1
|
Ma N, Bansal MB, Chu J, Woodward M, Branch AD. Heavy metals are liver fibrosis risk factors in people without traditional liver disease etiologies. J Environ Sci (China) 2025; 155:329-342. [PMID: 40246469 PMCID: PMC12007413 DOI: 10.1016/j.jes.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 04/19/2025]
Abstract
Liver fibrosis is an important predictor of mortality. Liver disease case definitions changed in 2023. These definitions include an easily over-looked group with no traditional etiology (NTE) of liver disease and no steatosis. We analyzed heavy metals and cardiometabolic risk factors (CMRFs) as fibrosis risk factors in the NTE group and in people with another newly-defined condition, metabolic dysfunction-associated steatotic liver disease (MASLD). Two National Health and Nutrition Examination Survey (NHANES) datasets were analyzed. In NHANES III (1988-1994), fibrosis and steatosis were defined by Fibrosis-4 scores and ultrasound, respectively, in 12,208 adults. In NHANES 2017-2020, fibrosis and steatosis were defined by transient elastography and the controlled attenuation parameter (CAP) in 5525 adults. Fibrosis risk factors varied over time and by race/ethnicity. In the earlier dataset, NTE-fibrosis had a positive, non-significant, association with high blood levels of lead (Pb). MASLD-fibrosis was associated with Pb (OR = 2.5, 95 % CI, 1.4-4.4) and not with CMRFs in non-Hispanic Blacks but was associated with CMRFs in non-Hispanic Whites. Heavy metal exposures fell between the two time periods. In the later dataset, NTE-fibrosis was associated with Pb (OR = 4.2, 95 % CI, 2.6-6.8) and cadmium (OR = 1.8, 95 % CI, 1.1-3.0) in the total population, but not with most CMRFs. MASLD-fibrosis was strongly-significantly associated with CMRFs in every racial/ethnic group except non-Hispanic Blacks in whom CMRFs were only weakly associated with MASLD-fibrosis. Heavy metal pollution, which disproportionately impacts minoritized populations, decreased over time, but remained strongly associated with liver fibrosis in people lacking traditional etiological factors for liver disease.
Collapse
Affiliation(s)
- Ning Ma
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Meena B Bansal
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Mark Woodward
- The George Institute for Global Health, School of Public Health, Imperial College London, London, W12 7RZ, UK; The George Institute for Global Health, University of New South Wales, Sydney, 2000, Australia
| | - Andrea D Branch
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, 10029, USA.
| |
Collapse
|
2
|
Wang R, Yan J, Zhang H, Zhu X, Xie D, Wang T, Li X. New insights into heavy metal cadmium-induced liver injury: prominent role of programmed cell death mechanisms. Toxicology 2025:154169. [PMID: 40318836 DOI: 10.1016/j.tox.2025.154169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
The heavy metal cadmium (Cd) is an important environmental factor that induces liver injury and contributes to liver disease. Ongoing research aims to refine our understanding of the pathogenesis of cadmium-induced liver injury and the interactions between the various mechanisms. Oxidative stress, described as a pathophysiological basis of liver injury, is a process in which reactive oxygen species are generated, causing the destruction of hepatocyte structure and cellular dysfunction. Additionally, the activation of oxidative stress downstream signals regulates several forms of cell death, such as apoptosis, necroptosis, autophagy, ferroptosis, and pyroptosis, which significantly contributes to liver damage. Furthermore, the interplay between different types of programmed cell death highlights the complexity of liver injury mechanisms. This review summarizes the role of programmed cell death in Cd-induced liver injury and explores the relationships between different programmed cell death pathways, which is expected to provide new insights into the mechanisms of Cd-induced liver injury.
Collapse
Affiliation(s)
- Ruipeng Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Jun Yan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, China; Cancer Prevention and Treatment Center of Lanzhou University School of Medicine, Lanzhou 730000, China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, China
| | - Honglong Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Xingwang Zhu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Danna Xie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Tingting Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, China; Cancer Prevention and Treatment Center of Lanzhou University School of Medicine, Lanzhou 730000, China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, China; Clinical Research Center for General Surgery of Gansu Province, Lanzhou 730000, China.
| |
Collapse
|
3
|
Cui L, Zhang Y, Zhang Y, Chu J, Kong Q, Zhou Y, Zhang H. Effect of 4-n-nonylphenol and cadmium co-exposure on liver apoptosis and lipid metabolism in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118165. [PMID: 40209349 DOI: 10.1016/j.ecoenv.2025.118165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Nonylphenol (NP), a typical nonionic surfactant intermediate, is widely found in aquatic environments and exhibits biological toxicity. In aquatic environments, organisms face risks from co-exposure to NPs and the heavy metal cadmium (Cd); however, the combined toxicity of both has not been well studied. Therefore, this study aimed to evaluate the histological changes, antioxidant capacity, inflammation, and transcriptional responses in the zebrafish liver following exposure to environmental concentrations of 4-n-NP (45.38 and 453.8 nM) and Cd (54.55 nM), both individually and in combination experiments, over 28 days. Our results indicated that the 453.8 nM 4-n-NP-treated group generated significant oxidative stress during the initial 12 days, while on day 28, the combination of high concentrations of 4-n-NP and Cd also produced significant oxidative stress. Additionally, we observed mitochondrial swelling and endoplasmic reticulum expansion in liver cells across the various treatment groups. Significant dehydration of hepatocyte nuclei was observed in the combined exposure group, along with the deformation of nucleoli and solidification of margins. Combined exposure had a synergistic effect and triggered liver injury in zebrafish. The LPS concentration significantly increased in the NlCl group but decreased in the NhCl group, while the total bile acids exhibited 2.14-fold and 1.24-fold increases, respectively. Combined exposure disrupted liver lipopolysaccharide and bile acids in zebrafish. Meanwhile, combined exposure to 453.8 nM 4-n-NP and Cd caused apoptosis and induced DNA damage repair mechanisms, amplifying the toxic effects of each pollutant. Thus, this study contributes to our understanding of the health risks to aquatic organisms from the co-existence of nonionic surfactants and heavy metals. CAPSULE ABSTRACT: We revealed the effects of single and combined exposure to nonylphenols and heavy metals on the zebrafish liver in terms of enzyme activity, inflammation, degree of cellular damage, and gene expression. The accumulation of cellular reactive oxygen species and the occurrence of lipid peroxidation induced more severe cellular structural and functional damage, amplifying the singular toxic effect of the pollutants. Combined exposure showed synergistic effects, inhibiting cell growth and inducing DNA damage repair.
Collapse
Affiliation(s)
- Lihua Cui
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong 250014, PR China
| | - Yu Zhang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong 250014, PR China
| | - Youru Zhang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong 250014, PR China
| | - Jizhuang Chu
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong 250014, PR China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong 250014, PR China; Dongying Institute, Shandong Normal University, Dongying, Shandong 257092, PR China
| | - Yumiao Zhou
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong 250014, PR China.
| |
Collapse
|
4
|
Chen C, Han X, Xu N, Shen W, Wang G, Jiao J, Kong W, Yu J, Fu J, Pi J. Nrf2 deficiency aggravates hepatic cadmium accumulation, inflammatory response and subsequent injury induced by chronic cadmium exposure in mice. Toxicol Appl Pharmacol 2025; 497:117263. [PMID: 39938575 DOI: 10.1016/j.taap.2025.117263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/08/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Prolonged cadmium (Cd) exposure leads to Cd accumulation and oxidative damage in the liver. Nuclear factor erythroid-derived 2-like 2 (NRF2) plays a vital role in preventing acute hepatic toxicity of Cd. However, the participation of NRF2 in chronic liver injury, especially in the context of chronic Cd exposure, has rarely been investigated. Here, we explored the involvement of NRF2 in Cd-induced liver injury using Nrf2 knockout (Nrf2-KO) mice chronically exposed to Cd in drinking water (100 or 200 ppm) for up to 24 weeks. We found that absence of Nrf2 exacerbated the Cd-induced liver fibrosis, as evaluated by Masson's trichrome staining and increased expression of fibrosis-associated proteins. Mechanistic investigations using the liver tissues from the animals with 100 ppm Cd exposure for 16 weeks, in which no obvious hepatic fibrosis was observed in both genotypes, revealed that there were diminished expressions of antioxidant and detoxification genes and elevated Cd levels in the blood and liver of Nrf2-KO mice compared with those in wild-type (Nrf2-WT) under basal and/or Cd-exposed conditions. Notably, a bulk RNA-seq of the liver tissues showed lowered mRNA levels of genes related to xenobiotic and glutathione metabolic processes, but elevated mRNA expression of leukocyte migration pathway and adaptive immune pathway in Nrf2-KO mice relative to Nrf2-WT controls, either under basal or Cd-exposed conditions. Our findings demonstrated that Nrf2-KO mice are vulnerable to chronic Cd exposure-induced liver fibrosis, which is partially attributed to a compromised NRF2-mediated antioxidant response, lowered metallothionein expression and subsequent Cd accumulation and inflammatory response in the tissues.
Collapse
Affiliation(s)
- Chengjie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Xue Han
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Hangtou Hesha Community Health Service Center, Pudong New Area, Shanghai 201317, PR China
| | - Ning Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Wei Shen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Gang Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Experimental and Teaching Center, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Junying Jiao
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Weiwei Kong
- Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiaxin Yu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Jingqi Fu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
5
|
Wei Z, Liu J, Wang N, Wei K. Kidney function mediates the association of per- and poly-fluoroalkyl substances (PFAS) and heavy metals with hepatic fibrosis risk. ENVIRONMENTAL RESEARCH 2024; 263:120092. [PMID: 39357638 DOI: 10.1016/j.envres.2024.120092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Heavy metals and per- and polyfluoroalkyl substances (PFAS) are significantly associated with the risk of hepatic fibrosis. However, the potential mediating effect of kidney function in the relationship between heavy metals, PFAS, and hepatic fibrosis risk remains unexplored. This research gap limits the development of hepatic fibrosis prevention and treatment strategies. To address this, this study conducts a cross-sectional analysis based on data from 10,870 participants in NHANES 2005-2018 to explore the relationship between heavy metals, PFAS, and the risk of hepatic fibrosis, as well as the mediating effect of kidney function. Participants with a Fibrosis-4 index <1.45 are defined as not having hepatic fibrosis in this study. Results from generalized linear regression models and weighted quantile sum regression models indicate that both individual and combined exposures to heavy metals and PFAS are positively associated with the risk of hepatic fibrosis. Nonlinear exposure-response functions suggest that there may be a threshold for the relationship between heavy metals (except mercury) and PFAS with the risk of hepatic fibrosis. Furthermore, heavy metals and PFAS increase the risk of kidney function impairment. After stratification by kidney function stage, the relationship between heavy metals (except lead) and proteinuria is not significant, while PFAS show a significant negative association with proteinuria. The decline in kidney function has a significant mediating effect in the relationship between heavy metals and PFAS and the risk of hepatic fibrosis, with mediation effect proportions all above 20%. The findings suggest that individual or combined exposure to heavy metals and PFAS does not increase the risk of hepatic fibrosis until a certain threshold is reached, and the mediating role of declining kidney function is very important. These results highlight the need to consider kidney function in the context of hepatic fibrosis risk assessment and management.
Collapse
Affiliation(s)
- Zhengqi Wei
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Jincheng Liu
- Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, 430000, China
| | - Na Wang
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China.
| | - Keke Wei
- Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, 430000, China.
| |
Collapse
|
6
|
Cirovic A, Satarug S, Jevtic J, Ivanovski A, Orisakwe OE, Jankovic S, Cirovic A. The overlooked impact of cadmium on the progression of chronic hepatitis and the onset of renal failure in advanced cirrhosis. J Trace Elem Med Biol 2024; 86:127542. [PMID: 39395285 DOI: 10.1016/j.jtemb.2024.127542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
The mechanism of hepatocyte destruction in chronic hepatitis is not completely understood, while renal failure in individuals with advanced cirrhosis is a significant concern. It is well known that smokers who are chronically infected with hepatitis B and C viruses (HBV, HCV) have a poor prognosis. In the present review, we propose a novel hypothesis that environmental exposure to a nephrotoxic metal pollutant, cadmium (Cd) may contribute to hepatocyte destruction and, subsequently, affect the duration of chronic hepatitis. The metal binding protein, metallothionein (MT) sequesters cadmium as CdMT complexes, and effectively neutralize its adverse effects. Cadmium can cause the damage to hepatocytes, only when it is in an unbound form. In addition to its ability to bind cadmium, MT can act as a scavenger of reactive oxygen species (ROS). However, the cellular MT levels may decrease, when ROS is excessively produced under the pathologic chronic viral hepatitis conditions, especially while the cellular levels of zinc may also be low. Zinc is an endogenous inducer of MT, and is required for maximal MT expression. High ROS levels in the hepatocytes diminishes MT binding to metals. Consequently, the proportion of unbound Cd is increased and thus there is more hepatic damage. Hepatic damage leads to a copious release of CdMT into the circulation. This significant cadmium load, which occurs after hepatic damage, and in some cases, muscle atrophy, induces kidney damage with resultant renal failure in advanced cirrhosis.
Collapse
Affiliation(s)
- Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, Belgrade 11000, Serbia
| | - Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia.
| | - Jovan Jevtic
- Faculty of Medicine, Institute of Pathology, University of Belgrade, Dr Subotica 1, Belgrade 11000, Serbia
| | - Ana Ivanovski
- Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, Belgrade 11000, Serbia
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Choba, Port Harcourt 5323, Nigeria; Advanced Research Centre, European University of Lefke, Lefke, Northern Cyprus, TR-10, Mersin, Turkey
| | - Sasa Jankovic
- Institute of Meat Hygiene and Technology, Kacanskog 13, Belgrade 11040, Serbia
| | - Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, Belgrade 11000, Serbia.
| |
Collapse
|
7
|
Zhao S, Yin G, Zhao M, Wu J, Liu X, Wei L, Xu Q, Xu J. Inflammation as a pathway for heavy metal-induced liver damage-Insights from a repeated-measures study in residents exposed to metals and bioinformatics analysis. Int J Hyg Environ Health 2024; 261:114417. [PMID: 38968837 DOI: 10.1016/j.ijheh.2024.114417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/08/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Epidemiological studies on heavy metal exposure and liver injury are predominantly cross-sectional, lacking longitudinal data and exploration of potential mechanisms. METHOD We conducted a repeated-measures study in Northeast China from 2016 to 2019, involving 322 participants. Linear mixed models (LMM) and Bayesian kernel machine regression (BKMR) were employed to explore the associations between individual and mixed blood metal concentrations [chromium (Cr), cadmium (Cd), vanadium (V), manganese (Mn), lead (Pb)] and liver function biomarkers [alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB), globulin (GLB), total protein (TP)]. Mediation and enrichment analyses were used to determine whether the inflammatory response is a critical pathway for heavy metal-induced liver damage. RESULT We obtained a total of 958 observations. The results from LMM and BKMR indicated significant associations between individual and mixed heavy metals and liver function biomarkers. Longitudinal analysis revealed associations between Cd and the annual increase rate of ALT (β = 2.61; 95% CI: 0.97, 4.26), the annual decrease rate of ALB (β = -0.21; 95% CI: -0.39, -0.03), Mn and the annual increase rate of GLB (β = 0.38; 95% CI: 0.05, 0.72), and V and the annual decrease rate of ALB/GLB (β = -1.15; 95% CI: -2.00, -0.31). Mediation analysis showed that high-sensitivity C-reactive protein (hsCRP) mediated the associations between Cd and AST, TP, with mediation effects of 27.7% and 13.4%, respectively. Additionally, results from Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses supported the role of inflammatory response pathways. CONCLUSION Our findings indicate that heavy metal exposure leads to liver damage, with the inflammatory response potentially serving as a crucial pathway in this process. This study offers a novel perspective on understanding heavy metal-induced liver injury and provides insights for preventive measures against the health damage caused by heavy metals.
Collapse
Affiliation(s)
- Shuanzheng Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Guohuan Yin
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jingtao Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Xiaolin Liu
- Department of Epidemiology and Biostatistics, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Lanping Wei
- Jinzhou Central Hospital, Jinzhou, 121001, Liaoning, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
8
|
Chen Z, Mo J, Yang Q, Guo Z, Li X, Xie D, Deng C. MSC-derived exosomes mitigate cadmium-induced male reproductive injury by ameliorating DNA damage and autophagic flux. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116306. [PMID: 38631218 DOI: 10.1016/j.ecoenv.2024.116306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/16/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
Cadmium, an environmental toxicant, severely impairs male reproductive functions and currently lacks effective clinical treatments. Mesenchymal stem cell-derived exosomes (MSC-Exos) are increasingly recognized as a potential alternative to whole-cell therapy for tissue injury and regeneration. This study aims to investigate the protective effects of MSC-Exos against cadmium toxicity on male reproduction. Our findings reveal that MSC-Exos treatment significantly promotes spermatogenesis, improves sperm quality, and reduces germ cell apoptosis in cadmium-exposed mice. Mechanistically, MSC-Exos dramatically mitigate cadmium-induced cell apoptosis in a spermatogonia cell line (GC-1 spg) in vitro by reducing DNA damage and promoting autophagic flux. These results suggest that MSC-Exos have a protective effect on cadmium-induced germ cell apoptosis by ameliorating DNA damage and autophagy flux, demonstrating the therapeutic potential of MSC-Exos for cadmium toxicity on male reproduction.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, CN 510080, China
| | - Jiahui Mo
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, CN 510080, China
| | - Qiyun Yang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, CN 510080, China
| | - Zexin Guo
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, CN 510080, China; Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, CN 510080, China
| | - Xinyu Li
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, CN 510080, China
| | - Dongmei Xie
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, CN 510080, China.
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, CN 510080, China.
| |
Collapse
|
9
|
Xie D, Yan J, Zhang H, Zhang H, Nie G, Zhu X, Li X. Cadmium exacerbates liver injury by remodeling ceramide metabolism: Multiomics and laboratory evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171405. [PMID: 38432385 DOI: 10.1016/j.scitotenv.2024.171405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal that primarily targets the liver. Cd exposure disrupts specific lipid metabolic pathways; however, the underlying mechanisms remain unclear. This study aimed to investigate the lipidomic characteristics of rat livers after Cd exposure as well as the potential mechanisms of Cd-induced liver injury. Our analysis of established Cd-exposed rat and cell models showed that Cd exposure resulted in liver lipid deposition and hepatocyte damage. Lipidomic detection, transcriptome sequencing, and experimental analyses revealed that Cd mainly affects the sphingolipid metabolic pathway and that the changes in ceramide metabolism are the most significant. In vitro experiments revealed that the inhibition of ceramide synthetase activity or activation of ceramide decomposing enzymes ameliorated the proapoptotic and pro-oxidative stress effects of Cd, thereby alleviating liver injury. In contrast, the exogenous addition of ceramide aggravated liver injury. In summary, Cd increased ceramide levels by remodeling ceramide synthesis and catabolism, thereby promoting hepatocyte apoptosis and oxidative stress and ultimately aggravating liver injury. Reducing ceramide levels can serve as a potential protective strategy to mitigate the liver toxicity of Cd. This study provides new evidence for understanding Cd-induced liver injury at the lipidomic level and insights into the health risks and toxicological mechanisms associated with Cd.
Collapse
Affiliation(s)
- Danna Xie
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Jun Yan
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Honglong Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Haijun Zhang
- Department of Anesthesiology, the First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Guole Nie
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Xingwang Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Xun Li
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou 730000, China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, China; Center for Cancer Prevention and Treatment, School of Medicine, Lanzhou University, Lanzhou 730000, China; Gansu Provincial Institute of Hepatobiliary and Pancreatic Surgery, Lanzhou 730000, China.
| |
Collapse
|
10
|
Liu T, Yuan X, Luo K, Xie C, Zhou L. Molecular engineering of a new method for effective removal of cadmium from water. WATER RESEARCH 2024; 253:121326. [PMID: 38377928 DOI: 10.1016/j.watres.2024.121326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Cadmium (Cd) is a widespread and highly toxic environmental pollutant, seriously threatening animal and plant growth. Therefore, monitoring and employing robust tools to enrich and remove Cd from the environment is a major challenge. In this work, by conjugating a fluorescent indicator (CCP) with a functionalized glass slide, a special composite material (CCPB) was constructed to enrich, remove, and monitor Cd2+ in water rapidly. Then Cd2+ could be effectively eluted by immersing the Cd-enriched CCPB in an ethylenediaminetetraacetic acid (EDTA) solution. With this, the CCPB was continuously reused. Its recovery of Cd2+was above and below 100 % after multiple uses by flame atomic absorption spectrometry (FAAS), which was excellent for practical use in enriching and removing Cd2+ in real aqueous samples. Therefore, CCPB is an ideal material for monitoring, enriching, and removing Cd2+ in wastewater, providing a robust tool for future practical applications of Cd enrichment and removal in the environment.
Collapse
Affiliation(s)
- Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
11
|
Yin G, Zhao S, Zhao M, Xu J, Ge X, Wu J, Zhou Y, Liu X, Wei L, Xu Q. Joint and interactive effects of metal mixtures on liver damage: Epidemiological evidence from repeated-measures study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116178. [PMID: 38461577 DOI: 10.1016/j.ecoenv.2024.116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The impact of heavy metals on liver function has been examined in numerous epidemiological studies. However, these findings lack consistency and longitudinal validation. METHODS In this study, we conducted three follow-up surveys with 426 participants from Northeast China. Blood and urine samples were collected, along with questionnaire information. Urine samples were analyzed for concentrations of four metals (chromium [Cr], cadmium [Cd], lead [Pb], and manganese [Mn]), while blood samples were used to measure five liver function indicators (alanine aminotransferase [ALT], aspartate aminotransferase [AST], albumin [ALB], globulin [GLB], and total protein [TP]). We utilized a linear mixed-effects model (LME) to explore the association between individual heavy metal exposure and liver function. Joint effects of metal mixtures were investigated using quantile g-computation and Bayesian kernel machine regression (BKMR). Furthermore, we employed BKMR and Marginal Effect models to examine the interaction effects between metals on liver function. RESULTS The LME results demonstrated a significant association between urinary heavy metals (Cr, Cd, Pb, and Mn) and liver function markers. BKMR results indicated positive associations between heavy metal mixtures and ALT, AST, and GLB, and negative associations with ALB and TP, which were consistent with the g-comp results. Synergistic effects were observed between Cd-Cr on ALT, Mn-Cr and Cr-Pb on ALB, while an antagonistic effect was found between Mn-Pb and Mn-Cd on ALB. Additionally, synergistic effects were observed between Mn-Cr on GLB and Cd-Cr on TP. Furthermore, a three-way antagonistic effect of Mn-Pb-Cr on ALB was identified. CONCLUSION Exposure to heavy metals (Cr, Cd, Mn, Pb) is associated with liver function markers, potentially leading to liver damage. Moreover, there are joint and interaction effects among these metals, which warrant further investigation at both the population and mechanistic levels.
Collapse
Affiliation(s)
- Guohuan Yin
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Shuanzheng Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jingtao Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yifan Zhou
- Civil Aviation Medicine Center, Civil Aviation Administration of China, Beijing 100123, China
| | - Xiaolin Liu
- Department of Epidemiology and Biostatistics, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Lanping Wei
- Jinzhou Central Hospital, Jinzhou, Liaoning 121001, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
12
|
Motta CM, Rosati L, Cretì P, Montinari MR, Denre P, Simoniello P, Fogliano C, Scudiero R, Avallone B. Histopathological effects of long-term exposure to realistic concentrations of cadmium in the hepatopancreas of Sparus aurata juveniles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106858. [PMID: 38325058 DOI: 10.1016/j.aquatox.2024.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
In recent decades, cadmium has emerged as an environmental stressor in aquatic ecosystems due to its persistence and toxicity. It can enter water bodies from various natural and anthropogenic sources and, once introduced into aquatic systems, can accumulate in sediments and biota, leading to bioaccumulation and biomagnification in the food chain. For this reason, the effects of cadmium on aquatic life remain an area of ongoing research and concern. In this paper, a multidisciplinary approach was used to assess the effects of long-term exposure to an environmental concentration on the hepatopancreas of farmed juveniles of sea bream, Sparus aurata. After determining metal uptake, metallothionein production was assessed to gain insight into the organism's defence response. The effects were also assessed by histological and ultrastructural analyses. The results indicate that cadmium accumulates in the hepatopancreas at significant concentrations, inducing structural and functional damage. Despite the parallel increase in metallothioneins, fibrosis, alterations in carbohydrate distribution and endocrine disruption were also observed. These effects would decrease animal fitness although it did not translate into high mortality or reduced growth. This could depend on the fact that the animals were farmed, protected from the pressure deriving from having to search for food or escape from predators. Not to be underestimated is the return to humans, as this species is edible. Understanding the behaviour of cadmium in aquatic systems, its effects at different trophic levels and the potential risks to human health from the consumption of contaminated seafood would therefore be essential for informed environmental management and policy decisions.
Collapse
Affiliation(s)
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Patrizia Cretì
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Maria Rosa Montinari
- Chair of History of Medicine, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Pabitra Denre
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Palma Simoniello
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy
| | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Rosaria Scudiero
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
13
|
Gao X, Li G, Pan X, Xia J, Yan D, Xu Y, Ruan X, He H, Wei Y, Zhai J. Environmental and occupational exposure to cadmium associated with male reproductive health risk: a systematic review and meta-analysis based on epidemiological evidence. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7491-7517. [PMID: 37584848 DOI: 10.1007/s10653-023-01719-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
There is an abundance of epidemiological evidence and animal experiments concerning the correlation between cadmium exposure and adverse male reproductive health outcomes. However, the evidence remains inconclusive. We conducted a literature search from PubMed, Embase, and Web of Science over the past 3 decades. Pooled r and 95% confidence intervals (CIs) were derived from Cd levels of the type of biological materials and different outcome indicators to address the large heterogeneity of existing literature. Cd was negatively correlated with semen parameters (r = - 0.122, 95% CI - 0.151 to - 0.092) and positively correlated with sera sex hormones (r = 0.104, 95% CI 0.060 to 0.147). Among them, Cd in three different biological materials (blood, semen, and urine) was negatively correlated with semen parameters, while among sex hormones, only blood and urine were statistically positively correlated. In subgroup analysis, blood Cd was negatively correlated with semen density, sperm motility, sperm morphology, and sperm count. Semen Cd was negatively correlated with semen concentration. As for serum sex hormones, blood Cd had no statistical significance with three hormones, while semen Cd was negatively correlated with testosterone. In summary, cadmium exposure might be associated with the risk of a decline in sperm quality and abnormal levels of sex hormones.
Collapse
Affiliation(s)
- Xin Gao
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Guangying Li
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Xingchen Pan
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Jiajia Xia
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Di Yan
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Yang Xu
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Xiang Ruan
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China.
| |
Collapse
|
14
|
Tang P, Liao Q, Tang Y, Yao X, Du C, Wang Y, Song F, Deng S, Wang Y, Qiu X, Yang F. Independent and combined associations of urinary metals exposure with markers of liver injury: Results from the NHANES 2013-2016. CHEMOSPHERE 2023; 338:139455. [PMID: 37429383 DOI: 10.1016/j.chemosphere.2023.139455] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Heavy metals entering the human body could cause damage to a variety of organs. However, the combined harmful effects of exposure to various metals on liver function are not well understood. The purpose of the study was to investigate the independent and joint relationships between heavy metal exposure and liver function in adults. METHODS The study involved 3589 adults from the National Health and Nutrition Examination Survey. Concentrations of urinary metals, including arsenic (As), cadmium (Cd), lead (Pb), antimony (Sb), barium (Ba), thallium (Tl), tungsten (W), uranium (U), were determined in urine using inductively coupled plasma mass spectrometry. Data for liver function biomarkers included alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transaminase (GGT), and alkaline phosphatase (ALP). Survey-weighted linear regression and quantile g-computation (qgcomp) were employed to evaluate the relationship of urinary metals with the markers of liver injury. RESULTS Cd, U and Ba were found to have positive correlations with ALT, AST, GGT, and ALP in the survey-weighted linear regression analyses. According to the qgcomp analyses, the total metal mixture was positively correlated with ALT (percent change: 8.15; 95% CI: 3.84, 12.64), AST (percent change: 5.55; 95% CI: 2.39, 8.82), GGT (percent change: 14.30; 95% CI: 7.81, 21.18), and ALP (percent change: 5.59; 95% CI: 2.65, 8.62), and Cd, U, and Ba were the main contributors to the combined effects. Positive joint effects were observed between Cd and U on ALT, AST, GGT and ALP, and U and Ba had positive joint effects on ALT, AST and GGT. CONCLUSION Exposures to Cd, U, and Ba were individually associated with multiple markers of liver injury. Mixed metal exposure might be adversely correlated with markers of liver function. The findings indicated the potential harmful effect of metal exposure on liver function.
Collapse
Affiliation(s)
- Peng Tang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China; Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yan Tang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xueqiong Yao
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Can Du
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yangcan Wang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Fengmei Song
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shuxiang Deng
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yue Wang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Fei Yang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| |
Collapse
|
15
|
Sun Z, Qin J, Yuan H, Guo M, Shang M, Niu S, Li Y, Li Q, Xue Y. Recombinant human metallothionein-III alleviates oxidative damage induced by copper and cadmium in Caenorhabditis elegans. J Appl Toxicol 2023. [PMID: 36918407 DOI: 10.1002/jat.4460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023]
Abstract
Recombinant human metallothionein III (rh-MT-III) is a genetically engineered product produced by Escherichia coli fermentation technology. Its molecules contain abundant reducing sulfhydryl groups, which possess the ability to bind heavy metal ions. The present study was to evaluate the binding effects of rh-MT-III against copper and cadmium in vitro and to investigate the antioxidant activity of rh-MT-III using Caenorhabditis elegans in vivo. For in vitro experiments, the binding rates of copper and cadmium were 91.4% and 97.3% for rh-MT-III at a dosage of 200 μg/mL at 10 h, respectively. For in vivo assays, the oxidative stress induced by copper (CuSO4 , 10 μg/mL) and cadmium (CdCl2 , 10 μg/mL) was significantly reduced after 72 h of exposure to different doses of rh-MT-III (5-500 μg/mL), indicated by restoring locomotion behavior and growth, and reducing malondialdehyde and reactive oxygen species levels in C. elegans. Moreover, rh-MT-III decreased the deposition of lipofuscin and fat content, which could delay the progression of aging. In addition, rh-MT-III (500 μg/mL) promoted the up-regulation of Mtl-1 and Mtl-2 gene expression in C. elegans, which could enhance the resistance to oxidative stress by increasing the enzymatic activity of antioxidant defense system and scavenging free radicals. The results indicated that supplemental rh-MT-III could effectively protect C. elegans from heavy metal stress, providing an experimental basis for the future application and development of rh-MT-III.
Collapse
Affiliation(s)
- Zuoyi Sun
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jianxin Qin
- Suzhou Hvha Medical Technology Development Co., Ltd., Changshu, China
| | - Hailiang Yuan
- Suzhou Hvha Medical Technology Development Co., Ltd., Changshu, China
| | - Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Mengting Shang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yunjing Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qiang Li
- Changshu Municipal Market Supervision Administration, Changshu, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
16
|
Niture S, Gadi S, Lin M, Qi Q, Niture SS, Moore JT, Bodnar W, Fernando RA, Levine KE, Kumar D. Cadmium modulates steatosis, fibrosis, and oncogenic signaling in liver cancer cells by activating notch and AKT/mTOR pathways. ENVIRONMENTAL TOXICOLOGY 2023; 38:783-797. [PMID: 36602393 DOI: 10.1002/tox.23731] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) is an environmental pollutant that increases hepatotoxicity and the risk of liver diseases. In the current study, we investigated the effect of a physiologically relevant, low concentration of Cd on the regulation of liver cancer cell proliferation, steatosis, and fibrogenic/oncogenic signaling. Exposure to low concentrations of Cd increased endogenous reactive oxygen species (ROS) production and enhanced cell proliferation in a human bipotent progenitor cell line HepaRG and hepatocellular carcinoma (HCC) cell lines. Acute exposure of Cd increased Jagged-1 expression and activated Notch signaling in HepaRG and HCC cells HepG2 and SK-Hep1. Cd activated AKT/mTOR signaling by increasing phosphorylation of AKT-S473 and mTOR-S-4448 residues. Moreover, a low concentration of Cd also promoted cell steatosis and induced fibrogenic signaling in HCC cells. Chronic exposure to low concentrations of Cd-activated Notch and AKT/mTOR signaling induced the expression of pro-inflammatory cytokines tumor necrosis factor-alpha (TNFα) and its downstream target TNF-α-Induced Protein 8 (TNFAIP8). RNA-Seq data revealed that chronic exposure to low concentrations of Cd modulated the expression of several fatty liver disease-related genes involved in cell steatosis/fibrosis in HepaRG and HepG2 cells. Collectively, our data suggest that low concentrations of Cd modulate steatosis along with fibrogenic and oncogenic signaling in HCC cells by activating Notch and AKT/mTOR pathways.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, North Carolina, USA
- NCCU-RTI Center for Applied Research in Environmental Sciences (CARES), RTI International, Durham, North Carolina, USA
| | - Sashi Gadi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, North Carolina, USA
| | - Minghui Lin
- The Fourth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qi Qi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, North Carolina, USA
| | - Samiksha S Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, North Carolina, USA
| | - John T Moore
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, North Carolina, USA
| | - Wanda Bodnar
- NCCU-RTI Center for Applied Research in Environmental Sciences (CARES), RTI International, Durham, North Carolina, USA
| | - Reshan A Fernando
- NCCU-RTI Center for Applied Research in Environmental Sciences (CARES), RTI International, Durham, North Carolina, USA
| | - Keith E Levine
- NCCU-RTI Center for Applied Research in Environmental Sciences (CARES), RTI International, Durham, North Carolina, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, North Carolina, USA
- NCCU-RTI Center for Applied Research in Environmental Sciences (CARES), RTI International, Durham, North Carolina, USA
| |
Collapse
|
17
|
Sun XL, Phuc HD, Okamoto R, Kido T, Oanh NTP, Manh HD, Anh LT, Ichimori A, Nogawa K, Suwazono Y, Nakagawa H. A 30-year follow-up study in a former cadmium-polluted area of Japan: the relationship between cadmium exposure and β 2-microglobulin in the urine of Japanese people. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23079-23085. [PMID: 36316551 DOI: 10.1007/s11356-022-23818-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/21/2022] [Indexed: 05/21/2023]
Abstract
Cadmium (Cd) is an environmental pollutant. Long-term exposure to Cd may lead to adverse health effects in humans. Our epidemiological studies showed that urinary Cd (U-Cd) concentrations increased from 2008 through 2014, although they decreased from 1986 through 2008. The aim of this study was to elucidate the long-term effects of the changing trend of cadmium exposure levels (U-Cd) on residents' renal function within 30 years after Cd exposure ceased. In 2016, urine samples were collected from each subject by visiting 20 elderly Japanese people (9 females and 11 males) living in the Kakehashi River basin, a previously Cd-polluted area in Ishikawa, Japan. The geometric means of the β2-microglobulin (β2-MG) and urinary Cd (U-Cd) continued to increase from 2014 until 2016. Furthermore, Cd concentration and β2-MG in urine were still higher than those in the non-polluted areas in Japan. Multivariate linear regression was performed to associate β2-MG (dependent variable) and U-Cd with sex and age (independent variables). Significant correlations were found among age, U-Cd, and β2-MG, and these were clearer in females than in males. In summary, we propose that three decades after Cd exposure ceased, age is associated with β2-MG more strongly than Cd for bodily impact. Moreover, renal tubular dysfunction is irreversible and worsens after exposure to Cd, with females being more sensitive to exposure.
Collapse
Affiliation(s)
- Xian Liang Sun
- School of Medicine, and The First Affiliated Hospital, Huzhou University, 759 2nd Ring East Road, Huzhou, 313000, China
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
- Faculty of Health Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 920-0942, Japan
| | - Hoang Duc Phuc
- Faculty of Health Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 920-0942, Japan
- Hanoi Center for Control Disease, No. 70 Nguyen Chi Thanh, Dong Da, Ha Noi, Vietnam
| | - Rie Okamoto
- Faculty of Health Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 920-0942, Japan
| | - Teruhiko Kido
- Faculty of Health Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 920-0942, Japan.
| | - Nguyen Thi Phuong Oanh
- Faculty of Health Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 920-0942, Japan
| | - Ho Dung Manh
- Faculty of Pharmacy, Lac Hong University, No. 10, Huynh Van Nghe, Bien Hoa, Dong Nai, Vietnam
| | - Le Thai Anh
- Faculty of Health Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 920-0942, Japan
| | - Akie Ichimori
- Faculty of Health Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 920-0942, Japan
| | - Kazuhiro Nogawa
- Department of Occupational and Environmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuoku, Chiba, Japan
| | - Yasushi Suwazono
- Department of Occupational and Environmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuoku, Chiba, Japan
| | - Hideaki Nakagawa
- Department of Epidemiology and Public Health, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, Japan
| |
Collapse
|
18
|
Huang T, Chen J, Zhang Y, Chen Y, Xu C, Guo J, Ming H. Circ_0027470 promotes cadmium exposure-induced prostatic fibrosis via sponging miRNA-1236-3p and stimulating SHH signaling pathway. J Appl Toxicol 2023. [PMID: 36617218 DOI: 10.1002/jat.4436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal pollutant and serves as an important environmental endocrine-disrupting chemical. Cd exposure is believed to can enhance the risks of age-related disorders including benign prostatic hyperplasia (BPH). This study was to investigate the harms of Cd exposure on mice prostate and human nonmalignant prostate epithelial RWPE-1 cells. Mice prostate fibrosis was evaluated by visualizing the prostatic collagen deposition via Masson and Sirius red staining, and detecting the content of hydroxyproline. Additionally, the epithelial-mesenchymal transition (EMT), primary ciliogenesis and SHH signaling pathways in both mice prostate and RWPE-1 cells were evaluated. It was found that Cd exposure stimulated prostatic collagen deposition, EMT and primary ciliogenesis, as well as enhanced the circ_0027470 level and reduced the miRNA-1236-3p level. Circ_0027470 functioned as a sponge of miRNA-1236-3p, which had the inhibiting target of SHH. The whole results showed that circ_0027470 promoted Cd exposure-induced prostatic fibrosis via sponging miRNA-1236-3p and subsequently stimulating SHH signaling pathway. This study shed a light on a novel molecular mechanism involved in circRNA for Cd exposure-induced prostate deficits.
Collapse
Affiliation(s)
- Tianqi Huang
- Department of Pharmacy, School of Medicine, Jianghan University, Wuhan, China
| | - Jinglou Chen
- Department of Pharmacy, School of Medicine, Jianghan University, Wuhan, China
| | - Yumiao Zhang
- Department of Pharmacy, School of Medicine, Jianghan University, Wuhan, China
| | - Yao Chen
- Department of Pharmacy, School of Medicine, Jianghan University, Wuhan, China
| | - Congyue Xu
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Jing Guo
- Department of Basic Medicine, School of Medicine, Jianghan University, Wuhan, China
| | - Hao Ming
- Department of Traditional Chinese Medicine, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
19
|
Zhang L, Wang Y, Song M, Chang A, Zhuo W, Zhu Y. Fibronectin 1 as a Key Gene in the Genesis and Progression of Cadmium-Related Bladder Cancer. Biol Trace Elem Res 2022:10.1007/s12011-022-03510-1. [PMID: 36471209 DOI: 10.1007/s12011-022-03510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Exposure to cadmium (Cd), a non-essential heavy metal, leads to the malignant transformation of urothelial cells and promotes bladder cancer (BC) development, but the mechanisms are unclear. Therefore, we aimed to explore the possible molecules associated with Cd-related BC. By analyzing and mining biological big data in public databases, we screened genes associated with the malignant transformation of uroepithelial cells caused by Cd and further screened the key gene associated with BC prognosis from these genes. The possible roles of the key gene in BC progression were then further explored through biological big data analysis and cellular experiments. Data mining yielded a total of 387 malignant transformation-related genes, which were enriched in multiple cancer-related signaling pathways, such as cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, and Jak-STAT signaling pathway. Further screening identified Fibronectin 1 (FN1) as the key gene. High expression of FN1 was associated with the advanced pathologic stage, T stage, N stage, and M stage and predicted an unfavorable outcome in BC patients. FN1 expression was positively associated with the infiltration of several types of immune cells, particularly tumor-associated macrophages and cancer-associated fibroblasts. Overexpression of FN1 could be detected in Cd-treated urothelial cells and BC cell lines. Interestingly, silencing of FN1 impaired the proliferation and invasive capacity of BC cells. In conclusion, the present study provides new insight into the mechanism of Cd-related BC. FN1 might be a prognostic marker and therapeutic target for BC. Future studies are needed to confirm these results.
Collapse
Affiliation(s)
- Liang Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yan Wang
- Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Minghan Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Aoshuang Chang
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenlei Zhuo
- Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yi Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
20
|
Chen XX, Xu YM, Lau ATY. Metabolic effects of long-term cadmium exposure: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89874-89888. [PMID: 36367641 DOI: 10.1007/s11356-022-23620-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
Cadmium (Cd) is a toxic non-essential heavy metal. Chronic low Cd exposure (CLCE) has been associated with distinct pathologies in many organ systems, including liver and kidney damage, osteoporosis, carcinogenicity, or reproductive toxicity. Currently, about 10% of the global population is at risk of CLCE. It is urgent to find robust and effective biomarkers for early diagnosis of Cd exposure and treatment. Metabolomics is a high-throughput method based on mass spectrometry to study the dynamic changes in a series of endogenous small molecular metabolites (typically < 1000 Da) of tissues, cells, or biofluids. It can reflect the rich and complex biochemical changes in the body after exposure to heavy metals, which may be useful in screening biomarkers to monitor exposure to environmental pollutants and/or predict disease risk. Therefore, this review focuses on the changes in metabolic profiles of humans and rodents under long-term Cd exposure from the perspective of metabolomics. Furthermore, the relationship between the disturbance of metabolic pathways and the toxic mechanism of Cd is discussed. All these information will facilitate the development of reliable metabolic biomarkers for early detection and diagnosis of Cd-related diseases.
Collapse
Affiliation(s)
- Xiao-Xia Chen
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| |
Collapse
|
21
|
Yu F, Yan L, Sun J, Zhao Y, Yuan Y, Gu J, Bian J, Zou H, Liu Z. Gap junction intercellular communication mediates cadmium-induced apoptosis in hepatocytes via the Fas/FasL pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2692-2702. [PMID: 35920667 DOI: 10.1002/tox.23629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
As a common environmental pollutant, cadmium (Cd) causes damage to many organs of the body. Gap junction intercellular communication (GJIC) represents one of the most important routes of rapid signaling between cells. However, the mechanisms underlying GJIC's role in hepatotoxicity induced by Cd remain unknown. We established a Cd poisoning model in vitro by co-culturing Cd-exposed and unexposed hepatocytes and found that 18β-glycyrrhetinic acid (GA), a GJIC inhibitor, can effectively reduce the apoptosis rate of healthy cells co-cultured with apoptotic cells treated with Cd. We also found that anti-FasL antibody had the same effect. However, in mono-cultured cells, GA treatment in combination with Cd was found to aggravate the damage induced by Cd exposure, increase the level of oxidative stress and protein expression of HO-1, decrease the mitochondrial membrane potential, incur more serious morphological damage to mitochondria than Cd treatment alone. Moreover, compared with Cd-only exposure, GA and Cd co-treatment further increased the expression levels of the apoptosis-related proteins Fas, FasL, FADD and the ratio of Bax/Bcl-2, inhibited the protein expression of ASK1 and Daxx. We also found that the protein expression of Daxx in siFADD + Cd hepatocytes was significantly higher than in Cd-treated cells. Thus, our study suggests that gap junction inhibition may play a dual role in Cd-induced cell damage by inhibiting the transmission of death signals from damaged cells to healthy cells but also aggravating the transmission of death signals between damaged cells, and that the Fas/FasL-mediated death receptor pathway may play an important role in this process.
Collapse
Affiliation(s)
- Fan Yu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Lianqi Yan
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Yangzhou, Jiangsu, People's Republic of China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Yumeng Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| |
Collapse
|
22
|
Liang X, Li J, Fu Y, Qu L, Tan Y, Zhang P. A novel machine learning model based on sparse structure learning with adaptive graph regularization for predicting drug side effects. J Biomed Inform 2022; 132:104131. [PMID: 35840061 DOI: 10.1016/j.jbi.2022.104131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/08/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
Abstract
Drug side effects are closely related to the success and failure of drug development. Here we present a novel machine learning method for side effect prediction. The proposed method treats side effect prediction as a multi-label learning problem and uses sparse structure learning to model the relationships between side effects. Additionally, the proposed method adopts the adaptive graph regularization strategy to explore the local structure in drug data and fuse multiple types of drug features. An alternating optimization algorithm is proposed to solve the optimization problem. We collected chemical structures and biological pathway features of drugs as the inputs of our method to predict drug side effects. The results of the cross-validation experiment showed that our method could significantly improve the prediction performance compared to the other state-of-the-art methods. Besides, our model is highly interpretable. It could learn the drug neighbourhood relationships, side effect relationships, and drug features related to side effects. We systematically validated the information extracted by the model with independent data. Some prediction results could also be supported by literature reports. The proposed method could be applied to integrate both chemical and biological data to predict side effects and helps improve drug safety.
Collapse
Affiliation(s)
- Xujun Liang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, PR China; National Clinical Research Center for Gerontology, Xiangya Hospital, Central South University, PR China.
| | - Jun Li
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, PR China
| | - Ying Fu
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, PR China
| | - Lingzhi Qu
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, PR China
| | - Yuying Tan
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, PR China
| | - Pengfei Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, PR China; National Clinical Research Center for Gerontology, Xiangya Hospital, Central South University, PR China
| |
Collapse
|
23
|
Liu Y, Wang X, Si B, Wang T, Wu Y, Liu Y, Zhou Y, Tong H, Zheng X, Xu A. Zinc oxide/graphene oxide nanocomposites efficiently inhibited cadmium-induced hepatotoxicity via releasing Zn ions and up-regulating MRP1 expression. ENVIRONMENT INTERNATIONAL 2022; 165:107327. [PMID: 35667343 DOI: 10.1016/j.envint.2022.107327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Environmental cadmium (Cd) pollution has been verified to associated with various hepatic diseases, as Cd has been classified as one of the TOP 20 Hazardous Substances and liver is the main target of Cd poisoning. However, to design efficient hepatic antidotes with excellent detoxification capacity and reveal their underlying mechanism(s) are still challenges in Cd detoxification. Herein, ZnO/GO nanocomposites with favorable biocompatibility was uncovered their advanced function against Cd-elicited liver damage at the in situ level in vivo by 9.4 T magnetic resonance imaging (MRI). To explore the cellular detoxification mechanism, ZnO/GO nanocomposites was found to effectively inhibit the cyto- and geno-toxicity of Cd with the maximum antagonistic efficiency to be approximately 90%. Mechanistically, ZnO/GO nanocomposites competitively inhibited the cellular Cd uptake through releasing Zn ions, and significantly promoted Cd excretion via targeting the efflux pump of multidrug resistance associated protein1 (MRP1), which was confirmed by mass spectra and immunohistochemical analysis in kidney, a main excretion organ of Cd. Our data provided a novel approach against Cd-elicited hepatotoxic responses by constructed ZnO/GO nanocomposites both in vitro and in vivo, which may have promising application in prevention and detoxification for Cd poisoning.
Collapse
Affiliation(s)
- Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Xue Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Bo Si
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Tong Wang
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Yun Wu
- Anhui Province Key Laboratory of High Field Magnetic Resonance Imaging; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Ying Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Yemian Zhou
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Haiyang Tong
- Anhui Province Key Laboratory of High Field Magnetic Resonance Imaging; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Xinwei Zheng
- Anhui Province Key Laboratory of High Field Magnetic Resonance Imaging; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China.
| | - An Xu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China.
| |
Collapse
|
24
|
Zhu Y, Zhao Y, Chai XX, Zhou J, Shi MJ, Zhao Y, Tian Y, Wang XM, Ying TX, Feng Q, Sheng J, Luo C. Chronic exposure to low-dose cadmium facilitated nonalcoholic steatohepatitis in mice by suppressing fatty acid desaturation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113306. [PMID: 35183812 DOI: 10.1016/j.ecoenv.2022.113306] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/18/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Exposure to cadmium (Cd), a toxic metal, is epidemiologically linked to nonalcoholic steatohepatitis (NASH) in humans. However, the role of Cd in NASH remains to be fully elucidated. This study employed a novel murine NASH model to investigate the effects of chronic low-dose Cd on hepatic pathology and its underlying mechanisms. NASH is characterized by lipid accumulation, extensive cell death, and persistent inflammation in the liver. We found that treatment with Cd in drinking water (10 mg/L) for 6 or 12 weeks significantly boosted hepatic fat deposition, increased hepatocyte destruction, and amplified inflammatory responses in mice, confirming that low-dose Cd can facilitate NASH development in vivo. Mechanistically, chronic Cd exposure reshaped the hepatic transcriptional landscape, with PPAR-mediated fatty acid metabolic pathways being the most significantly altered. In particular, Cd repressed fatty acid desaturation, leading to the accumulation of saturated fatty acids whose lipotoxicity exacerbated cell death and, consequently, inflammatory activation. In summary, we validated the causal effects of chronic low-dose Cd on NASH in vivo and identified the fatty acid desaturation program as a novel target for Cd to instigate hepatopathological alterations.
Collapse
Affiliation(s)
- Yi Zhu
- Institute of Environmental Medicine and Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Yuanyuan Zhao
- Institute of Environmental Medicine and Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Xin-Xin Chai
- Institute of Environmental Medicine and Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Jiang Zhou
- Institute of Environmental Medicine and Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Meng-Jie Shi
- MD-PhD Program, Zhejiang University School of Medicine, Hangzhou, China
| | - Yurong Zhao
- Institute of Environmental Medicine and Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Youjia Tian
- Institute of Environmental Medicine and Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Xu-Meng Wang
- Department of Surgical Oncology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian-Xing Ying
- MD-PhD Program, Zhejiang University School of Medicine, Hangzhou, China; Department of Surgical Oncology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiao Feng
- Institute of Environmental Medicine and Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Jinghao Sheng
- Institute of Environmental Medicine and Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Chi Luo
- Institute of Environmental Medicine and Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China.
| |
Collapse
|
25
|
Feng W, Qi Z, Dong Z, Liu W, Xu M, Gao M, Liu S. LncRNA MT1DP promotes cadmium-induced DNA replication stress by inhibiting chromatin recruitment of SMARCAL1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151078. [PMID: 34715232 DOI: 10.1016/j.scitotenv.2021.151078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a well-known carcinogenic metal and widespread environmental pollutant. The effect of Cd-induced carcinogenesis is partly due to accumulated DNA damage and chromosomal aberrations, but the exact mechanisms underlying the genotoxicity of Cd have not been clearly understood. Here, we found that one long non-coding RNA MT1DP is participated in Cd-induced DNA damage and replication stress. Through analyzing the residents from Cd-contaminated area in Southern China, we found that blood DNA repair genes are down-regulated in individuals with high urine Cd values compared to those with low urine Cd values, which contrast to the blood MT1DP levels. Through in vitro experiments, we found that MT1DP promotes Cd-induced DNA damage response, genome instability and replication fork stalling. Mechanically, upon Cd treatment, ATR is activated to enhance HIF-1α expression, which in turn promotes the transcription level of MT1DP. Subsequently MT1DP is recruited on the chromatin and binds to SMARCAL1 to competitive inhibit latter's interaction with RPA complexes, finally leading to increased replication stress and DNA damage. In summary, this study provides clear evidence for the role of epigenetic regulation on the genotoxic effect of Cd, and MT1DP-mediated replication stress may represent a novel mechanism for Cd-induced carcinogenesis.
Collapse
Affiliation(s)
- Wenya Feng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijuan Qi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Zheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Hong D, Min JY, Min KB. Association Between Cadmium Exposure and Liver Function in Adults in the United States: A Cross-sectional Study. J Prev Med Public Health 2021; 54:471-480. [PMID: 34875830 PMCID: PMC8655368 DOI: 10.3961/jpmph.21.435] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/05/2021] [Indexed: 12/28/2022] Open
Abstract
Objectives Cadmium is widely used, leading to extensive environmental and occupational exposure. Unlike other organs, for which the harmful and carcinogenic effects of cadmium have been established, the hepatotoxicity of cadmium remains unclear. Some studies detected correlations between cadmium exposure and hepatotoxicity, but others concluded that they were not associated. Thus, we investigated the relationship between cadmium and liver damage in the general population. Methods In total, 11 838 adult participants from National Health and Nutrition Examination Survey 1999-2015 were included. Urinary cadmium levels and the following liver function parameters were measured: alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyl transferase (GGT), total bilirubin (TB), and alkaline phosphatase (ALP). Linear and logistic regression analyses were performed to assess the associations between urinary cadmium concentrations and each liver function parameter after adjusting for age, sex, race/ethnicity, annual family income, smoking status, alcohol consumption status, physical activity, and body mass index. Results The covariate-adjusted results of the linear regression analyses showed significant positive relationships between log-transformed urinary cadmium levels and each log-transformed liver function parameter, where beta±standard error of ALT, AST, GGT, TB, and ALP were 0.049±0.008 (p<0.001), 0.030±0.006 (p<0.001), 0.093±0.011 (p<0.001), 0.034±0.009 (p<0.001), and 0.040±0.005 (p<0.001), respectively. Logistic regression also revealed statistically significant results. The odds ratios (95% confidence intervals) of elevated ALT, AST, GGT, TB, and ALP per unit increase in log-transformed urinary cadmium concentration were 1.360 (1.210 to 1.528), 1.307 (1.149 to 1.486), 1.520 (1.357 to 1.704), 1.201 (1.003 to 1.438), and 1.568 (1.277 to 1.926), respectively. Conclusions Chronic exposure to cadmium showed positive associations with liver damage.
Collapse
Affiliation(s)
- Dongui Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.,Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Korea
| | - Jin-Young Min
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Korea
| | - Kyoung-Bok Min
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.,Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Korea
| |
Collapse
|
27
|
Yang R, He Y, Luo L, Zhu M, Zan S, Guo F, Wang B, Yang B. The interaction between selenium and cadmium in the soil-rice-human continuum in an area with high geological background of selenium and cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112516. [PMID: 34273847 DOI: 10.1016/j.ecoenv.2021.112516] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Natural selenium (Se)-rich areas in China are generally characterized by high geological background of cadmium (Cd). However, the interaction between Se and Cd in the soil-rice-human continuum in such areas remains elusive. The concentrations, bioaccessibilities, and biomarkers of Se and Cd in a typical Se-Cd rich area were determined through chemical analysis, in vitro digestion model and cross-sectional study, respectively. The results showed that the molar ratio of available Se/Cd in the soil was averaged at 0.55 and soil Se did not reduce Cd accumulation and transportation in rice. Se bioaccessibility increased from the gastric phase to the intestinal phase, but the opposite was the case for Cd bioaccessibility. Moreover, bioaccessible concentration of Cd was positively correlated to corresponding total concentration in rice but negatively associated with the logarithm of molar ratio of Se/Cd. The risk of Cd-induced nephrotoxicity for the exposure group was not higher than the reference group, which could be ascribed to the mitigative effect of Se. Males and elders were at higher risk of Cd-induced injury owing to higher urinary Cd (U-Cd) and β2-microglobulin (U-β2-MG), and lower urinary Se (U-Se). Our results suggested that Cd-induced health risk should be assessed from a soil-rice-human perspective and the interaction between Se and Cd should be taken into account.
Collapse
Affiliation(s)
- Ruyi Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China.
| | - Yuhuan He
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Linfeng Luo
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Meng Zhu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Shuting Zan
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Fuyu Guo
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Bo Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Beibei Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
28
|
The effects of cadmium on the development of Drosophila and its transgenerational inheritance effects. Toxicology 2021; 462:152931. [PMID: 34508823 DOI: 10.1016/j.tox.2021.152931] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
A new focus in toxicology research is the impact of parental exposure to environmental toxic substances on the characteristics of offspring. In the present study, newly produced eggs of Drosophila melanogaster were treated with different concentrations of cadmium (0, 1, 2, 4, 8 mg/kg) to study the effects of development. The results showed that cadmium changed the larval body length and weight, prolonged the pupation and eclosion time, and changed the relative expression levels of development-related genes (baz, β-Tub60D, tj). Furthermore, the parental Drosophila (F0) were treated with cadmium (4.5 mg/kg) from egg stage, and when grows to adults, they mated in standard medium to produce the de-stressed offspring (F1-F4) to assess the transgenerational effects of developmental delay. The results showed that the delayed effects of the pupation and eclosion time could be maintained for two generations, and the inhibiting effects of juvenile hormone (JH) and ecdysone (20-hydroxyecdysone, 20E) could be maintained for two or three generations. More importantly, cadmium increased the expression of DNA methylation-related genes (dDnmt2, dMBD2/3) in the ovaries (F0-F2) and testicles (F0 and F1). In addition, cadmium accumulated in parental Drosophila (F0) was not transmitted to offspring through reproductive pathway. These results demonstrate that the developmental toxicity caused by cadmium could be transmitted to the de-stressed offspring, and the observed transgenerational inheritance effects may be associated with epigenetic regulation, underscoring the need to consider fitness of future generations in evaluating the toxicity and environmental risks of cadmium.
Collapse
|