated that •OH primarily reacted with CBZ-EP via radical addition reaction. Furthermore, the TPs of CBZ-EP and hydroxyatrazine showed no obvious change in environmental persistence but enhanced mobility and toxicity compared to the parent compounds, implying treatment-driven secondary risks. Overall, this investigation provided an in-depth mechanistic exploration of the transformation behaviors, fate, and secondary environmental risks of highly concerned TPs under the solar/oxidant treatments.
Collapse
Affiliation(s)
- Yuwei Xie
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Wenzheng Chen
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Zhantu Ye
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Junmei Yan
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
3
|
Pirogov A, Shirokova E, Barsegyan S, Gandlevskiy N, Akimova V, Barge A, Nosyrev A. Highly-sensitive quantification of carbamazepine and identification of its degradation and metabolism products in human liver by high performance liquid chromatography - High resolution mass spectrometry. Toxicol Rep 2025; 14:101923. [PMID: 39926414 PMCID: PMC11803175 DOI: 10.1016/j.toxrep.2025.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/11/2025] Open
Abstract
A method for the qualitative and quantitative determination of carbamazepine in human post mortem liver tissues using high-performance liquid chromatography coupled with high-resolution mass spectrometry has been developed. Validation has been carried out and the main analytical characteristics of the developed method have been determined. The limit of detection (LOD) is 1 ng/g, and the lower limit of quantification (LLOQ) is 5 ng/g. The range of working concentrations for the calibration curve is 5-2000 ng/g. When assessing analyte carryover, the analyte signal of the sample does not exceed 20 % of the signal at the LLOQ level. Degradation products of carbamazepine in model solutions were studied under the presence of hydrochloric acid, sodium hydroxide, and hydrogen peroxide oxidation. Twenty-two degradation products were identified. It was found that the most intensive degradation process of carbamazepine, resulting in various degradation products, is observed during its oxidation with an acidified solution of 3 % hydrogen peroxide at pH= 1-2. The stability of carbamazepine in liver tissues was studied during storage under ambient conditions over various periods. The maximum concentration decline is observed during the first week of storage (on average by 20 %), and then the concentration approximately halves over 8 weeks. Based on the analysis of forensic samples from human liver, 2 out of the 22 carbamazepine degradation products described in this study were detected.
Collapse
Affiliation(s)
- Andrei Pirogov
- Department of chemistry, M.V. Lomonosov Moscow State University, Chair of Analytical Chemistry, Leninskiye gory str. 1/3, Moscow 119991, Russia
| | - Ekaterina Shirokova
- Department of chemistry, M.V. Lomonosov Moscow State University, Chair of Analytical Chemistry, Leninskiye gory str. 1/3, Moscow 119991, Russia
| | - Samvel Barsegyan
- Federal State Budgetary Institution «Russian Centre of Forensic Medical Expertise» of the Ministry of Health of the Russian Federation, Polikarpov str, 12/13, Moscow 125284, Russia
| | - Nikita Gandlevskiy
- Department of chemistry, M.V. Lomonosov Moscow State University, Chair of Analytical Chemistry, Leninskiye gory str. 1/3, Moscow 119991, Russia
- Department of Drug Science and Technology, Turin University, via P. Giuria 9, Turin 10125, Italy
| | - Valeriya Akimova
- Federal State Budgetary Institution «Russian Centre of Forensic Medical Expertise» of the Ministry of Health of the Russian Federation, Polikarpov str, 12/13, Moscow 125284, Russia
| | - Alessandro Barge
- Department of Drug Science and Technology, Turin University, via P. Giuria 9, Turin 10125, Italy
| | - Aleksander Nosyrev
- FSAEI of Higher Education I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str, 8/2, Moscow 119048, Russia
| |
Collapse
|
4
|
Hu C, Wu Y, Dong Z, Dong Z, Ji S, Hu L, Yang X, Liu H. Degradation of carbamazepine by the UVA-LED 365/ClO 2/NaClO process: Kinetics, mechanisms and DBPs yield. J Environ Sci (China) 2025; 148:399-408. [PMID: 39095175 DOI: 10.1016/j.jes.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 08/04/2024]
Abstract
A mixed oxidant of chlorine dioxide (ClO2) and NaClO was often used in water treatment. A novel UVA-LED (365 nm)-activated mixed ClO2/NaClO process was proposed for the degradation of micropollutants in this study. Carbamazepine (CBZ) was selected as the target pollutant. Compared with the UVA365/ClO2 process, the UVA365/ClO2/NaClO process can improve the degradation of CBZ, with the rate constant increasing from 2.11×10-4 sec-1 to 2.74×10-4 sec-1. In addition, the consumption of oxidants in the UVA365/ClO2/NaClO process (73.67%) can also be lower than that of UVA365/NaClO (86.42%). When the NaClO ratio increased, both the degradation efficiency of CBZ and the consumption of oxidants can increase in the UVA365/ClO2/NaClO process. The solution pH can affect the contribution of NaClO in the total oxidant ratio. When the pH range of 6.0-8.0, the combination process can generate more active species to promote the degradation of CBZ. The change of active species with oxidant molar ratio was investigated in the UVA365/ClO2/NaClO process. When ClO2 acted as the main oxidant, HO• and Cl• were the main active species, while when NaClO was the main oxidant, ClO• played a role in the system. Both chloride ion (Cl-), bicarbonate ion (HCO3-), and nitrate ion (NO3-) can promote the reaction system. As the concentration of NaClO in the reaction solution increased, the generation of chlorates will decrease. The UVA365/ClO2/NaClO process can effectively control the formation of volatile disinfection by-products (DBPs), and with the increase of ClO2 dosage, the formation of DBPs can also decrease.
Collapse
Affiliation(s)
- Chenyan Hu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yihui Wu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhengyu Dong
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Ziyi Dong
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Shengjie Ji
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lili Hu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xinyu Yang
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Hao Liu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
5
|
Huang H, Chen L, Tang W, Yang Y. In situ grown petal-like La-doped FeCo-layered double hydroxide on carbon felt for enhanced moxifloxacin hydrochloride removal via heterogeneous electro-Fenton process. CHEMOSPHERE 2024; 369:143845. [PMID: 39612996 DOI: 10.1016/j.chemosphere.2024.143845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
In this study, a petal-like ternary metal-layered double hydroxide (FeCoLa-LDH) was synthesized through a facile one-step hydrothermal method and in situ grown on carbon felt (CF). The FeCoLa-LDH/CF composite electrode was applied in a heterogeneous electro-Fenton (HEF) system for the degradation of moxifloxacin hydrochloride (MOX). Characterization revealed that La-doped FeCo-LDH/CF exhibited petal-like layered structure rather than particle's structure, with higher surface defect degree and an increased electroactive surface area (ESA) compared to FeCo-LDH/CF. The composite electrode effectively degraded MOX across a pH range of 3-9. Under optimal conditions, it achieved a degradation efficiency of 92.2% within 45 min and 96.8% within 120 min. After 120 min, 82.4% of the chemical oxygen demand (COD) was removed. The superior degradation performance was primarily attributed to La doping, which enhanced electron transfer between Co2+/Co3+ and Fe2+/Fe3+, promoting in situ H2O2 generation and causing rapid conversion of H2O2 to hydroxyl radical(•OH) on the electrode surface. Radical quenching experiments confirmed that •OH was the primary reactive species. The possible MOX degradation pathways were elucidated through liquid chromatography-mass spectrometry (LC-MS) analysis and density functional theory (DFT) calculations, and a catalytic mechanism of HEF process was proposed. Moreover, the electrode maintained 82.8% efficiency after five cycles, with lower ion leaching and broader pollutant applicability. Moreover, good degradation efficiencies of MOX were still observed in actual water bodies. Toxicity tests confirmed that MOX degradation intermediate products had low plant toxicity. This study provides a promising high-performance cathode for antibiotic removal from wastewater.
Collapse
Affiliation(s)
- Haolan Huang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China
| | - Li Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China
| | - Wenjing Tang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China
| | - Yingchun Yang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China.
| |
Collapse
|
6
|
Lu X, Zhang R, Liu Y, Zhou Z, Xia Y, Wang J, Guo Y, Fan X. Oxygen Vacancies and Lattice Distortion Synergistically Enhanced Piezocatalysis of CaZn 2(BO 3) 2 for Nonantibiotic Pharmaceutical Degradation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63692-63702. [PMID: 39509643 DOI: 10.1021/acsami.4c16182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Piezocatalysis, an emerging green and advanced oxidation technology, has recently been widely researched in environmental treatment. However, the limited polarization efficiency of the piezocatalyst is a serious bottleneck for its practical application. The search for an excellent piezocatalyst with a high piezoelectric coefficient and abundant reactive sites remains an urgent task that needs to be developed. Herein, a piezocatalyst, CaZn2(BO3)2 (CZBO), obtained by quenching has an excellent piezocatalysis, which exhibited superior activity for ibuprofen (IBP) and carbamazepine (CBZ) removal with 100% and 83.8% efficiency under ultrasonic cavitation (120 W, 40 kHz) within 36 min, respectively. The outstanding piezocatalytic degradation was attributed to the strong polarization of the material under the synergistic effect of oxygen vacancies (OVs) and lattice distortion, which effectively facilitated the generation of a high concentration of reactive oxygen species (ROS). The lattice distortion induced by O-deficient [BO3] plane units can promote the e- and h+ pair separation and transportation, and the OVs with abundant electron-rich regions can significantly decrease O-O bond activation energy, thus collaboratively contributing to the high production of ROS for IBP and CBZ degradation. This work provides a simple avenue for enhancing piezoelectric polarization based on the OVs and lattice distortion and proposes insights into the reaction mechanisms for degrading nonantibiotic pharmaceuticals in wastewater.
Collapse
Affiliation(s)
- Xinyi Lu
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Runzhe Zhang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yi Liu
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Zhikui Zhou
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yanyan Xia
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jian Wang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yanan Guo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Xiaoyun Fan
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Zhou Z, Zhang S, Chen J, Luo W, Kang F, Ren Y, Zhou W. Development and Application of a New QuEChERS Method Coupled with UPLC-QTOF-MS/MS for Analysis of Tiafenacil and Its Photolysis Products in Water. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39561258 DOI: 10.1021/acs.jafc.4c04618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
This research centered on the novel pyrimidinedione herbicide, tiafenacil. Residues of tiafenacil and its three photolysis products (PP1 to PP3) in water were analyzed using advanced QuEChERS and UPLC-QTOF-MS/MS techniques, reaching a low limit of quantitation (LOQ) of 10 μg/L. Calibration curves exhibited a high degree of linearity (R2 ≥ 0.993) over a concentration range of 0.01 to 1.00 mg/L. Method validation demonstrated high precision, with intraday relative standard deviation RSDr ≤7.9% and interday RSDR ≤ 6.1%, along with high accuracy (recoveries from 94.4% to 105.0%). Using density functional theory (DFT) at the B3LYP/6-311g (d) level, we calculated the electronic properties of tiafenacil and its PPs (PP1 to PP3). Additionally, frontier molecular orbital (FMO) and fukui function analyses were conducted to explore HOMO-LUMO energies, determine energy band gaps for these substances, and predict reactive sites for their electrophilic, nucleophilic, and radical reactions. Significantly, ecotoxicity assessment, including ECOSAR predictions and acute toxicity tests, revealed that the PPs exhibited higher ecotoxicity to aquatic organisms than tiafenacil. Field experiments showed a half-life of 18.9 days for tiafenacil in water, fitting a first-order kinetic model (R2 = 0.999), with a degradation of 41.5% after 14 days and approximately 89.2% after 60 days. This study significantly advances our understanding of tiafenacil's environmental fate, evaluates its associated risks, and offers valuable insights for its responsible application.
Collapse
Affiliation(s)
- Zhie Zhou
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shujie Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jian Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjing Luo
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fenfen Kang
- Animal, Plant & Foodstuffs Inspection Center of Tianjin Customs District, Tianjin 300457, China
| | - Yonglin Ren
- Department of Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch WA 6150, Australia
| | - Wenwen Zhou
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
8
|
Qutob M, Rafatullah M, Muhammad SA, Siddiqui MR, Alam M. Remediation of benzo[α]pyrene contaminated soil using iron naturally bearing in tropical soil: A new frontier in catalyst-free in soil remediation. CHEMOSPHERE 2024; 364:143291. [PMID: 39243904 DOI: 10.1016/j.chemosphere.2024.143291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024]
Abstract
Nature iron is considered one of the promising catalysts in advanced oxidation processes (AOPs) that are utilized for soil remediation from polycyclic aromatic hydrocarbons (PAHs). However, the existence of anions, cations, and organic matter in soils considered impurities that restricted the utilization of iron that was harnessed naturally in the soil matrix and reduced the catalytic performance. In this regard, tropical soil naturally containing iron and relatively poor with impurities was artificially contaminated with 100 mg/50 g benzo[α]pyrene (B[α]P) and remediated using a slurry phase reactor supported with persulfate (PS). The results indicated that tropical soil containing iron and relatively poor with impurities capable of activating the oxidants and formation of radicals which successfully degraded B[α]P. The optimum removal result was 86% and obtained under the following conditions airflow = 260 mL/min, temperature 55 °C, pH 7, and [PS]0 = 1.0 g/L, at the same experimental conditions soil organic matter (SOM) mineralization was 48%. After the remediation process, there was a significant reduction in iron and aluminum contents, which considered the drawbacks of this system. Experiments to scavenge reactive species highlighted O2•- and SO4•- as the main radicals that oxidized B[α]P. Additionally, monitoring of by-products post-remediation aimed to assess toxicity and elucidate degradation pathways. Mutagenicity tests yielded positive results for two B[α]P by-products. The toxicity tests considered were the lethal concentration of 50% (LC50 96 h) for fat-head minnows revealed that all B[α]P by-products were less toxic than the parent pollutant itself. This research marks a significant advancement in soil remediation by advancing the use of the AOP method, removing the requirement for additional catalysts in the AOP system for the removal of B[α]P from soil.
Collapse
Affiliation(s)
- Mohammad Qutob
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Mohd Rafatullah
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Syahidah Akmal Muhammad
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Masoom Raza Siddiqui
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mahboob Alam
- Division of Chemistry and Biotechnology, Dongguk University, 123, Dongdaero, Gyeongju-si, 780714, Republic of Korea
| |
Collapse
|
9
|
Yuan Y, Ye X, Jia Y, Wu Y, Zhang Y. CuFeS 2/GAC particle combined with electrochemical activation of persulfates for efficient degradation of carbamazepine. CHEMOSPHERE 2024; 364:143138. [PMID: 39168379 DOI: 10.1016/j.chemosphere.2024.143138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Electrochemically activated persulfate is a potential advanced oxidation process due to its advantages of environmental friendliness, high efficiency, and convenient operation. An Fe-Cu-S granular activated carbon (CuFeS2/GAC, abbreviated as FCSG) particles electrode was developed and applied to degrade carbamazepine (CBZ) combined with electrochemical activation of persulfate (E-PDS-FCSG) in this work. Compared to two-dimensional electrochemical process (E-PDS), the three-dimensional (3D) E-PDS-FCSG process exhibited higher removal efficiency of CBZ and lower energy consumption. The removal efficiency of CBZ and power consumption increased by 96% and reduced by 67%, respectively. Over 98% of CBZ removal rate was reached within 25 min. Apart from the same free radicals in two-dimensional electrochemical process, both Fe2+ and Cu+ on the surface of three-dimensional particle electrodes can directly activate PDS to produce SO4•-, and the existence of S2- strengthens the circulation of Fe3+/Fe2+ and Cu2+/Cu+. Furthermore, FCSG particle electrode can not only directly enhance the activation of PDS, but also accelerate the electron transfer, and then effectively promoting reactive species generation. LC-MS analysis showed that the main degradation pathways of CBZ involved decarbonylation, deamination, dealkylation, ring opening and mineralization. Moreover, after five cycle experiments, over 80% of CBZ removal rate could be achieved, demonstrating that the E-PDS-FCSG system had excellent electrocatalytic performance and good stability. These findings indicate that FCSG is a promising material and could be used as a particle electrode for removing organic pollutants from water.
Collapse
Affiliation(s)
- YuRui Yuan
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China
| | - Xincheng Ye
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China
| | - Yan Jia
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China
| | - Yuan Wu
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China
| | - Yan Zhang
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China.
| |
Collapse
|
10
|
Zeng C, Ma Y, Li P, Chen X, Liu H, Deng Z, Mu R, Qi X, Zhang Z. Efficient degradation of sulfadiazine by UV-triggered electron transfer on oxalic acid-functionalized corn straw biochar for activating peroxyacetic acid: Performance, mechanism, and theoretical calculation. BIORESOURCE TECHNOLOGY 2024; 407:131103. [PMID: 39002884 DOI: 10.1016/j.biortech.2024.131103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
A novel UV/oxalic acid functionalized corn straw biochar (OCBC)/peroxyacetic acid (PAA) system was built to degrade sulfadiazine from waters. 94.7 % of SDZ was removed within 30 min by UV/OCBC/PAA. The abundant surface functional groups and persistent free radicals (PFRs) on OCBC were responsible for these performances. Cyclic voltammetry (CV) and other characterization analysis revealed, under UV irradiation, the addition of OCBC served as electron donor, which might promote the reaction of electrons with PAA. The quenching and electron paramagnetic resonance (EPR) tests indicated that R-O•, 1O2 and •OH were generated. Theoretical calculations indicated sulfonamide bridge was vulnerable under the attacks of reactive species. In addition, high removal effect achieved by 5 reuse cycles and different real waters also suggested the sustainability of UV/OCBC/PAA. Overall, this study provided a feasible approach to remove SDZ with high mineralization efficiency, in addition to a potential strategy for resource utilization of corn straw.
Collapse
Affiliation(s)
- Chenyu Zeng
- Xianghu Laboratory, Hangzhou 311231, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yongfei Ma
- Xianghu Laboratory, Hangzhou 311231, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Ping Li
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China.
| | - Xi Chen
- Xianghu Laboratory, Hangzhou 311231, China
| | - Hongtao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhikang Deng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Rui Mu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Xuebin Qi
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
11
|
Ai L, Guo J, Chen H, Hu D, Lu P. Degradation of Isotianil in Water and Soil: Kinetics, Degradation Pathways, Mechanisms, and Ecotoxicity Assessments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39028945 DOI: 10.1021/acs.jafc.4c02517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Pesticides are transported and transformed in soil and can enter surface water through various pathways. They undergo hydrolysis, oxidation, and photoconversion in surface water. Isotianil is a new fungicide that effectively controls rice blast. However, there are limited reports on its degradation. Herein, the hydrolysis and photolysis of isotianil in water and its degradation in soil samples from five provinces of China were investigated. The degradation products of isotianil were identified using ultrahigh-performance liquid chromatography-Q exactive hybrid quadrupole-orbitrap high-resolution accurate mass spectrometry, and four compounds were discovered for the first time. The degradation pathways of isotianil were inferred, and the reaction active site and degradation mechanism of isotianil were clarified based on density functional theory calculations. The ecotoxicity of the degradation product M118 (aminobenzonitrile) was found to be moderate toward Daphnia magna, which was predicted and confirmed by Ecological Structure Activity Relationships and the experiment, respectively. The results of this study will contribute to a better understanding of the fate of isotianil in the environment.
Collapse
Affiliation(s)
- Lina Ai
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Junjiang Guo
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, PR China
| | - Hong Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ping Lu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Nair N, Gandhi V, Shukla A, Ghotekar S, Nguyen VH, Varma K. Mechanisms in the photocatalytic breakdown of persistent pharmaceutical and pesticide molecules over TiO 2-based photocatalysts: A review. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:413003. [PMID: 38968934 DOI: 10.1088/1361-648x/ad5fd6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 07/05/2024] [Indexed: 07/07/2024]
Abstract
Titanium dioxide (TiO2) based photocatalysts have been widely used as a photocatalyst for the degradation of various persistent organic compounds in water and air. The degradation mechanism involves the generation of highly reactive oxygen species, such as hydroxyl radicals, which react with organic compounds to break down their chemical bonds and ultimately mineralize them into harmless products. In the case of pharmaceutical and pesticide molecules, TiO2and modified TiO2photocatalysis effectively degrade a wide range of compounds, including antibiotics, pesticides, and herbicides. The main downside is the production of dangerous intermediate products, which are not frequently addressed in the literature that is currently available. The degradation rate of these compounds by TiO2photocatalysis depends on factors such as the chemical structure of the compounds, the concentration of the TiO2catalyst, the intensity, the light source, and the presence of other organic or inorganic species in the solution. The comprehension of the degradation mechanism is explored to gain insights into the intermediates. Additionally, the utilization of response surface methodology is addressed, offering a potential avenue for enhancing the scalability of the reactors. Overall, TiO2photocatalysis is a promising technology for the treatment of pharmaceutical and agrochemical wastewater, but further research is needed to optimize the process conditions and to understand the fate and toxicity of the degradation products.
Collapse
Affiliation(s)
- Niraj Nair
- Department of Chemical Engineering, Dharmsinh Desai University, College Road, Nadiad 387 001 Gujarat, India
| | - Vimal Gandhi
- Department of Chemical Engineering, Dharmsinh Desai University, College Road, Nadiad 387 001 Gujarat, India
| | - Atindra Shukla
- Department of Chemical Engineering, Dharmsinh Desai University, College Road, Nadiad 387 001 Gujarat, India
| | - Suresh Ghotekar
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103 Tamil Nadu, India
| | - Van-Huy Nguyen
- Department of Environmental Engineering & Innovation and Development Centre of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Kiran Varma
- Department of Petrochemical & Chemical Engineering, Institute of Technology, FoET, Ganpat University, Mehsana 384012, Gujarat, India
| |
Collapse
|
13
|
Yang Y, Li J, Qu W, Wang W, Ma C, Xue H, Lv Y, He X. Sn/Sb-assisted alum sludge electrodes for eliminating hydrophilic organic pollutants in self-produced H 2O 2 electro-Fenton system: Insights into the co-oxidation mediated by 1O 2 and •OH(ads). JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134457. [PMID: 38688224 DOI: 10.1016/j.jhazmat.2024.134457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/11/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Few reports have focused on using particle electrodes with polar adsorbent properties in heterogeneous electro-Fenton (EF) system to improve the degradation of hydrophilic organic pollutants (HLOPs). In this study, a hydrophilic electrode Sn-Sb/AS was prepared by supporting metals Sn and Sb on alum sludge (AS), which can effectively degrade 91.68%, 92.54%, 89.62%, and 96.24% of the four types of HLOPs, chlorpyrifos (CPF), atrazine (ATZ), diuron (DIU), and glyphosate (PMG), respectively, within 40 min. The mineralization rates were 82.37%, 78.93%, 73.98%, and 85.65% for CPF, ATZ, DIU, and PMG, respectively. Based on the analysis of Electron Paramagnetic Resonance test, quenching test, and identified anthracene endoperoxide, the degradation at the cathode was attributed to non-radical oxidation via interaction with 1O2. In contrast, the anodic oxidation occurred via direct electron transfer at the anode and/or oxidation via interaction with adsorbed •OH (•OHads) around the particle electrodes. Furthermore, the reaction sites were calculated by Density functional theory (DFT) and Fukui function, corresponding to the electrophilic attack (fA-) of 1O2 and anodic direct oxidation, besides, the radical attack (fA0) of •OH(ads). Herein, this study proposes a targeted elimination strategy for HLOPs in wastewater treatment using particle electrodes with polar adsorbent properties in EF system.
Collapse
Affiliation(s)
- Yulin Yang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China
| | - Junfeng Li
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi 832000, Xinjiang, PR China.
| | - Wenying Qu
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi 832000, Xinjiang, PR China
| | - Wenhuai Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi 832000, Xinjiang, PR China
| | - Chengxiao Ma
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China
| | - Haibin Xue
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China
| | - Yang Lv
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China
| | - Xinlin He
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi 832000, Xinjiang, PR China.
| |
Collapse
|
14
|
Wang Y, Li C, Li Z, Moalin M, den Hartog GJM, Zhang M. Computational Chemistry Strategies to Investigate the Antioxidant Activity of Flavonoids-An Overview. Molecules 2024; 29:2627. [PMID: 38893503 PMCID: PMC11173571 DOI: 10.3390/molecules29112627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Despite several decades of research, the beneficial effect of flavonoids on health is still enigmatic. Here, we focus on the antioxidant effect of flavonoids, which is elementary to their biological activity. A relatively new strategy for obtaining a more accurate understanding of this effect is to leverage computational chemistry. This review systematically presents various computational chemistry indicators employed over the past five years to investigate the antioxidant activity of flavonoids. We categorize these strategies into five aspects: electronic structure analysis, thermodynamic analysis, kinetic analysis, interaction analysis, and bioavailability analysis. The principles, characteristics, and limitations of these methods are discussed, along with current trends.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Chujie Li
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Zhengwen Li
- School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China;
| | - Mohamed Moalin
- Research Centre Material Sciences, Zuyd University of Applied Science, 6400 AN Heerlen, The Netherlands;
| | - Gertjan J. M. den Hartog
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Ming Zhang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| |
Collapse
|
15
|
Sathya PM, Mohan H, Park JH, Seralathan KK, Cho M, Oh BT. Bio-electrochemical degradation of carbamazepine (CBZ): A comprehensive study on effectiveness, degradation pathway, and toxicological assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121161. [PMID: 38761626 DOI: 10.1016/j.jenvman.2024.121161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Recent attention on the detrimental effects of pharmaceutically active compounds (PhACs) in natural water has spurred researchers to develop advanced wastewater treatment methods. Carbamazepine (CBZ), a widely recognized anticonvulsant, has often been a primary focus in numerous studies due to its prevalence and resistance to breaking down. This study aims to explore the effectiveness of a bio-electrochemical system in breaking down CBZ in polluted water and to assess the potential harmful effects of the treated wastewater. The results revealed bio-electro degradation process demonstrated a collaborative effect, achieving the highest CBZ degradation compared to electrodegradation and biodegradation techniques. Notably, a maximum CBZ degradation efficiency of 92.01% was attained using the bio-electrochemical system under specific conditions: Initial CBZ concentration of 60 mg/L, pH level at 7, 0.5% (v/v) inoculum dose, and an applied potential of 10 mV. The degradation pathway established by identifying intermediate products via High-Performance Liquid Chromatography-Mass Spectrometry, revealed the complete breakdown of CBZ without any toxic intermediates or end products. This finding was further validated through in vitro and in vivo toxicity assays, confirming the absence of harmful remnants after the degradation process.
Collapse
Affiliation(s)
- Pavithra Muthukumar Sathya
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Jung-Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Min Cho
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
16
|
Huang X, Lu G, Zhu X, Pu C, Guo J, Liang X. Insight into the generation of toxic by-products during UV/H 2O 2 degradation of carbamazepine: Mechanisms, N-transformation and toxicity. CHEMOSPHERE 2024; 358:142175. [PMID: 38679173 DOI: 10.1016/j.chemosphere.2024.142175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
Carbamazepine (CBZ) is a widely used anticonvulsant drug that has been detected in aquatic environments. This study investigated the toxicity of its by-products (CBZ-BPs), which may surpass CBZ. Unlike the previous studies, this study offered a more systematic approach to identifying toxic BPs and inferring degradation pathways. Furthermore, quadrupole time-of-flight (QTOF) and density functional theory (DFT) calculations were employed to analyze CBZ-BP structures and degradation pathways. Evaluation of total organic carbon (TOC) and total nitrogen (TN) mineralization rates, revealed carbon (C) greater susceptibility to mineralization compared with nitrogen (N). Furthermore, three rules were established for CBZ decarbonization and N removal during degradation, observing the transformation of aromatic compounds into aliphatic hydrocarbons and stable N-containing organic matter over time. Five potentially highly toxic BPs were screened from 14 identified BPs, with toxicity predictions guiding the selection of commercial standards for quantification and true toxicity testing. Additionally, BP207 emerged as the most toxic, supported by the predictive toxicity accumulation model (PTAM). Notably, highly toxic BPs feature an acridine structure, indicating its significant contribution to toxicity. These findings offered valuable insights into the degradation mechanisms of emerging contaminants and the biosafety of aquatic environments during deep oxidation.
Collapse
Affiliation(s)
- Xiaohan Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Gang Lu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| | - Xuanjin Zhu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Chuan Pu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Junjie Guo
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Xiangxing Liang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
17
|
Liu X, Wang J. Decolorization and degradation of crystal violet dye by electron beam radiation: Performance, degradation pathways, and synergetic effect with peroxymonosulfate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124037. [PMID: 38677457 DOI: 10.1016/j.envpol.2024.124037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Ionizing radiation (mainly including gamma ray and electron beam) technology provides a more efficient and ecological option for dye-containing wastewater treatment, which is supported by its successful achievements in industrial-scale applications. However, the degradation pathway of triphenylmethane dyes by radiation technology is still unclear. In this study, crystal violet (CV) was selected as representative cationic triphenylmethane dye, the decolorization and degradation performance by electron beam radiation technology was systematically evaluated. The results showed that CV can be efficiently decolorized and mineralized by radiation, and its degradation kinetics followed the first-order kinetic model. The effect of inorganic anions and chelating agents commonly existed in dye-containing wastewater on CV decolorization and total organic carbon (TOC) removal was explored. Quenching experiments, density functional theory (DFT) calculation and high performance liquid chromatography mass spectrometry (HPLC-MS) analysis were employed to reveal CV decolorization and degradation mechanism and pathway, which mainly included N-demethylation, triphenylmethane chromophore cleavage, ring-opening of aromatic products and further oxidation to carboxylic acid, and mineralization to CO2 and H2O. Additionally, electron beam radiation/PMS process was explored to decrease the absorbed dose required for decolorization and degradation, and the synergetic effect of radiation with PMS was elucidated. More importantly, the findings of this study would provide the support for treating actual dyeing wastewater by electron beam radiation technology.
Collapse
Affiliation(s)
- Xinyu Liu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
18
|
Frantsuzova E, Bogun A, Kopylova O, Vetrova A, Solyanikova I, Streletskii R, Delegan Y. Genomic, Phylogenetic and Physiological Characterization of the PAH-Degrading Strain Gordonia polyisoprenivorans 135. BIOLOGY 2024; 13:339. [PMID: 38785821 PMCID: PMC11117675 DOI: 10.3390/biology13050339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
The strain Gordonia polyisoprenivorans 135 is able to utilize a wide range of aromatic compounds. The aim of this work was to study the features of genetic organization and biotechnological potential of the strain G. polyisoprenivorans 135 as a degrader of aromatic compounds. The study of the genome of the strain 135 and the pangenome of the G. polyisoprenivorans species revealed that some genes, presumably involved in PAH catabolism, are atypical for Gordonia and belong to the pangenome of Actinobacteria. Analyzing the intergenic regions of strain 135 alongside the "panIGRome" of G. polyisoprenivorans showed that some intergenic regions in strain 135 also differ from those located between the same pairs of genes in related strains. The strain G. polyisoprenivorans 135 in our work utilized naphthalene (degradation degree 39.43%) and grew actively on salicylate. At present, this is the only known strain of G. polyisoprenivorans with experimentally confirmed ability to utilize these compounds.
Collapse
Affiliation(s)
- Ekaterina Frantsuzova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| | - Alexander Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| | - Olga Kopylova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
- Pushchino Branch of Federal State Budgetary Educational Institution of Higher Education “Russian Biotechnology University (ROSBIOTECH)”, 142290 Pushchino, Moscow Region, Russia
| | - Anna Vetrova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| | - Inna Solyanikova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
- Regional Microbiological Center, Belgorod State University, 308015 Belgorod, Russia
| | - Rostislav Streletskii
- Laboratory of Ecological Soil Science, Faculty of Soil Science, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Yanina Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| |
Collapse
|
19
|
Kim J, Park J, Yoon S, Lee J, Hanna K, Lee J, Lee C, Choe JK, Bae S. Unveiling the oxidation mechanism of persistent organic contaminants via visible light-induced dye-sensitized reaction by red mud suspension with peroxymonosulfate. WATER RESEARCH 2024; 253:121343. [PMID: 38422888 DOI: 10.1016/j.watres.2024.121343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
A dye-sensitized photocatalysis system was developed for degrading persistent organic contaminants using solid waste (i.e., red mud, RM) and peroxymonosulfate (PMS) under visible light. Complete degradation of acid orange 7 (AO7) was achieved in RM suspension with PMS, where the co-existence of amorphous FeO(OH)/α-Fe2O3 was the key factor for PMS activation. The experimental results obtained from photochemical and electrochemical observations confirmed the enhanced PMS activation due to the Fe-OH phase in RM. DFT calculations verified the acceleration of PMS activation due to the high adsorption energy of PMS on FeO(OH) and low energy barrier for generating reactive radicals. Compared to the control experiment without AO7 showing almost no degradation of other organic contaminants (phenol, bisphenol A, 4-chlorophenol, 4-nitrophenol, and benzoic acid), photo-sensitized AO7* enhanced electron transfer in the FeIII/FeII cycle, dramatically enhancing the degradation of organic contaminants via radical (•OH, SO4•-, and O2•-) and non-radical (dye*+ and 1O2) pathways. Therefore, the novel finding of this study can provide new insights for unique PMS activation by heterogeneous Fe(III) containing solid wastes and highlight the importance of sensitized dye on the interaction of PMS with Fe charge carrier for the photo-oxidation of organic contaminants under visible light.
Collapse
Affiliation(s)
- Joohyun Kim
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jaehyeong Park
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sunho Yoon
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Juri Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Khalil Hanna
- University Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | - Jaesang Lee
- Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
20
|
Zheng S, Lin T, Chen H, Zhang X, Jiang F. Impact of changes in biofilm composition response following chlorine and chloramine disinfection on nitrogenous disinfection byproduct formation and toxicity risk in drinking water distribution systems. WATER RESEARCH 2024; 253:121331. [PMID: 38377929 DOI: 10.1016/j.watres.2024.121331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/17/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
In practical drinking water treatment, chlorine and chloramine disinfection exhibit different mechanisms that affect biofilm growth. This study focused on the influence of biofilm composition changes, especially extracellular polymeric substance (EPS) fractions, on the potential formation and toxicity of nitrogenous disinfection by-products (N-DBP). Significant differences in microbial diversity and community structure were observed between the chlorine and chloramine treatments. Notably, the biofilms from the chloramine-treated group had higher microbial dominance and greater accumulation of organic precursors, as evidenced by the semi-quantitative confocal laser-scanning microscopy assay of more concentrated microbial aggregates and polysaccharide proteins in the samples. Additionally, the chloramine-treated group compared with chlorine had a higher EPS matrix content, with a 13.5 % increase in protein. Furthermore, the protein distribution within the biofilm differed; in the chlorine group, proteins were concentrated in the central region, whereas in the chloramine group, proteins were primarily located at the water-biofilm interface. Notably, functional prediction analyses of protein fractions in biofilms revealed specific functional regulation patterns and increased metabolism-related abundance of proteins in the chlorine-treated group. This increase was particularly pronounced for proteins such as dehydrogenases, reductases, transcription factors, and acyl-CoA dehydrogenases. By combining the Fukui function and density functional calculations to further analyse the effect of biofilm component changes on N-DBP production under chlorine/chloramine and by assessing the toxicity risk potential of N-DBP, it was determined that chloramine disinfection is detrimental to biofilm control and the accumulation of protein precursors has a higher formation potential of N-DBPs and toxicity risk, increasing the health risk of drinking water.
Collapse
Affiliation(s)
- Songyuan Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Han Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xue Zhang
- Suzhou Water Supply Company, Suzhou 215002, China
| | - Fuchun Jiang
- Suzhou Water Supply Company, Suzhou 215002, China
| |
Collapse
|
21
|
Bandini E, Wicht K, Barbetta MFS, Eghbali H, Lynen F. Temperature-responsive comprehensive two-dimensional liquid chromatography coupled to high resolution mass spectrometry for the elucidation of the oxidative degradation processes of chemicals of environmental concern. J Chromatogr A 2024; 1719:464765. [PMID: 38417374 DOI: 10.1016/j.chroma.2024.464765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
This study explores the possibilities offered by temperature-responsive liquid chromatography (TRLC) based comprehensive 2-dimensional liquid chromatography in combination with reversed-phase liquid chromatography (RPLC) for the analysis of degradation products formed upon oxidative treatment of persistent organic pollutants, in this case exemplified through carbamazepine (CBZ). The TRLC×RPLC combination offers the possibility to overcome peak overlap and incomplete separation encountered in 1D approaches, while the transfer of the purely aqueous mobile phase leads to refocusing of all analytes on the second dimension column. Consequently, this allows for about method-development free and hence, easier LC×LC. The study focuses on the oxidative degradation of CBZ, a compound of environmental concern due to its persistence in water bodies. The TRLC×RPLC combination effectively separates and identifies CBZ and its degradation products, while offering improved selectivity over the individual TRLC or RPLC separations. This allows gathering more understanding of the degradation cascade and allows real-time monitoring of the appearance and disappearance of various degradation products. The compatibility with high-resolution mass spectrometry is last shown, enabling identification of 21 CBZ-related products, nine of which were not previously reported in CBZ degradation studies. The approach's simplicity, optimization-free aspects, and ease of use make it a promising tool for the analysis of degradation pathways in environmental contaminants.
Collapse
Affiliation(s)
- Elena Bandini
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4bis, B-9000 Ghent, Belgium
| | - Kristina Wicht
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4bis, B-9000 Ghent, Belgium
| | - Maike Felipe Santos Barbetta
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Hamed Eghbali
- Packaging and Specialty Plastics R&D, Dow Benelux B.V., Terneuzen, 4530 AA, the Netherlands
| | - Frédéric Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4bis, B-9000 Ghent, Belgium.
| |
Collapse
|
22
|
Pan C, Sun Y, Dong Y, Hou H, Kai MF, Lan J. Efficient carbamazepine degradation by modified copper tailings and PMS system: Performance evaluation and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133198. [PMID: 38086306 DOI: 10.1016/j.jhazmat.2023.133198] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 02/08/2024]
Abstract
It is a green and sustainable path to establish cheap solid waste-based catalyst to establish peroxymonosulfate (PMS) catalytic system for the degradation of carbamazepine (CBZ) in water. In this study, durable copper tailing waste residue-based catalyst (CSWR) was prepared, and efficient CSWR/PMS system was constructed for catalytic degradation of CBZ for first time. The morphology and structure of CSWR changed from clumps to porous and loose amorphous by alkali leaching and medium temperature calcination. The reconstructed surface of the CSWR exposes more active sites promotes the catalytic reaction and increases the degradation rate of CBZ by more than 39.8 times. And the CSWR/PMS achieved a CBZ removal of nearly 99.99 % in 20 min. In particular, perovskite-type iron-calcium compounds were formed, which stimulated the production of more HO• and SO4•- in the system. DFT calculation shows that CSWR has stronger adsorption energy and electron transfer ability to PMS molecules, which improved the degradation efficiency of the system. In general, this study proposed a means of high-value waste utilization, which provided a new idea for the preparation of solid waste based environmental functional materials and is expected to be widely used in practical wastewater treatment.
Collapse
Affiliation(s)
- Cong Pan
- School of Resource and Environmental Sciences, Wuhan University, 430072, China
| | - Yan Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Yiqie Dong
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan 430023, China
| | - Haobo Hou
- School of Resource and Environmental Sciences, Wuhan University, 430072, China
| | - Ming-Feng Kai
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Jirong Lan
- School of Resource and Environmental Sciences, Wuhan University, 430072, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| |
Collapse
|
23
|
Trognon J, Albasi C, Choubert JM. A critical review on the pathways of carbamazepine transformation products in oxidative wastewater treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169040. [PMID: 38061647 DOI: 10.1016/j.scitotenv.2023.169040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Carbamazepine (CBZ) is an anticonvulsant drug, released in domestic and hospital wastewater, and one of the drugs most commonly detected in surface water. Conventional secondary processes do a very poor job of removing it (<25 %), but its concentrations are significantly reduced by polishing oxidation processes. However, there are still many unknowns regarding the transformation products generated and their fate. This review first presents the journey of CBZ and its transformation products (TPs) in wastewater, from human consumption to discharge in water bodies. It then goes on to detail the diversity of mechanisms responsible for CBZ degradation and the generation of multiple TPs, laying the emphasis on the different types of advanced oxidation processes (AOP). 135 TPs were reported and a map describing their formation/degradation pathways was drawn up. This work highlights the wide range of physicochemical properties and toxicity effects of TPs on aquatic organisms and provides information about TPs of interest for future research. Finally, this review concludes on the importance of quantifying TPs and of determining kinetic characteristics to produce more accurate reaction schemes and computer-based fate predictions.
Collapse
Affiliation(s)
- Jeanne Trognon
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Claire Albasi
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | |
Collapse
|
24
|
Zuo S, Wang Y, Wan J, Ma Y, Yan Z. Facilitating Proton Coupled Electron Transfer Reaction through the Interfacial Micro Electric Field with Fe─N 4 ─C in FeMOFs Glass. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307102. [PMID: 37806750 DOI: 10.1002/smll.202307102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/30/2023] [Indexed: 10/10/2023]
Abstract
The proton-coupled electron transfer(PCET) reaction plays a crucial role in the chemical transformation process andhas become one of the most concerned elementary reactions. However, the complex kinetics of PCET reaction, which requires the simultaneous transfer of protons and electrons, leads to the dilemma that thermodynamics and kinetics cannot bebalanced and restricts its further development. In this, an interface micro-electric field (IMEF) basedon Fe─N4 in FeMOFs (Fe-Based Metal-Organic Frameworks) glass is designed tosynchronize proton/electron interface behavior for the first time to realizeefficient PCET reaction and optimize reaction thermodynamics and kinetics. The IMEF facilitates the separation of photogenerated electrons and holes, and accelerates Fe(III)/Fe(II) cycle. Driven by near-surface electric field force, the protons near surfacemigrate to Fe sites and participate in Fe(IV)═O formation and reaction, lowering the reaction energy barrier. Based on the interface regulation ofIMEF, a high-efficiency PCET reaction is realized, and kinetic reactionrate constant of photocatalytic oxidation of emerging contaminants is increasedby 3.7 times. This study highlights a strategy for IMEFs to modulate PEC Treactions for a wide range of potential applications, including environmental and ecological applications.
Collapse
Affiliation(s)
- Shiyu Zuo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yongwen Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zhicheng Yan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
25
|
Wu Z, Liu Y, Huang R, Huang W. Mechanistic investigation of the electricity and gallic acid synergistically accelerated Fe(III)/Fe(II) cycle for the degradation of carbamazepine. CHEMOSPHERE 2024; 349:140915. [PMID: 38070611 DOI: 10.1016/j.chemosphere.2023.140915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
This study investigated the application of a natural plant polyphenol, gallic acid (GA) to form complex with iron to promote the redox cycle of Fe(III)/Fe(II) under neutral initial pH conditions in the electrochemical (EC) system for activation of peroxymonosulfate (PMS) to efficiently degrade carbamazepine (CBZ). Results demonstrated that the synergistic effects of GA and EC significantly improved the removal efficiency, and the EC/GA/Fe(III)/PMS system effectively removed 100% of CBZ within a wide initial pH range of 3.0-7.0. The optimum stoichiometric ratio of GA to Fe(III) was found as 2:1. Investigations including quenching experiment, chemical probe analysis, and electron paramagnetic resonance (EPR) analysis were conducted to identify the primary reaction radicals as •OH, SO4•-, along with the 1O2 and Fe(IV). In the EC/GA/Fe(III)/PMS system, the synergistic effect of GA and electrochemistry led to a remarkable enhancement in the generation of •OH. Furthermore, the complexation reduction mechanism of GA and Fe(III) was proposed based on experimental and instrumental analyses, which demonstrated that the semi-quinone products of GA were the main substances promoting the Fe(III)/Fe(II) cycle. Mass spectrometry results showed that CBZ generated 27 byproducts during degradation, with formic acid as the main product of GA. The degradation efficiency of the EC/GA/Fe(III)/PMS system remained stable and excellent, exhibiting remarkable performance in the presence of various inorganic anions, including Cl- and NO3-, as well as naturally occurring organic compounds such as fulvic acid (FA). Overall results indicated that the EC/GA/Fe(III)/PMS system can be applied to effectively treat practical wastewater treatment without requirement of pH adjustment.
Collapse
Affiliation(s)
- Zijing Wu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, China
| | - Yang Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, China
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weixiong Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, China.
| |
Collapse
|
26
|
Rayaroth MP, Aravind UK, Boczkaj G, Aravindakumar CT. Singlet oxygen in the removal of organic pollutants: An updated review on the degradation pathways based on mass spectrometry and DFT calculations. CHEMOSPHERE 2023; 345:140203. [PMID: 37734498 DOI: 10.1016/j.chemosphere.2023.140203] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
The degradation of pollutants by a non-radical pathway involving singlet oxygen (1O2) is highly relevant in advanced oxidation processes. Photosensitizers, modified photocatalysts, and activated persulfates can generate highly selective 1O2 in the medium. The selective reaction of 1O2 with organic pollutants results in the evolution of different intermediate products. While these products can be identified using mass spectrometry (MS) techniques, predicting a proper degradation mechanism in a 1O2-based process is still challenging. Earlier studies utilized MS techniques in the identification of intermediate products and the mechanism was proposed with the support of theoretical calculations. Although some reviews have been reported on the generation of 1O2 and its environmental applications, a proper review of the degradation mechanism by 1O2 is not yet available. Hence, we reviewed the possible degradation pathways of organic contaminants in 1O2-mediated oxidation with the support of density functional theory (DFT). The Fukui function (FF, f-, f+, and f0), HOMO-LUMO energies, and Gibbs free energies obtained using DFT were used to identify the active site in the molecule and the degradation mechanism, respectively. Electrophilic addition, outer sphere type single electron transfer (SET), and addition to the hetero atoms are the key mechanisms involved in the degradation of organic contaminants by 1O2. Since environmental matrices contain several contaminants, it is difficult to experiment with all contaminants to identify their intermediate products. Therefore, the DFT studies are useful for predicting the intermediate compounds during the oxidative removal of the contaminants, especially for complex composition wastewater.
Collapse
Affiliation(s)
- Manoj P Rayaroth
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr, East Boothbay, ME, 04544, USA.
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi 682022, Kerala, India
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80-233, Gdansk, G. Narutowicza 11/12 Str, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India; Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam 686560, Kerala, India.
| |
Collapse
|
27
|
Liu Z, Duan X, Sarmah AK, Zhao X, Ren X, Sun B. A novel 3-dimensional graphene-based cobalt-manganese bimetallic layered double hydroxide:Formation mechanism and performance in photo-assisted permonosulfate-activated degradation of sulfamethoxazole in aqueous solution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122397. [PMID: 37597732 DOI: 10.1016/j.envpol.2023.122397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Sulfamethoxazole (SMX) is a common antibiotic used mainly for bacterial treatment. In this study, a novel three-dimensional cobalt-manganese bimetallic layered double hydroxide graphene hydrogel (CoMn-LDHs/rGO) has been prepared for photo-assisted permonosulfate (PMS)-activated degradation of SMX in water. Compared with the CoMn-LDHs/rGO + PMS and CoMn-LDHs/rGO + Vis systems, the degradation effect of CoMn-LDHs/rGO + PMS + Vis system is the best, and the degradation effect of CoMn-LDHs/rGO system could reach more than 98% under the optimal conditions. After 10 cycles, the catalytic degradation performance of CoMn-LDHs/rGO system remained good, while effectively preventing the leaching of metal ions. Based on the synergistic effect of photocatalysis and PMS oxidation, electron spin resonance spectroscopy and quenching experiments showed that three active substances (•OH, •SO4- and O2•-) were involved in the degradation of SMX. Density functional theory and liquid chromatography-mass spectrometry (LC-MS) results further proposed the SMX degradation transformation calculation. As expected, the study of the reaction mechanism of 3D CoMn-LDHs/rGO assisted PMS activation under visible light provides an efficient and rapid method for the sustainable degradation of pollutants in water system.
Collapse
Affiliation(s)
- Zhibo Liu
- College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China
| | - Xiaoyue Duan
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China
| | - Ajit K Sarmah
- The Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xuesong Zhao
- College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China; Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China.
| | - Xin Ren
- College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China; Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China
| | - Bo Sun
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, China
| |
Collapse
|
28
|
Zhu ZY, Wang YD, Wang XW, Dai GL, Ma SJ, Liu X, Li JH, Jin L, Lin ZX. Pd/MIL-100(Fe) as hydrogen activator for Fe III/Fe II cycle: Fenton removal of sulfamethazine. ENVIRONMENTAL TECHNOLOGY 2023; 44:3504-3517. [PMID: 35389329 DOI: 10.1080/09593330.2022.2064237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Masses of iron sludge generated from engineering practice of classic Fenton reaction constraints its further promotion. Accelerating the FeIII/FeII cycle may be conducive to reducing the initial ferrous slat dosage and the final iron sludge. Based on the reduction of Pd/MIL-100(Fe)-activated hydrogen, an improved Fenton system named MHACF-MIL-100(Fe) was developed at ambient temperature and pressure. 97.8% of sulfamethazine, the target pollutant in this work, could be degraded in 5 min under the conditions of 20 mM H2O2, 25 μM ferrous chloride, initial pH 3.0, 2 g·L-1 composite catalyst Pd/MIL-100(Fe) and hydrogen gas 60 mL·min-1. Combining density functional theory (DFT) calculation and intermediate detection, the degradation of this antibiotic was inferred to start from the cleavage of N-S bond. The catalytic of Pd/MIL-100(Fe), demonstrated by the removal efficiency of SMT and the catalyst morphology, remained intact after six reaction cycles. The present study provides an insight into the promotion of Fenton reaction.
Collapse
Affiliation(s)
- Zi-Yan Zhu
- School of Environmental Science and Engineering, Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, Suzhou University of Science and Technology, Suzhou, People's Republic of China
| | - Yun-Dong Wang
- School of Environmental Science and Engineering, Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, Suzhou University of Science and Technology, Suzhou, People's Republic of China
| | - Xiao-Wen Wang
- School of Environmental Science and Engineering, Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, Suzhou University of Science and Technology, Suzhou, People's Republic of China
| | - Guo-Liang Dai
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, People's Republic of China
| | - San-Jian Ma
- School of Environmental Science and Engineering, Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, Suzhou University of Science and Technology, Suzhou, People's Republic of China
- Suzhou Cott Environmental Protection Co., Ltd., Suzhou, People's Republic of China
| | - Xin Liu
- School of Environmental Science and Engineering, Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, Suzhou University of Science and Technology, Suzhou, People's Republic of China
- Suzhou Cott Environmental Protection Co., Ltd., Suzhou, People's Republic of China
| | - Juan-Hong Li
- Changzhou Vocational Institute of Engineering, Changzhou, People's Republic of China
| | - Long Jin
- School of Environmental Science and Engineering, Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, Suzhou University of Science and Technology, Suzhou, People's Republic of China
| | - Zi-Xia Lin
- Testing Center, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
29
|
Valdivia-Berroeta GA, Gonnella NC. N-oxidation Regioselectivity and Risk Prediction Using DFT-ALIE Calculations. Pharm Res 2023; 40:1873-1883. [PMID: 37386273 DOI: 10.1007/s11095-023-03553-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION The formation of N-oxide degradants is a major concern in development of new drugs due to potential effects on a compound's pharmacological activity. Such effects include but are not limited to solubility, stability, toxicity, and efficacy. In addition, these chemical transformations can impact physicochemical properties that affect drug manufacturability. Hence identification and control of N-oxide transformations is of critical importance in the development of new therapeutics. OBJECTIVE This study describes the development of an in-silico approach to identify N-oxide formation in APIs with respect to autoxidation. METHODS Average Local Ionization Energy (ALIE) calculations were carried out using molecular modeling techniques and application of Density Functional Theory (DFT) at the B3LYP/6-31G(d,p) level of theory. A total of 257 nitrogen atoms and 15 different oxidizable nitrogen types were used in developing this method. RESULTS The results show that ALIE could be reliably used to predict the most susceptible nitrogen for N-oxide formation. A risk scale was developed that rapidly categorizes nitrogen's oxidative vulnerabilities as small, medium, or high. CONCLUSIONS The developed process presents a powerful tool to identify structural susceptibilities for N-oxidation as well as enabling rapid structure elucidation in resolving potential experimental ambiguities.
Collapse
Affiliation(s)
- Gabriel A Valdivia-Berroeta
- Department of Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., P.O. Box 368, Ridgefield, CT, 06877, USA.
| | - Nina C Gonnella
- Department of Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., P.O. Box 368, Ridgefield, CT, 06877, USA.
| |
Collapse
|
30
|
Hu R, Yang SQ, Li JY, Sun F, Liu ZQ, Yang J, Cui YH, Zhang B. Insight into micropollutant abatement during ultraviolet light-emitting diode combined electrochemical process: Reaction mechanism, contributions of reactive species and degradation routes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162798. [PMID: 36914136 DOI: 10.1016/j.scitotenv.2023.162798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Electrochemical process coupling with ultraviolet light-emitting diode for micropollutant abatement was evaluated in the treatment of wastewater containing Cl-. Four representative micropollutants, atrazine, primidone, ibuprofen and carbamazepine, were selected as target compounds. The impacts of operating conditions and water matrix on micropollutant degradation were investigated. Fluorescence excitation-emission matrix spectroscopy spectra and high performance size exclusion chromatography were employed to characterize the transformation of effluent organic matter in treatment. The degradation efficiencies of atrazine, primidone, ibuprofen and carbamazepine are 83.6 %, 80.6 %, 68.7 % and 99.8 % after 15 min treatment, respectively. The increment of current, Cl- concentration and ultraviolet irradiance promote the micropollutant degradation. However, the presence of bicarbonate and humic acid inhibit micropollutant degradation. The mechanism of micropollutant abatement was elaborated based on reactive species contributions, density functional theory calculation and degradation routes. Free radicals (HO•, Cl•, ClO• and Cl2•-) could be generated by chlorine photolysis and subsequent propagation reactions. The concentrations of HO• and Cl• are 1.14 × 10-13 M and 2.0 × 10-14 M in optimal condition, respectively, and the total contributions of HO• and Cl• for the degradation of atrazine, primidone, ibuprofen and carbamazepine are 24 %, 48 %, 70 % and 43 %, respectively. The degradation routes of four micropollutants are elucidated based on intermediate identification, Fukui function and frontier orbital theory. Micropollutants can be effectively degraded in actual wastewater effluent, and the small molecule compound proportion increases during effluent organic matter evolution. Compared with photolysis and electrolysis, the coupling of the two processes has potential for energy saving in micropollutant degradation, which shed light on the prospects of ultraviolet light-emitting diode coupling with electrochemical process for effluent treatment.
Collapse
Affiliation(s)
- Rui Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sui-Qin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jia-Ying Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fengyi Sun
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zheng-Qian Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jingjing Yang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yu-Hong Cui
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Beiping Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
31
|
Ou Y, Yan S, Yuan L, Chen X, Zhou T. Novel strategy towards in-situ recycling of valuable metals from spent lithium-ion batteries through endogenous advanced oxidation process. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131818. [PMID: 37307724 DOI: 10.1016/j.jhazmat.2023.131818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Efficient and sustainable recycling of metal resources from spent lithium-ion batteries (LIBs) is critical for the metal resources security and environment protection. However, the intact exfoliation of cathode materials (CMs) from current collectors (Al foils) and selective extraction of Li towards the in-situ and sustainable recycling of cathodes from spent LIBs are still pending issues. A self-activated and ultrasonic-induced endogenous advanced oxidation process (EAOP) was proposed in this study for selective removal of PVDF and in-situ extraction of Li from CMs of waste LiFePO4 (LFP) to address the above issues. Over 99 wt% CMs can be detached from Al foils after EAOP treatment under the optimized operation conditions. High purity of Al foil can be directly recycled as metallic forms and nearly 100 % of Li can be in-situ extracted from the detached CMs and then recovered as Li2CO3 (>99.9 % in purity). With induction and reinforcement of ultrasonic, S2O82- was self-activated by LFP to generate an increased amount of SO4•- radicals that will attack the PVDF binders to ensure their degradation. The degradation pathway of PVDF and density functional theory (DFT) calculation can also support the analytical and experimental results. Then, the complete and in-situ ionization of Li can be achieved by the further oxidization of SO4•- radicals from LFP powders. This work provides a novel strategy towards efficient and in-situ recycling of valuable metals from spent LIBs with minimized environmental footprint.
Collapse
Affiliation(s)
- Yudie Ou
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Shuxuan Yan
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Lu Yuan
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan Province 410081, PR China; National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, PR China
| | - Xiangping Chen
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan Province 410081, PR China; National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, PR China.
| | - Tao Zhou
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| |
Collapse
|
32
|
Sun H, Zhang L, Wang L, Dong D, Li Y, Guo Z. Enhanced freezing-induced carbamazepine degradation by bromate under solar irradiation via the formation of hypobromous acid and hydroxyl radical. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131793. [PMID: 37302190 DOI: 10.1016/j.jhazmat.2023.131793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/20/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Ice is a crucial medium in cold regions and plays an important role in the transformation of pollutants. When waters receiving treated wastewater freeze in cold regions during winter, the emerging contaminant carbamazepine (CBZ) and the disinfection by-product bromate ( [Formula: see text] ) can coexist in ice. However, their interaction in ice remains poorly understood. Here, CBZ degradation by [Formula: see text] in ice was investigated via a simulation experiment. Results showed that 96% of CBZ was degraded by [Formula: see text] after 90 min in ice in dark, while the degradation was negligible in water. The time required for nearly 100% CBZ degradation by [Formula: see text] in ice under solar irradiation was 22.2% shorter than in dark. The production of hypobromous acid (HOBr) was responsible for the gradually accelerated CBZ degradation rate in ice. The HOBr generation time in ice under solar irradiation was 50% shorter than in dark. The formation of HOBr and hydroxyl radical by the direct photolysis of [Formula: see text] under solar irradiation enhanced the CBZ degradation in ice. CBZ was mainly degraded by deamidation, decarbonylation, decarboxylation, hydroxylation, molecular rearrangement, and oxidation reactions. Furthermore, 18.5% of degradation products exhibited lower toxicity than their parent CBZ. This work can provide new insights into the environmental behaviors and fate of emerging contaminants in cold regions.
Collapse
Affiliation(s)
- Heyang Sun
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Liting Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yanchun Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
33
|
An Q, Zhang H, Liu N, Wu S, Chen S. Fe-doped g-C3N4 synthesized by supramolecular preorganization for enhanced photo-Fenton activity. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
34
|
Li Y, Zhang Y, Yang W, Lin Y. The reaction pathway and mechanism of 2,4-dichlorophenol removal by modified fly ash-loaded nZVI/Ni particles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27770-z. [PMID: 37256401 DOI: 10.1007/s11356-023-27770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023]
Abstract
Nanoscale zero-valent iron (nZVI) is more valuable in environmental restoration than other materials. Chemical treatment of fly ash (CFA) was employed as a support material to disperse iron nickel bimetal nanoparticles (CFA-nZVI/Ni) to remove 2,4-dichlorophenol (2,4-DCP). Batch experiments showed that 2,4-DCP was completely removed by CFA-nZVI/Ni, and an optimal loading ratio was 8:1. The degradation of 2,4-DCP by CFA-nZVI/Ni was a chemical control reaction with an activation energy of 95.6 kJ mol-1 and followed pseudo-first-order kinetics. The addition of Cl- increased the removal rate of 2,4-DCP by 4%, while the addition of CO32- and SO42- decreased the removal rate of 2,4-DCP by 32% and 72.3%, respectively. The removal process of 2,4-DCP by CFA-nZVI/Ni included adsorption and reduction. The 2-CP (7.1 mg/L) and 4-CP (11.6 mg/L) could be converted to phenol using the CFA-nZVI/Ni system. Cl on the para-position of 2,4-DCP was simpler to remove than on the ortho-position. The following steps were taken in the electrophilic substitution reaction between substituted phenols and hydrogen radicals: 2,4-DCP > 2-CP > 4-CP > phenol. This research provides a novel concept to effectively remove 2,4-DCP and mechanism analysis.
Collapse
Affiliation(s)
- Yajun Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, China
| | - Yongxiang Zhang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, China.
| | - Wenjing Yang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, China
| | - Yuhui Lin
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, China
| |
Collapse
|
35
|
Ma M, Xu F, Liu J, Li B, Liu Z, Gao B, Li Q. Insights into S-doped iron-based carbonaceous nanocomposites with enhanced activation of persulfate for rapid degradation of organic pollutant. CHEMOSPHERE 2023; 335:139006. [PMID: 37257657 DOI: 10.1016/j.chemosphere.2023.139006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/27/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023]
Abstract
In the work, S-doped iron-based carbon nanocomposites (Fe-S@CN) for activating persulfate (PS) were prepared by calcining iron-loaded sodium lignosulfonate. The characterization revealed that the main substances of Fe-S@CN were FeS and Fe3C, which were distributed on porous carbon nanosheets in rod-like morphology. In the Fe-S@CN/PS system, carbamazepine could be completely removed within 30 min, and the relative contribution of hydroxyl radicals (OH·), sulfate radicals (SO4·-) and total singlet oxygen (1O2) and superoxide radicals (O2·-) for carbamazepine removal were approximated as 8.7%, 19.2% and 72.1%, respectively. Electron paramagnetic resonance spectroscopy demonstrated that S doping promoted the formation of various active species. Compared with the catalyst without S doping, Fe-S@CN exhibited higher activation performance (1.48-fold) for PS due to the enhanced electron transfer rate and facilitated Fe2+/Fe3+ cycle. Density functional theory calculations showed that S doping promoted the binding between the catalyst and PS, and enhanced the overall internal electron density of the catalyst. Fe-S@CN exhibited excellent catalytic performance over a wide pH range (3.0-11.0). The active sites of Fe-S@CN used in the cycling experiments was also largely recovered after thermal regeneration. Overall, this study shows for the first time the impact of SLS as an S dopant on enhanced PS activation.
Collapse
Affiliation(s)
- Mengyu Ma
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266200, PR China
| | - Fei Xu
- Environment Research Institute, Shandong University, Qingdao, 266200, PR China
| | - Jikai Liu
- Jining Ecological and Environmental Technology Guarantee Center, Jining, 272000, PR China
| | - Bin Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Zhen Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266200, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266200, PR China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266200, PR China.
| |
Collapse
|
36
|
Klanovicz N, Camargo AF, Ramos B, Michelon W, Treichel H, Teixeira ACSC. A review of hybrid enzymatic-chemical treatment for wastewater containing antiepileptic drugs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27487-z. [PMID: 37184794 DOI: 10.1007/s11356-023-27487-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Epilepsy is one of the most common neurological diseases worldwide and requires treatment with antiepileptic drugs for many years or for life. This fact leads to the need for constant production and use of these compounds, placing them among the four pharmaceutical classes most found in wastewater. Even at low concentrations, antiepileptics pose risks to human and environmental health and are considered organic contaminants of emerging concern. Conventional treatments have shown low removal of these drugs, requiring advanced and innovative approaches. In this context, this review covers the results and perspectives on (1) consumption and occurrence of antiepileptics in water, (2) toxicological effects in aquatic ecosystems, (3) enzymatic and advanced oxidation processes for degrading antiepileptics drugs from a molecular point of view (biochemical and chemical phenomena), (4) improvements in treatment efficiency by hybridization, and (5) technical aspects of the enzymatic-AOP reactors.
Collapse
Affiliation(s)
- Natalia Klanovicz
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, 05508080, Brazil.
- Laboratory of Microbiology and Bioprocesses (LAMIBI), Federal University of Fronteira Sul, Erechim, Brazil.
| | - Aline Frumi Camargo
- Laboratory of Microbiology and Bioprocesses (LAMIBI), Federal University of Fronteira Sul, Erechim, Brazil
- Graduate Program in Biotechnology and Bioscience, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Bruno Ramos
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, 05508080, Brazil
| | | | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses (LAMIBI), Federal University of Fronteira Sul, Erechim, Brazil
| | - Antonio Carlos Silva Costa Teixeira
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, 05508080, Brazil
| |
Collapse
|
37
|
Chen H, Lin T, Wang P, Wang Y, Wei W, Zhu S. A novel solar-activated chlorine dioxide process for atrazine degradation in drinking water. WATER RESEARCH 2023; 239:120056. [PMID: 37167851 DOI: 10.1016/j.watres.2023.120056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/13/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
New technologies using advanced oxidation processes (AOPs) with low energy-input to address the presence of micro-contaminants and the formation of disinfection byproducts (DBPs) are required for drinking water safety. In this work, the activation of chlorine dioxide with solar (solar/ClO2 process), a type of renewable and inexhaustible energy, was developed to degrade atrazine (ATZ) and control the formation of DBPs. Results revealed that solar/ClO2 process was effective in degrading ATZ. Hydroxyl radicals (•OH) and chlorine radicals (Cl•) produced in solar/ClO2 process were found to be the predominant agents for ATZ degradation with contribution rates of 55.9% and 44.1%, respectively, based on radical quenching tests and competition kinetics. Reaction pH did not affect the total amount of Cl• and •OH (i.e., [•OH]exp) and [Cl•]exp), while the conversion of Cl• to •OH was responsible for the depressed ATZ degradation efficiency with the increasing pH in solar/ClO2 process. The presence of bicarbonate (HCO3-), chloride (Cl-) and humic acid (HA) retarded the ATZ degradation mainly due to they decreased [•OH]exp) and [Cl•]exp. Using the UPLC-MS/MS analysis, six degradation intermediates of ATZ were tentatively identified, and the three-stage degradation pathway as well as the stepwise detoxification of ATZ were confirmed by the condensed Fukui function (CFF) calculation and ECOSAR prediction. Applying solar/ClO2 as a pretreatment of HA-containing water, the formation of DBPs during post-chlorination was significantly reduced. However, the presence of ATZ during solar/ClO2 pretreatment of HA significantly lowered the control efficiency of DBPs. The major degradation intermediate, i.e., deethyldeisopropylhydroxyatrazine (DEIHA), of ATZ could incorporate into HA and therefore providing more precursors for DBPs. The acute toxicity recorded by the behavior of zebrafish larvae revealed that using chloramine instead of chlorine downstream the solar/ClO2 pretreatment of ATZ and HA could significantly reduce the acute toxicity by decreasing the formation of total DBPs. This study demonstrated the great potential of applying solar/ClO2 process followed by chloramination to simultaneously degrade micro-contaminants and reduce DBPs formation as well as toxic risk in practical applications.
Collapse
Affiliation(s)
- Han Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Peifang Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yuchen Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wei Wei
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230601, PR China
| | - Shuguang Zhu
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230601, PR China
| |
Collapse
|
38
|
Niu L, Lin J, Chen W, Zhang Q, Yu X, Feng M. Ferrate(VI)/Periodate System: Synergistic and Rapid Oxidation of Micropollutants via Periodate/Iodate-Modulated Fe(IV)/Fe(V) Intermediates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7051-7062. [PMID: 37074844 DOI: 10.1021/acs.est.2c08965] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The presence of organic micropollutants in water sources worldwide has created a need for the development of effective and selective oxidation methods in complex water matrices. This study is the first report of the combination of ferrate(VI) (Fe(VI)) and periodate (PI) for synergistic, rapid, and selective elimination of multiple micropollutants. This combined system was found to outperform other Fe(VI)/oxidant systems (e.g., H2O2, peroxydisulfate, and peroxymonosulfate) in rapid water decontamination. Scavenging, probing, and electron spin resonance experiments showed that high-valent Fe(IV)/Fe(V) intermediates, rather than hydroxyl radicals, superoxide radicals, singlet oxygen, and iodyl radicals, played a dominant role in the process. Further, the generation of Fe(IV)/Fe(V) was evidenced directly by the 57Fe Mössbauer spectroscopic test. Surprisingly, the reactivity of PI toward Fe(VI) is rather low (0.8223 M-1 s-1) at pH 8.0, implying that PI was not acting as an activator. Besides, as the only iodine sink of PI, iodate also played an enhanced role in micropollutant abatement by Fe(VI) oxidation. Further experiments proved that PI and/or iodate might function as the Fe(IV)/Fe(V) ligands, causing the utilization efficiency of Fe(IV)/Fe(V) intermediates for pollutant oxidation to outcompete their auto-decomposition. Finally, the oxidized products and plausible transformation pathways of three different micropollutants by single Fe(VI) and Fe(VI)/PI oxidation were characterized and elucidated. Overall, this study proposed a novel selective oxidation strategy (i.e., Fe(VI)/PI system) that could efficiently eliminate water micropollutants and clarified the unexpected interactions between PI/iodate and Fe(VI) for accelerated oxidation.
Collapse
Affiliation(s)
- Lijun Niu
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Jiang Lin
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Wenzheng Chen
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Qian Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| |
Collapse
|
39
|
Huang W, Huang Y, Tang B, Fu Y, Guo C, Zhang J. Electrochemical oxidation of carbamazepine in water using enhanced blue TiO 2 nanotube arrays anode on porous titanium substrate. CHEMOSPHERE 2023; 322:138193. [PMID: 36812998 DOI: 10.1016/j.chemosphere.2023.138193] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/12/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
In this study, a blue TiO2 nanotube arrays anode on porous titanium substrate (Ti-porous/blue TiO2 NTA) was successfully fabricated by facile anodization and in situ reduction, and was used to investigate the electrochemical oxidation of carbamazepine (CBZ) in aqueous solution. The surface morphology and crystalline phase of the fabricated anode were characterized by SEM, XRD, Raman spectroscopy and XPS, and the electrochemical analysis confirmed that blue TiO2 NTA on Ti-porous substrate had larger electroactive surface area, better electrochemical performance and higher ⋅OH generation ability than that on Ti-plate substrate. The removal efficiency of 20 mg L-1 CBZ in 0.05 M Na2SO4 solution reached 99.75% at 8 mA cm-2 after 60 min electrochemical oxidation, and the rate constant was 0.101 min-1 with low energy consumption. EPR analysis and free radical sacrificing experiments showed that ⋅OH played a key role in the electrochemical oxidation. The possible oxidation pathways of CBZ were proposed through the identification of degradation products, and the main reactions may involve deamidization, oxidization, hydroxylation and ring-opening. Compared with Ti-plate/blue TiO2 NTA anode, Ti-porous/blue TiO2 NTA anode displayed excellent stability and reusability, and is promising to be used in the electrochemical oxidation of CBZ in wastewater.
Collapse
Affiliation(s)
- Weibin Huang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Yue Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environment Science and Engineering, Tiangong University, Tianjin, 300387, PR China
| | - Bobin Tang
- Technical Centre, Chongqing Customs, Chongqing Engineering Technology Research Center of Import and Export Food Safety, Chongqing, 400020, PR China
| | - Yuanhang Fu
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Chunhui Guo
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Jinzhong Zhang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
40
|
Wang Y, Xiao T, Zuo S, Wan J, Yan Z, Zhu B, Zhang X. Exploring degradation properties and mechanisms of emerging contaminants via enhanced directional electron transfer by polarized electric fields regulation in Fe-N 4-C x. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130698. [PMID: 36586331 DOI: 10.1016/j.jhazmat.2022.130698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Heterogeneous catalysis offers an opportunity to overcome the low efficiency and secondary pollution limitations of emerging contaminants (ECs) purification technologies, but it is still challenging to regulate electron directed transport for achieving high catalysis efficiency and selectivity due to insufficient understanding of the electron transfer pathways and behavioral mechanisms during its catalysis. Here, by tuning the defects of the C-N coordination of the support, the polarized electric field (PEF) characteristics are changed, which in turn affects the electron transport behavior. The results show that the charge offset on Fe-N4-Cx forms a PEF, which will induce directional electron transport. After the quantitative structure-activity relationship (QSAR) fitting analysis, the greater the degree of C-N defects, the higher the intensity of the PEF, which in turn enhances the electron transport and promotes the catalytic behavior. In addition, the surface pyrrole N site can adsorb enrofloxacin (ENR) and enrich it on the surface. This can reduce the transport distance of reactive oxygen species (ROS) to synergize catalysis and adsorption, resulting in rapid degradation of ECs. Combined with liquid chromatograph mass spectrometer (LC-MS) results and theoretical calculations, five degradation pathways of ENR were speculated, mainly including the oxidation of piperazine and the cleavage of the quinolone ring. This work proposes a novel PEF regulation strategy and explores its mechanism for safe treatment of ECs.
Collapse
Affiliation(s)
- Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, China.
| | - Tong Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Shiyu Zuo
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, China
| | - Zhicheng Yan
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Bin Zhu
- Guangdong Zihua Technology Co., Ltd., Foshan, China
| | - XiaoLong Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| |
Collapse
|
41
|
Ding Y, Zuo S, Guan Z, Ding S, Li D. Surface hydroxyl-riched calcium carbonate and copper oxide composites for Fenton-like removal of bisphenol A. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Ohta N, Kobayashi M, Kawase Y. Removal of pharmaceutically active compounds (PhACs) by zero-valent iron: quantification of removal mechanisms consisting of degradation, adsorption and co-precipitation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38819-38831. [PMID: 36586022 DOI: 10.1007/s11356-022-25047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
The removal mechanisms of carbamazepine (CBZ), which is one of pharmaceutically active compounds, using zero-valent iron (ZVI) were quantified by defining three fractions, namely "degradation", "adsorption", and "co-precipitation". The maximum total organic carbon (TOC) removal was obtained at pH 4. The results demonstrate that the adsorption on the ZVI surface is dominant in the TOC removal of CBZ for 4 ≤ pH ≤ 6 while the degradation by oxidative and reductive reactions is efficient exclusively for pH ≤ 3. TOC removal was not obtained for pH ≥ 8. The most dominant mechanism in the removal of CBZ by ZVI is the adsorption onto the iron oxides/hydroxides layer formed on ZVI surface rather than the degradation by oxidative and reductive reactions including Fenton and Fenton-like reactions for pH ≥ 4. A novel kinetic model for removal of CBZ by ZVI was developed to simulate the dynamic concentration profiles of CBZ, TOC, total Fe ions, and dissolved oxygen linked closely with each other and the contributions of degradation, adsorption, and co-precipitation in TOC removal of CBZ. Reasonable agreement between experimental data and model predictions suggests the applicability of the proposed kinetic model to quantitatively analyze the mechanisms of CBZ removal by ZVI.
Collapse
Affiliation(s)
- Naoki Ohta
- Research Center for Biochemical and Environmental Engineering, Department of Applied Chemistry, Toyo University, Kawagoe, Saitama, 350-8585, Japan
| | - Maki Kobayashi
- Research Center for Biochemical and Environmental Engineering, Department of Applied Chemistry, Toyo University, Kawagoe, Saitama, 350-8585, Japan
| | - Yoshinori Kawase
- Research Center for Biochemical and Environmental Engineering, Department of Applied Chemistry, Toyo University, Kawagoe, Saitama, 350-8585, Japan.
| |
Collapse
|
43
|
Ding Y, Zuo S, Li D, Guan Z, Yang F. Regulating Interlayer Confinement FeOCl for Accelerating Polymerization of Pollutants to Reduce Carbon Emission in Water Purification. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5058-5070. [PMID: 36655932 DOI: 10.1021/acsami.2c16396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The spatial structure regulation of catalysts could optimize the reaction pathway and enhance the mass transfer kinetics, which might realize the efficient and low-consumption removal of pollutants in Fenton-like technology. In this study, N,N-dimethylformamide (DMF) intercalation was used to adjust the interlayer spacing of FeOCl from 7.90 to 11.84 Å by a simple and rapid intercalation method, thereby enhancing the mass transfer kinetics and altering the catalytic pathway. The removal rate of BPA in the DMF-FeOCl/PS system increased by 8.78 times, showing good resistance to complex water environments (such as pH, humic acid, and anions), especially in 5 g/L high-salt wastewater. The direct electron transfer processes between Fe(IV) and pollutants mediated by interlayer Fe sites generate phenoxy radicals, and the polymerization processes occur, achieving efficient removal of pollutants and low CO2 emissions. This study provides new insight into the efficient and low-carbon treatment of high-salt wastewater.
Collapse
Affiliation(s)
- Yichen Ding
- School of Environmental Engineering, Wuhan Textile University, Wuhan430073, P. R. China
| | - Shiyu Zuo
- School of Environment and Energy, South China University of Technology, Guangzhou510006, P. R. China
| | - Dongya Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan430073, P. R. China
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan430073, P. R. China
| | - Zeyu Guan
- School of Environmental Engineering, Wuhan Textile University, Wuhan430073, P. R. China
| | - Fan Yang
- School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan430073, P. R. China
| |
Collapse
|
44
|
Leng Y, Liu F, Cai H, Chang F, Xiong W, Huang S, Wang J. Mechanism of norfloxacin transformation by horseradish peroxidase and various redox mediated by humic acid and microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159528. [PMID: 36270366 DOI: 10.1016/j.scitotenv.2022.159528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The catalysis of HRP coupling with redox mediator was a feasible technology for the transformation of antibiotics. This work screened three effective redox mediators syringaldehyde (SYR), acetosyringone (AS) and p-coumaric acid (PCA) for the norfloxacin (NOR) transformation in HRP/redox mediator system. Then, compared their transformation characteristics under varying conditions. The molecular docking results indicated HRP catalytic mediator was spontaneous, and the absolute value order of free energy between three redox mediators and HRP was consistent with the order of NOR removal in experiment. The presence of humic acid (HA) and polystyrene (PS) microplastics could block the removal of NOR, and the inhibition effect was proportional to the level of HA and PS particles. Seven and six possible intermediate products were identified by using SYR/AS and PCA as redox mediators, respectively, and potential NOR transformation pathways were proposed. SYR and AS treatment had the same transformation products and pathways due to their similar structure, including defluorination, oxidation, cross-coupled with mediator, demethylation and dehydrogenation. While for the PCA group, NOR not only performed the above action (except defluorination), but also underwent decarbonylation. These findings may expand our knowledge of the conversion and fate of fluoroquinolones through HRP coupled with redox mediator in the environment.
Collapse
Affiliation(s)
- Yifei Leng
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, PR China
| | - Feiyu Liu
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, PR China
| | - Huiping Cai
- Wuhan Municipal Ecology and Environment Bureau, Jianghan Branch, Wuhan 430015, PR China
| | - Fengyi Chang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, PR China
| | - Wen Xiong
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, PR China
| | - Shushi Huang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, PR China.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, PR China.
| |
Collapse
|
45
|
Fischer M. Adsorption of Carbamazepine in All-Silica Zeolites Studied with Density Functional Theory Calculations. Chemphyschem 2023; 24:e202300022. [PMID: 36715697 DOI: 10.1002/cphc.202300022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
The anticonvulsant drug carbamazepine (-) is an emerging contaminant of considerable concern due to its hazard potential and environmental persistence. Previous experimental studies proposed hydrophobic zeolites as promising adsorbents for the removal of carbamazepine from water, but only a few framework types were considered in those investigations. In the present work, electronic structure calculations based on dispersion-corrected density functional theory (DFT) were used to study the adsorption of CBZ in eleven all-silica zeolites having different pore sizes and connectivities of the pore system (AFI, ATS, BEA, CFI, DON, FAU, IFR, ISV, MOR, SFH, SSF framework types). It was found that some zeolites with one-dimensional channels formed by twelve-membered rings (IFR, AFI) exhibit the highest affinity towards CBZ. A "good fit" of CBZ into the zeolite pores that maximizes dispersion interactions was identified as the dominant factor determining the interaction strength. Further calculations addressed the role of temperature (for selected systems) and of guest-guest interactions between coadsorbed CBZ molecules. In addition to predicting zeolite frameworks of particular interest as materials for selective CBZ removal, the calculations presented here also contribute to the atomic-level understanding of the interaction of functional organic molecules with all-silica zeolites.
Collapse
Affiliation(s)
- Michael Fischer
- Crystallography & Geomaterials Research, Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, 28359, Bremen, Germany.,Bremen Center for Computational Materials Science, University of Bremen, 28359, Bremen, Germany.,MAPEX Center for Materials and Processes, University of Bremen, 28359, Bremen, Germany
| |
Collapse
|
46
|
Chen G, Wang H, Dong W, Ding W, Wang F, Zhao Z, Huang Y. The overlooked role of Co(OH)2 in Co3O4 activated PMS system: Suppression of Co2+ leaching and enhanced degradation performance of antibiotics with rGO. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Mohapatra S, Snow D, Shea P, Gálvez-Rodríguez A, Kumar M, Padhye LP, Mukherji S. Photodegradation of a mixture of five pharmaceuticals commonly found in wastewater: Experimental and computational analysis. ENVIRONMENTAL RESEARCH 2023; 216:114659. [PMID: 36328221 DOI: 10.1016/j.envres.2022.114659] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/04/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Photochemical transformation of pharmaceuticals plays an important role in their natural attenuation, especially in lagoon-based wastewater treatment plants and surface waters receiving substantial sunlight. In this study, the photodegradation of five important pharmaceuticals was studied in samples obtained from a wastewater treatment plant and surface water sources. Batch photodegradation studies for a mixture of pharmaceuticals (diclofenac, sulfamethoxazole, acetaminophen, carbamazepine and gemfibrozil) were carried out in a photochemical reactor. Multiple aliquots of samples removed from the reactor during the experiment were analyzed through high-performance liquid chromatography (HPLC) coupled to a photodiode array (PDA) detector. Intermediate products formed due to photodegradation were identified by ultra-high-performance liquid chromatography coupled with a time-of-flight mass spectrometry (UHPLC-MS/MS). Diclofenac and sulfamethoxazole were found to undergo direct photodegradation due to strong light absorption, whereas the indirect route of photosensitized degradation in the presence of dissolved organic matter (DOM) and model humic acid was significant for acetaminophen, carbamazepine, and gemfibrozil. The reactive radicals such as hydroxyl (OH•), singlet oxygen (1O2) and excited states of DOM (*DOM) were predominantly responsible for the indirect photodegradation of acetaminophen, gemfibrozil and carbamazepine, respectively. Computational analysis revealed that chlorine and carbon atoms belonging to the benzene ring of diclofenac were more reactive to radical attack. Sulfamethoxazole photodegradation occurred through oxidation of the NH2 group. Acetaminophen was more susceptible to electrophilic radical attack at the O-11, and N-7 positions and carbon atoms ortho to the phenolic oxygen and the amine group. The double bonds between C-7, C-8 and C-13 were the most reactive sites for carbamazepine that participated in the phototransformation pathway. Organic matter plays a critical role in the photodegradation of emerging contaminants. The coupling of DFT calculations with UHPLC-MS/MS analysis provided insights on key functional groups participating in the phototransformation pathway. Thus, both parent pharmaceuticals and the photodegradation intermediates should be considered during wastewater treatment.
Collapse
Affiliation(s)
- Sanjeeb Mohapatra
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, India; NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Daniel Snow
- Water Sciences Laboratory, University of Nebraska-Lincoln, NE, USA; School of Natural Resources, University of Nebraska-Lincoln, NE, USA
| | - Patrick Shea
- School of Natural Resources, University of Nebraska-Lincoln, NE, USA
| | | | - Manish Kumar
- Sustainability Cluster, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, The University of Auckland, New Zealand
| | - Suparna Mukherji
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
48
|
Gao X, Yang P, Zhang Q, Kong D, Chen J, Ji Y, Lu J. Effects of nitrite on the degradation of carbamazepine by sulfate radical oxidation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
49
|
Zuo S, Ding Y, Guan Z, Zhang Y, Li D. Carbon-coated MIL-101(Fe) core-shell tandem mediates the directional conversion of SO4·- to 1O2 to realize efficient removal of Bisphenol A. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Cuzziol Boccioni AP, Lener G, Peluso J, Peltzer PM, Attademo AM, Aronzon C, Simoniello MF, Demonte LD, Repetti MR, Lajmanovich RC. Comparative assessment of individual and mixture chronic toxicity of glyphosate and glufosinate ammonium on amphibian tadpoles: A multibiomarker approach. CHEMOSPHERE 2022; 309:136554. [PMID: 36174726 DOI: 10.1016/j.chemosphere.2022.136554] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The aim of the present study was to assess the ecotoxicity of glyphosate and glufosinate ammonium mixtures on amphibian tadpoles and the potential impact of mixture in aquatic ecosystems health. The bonding properties of the mixture based on computational chemistry and an experimental bioassay on morphology, DNA damage and biochemical biomarkers on tadpoles of the common toad Rhinella arenarum were studied. The results of the density functional theory analysis showed trends of the pesticides clustering to form exothermic mixtures, suggesting the likelihood of hot-spots of pesticides in real aquatic systems. In addition, biological effects of individual pesticides and the mixture were studied on tadpoles over 45 days-chronic bioassay. The bioassay consisted of four treatments: a negative control (CO), 2.5 mg L-1 of a glyphosate-based herbicide (GBH), 2.5 mg L-1 of a glufosinate ammonium-based herbicide (GABH) and their 50:50 (% v/v) mixture (GBH-GABH). Morphological abnormality rates were significantly higher in all herbicide treatments with respect to CO at 48 h of exposure. Abdominal edema was the most frequent type of abnormality recorded at 48 h, 10 and 45 days of exposure. DNA damage was recorded in all herbicides treatments. Thyroxin increased only in GABH treatment. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) significantly increased in GBH treatment, indicating a GBH-neurotoxic effect. Glutathione S-transferase decreased in GABH and GBH-GABH treatments, while catalase decreased in individual GBH and GABH treatments. Overall, teratogenicity, DNA damage, hormonal disruption (T4), and oxidative stress were greater in GABH-treated tadpoles than GBH-treated tadpoles. This study also highlights the robust chemical interaction between the active ingredients of both herbicides, which is reflected on antagonisms in most of analyzed biomarkers, as well as potentiation and additivity in others. Based on our results, the GABH had a higher toxicity than GBH for amphibian tadpoles.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| | - German Lener
- Instituto de Investigaciones en Físico-Química de Córdoba-CONICET. Departamento de Química Teórica y Computacional. Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Julieta Peluso
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (IIIA-UNSAM)-CONICET, Campus Miguelete, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina Aronzon
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (IIIA-UNSAM)-CONICET, Campus Miguelete, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - María F Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Luisina D Demonte
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|