1
|
Liu S, Li J, Zhang Z, Tuo J, Zhang Q, Zhou J, Liu P, Zhang XX. Exploring phylogenetic diversity of antibiotic resistance genes in activated sludge: A host and genomic location perspective. ENVIRONMENTAL RESEARCH 2025; 277:121588. [PMID: 40216056 DOI: 10.1016/j.envres.2025.121588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
Antibiotic resistance has emerged as a significant global public health issue. The environmental behaviors of antibiotic resistance genes (ARGs), such as their persistence and horizontal transfer, have been extensively investigated. However, the genetic diversity characteristics of ARGs remain underexplored, which limits a comprehensive analysis of their roles in the environment. In this study, we examined the genetic diversity of ARGs in activated sludge from 44 wastewater treatment plants in five countries. Most ARGs detected in activated sludge possessed multiple variants, with a median of 48. The number of variants of gd-ARGs varied among different resistance mechanisms and ARG types. The number of potential variants of ARGs was strongly correlated with host diversity. Pseudomonas spp. and Klebsiella pneumoniae, identified as pathogenic bacteria, harbored multiple ARGs and had the most variants. Most ARG subtypes on plasmids and chromosomes showed divergent evolution. Molecular docking of AdeH proteins revealed that genomic location affects tetracycline binding energy. The findings underscore the intricate interplay between genetic variation and environmental adaptation in ARGs, offering a novel perspective on the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Shengnan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jie Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zepeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jinhua Tuo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Qifeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jiawei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Jeon MK, Yan T. Fluorescence damping as primary interference mechanism of humic acids on qPCR quantification of SARS-CoV-2 in wastewater surveillance. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138283. [PMID: 40250276 DOI: 10.1016/j.jhazmat.2025.138283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 04/20/2025]
Abstract
Real-time polymerase chain reaction (qPCR) is a widely used technology for the detection and quantification of nucleic acids in wastewater surveillance. However, the presence of inhibiting and/or interfering substances in wastewater samples, in particular humic acids, can significantly impact the accuracy and reliability of qPCR results. In this study, we investigated the impact of humic acids on qPCR reactions and determined the relative importance of various inhibition/interference mechanisms through spiked experiments and modeling. Our results showed that higher concentrations of humic acids led to increasing threshold cycle (CT) values, which however cannot be adequately described by the polymerase inhibition model and the DNA template complexation model. Further inspection showed that humic acids caused fluorescence damping of the FAM reporter dye, resulting in an overall decrease in fluorescence intensity. Modeling of the fluorescence damping effect showed that the CT values of qPCR reactions can be corrected based on end-point fluorescence reduction. Similar observations and corrections were also achieved when SARS-CoV-2 cDNA was spiked with an actual wastewater sludge cDNA.
Collapse
Affiliation(s)
- Min Ki Jeon
- Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, United States; Department of Civil, Environmental and Construction Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Tao Yan
- Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, United States; Department of Civil, Environmental and Construction Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States.
| |
Collapse
|
3
|
Carter LJ, Adams B, Berman T, Cohen N, Cytryn E, Elder FCT, Garduño-Jiménez AL, Greenwald D, Kasprzyk-Hordern B, Korach-Rechtman H, Lahive E, Martin I, Ben Mordechay E, Murray AK, Murray LM, Nightingale J, Radian A, Rubin AE, Sallach B, Sela-Donenfeld D, Skilbeck O, Sleight H, Stanton T, Zucker I, Chefetz B. Co-contaminant risks in water reuse and biosolids application for agriculture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126219. [PMID: 40210163 DOI: 10.1016/j.envpol.2025.126219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Agriculture made the shift toward resource reuse years ago, incorporating materials such as treated wastewater and biosolids. Since then, research has documented the widespread presence of contaminants of emerging concern in agricultural systems. Chemicals such as pesticides, pharmaceuticals and poly- and -perfluoroalkyl substances (PFASs); particulate matter such as nanomaterials and microplastics; and biological agents such as antibiotic resistance genes (ARGs) and bacteria (ARB) are inadvertently introduced into arable soils where they can be taken up by crops and introduced to the food-web. Thus, concern about the presence of contaminants in agricultural environments has grown in recent years with evidence emerging linking agricultural exposure and accumulation in crops to ecosystem and human health effects. Our current assessment of risk is siloed by working within disciplines (i.e., chemistry and microbiology) and mostly focused on individual chemical classes. By not acknowledging the fact that contaminants are mostly introduced as a mixture, with the potential for interactions, with each other and with environmental factors, we are limiting our current approach to evaluate the real potential for ecosystem and human health effects. By uniting expertise across disciplines to integrate recent understanding regarding the risks posed by a range of chemically diverse contaminants in resources destined for reuse, this review provides a holistic perspective on the current regulatory challenges to ensure safe and sustainable reuse of wastewater and biosolids to support a sanitation-agriculture circular economy.
Collapse
Affiliation(s)
- Laura J Carter
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT, UK.
| | - Beth Adams
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT, UK; Fera Science Ltd, York Biotech Campus, Sand Hutton, York, YO41 1LZ, UK
| | - Tamar Berman
- Department of Environmental Health, Ministry of Health, Israel
| | - Nririt Cohen
- Faculty of Civil and Environmental Engineering, Technion, Haifa, Israel
| | - Eddie Cytryn
- Agriculture Research Organization - Volcani Institute, Rishon LeZion, 7505101, Israel
| | - F C T Elder
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT, UK
| | | | - Danny Greenwald
- The Israeli Water and Sewerage Authority, Jerusalem, 9195021, Israel
| | | | | | - Elma Lahive
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh, Gifford, OX10 8BB, UK
| | - Ian Martin
- Environment Agency, Aqua House, 20 Lionel Street, Birmingham, B3 1AQ, UK
| | - Evyatar Ben Mordechay
- Agriculture Research Organization - Volcani Institute, Rishon LeZion, 7505101, Israel; Robert H. Smith Faculty of Agricultural, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Aimee K Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Faculty of Health and Life Sciences, Environment and Sustainability Institute, Cornwall, Penryn, TR10 9EZ, UK
| | - Laura M Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Faculty of Health and Life Sciences, Environment and Sustainability Institute, Cornwall, Penryn, TR10 9EZ, UK
| | - John Nightingale
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT, UK
| | - Adi Radian
- Faculty of Civil and Environmental Engineering, Technion, Haifa, Israel
| | - Andrey Ethan Rubin
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Brett Sallach
- Department of Environment and Geography, University of York, York, YO10 5NG, UK
| | - Dalit Sela-Donenfeld
- Robert H. Smith Faculty of Agricultural, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Olivia Skilbeck
- School of Design, Faculty of Arts, Humanities and Cultures, University of Leeds, LS2 9JT, UK
| | - Harriet Sleight
- Department of Environment and Geography, University of York, York, YO10 5NG, UK
| | - Thomas Stanton
- Department of Geography and Environment, Loughborough University, LE11 3TU, UK
| | - Ines Zucker
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel; School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Benny Chefetz
- Agriculture Research Organization - Volcani Institute, Rishon LeZion, 7505101, Israel; Robert H. Smith Faculty of Agricultural, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
4
|
López-Pacheco IY, González-Meza GM, González-González RB, Parra-Saldívar R, Melchor-Martínez EM. Algae bioremediation of swine and domestic wastewater promotes a reduction of coliforms and antibiotic-resistant bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126294. [PMID: 40268044 DOI: 10.1016/j.envpol.2025.126294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/28/2025] [Accepted: 04/21/2025] [Indexed: 04/25/2025]
Abstract
The microbiological load that wastewater may contain is an important factor to consider in wastewater treatment to avoid water bodies contamination and has taken on great relevance due to the possible presence of antibiotic-resistant bacteria. This study investigates the feasibility of bacteria control by phycoremediation treatment using Scenedesmus sp. in two types of wastewater (domestic and swine wastewater). It was determined the cell growth of microalgae culture, and the reduction of total coliforms and enterobacteria load throughout ten days of experiment. In addition, the removal of antibiotic-resistant bacteria was performed using five different antibiotics commonly used in clinical diagnosis: Ampicillin Tetracycline, Ciprofloxacin, Sulfamethoxazole, and Ceftriaxone. The results shown a significant decrease in total coliforms and enterobacteria in the phycoremediation process, it was removed up to 98 % of total coliforms [ from (8.7 ± 2.31) × 104 to (1.6 ± 0.17) × 103 CFU mL -1] in swine wastewater and 99 % in domestic wastewater [(3.6 ± 0.31) × 105 to (2 ± 0.05) × 103 CFU mL -1]. Significant reduction in the case of sulfamethoxazole-resistant bacteria by microalgae in swine wastewater from [(1.47 ± 0.05) × 105 to (5.3 ± 0.57) × 103 ] and domestic wastewater [(4.9 ± 0.15) × 104 to (2.9 ± 0.36) × 103]. These findings demonstrate the versatility and effectiveness of the phycoremediation system since the general microbial control to most specific of antibiotic-resistant bacteria in wastewater, demonstrating its great potential to reduce the risk of public health issues in urban and rural areas.
Collapse
Affiliation(s)
- Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Georgia María González-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | | | | |
Collapse
|
5
|
Pang L, Chen J, Li W, Chatzisymeon E, Xu K, Yang P. Particle size of zero-valent iron affects the risks from antibiotic resistance genes in waste activated sludge during anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137785. [PMID: 40043404 DOI: 10.1016/j.jhazmat.2025.137785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 04/16/2025]
Abstract
Zero-valent iron (ZVI) is the promising enhancer for sludge anaerobic digestion (AD) performance and for mitigating the proliferation of antibiotic resistance genes (ARGs). However, concerns about its size effects in shifting the behavior and risk of ARGs in sludge, during the AD process. Here, the metagenomics-based profile of ARGs, along with their potential (pathogenic) hosts in sludge were investigated, during mesophilic AD enhanced by ZVI with three different sizes. Results showed that the size of ZVI affected the profiles of ARGs, with nano-ZVI (nZVI, 50 nm) demonstrating the most significant reduction in abundance (by 45.0 %) and diversity (by 8.6 %) of total ARGs, followed by micron-ZVI (150 μm) and iron scrap (1 mm). Similar trends were also observed for high-risk ARGs, pathogens, and potential pathogenic hosts for ARGs. Notably, nZVI achieved the greatest reductions in the abundance of risk ARGs and potential pathogenic hosts (superbugs) by 58.8 % and 53.9 %, respectively. Correlation and redundancy analyses revealed that, the size of ZVI induced concentration differences in ammonium nitrogen, pH, carbonaceous matters, iron, and potential microbial hosts were the main reasons for the variation in the risk of ARGs. Moreover, the down-regulation of genes involved in oxidative stress contributed to the lower risk of ARGs in the three ZVI groups, especially in nZVI. This study provides insights into AD processes of solid wastes using ZVI enhancers.
Collapse
Affiliation(s)
- Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Jianglin Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Wenqian Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Efthalia Chatzisymeon
- School of Engineering, Institute for Infrastructure and Environment, The University of Edinburgh, Edinburgh EH9 3JL, United Kingdom
| | - Kailin Xu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
6
|
Gómez-Brandón M, Aira M, Probst M, Liu N, Zhang Z, Zhu YG, Domínguez J. Earthworms attenuate antibiotic resistance genes and mobile genetic elements during vermicomposting of sewage sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125562. [PMID: 40311358 DOI: 10.1016/j.jenvman.2025.125562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/14/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Sewage sludge is among the richest reservoirs of antibiotic resistance genes (ARGs) that may spread to urban environment. Further investigation is warranted for removal of sludge-borne ARGs in large-scale vermicomposting systems. Under this scenario, there is the necessity to unveil the role of the widely-used earthworm species Eisenia andrei, since the current body of literature mostly focuses on E. fetida. The present study sought to evaluate the changes in sludge-borne ARGs and mobile genetic elements in a pilot-scale vermireactor in the presence of E. andrei in response to both gut- and cast-associated processes (GAPs and CAPs, respectively), by coupling high-throughput quantitative PCR and Illumina sequencing. After gut transit, large decreases in the relative abundances and number of the genes conferring resistance to major antibiotic classes, including some specific genes classified as of potentially high risk to human health, were recorded in the fresh casts. Likewise, genes encoding resistance to heavy metals were about nine-times lower in the egested materials than in the initial sludge. Genes coding for integrases or insertional sequences also exhibited reduced abundance as a result of GAP and CAP processes, suggesting that vermicompost appears to be less prone to horizontal gene transfer than untreated sludge. These findings provide evidence about the capacity of the earthworm E. andrei to diminish the risk of ARG spread during vermicomposting, reinforcing its potential for bioremediation purposes by transforming large quantities of waste into an improved fertiliser. This is crucial to propel vermicomposting technology forward and achieve transition toward net zero-waste process.
Collapse
Affiliation(s)
- María Gómez-Brandón
- Grupo de Ecología Animal (GEA), Universidade de Vigo, Vigo, 36310, Galicia, Spain.
| | - Manuel Aira
- Grupo de Ecología Animal (GEA), Universidade de Vigo, Vigo, 36310, Galicia, Spain
| | - Maraike Probst
- Universität Innsbruck, Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, Innsbruck, A-6020, Austria
| | - Ning Liu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - ZhiJian Zhang
- College of Environmental and Natural Resources, Zhejiang University, YuHangTang Ave 866, HangZhou, 310058, ZheJiang Province, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jorge Domínguez
- Grupo de Ecología Animal (GEA), Universidade de Vigo, Vigo, 36310, Galicia, Spain
| |
Collapse
|
7
|
Kowallis WJ, Popelka SM, Millward GG, Penagosnino AS, Russell KR, Gutierrez AG, von Tersch RL, Yerramilli SV. Optimized methods for wastewater SARS-CoV-2 surveillance at military installations: direct extraction showed higher recoveries relative to polyethylene glycol precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 986:179759. [PMID: 40449346 DOI: 10.1016/j.scitotenv.2025.179759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 05/23/2025] [Accepted: 05/23/2025] [Indexed: 06/03/2025]
Abstract
Wastewater surveillance is an economical approach to track community level pathogen prevalence and outbreak monitoring. Monitoring pathogens of public health concern in military installation wastewater can help mitigation efforts to protect service members. We used laboratory-prepared samples seeded with heat-inactivated SARS-CoV-2 and optimized two methods for wastewater SARS-CoV-2 surveillance. The first one is based on polyethylene glycol/sodium chloride precipitation to which fetal bovine serum (FBS) was added during precipitation (FBS-PEG/NaCl) followed by nucleic acid extraction and SARS-CoV-2 N1 and N2 specific RT-qPCR. This FBS-PEG/NaCl method (method-1) produced a visible pellet and improved recoveries (∼ 84.13 ± 9.12 % for N1 and 71.59 ± 9.77 % for N2, with 300 μL of added FBS) relative to standard PEG/NaCl method (no FBS; ∼7.98 ± 8.24 % for N1 and ∼ 7.42 ± 5.21 % for N2). The second one is a magnetic bead-based improved direct extraction method (method-2) wherein we showed that addition of carrier RNA (polyadenylic acid or poly-A) during extraction improved viral RNA recovery relative to direct extraction without poly-A. We evaluated the analytical sensitivity (process limit of detection; PLOD) and process efficiency of method-1 and method-2. The PLOD was 2,500 genome copies (GC)/L for method-1 and 12,500 GC/L for method-2. Controlled samples with serial dilutions of virus showed that method-1 is as effective in recovering the virus as method-2 at all concentrations of the virus tested. SARS-CoV-2 temporal trends were analyzed in 52 wastewater samples by method-2 of which the first 22 were also analyzed by method-1. SARS-CoV-2 trends correlate well in both approaches while the magnitude (copies/L) was much higher with method-2 (N1: 0.25-2.3 log; N2: 0.058-1.89 log) than with method-1. Possible reason for lower recoveries by method-1 with wastewater samples and the advantages of using controlled samples for method optimization are discussed. Better recoveries and higher throughput suggest improved direct extraction (method-2) is advantageous for wastewater SARS-CoV-2 surveillance.
Collapse
Affiliation(s)
- William J Kowallis
- Emerging Biological Threats Branch, Molecular Biology Division, Laboratory Sciences Directorate, Defense Centers for Public Health - Aberdeen, Aberdeen Proving Ground, Edgewood, MD, United States
| | - Shane M Popelka
- Emerging Biological Threats Branch, Molecular Biology Division, Laboratory Sciences Directorate, Defense Centers for Public Health - Aberdeen, Aberdeen Proving Ground, Edgewood, MD, United States
| | - Georgia G Millward
- Emerging Biological Threats Branch, Molecular Biology Division, Laboratory Sciences Directorate, Defense Centers for Public Health - Aberdeen, Aberdeen Proving Ground, Edgewood, MD, United States
| | - Andres S Penagosnino
- Emerging Biological Threats Branch, Molecular Biology Division, Laboratory Sciences Directorate, Defense Centers for Public Health - Aberdeen, Aberdeen Proving Ground, Edgewood, MD, United States
| | - Kevin R Russell
- Water Resources, Environmental Health Sciences and Engineering, Defense Centers for Public Health - Aberdeen, Aberdeen Proving Ground, Edgewood, MD, United States
| | - Anthony G Gutierrez
- Emerging Biological Threats Branch, Molecular Biology Division, Laboratory Sciences Directorate, Defense Centers for Public Health - Aberdeen, Aberdeen Proving Ground, Edgewood, MD, United States
| | - Robert L von Tersch
- Emerging Biological Threats Branch, Molecular Biology Division, Laboratory Sciences Directorate, Defense Centers for Public Health - Aberdeen, Aberdeen Proving Ground, Edgewood, MD, United States
| | - Subrahmanyam V Yerramilli
- Emerging Biological Threats Branch, Molecular Biology Division, Laboratory Sciences Directorate, Defense Centers for Public Health - Aberdeen, Aberdeen Proving Ground, Edgewood, MD, United States.
| |
Collapse
|
8
|
Mollenkopf DF, Lee S, Ballash GA, Sulliván SMP, Lee J, Wittum TE. Carbapenemase-producing Enterobacterales and their carbapenemase genes are stably recovered across the wastewater-watershed ecosystem nexus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 975:179241. [PMID: 40174253 DOI: 10.1016/j.scitotenv.2025.179241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/07/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Carbapenemase-producing Enterobacterales (CPE) have emerged as an important nosocomial threat to hospitalized patients, but CPE can also colonize the enteric microbiota of healthy individuals in the community. We hypothesized that clinically relevant CPE are frequently transported in municipal wastewater flows to treatment plants where they are reduced but not eliminated and are subsequently discharged into nearby surface waters and disseminate in the environment. We sampled untreated influent, treated effluent, and nearby surface waters weekly for a one-year period at a single large metropolitan wastewater treatment plant (WWTP) servicing Columbus, Ohio USA. In addition, we investigated the dissemination of these CPE into the environment and the downstream watershed, including sediment, fish, mammals, waterfowl, crops and soils. CPE were recovered from each (100 %) of the 44 influent samples and from 37 (84 %) effluent samples. We also isolated CPE from 50 % (22/44) of the upstream water, 82 % (36/44) of downstream, and 68 % (30/44) way downstream water. CPE were most commonly Enterobacter spp. expressing the blaKPC-2 genotype, although a variety of other species and genotypes were observed. blaKPC concentration was greatest in the influent (mean = 106 gene copies/100 mL water) and treatment resulted in a 4-log reduction in blaKPC concentration (P < 0.05), which was consistent with reduction in total bacteria concentration. We found 22 of 450 fish vent swabs (4.9 %) carrying CPE, but CPE were not recovered from terrestrial wildlife living in the Scioto watershed. Fish intestinal microbiome maintained approximately 1.5 × 104 copies of blaKPC per gram of feces. Our data support the hypothesized flow of CPE from healthcare settings into surface water and the downstream natural environment via municipal wastewater discharge. Our results suggest that river environments can serve as a reservoir for CPE, facilitating their broader One Health dissemination among surface water, wildlife, agriculture, and ultimately back to humans.
Collapse
Affiliation(s)
- Dixie F Mollenkopf
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, United States of America; Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States of America
| | - Seungjun Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States of America
| | - Gregory A Ballash
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, United States of America; Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States of America
| | - S Mažeika P Sulliván
- School of Environment and Natural Resources, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, United States of America
| | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States of America; Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States of America; Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States of America
| | - Thomas E Wittum
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, United States of America; Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States of America.
| |
Collapse
|
9
|
Coskuner-Weber O, Alpsoy S, Yolcu O, Teber E, de Marco A, Shumka S. Metagenomics studies in aquaculture systems: Big data analysis, bioinformatics, machine learning and quantum computing. Comput Biol Chem 2025; 118:108444. [PMID: 40187295 DOI: 10.1016/j.compbiolchem.2025.108444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
The burgeoning field of aquaculture has become a pivotal contributor to global food security and economic growth, presently surpassing capture fisheries in aquatic animal production as evidenced by recent statistics. However, the dense fish populations inherent in aquaculture systems exacerbate abiotic stressors and promote pathogenic spread, posing a risk to sustainability and yield. This study delves into the transformative potential of metagenomics, a method that directly retrieves genetic material from environmental samples, in elucidating microbial dynamics within aquaculture ecosystems. Our findings affirm that metagenomics, bolstered by tools in big data analytics, bioinformatics, and machine learning, can significantly enhance the precision of microbial assessment and pathogen detection. Furthermore, we explore quantum computing's emergent role, which promises unparalleled efficiency in data processing and model construction, poised to address the limitations of conventional computational techniques. Distinct from metabarcoding, metagenomics offers an expansive, unbiased profile of microbial biodiversity, revolutionizing our capacity to monitor, predict, and manage aquaculture systems with high accuracy and adaptability. Despite the challenges of computational demands and variability in data standardization, this study advocates for continued technological integration, thereby fostering resilient and sustainable aquaculture practices in a climate of escalating global food requirements.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Turkish-German University, Molecular Biotechnology, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey.
| | - Semih Alpsoy
- Turkish-German University, Molecular Biotechnology, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey
| | - Ozgur Yolcu
- Turkish-German University, Molecular Biotechnology, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey
| | - Egehan Teber
- Turkish-German University, Molecular Biotechnology, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey
| | - Ario de Marco
- Laboratory of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, Nova Gorica 5000, Slovenia
| | - Spase Shumka
- Faculty of Biotechnology and Food, Agricultural University of Tirana, 1019 Koder Kamza, Tirana, Albania
| |
Collapse
|
10
|
Woodford L, Messer LF, Ormsby MJ, White HL, Fellows R, Quilliam RS. Exploiting microplastics and the plastisphere for the surveillance of human pathogenic bacteria discharged into surface waters in wastewater effluent. WATER RESEARCH 2025; 281:123563. [PMID: 40184703 DOI: 10.1016/j.watres.2025.123563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Discharge from wastewater treatment plants (WWTPs) is a well-characterised source of human pathogens and antimicrobial resistance genes entering the environment. However, determining whether pathogens released from effluent into surface waters are viable, and consequently pose a risk to human health, is hindered by the use of transient grab-sampling monitoring approaches. Here we present a novel surveillance system using low-cost microparticles (polyethylene, cork and rubber) deployed upstream and downstream of a WWTP effluent pipe, that exploits the ability of bacterial pathogens to form biofilms. Using quantitative culture-based and molecular methods, viable E. coli, Klebsiella spp., Citrobacter spp., and Enterococcus spp. were identified after only 24-hour of deployment. Moreover, these pathogens were continually present at each timepoint (2, 4, 6, 8, 10, 14 and 23 days) as biofilm communities matured, with all pathogens detected at higher concentrations downstream of the WWTP effluent pipe. Long-read whole genome sequencing revealed a suite of plasmids, virulence genes and antimicrobial resistance genes in bacterial pathogens isolated from biofilms formed downstream of the effluent pipe. Furthermore, recognising that pathogens are typically present at proportionally low concentrations within mixed biofilm communities, total biofilm pathogenicity was confirmed using a Galleria mellonella infection model. Full-length 16S rRNA gene sequencing revealed that human pathogens present in microplastic biofilms (the 'plastisphere') dominated the microbial community of infected G. mellonella larvae within 24 hr, suggesting these bacteria remained highly virulent. Overall, this study demonstrated the efficacy of an easy-to-deploy system for the surveillance and rapid detection of pathogenic bacteria being discharged from point-source pollution. We envisage that if used as part of an integrated environmental management approach, this approach could help to reduce the public and environmental health risks of human pathogens and antimicrobial resistance genes, by monitoring viable human pathogens entering surface waters.
Collapse
Affiliation(s)
- Luke Woodford
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Lauren F Messer
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Rosie Fellows
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
11
|
Dhanda N, Kumar S. Water disinfection and disinfection by products. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:461. [PMID: 40128505 DOI: 10.1007/s10661-025-13915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
For ecological safety and public health, it is essential to identify the causes of pollution in water sources and the effects of both natural and human activities. A class of secondary pollutants known as disinfection byproducts (DBPs) is produced when water is treated with disinfectant. Global problems include DBP formation, monitoring, and health effects in drinkable water. Because of the negative health effects of drinking chlorinated water and some DBPs, water manufacturers have made an attempt to balance pathogen elimination with DBP monitoring. The primary obstacles to managing DBPs are their low concentrations and the viability of their extensive use from a technical and economic perspective. Adsorption on activated carbons, ion exchange, membrane processes, and reducing precursors like NOMs are some of the techniques that may be used in controlling DBPs. The application of both new and conventional disinfection technologies in the removal of ARB and ARGs is also summarized in this review, with an emphasis on bacterial inactivation mechanisms like ozonation, chlorination, ultraviolet (UV), sunlight, sunlight-dissolved organic matter (DOM), and photocatalysis/photoelectrocatalysis (PEC).
Collapse
Affiliation(s)
- Nishu Dhanda
- Department of Chemistry, Banasthali Vidyapith, Banasthali, 304022, India
| | - Sudesh Kumar
- DESM, National Institute of Education, NCERT, New Delhi, 110016, India.
| |
Collapse
|
12
|
Bojar BE, Craig AT, Leduc A, Blumenthal M, Mayo B, Ahmed AS, Cahak C, Beattie R, Skwor T. Similar antimicrobial resistance and virulence profiles among Aeromonas isolates from recreational beaches, post-chlorinated wastewater and clinical samples in Milwaukee, Wisconsin USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:179035. [PMID: 40048954 DOI: 10.1016/j.scitotenv.2025.179035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/19/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025]
Abstract
The genus Aeromonas consists of Gram-negative facultative anaerobes that are ubiquitous in water and soil environments. Traditionally considered fish pathogens, members of the genus Aeromonas have received increasing attention over the years due to their association with human diseases. Furthermore, given their omnipresence and genetic flexibility, this genus is positioned at the intersection of One Health components and may disproportionately contribute to the dissemination of antimicrobial resistance (AMR) in the environment. To form a more complete picture of the relationship between Aeromonas and AMR dissemination, we assessed the prevalence, species composition, AMR and virulence profiles, and cytotoxicity of Aeromonas isolates from post-chlorinated wastewater effluents (WW), adjacent beach sands, and local clinics. Our data show that Aeromonas represents approximately 22-50 % of culturable bacteria across all three beaches. The species composition across beaches, WW, and the clinic were similar, and two of the four most notable pathogens, A. hydrophila and A. caviae, were present in all three sources. Conversely, AMR and multi-drug resistant (MDR) populations were significantly more prevalent in WW and the clinic compared to the beaches. Assessments of virulence genes and cytotoxic phenotypes revealed that while isolates carrying act were significantly associated with cytotoxic phenotypes, there were minimal differences between cytotoxicity and source, despite the relative abundance of act and hlyA in the clinic compared to the beach and WW. Our data suggests that environmental Aeromonas populations may be capable of higher AMR acquisition rates potentially causing infection in humans to a greater extent than is currently observed.
Collapse
Affiliation(s)
- Brooke E Bojar
- University of Wisconsin - Milwaukee, Department of Biomedical Sciences, Milwaukee, WI 53211, USA
| | - Anthony T Craig
- University of Wisconsin - Milwaukee, Department of Biomedical Sciences, Milwaukee, WI 53211, USA
| | - Anamarie Leduc
- University of Wisconsin - Milwaukee, Department of Biomedical Sciences, Milwaukee, WI 53211, USA
| | - Max Blumenthal
- University of Wisconsin - Milwaukee, Department of Biomedical Sciences, Milwaukee, WI 53211, USA
| | - Barbara Mayo
- University of Wisconsin - Milwaukee, Department of Biomedical Sciences, Milwaukee, WI 53211, USA
| | - Alia S Ahmed
- University of Wisconsin - Milwaukee, Department of Biomedical Sciences, Milwaukee, WI 53211, USA
| | - Caitlin Cahak
- Wisconsin Diagnostic Laboratories, Milwaukee, WI 53226, USA
| | - Rachelle Beattie
- Marquette University, Department of Biological Sciences, Milwaukee, WI 53233, USA
| | - Troy Skwor
- University of Wisconsin - Milwaukee, Department of Biomedical Sciences, Milwaukee, WI 53211, USA.
| |
Collapse
|
13
|
Ren L, Li Y, Ye Z, Wang X, Luo X, Lu F, Zhao H. Explore the Contamination of Antibiotic Resistance Genes (ARGs) and Antibiotic-Resistant Bacteria (ARB) of the Processing Lines at Typical Broiler Slaughterhouse in China. Foods 2025; 14:1047. [PMID: 40232101 PMCID: PMC11941655 DOI: 10.3390/foods14061047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
Farms are a major source of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB), and previous research mainly focuses on polluted soils and breeding environments. However, slaughtering is an important link in the transmission of ARGs and ARB from farmland to dining table. In this study, we aim to reveal the pollution of ARGs and ARB in the slaughter process of broilers. First, by qualitative and quantitative analysis of ARGs in samples collected from the broiler slaughtering and processing production chain, the contamination level of ARGs was reflected; secondly, potential hosts for ARGs and microbial community were analyzed to reflect the possible transmission rules; thirdly, through the antibiotic susceptibility spectrum analysis of four typical food-borne pathogens, the distribution of ARB was revealed. The results showed that 24 types of ARGs were detected positive on the broiler slaughter production line, and tetracycline-resistance genes (20.45%) were the most frequently detected. The types of ARGs vary with sampling process, and all sampling links contain high levels of sul2 and intI1. The most abundant ARGs were detected in chicken surface in the scalding stage and entrails surface in the evisceration stage. There was a significant correlation between intI1 and tetM, suggesting that tetM might be able to enter the human food chain through class-1 integrons. The host range of the oqxB gene is the most extensive, including Sphingobacterium, Bacteroidia unclassified, Rothia, Microbacterium, Algoriella, etc. In the relevant links of the slaughter production line, the microbial community structure is similar. Removing viscera may cause diffusion of ARGs carried by intestinal microorganisms and contaminate chicken and following processing production. The four food-borne pathogens we tested are widely present in all aspects of the slaughter process, and most of them have multi-drug resistance and even have a high degree of resistance to some veterinary drugs banned by the Ministry of Agriculture. Our study preliminarily revealed the pollution of ARGs and ARB in the slaughter process of broilers, and these results are helpful to carry out food safety risk assessment and formulate corresponding control measures.
Collapse
Affiliation(s)
- Lu Ren
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education and Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (L.R.)
| | - Ying Li
- China Animal Disease Control Center, Slaughtering Technology Center, Ministry of Agriculture and Rural Affairs, Beijing 102600, China; (Y.L.)
| | - Ziyu Ye
- China Animal Disease Control Center, Slaughtering Technology Center, Ministry of Agriculture and Rural Affairs, Beijing 102600, China; (Y.L.)
| | - Xixi Wang
- China Animal Disease Control Center, Slaughtering Technology Center, Ministry of Agriculture and Rural Affairs, Beijing 102600, China; (Y.L.)
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education and Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (L.R.)
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education and Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (L.R.)
| | - Huabing Zhao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education and Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (L.R.)
| |
Collapse
|
14
|
Sun T, Delaplace P, Li G, James A, Pan J, Zhang J. Novel insights into the effect of arbuscular mycorrhizal fungi inoculation in soils under long-term biosolids application: Emphasis on antibiotic and metal resistance genes, and mobile genetic elements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125846. [PMID: 39952592 DOI: 10.1016/j.envpol.2025.125846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
The application of biosolids can improve soil fertility and crop productivity but also accompanies risks of heavy metals and antibiotics introduction. In the presence of heavy metals contamination, using arbuscular mycorrhizal fungi (AMF) is a promising strategy to enhance soil microbial community stability and plant tolerance resistance to heavy metals, and to reduce the spread of antibiotic resistance genes (ARGs). The present study investigated the impacts of AMF inoculation on soil and plant heavy metal contents, and soil microbial communities by pot experiments. The results showed that AMF inoculation significantly enhanced plant biomass, and reduced soil and plant heavy metals contents. While AMF inoculation did not alter bacterial and fungal community compositions, it increased bacterial diversity at higher biosolids concentrations. Notably, AMF inoculation enhanced microbial network complexity and increased keystone taxa abundance. Furthermore, several beneficial microorganisms with high resistance to heavy metals were enriched in AMF-inoculated soils. Metagenomic analysis revealed a reduction in the mobile genetic element (MGE) gene IS91 in AMF-inoculated soils and an increase in heavy metal resistance genes compared to soils without AMF. The possibility of reduction in MGE-mediated spread of ARGs is one of the key findings of this study. As a caution, this study also detected enrichment of few ARGs in high biosolids-amended soils with AMF inoculation. Overall, AMF inoculation could be a valuable strategy in agriculture for mitigating the environmental risks associated with biosolids, heavy metals and antibiotic resistance, thereby promoting sustainable soil management and health.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Gembloux Agro Bio Tech, University of Liège, 5030, Belgium
| | | | - Guihua Li
- State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Anina James
- State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jianfeng Zhang
- State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| |
Collapse
|
15
|
Wang R, Mardalisa, Hara-Yamamura H, Matsuura N, Honda R. Applicability of intI1 as an indicator gene for securing the removal efficiency of extracellular antimicrobial resistance genes in full-scale wastewater treatment plants. BIORESOURCE TECHNOLOGY 2025; 419:132047. [PMID: 39793674 DOI: 10.1016/j.biortech.2025.132047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Mitigating the release of extracellular antimicrobial resistance genes (exARGs) from wastewater treatment plants (WWTPs) is crucial for preventing the spread of antimicrobial resistance from human domains into the environment. This study aimed to evaluate the applicability of intI1 as a performance indicator for securing the removal of exARGs at WWTPs. We investigated the reduction of exARGs and intI1 in a full-scale WWTP, where identical wastewater was treated using conventional activated sludge (CAS) and membrane bioreactor (MBR) systems. The log reduction values (LRVs) for exARGs were lower than those for intracellular ARGs (iARGs) across all ARG species and treatment systems. LRVs for exARGs were consistently higher in the MBR than in the CAS. The intI1 exhibited lower LRVs compared to most exARGs, ensuring a minimum LRV of exARG in both CAS and MBR systems. Consequently, intI1 is an effective indicator gene for securing the removal of exARGs.
Collapse
Affiliation(s)
- Rongxuan Wang
- Graduate School of Natural Science and Technology Kanazawa University Kanazawa Japan; Asia-Japan Research Institute Ritsumeikan University Shiga Japan
| | - Mardalisa
- Graduate School of Natural Science and Technology Kanazawa University Kanazawa Japan
| | - Hiroe Hara-Yamamura
- Faculty of Geosciences and Civil Engineering Kanazawa University Kanazawa Japan
| | - Norihisa Matsuura
- Faculty of Geosciences and Civil Engineering Kanazawa University Kanazawa Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering Kanazawa University Kanazawa Japan.
| |
Collapse
|
16
|
Oliveira de Farias B, Saggioro EM, Montenegro KS, Magaldi M, Oliveira Santos HS, Pimenta RL, Bianco K, Clementino MM. Degradation of plasmid-mediated resistance genes in poultry slaughterhouse wastewater employing a UV/H 2O 2 process: A metagenomic approach. CHEMOSPHERE 2025; 372:144109. [PMID: 39826254 DOI: 10.1016/j.chemosphere.2025.144109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Poultry slaughterhouse effluents are important hotspots for the spread of both antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs), contributing to the antimicrobial resistance (AMR). This study reports a novel investigation to assess the effects of UV/H2O2 treatment on the removal of metaplasmidome-mediated ARGs from poultry slaughterhouse effluents. The effluent samples were subjected at 0.005-0.15 mol L-1 of H2O2 and pH conditions (3, 5, 7 and 9). Bacterial community (rrs 16S rRNA), Escherichia coli (uidA) antimicrobial resistance (sul1 and int1) and metagenomic plasmid DNA removal were assessed. The UV/H2O2 treatment employing H2O2 = 0.01 mol L-1 at pH 3 resulted in decreased of several markers (uidA, sul1 and int1). A metaplasmidome indicated the persistence of Burkholderiales order. The UV/H2O2 process reduced plasmid-associated ARGs by 92.5% and 90.4% at pH 3 and 7, respectively. Persistent genes were mainly composed of genes associated with efflux pumps and resistance to beta-lactams and fluoroquinolones. These findings contribute to mitigate the spread of AMR in the agricultural sector, especially through the implementation of more efficient treatments, and reducing the use of antibiotics in livestock farming.
Collapse
Affiliation(s)
- Beatriz Oliveira de Farias
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Enrico Mendes Saggioro
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil; Laboratório de Avaliação e Promoção da Saúde Ambiental, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Kaylanne S Montenegro
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mariana Magaldi
- Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Hugo Sérgio Oliveira Santos
- Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Ramon Loureiro Pimenta
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Km 07, Zona Rural, BR-465, Seropédica, RJ, Brazil
| | - Kayo Bianco
- Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Maysa Mandetta Clementino
- Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
17
|
Sheikh M, Gholipour S, Ghodsi S, Nikaeen M. Co-selection of antibiotic and disinfectant resistance in environmental bacteria: Health implications and mitigation strategies. ENVIRONMENTAL RESEARCH 2025; 267:120708. [PMID: 39732420 DOI: 10.1016/j.envres.2024.120708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND The rapid emergence of co-selection between antimicrobials, including antibiotics and disinfectants, presents a significant challenge to healthcare systems. This phenomenon exacerbates contamination risks and limits the effectiveness of strategies to combat antibiotic resistance in clinical settings. This study aimed to investigate the prevalence and characteristics of bacteria in hospital environments that exhibit co-selection mechanisms and their potential implications for patient health, framed within the One Health perspective. METHODS Air and surface samples were collected from seven large hospitals and analyzed to detect antibiotic-resistant bacteria (ARB). The resistance profiles of isolated ARB to various disinfectants were determined. Bacterial species were identified using 16S rRNA gene sequencing, and the presence of antibiotic resistance genes (ARGs) and class 1 integrons (intI1) was investigated. RESULTS A high percentage (85%) of samples contained ARB, with β-lactam resistance being the most frequently observed. Alarmingly, 94% of isolated ARB exhibited resistance to at least one disinfectant, and 91% demonstrated resistance to three or more disinfectants. Staphylococcus and Bacillus emerged as the dominant genera displaying co-selection. The presence of ARGs, including mecA (associated with methicillin resistance) and qacB (associated with disinfectant resistance), along with intI1, provided further evidence supporting co-selection mechanisms. CONCLUSION These findings underscore the critical need for robust antimicrobial resistance surveillance and the prudent use of disinfectants in healthcare settings. Further research into co-selection mechanisms is essential to inform the development of effective infection control strategies and minimize the spread of resistant bacteria.
Collapse
Affiliation(s)
- Mina Sheikh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soudabeh Ghodsi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
18
|
Li Y, Tao C, Li S, Chen W, Fu D, Jafvert CT, Zhu T. Feasibility study of machine learning to explore relationships between antimicrobial resistance and microbial community structure in global wastewater treatment plant sludges. BIORESOURCE TECHNOLOGY 2025; 417:131878. [PMID: 39603473 DOI: 10.1016/j.biortech.2024.131878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
Wastewater sludges (WSs) are major reservoirs and emission sources of antibiotic resistance genes (ARGs) in cities. Identifying antimicrobial resistance (AMR) host bacteria in WSs is crucial for understanding AMR formation and mitigating biological and ecological risks. Here 24 sludge data from wastewater treatment plants in Jiangsu Province, China, and 1559 sludge data from genetic databases were analyzed to explore the relationship between 7 AMRs and bacterial distribution. The results of the Procrustes and Spearman correlation analysis were unsatisfactory, with p-value exceeding the threshold of 0.05 and no strong correlation (r > 0.8). In contrast, explainable machine learning (EML) using SHapley Additive exPlanation (SHAP) revealed Pseudomonadota as a major contributor (39.3 %-74.2 %) to sludge AMR. Overall, the application of ML is promising in analyzing AMR-bacteria relationships. Given the different applicable occasions and advantages of various analysis methods, using ML as one of the correlation analysis tools is strongly recommended.
Collapse
Affiliation(s)
- Yi Li
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Cuicui Tao
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Shuyin Li
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Wenxuan Chen
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research (UFZ), 04318 Leipzig, Germany; School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Chad T Jafvert
- Lyles School of Civil Engineering, and Environmental & Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Tengyi Zhu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
19
|
Luo H, Xie K, Dong P, Zhang Y, Ren T, Sui C, Ma C, Zhao C, Dewangan NK, Gong Z. Assessing the Risks of Potential Pathogens and Antibiotic Resistance Genes Among Heterogeneous Habitats in a Temperate Estuary Wetland: a Meta-analysis. MICROBIAL ECOLOGY 2025; 87:172. [PMID: 39820498 PMCID: PMC11739316 DOI: 10.1007/s00248-024-02484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
Temperate estuary wetlands act as natural filters for microbiological contamination and have a profound impact on "One Health." However, knowledge of microbiological ecology security across the different habitats in temperate estuarine wetlands remains limited. This study employed meta-analysis to explore the characteristics of bacterial communities, potential pathogens, and antibiotic resistance genes (ARGs) across three heterogeneous habitats (water, soil, and sediment) within the Liaohe Estuary landscape. The diversity and composition of the three bacterial communities differed with biogeography, temperature, and pH, with the highest α-diversity showing a significantly negative correlation along latitude in soil. Furthermore, aminoglycosides were significantly enriched in water and soil, while dihydrofolate was more likely to be enriched in soil. The potential pathogens, Pseudoalteromonas and Planococcus, were dominant in water and sediment, while Stenotrophomonas was the dominant bacterium in soil. The network topology parameter revealed interspecific interactions within the community. PLS-PM highlights the main direct factors affecting the abundance of potential pathogens and the spread of ARGs, while temperature and pH indirectly influence these potential pathogens. This study advances our understanding of bacterial communities in estuarine wetlands, while highlighting the need for effective monitoring to mitigate the risks associated with potential pathogens and ARGs in these ecosystems.
Collapse
Affiliation(s)
- Hongjing Luo
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116029, China
| | - Kunpeng Xie
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116029, China
| | - Pengsheng Dong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Yongsheng Zhang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116029, China
| | - Tingyi Ren
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116029, China
| | - Caihong Sui
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116029, China
| | - Changwei Ma
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116029, China
| | - Caiyuan Zhao
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Naresh Kumar Dewangan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Zheng Gong
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116029, China.
| |
Collapse
|
20
|
Rodríguez-González L, Díaz-Raviña M, Sevilla-Morán B, García-Campos E, Villaverde JJ, Arias-Estévez M, Fernández-Calviño D, Santás-Miguel V. Influence of soil type on bacterial growth and tolerance to experimentally added human antibiotics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117614. [PMID: 39742642 DOI: 10.1016/j.ecoenv.2024.117614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
The human antibiotics cefuroxime (CXM) and azithromycin (AZI) are among the most commonly prescribed. A significant portion of both are excreted and has been detected in sewage treatment plant effluents. The increasing use of such effluents in crops for irrigation and as fertilisers poses a threat to soil microbiota because of the presence of antibiotics. The lack of studies on CXM and AZI in soils hinders our understanding of their potential toxic effects on soil bacterial communities and ecosystem services. This study significantly contributes to the literature by quantifying the toxicity of CXM and AZI at varying concentrations in 12 different crop soils and tracking their evolution over time. The study also examined whether antibiotic pressure led to the development of more tolerant bacterial communities. The results of this study are the values of the logarithm of the antibiotic concentration at which 50 % of bacterial growth is inhibited (Log IC50) and indicate that both antibiotics are toxic to soil bacteria. The direct toxicity of CXM (1 day after contamination) was higher (Log IC50: 0.9 = 7.9 mg kg-1) than that of AZI (Log IC50: 3.4 = 2362 mg kg-1). However, bacterial growth was less affected by CXM over time, whereas AZI remained toxic in some soils until day 42 (Log IC50: 3.2 = 1533 mg kg-1 and 3.4 = 2291 mg kg-1, respectively). The overall results indicate that selective pressure exerted by antibiotics generates antibiotic tolerance in soils, even at the lowest antibiotic concentration studied (7.8 mg kg-1). The general trend was to increase tolerance to higher antibiotic concentrations up to the highest concentration studied (2000 mg kg-1). However, the degree of tolerance developed was highly dependent on soil type. More studies should be conducted to quantitatively assess the toxic and tolerance-developing effects of antibiotics in soils. Such information will be valuable for identifying which antibiotics pose a threat to the soil microbiota and consequently to human health.
Collapse
Affiliation(s)
- Laura Rodríguez-González
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, Campus As Lagoas, s/n, Ourense 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo, Campus Auga, Ourense 32004, Spain.
| | - Montserrat Díaz-Raviña
- Departamento de Suelos, Ecosistemas y Ecología Forestal, Misión Biológica de Galicia (MBG-CSIC), Unidad Asociada COMIC UVigo, Avda de Vigo s/n, Santiago de Compostela 15705, Spain; Comunidades Microbianas de Suelos (id. UA 1678), MBG-CSIC/Universidad de Vigo, Associated Unit to CSIC, Spain
| | - Beatriz Sevilla-Morán
- Departamento de Suelos, Ecosistemas y Ecología Forestal, Misión Biológica de Galicia (MBG-CSIC), Unidad Asociada COMIC UVigo, Avda de Vigo s/n, Santiago de Compostela 15705, Spain
| | - Elena García-Campos
- Departamento de Suelos, Ecosistemas y Ecología Forestal, Misión Biológica de Galicia (MBG-CSIC), Unidad Asociada COMIC UVigo, Avda de Vigo s/n, Santiago de Compostela 15705, Spain
| | - Juan José Villaverde
- Departamento de Suelos, Ecosistemas y Ecología Forestal, Misión Biológica de Galicia (MBG-CSIC), Unidad Asociada COMIC UVigo, Avda de Vigo s/n, Santiago de Compostela 15705, Spain; Comunidades Microbianas de Suelos (id. UA 1678), MBG-CSIC/Universidad de Vigo, Associated Unit to CSIC, Spain
| | - Manuel Arias-Estévez
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, Campus As Lagoas, s/n, Ourense 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo, Campus Auga, Ourense 32004, Spain; Comunidades Microbianas de Suelos (id. UA 1678), MBG-CSIC/Universidad de Vigo, Associated Unit to CSIC, Spain
| | - David Fernández-Calviño
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, Campus As Lagoas, s/n, Ourense 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo, Campus Auga, Ourense 32004, Spain; Comunidades Microbianas de Suelos (id. UA 1678), MBG-CSIC/Universidad de Vigo, Associated Unit to CSIC, Spain
| | - Vanesa Santás-Miguel
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, Campus As Lagoas, s/n, Ourense 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo, Campus Auga, Ourense 32004, Spain
| |
Collapse
|
21
|
Wang Y, Yuan P, Gao P. Microplastics accelerate nitrification, shape the microbial community, and alter antibiotic resistance during the nitrifying process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178306. [PMID: 39740624 DOI: 10.1016/j.scitotenv.2024.178306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/03/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) are both emerging pollutants that are frequently detected in wastewater treatment plants. In this study, the effects of various MPs, including polyethylene (PE), polyvinyl chloride (PVC), and biodegradable polylactic acid (PLA), on nitrification performance, dominant microbial communities, and antibiotic resistance during nitrification were investigated. The results revealed that the addition of MPs increased the specific ammonia oxidation rate and specific nitrate production rate by 15.2 % - 15.5 % and 8.0 % - 11.6 %, respectively, via enrichment of nitrifying microorganisms, Nitrospira and Nitrosomonas. Moreover, ARGs were selectively enriched in nitrifying sludge and microplastic biofilms under stress from different MPs. Compared with PE-MPs (23.9 %) and PVC-MPs (21.4 %), exposure to PLA-MPs significantly increased intI1 abundance by 51.6 %. The results of the variance decomposition analysis implied that MPs and the microbial community play important roles in the behavior of ARGs. Network analysis indicated that Nitrosomonas and potentially pathogenic bacteria emerged as possible hosts, harboring ARGs and intI1 genes in the nitrifying sludge and microplastic biofilms. Critically, PLA-MPs were found to enrich both ARGs and potential pathogenic bacteria during nitrification, which should be considered in their promotion of application processes due to their biodegradability.
Collapse
Affiliation(s)
- Yang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Peikun Yuan
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
22
|
Mendoza-Guido B, Rivera-Montero L, Barrantes K, Chacon L. Plasmid and integron-associated antibiotic resistance in Escherichia coli isolated from domestic wastewater treatment plants. FEMS Microbiol Lett 2025; 372:fnaf041. [PMID: 40246693 DOI: 10.1093/femsle/fnaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/17/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025] Open
Abstract
The rapid dissemination of antibiotic resistance genes (ARGs) represents a significant global threat, with wastewater treatment plants (WWTPs) playing an important role as reservoirs and propagation hubs. In this study, we performed whole-genome sequencing and bioinformatic analyses on eight multidrug-resistant Escherichia coli isolates previously obtained from domestic WWTPs in Costa Rica. We identified 61 ARGs (23 unique), with 40 located on plasmids, and 21 on chromosomal sequences, seven of which were within integrons. Several ARGs were associated with resistance to clinically and veterinary important antibiotics, including sulfamethoxazole/trimethoprim, beta-lactams, and tetracyclines. One hundred twenty-one virulence-associated genes (29 unique) were detected, with 16 located on plasmids. Notably, the presence of virulence factors such as ompT and hlyF genes alongside ARGs on plasmids underscores the transmissible pathogenic potential of WWTP-associated E. coli strains. These findings highlight the role of small domestic WWTPs in disseminating pathogenic and multidrug-resistant bacteria and their mobile genetic elements, emphasizing the need for further research to understand how these discharges impact aquatic environments.
Collapse
Affiliation(s)
- Bradd Mendoza-Guido
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 11501, Costa Rica
- Programa de Doctorado en Ciencias, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Luis Rivera-Montero
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 11501, Costa Rica
| | - Kenia Barrantes
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 11501, Costa Rica
- Doctorado en Ciencias Naturales para el Desarrollo (DOCINADE), Instituto Tecnológico de Costa Rica, Universidad Nacional and Universidad Estatal a Distancia, San José 474-2050, Costa Rica
| | - Luz Chacon
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 11501, Costa Rica
| |
Collapse
|
23
|
Tang J, Li Z, Xiao X, Liu B, Huang W, Xie Q, Lan C, Luo S, Tang L. Recent advancements in antibiotics removal by bio-electrochemical systems (BESs): From mechanisms to application of emerging combined systems. WATER RESEARCH 2025; 268:122683. [PMID: 39476544 DOI: 10.1016/j.watres.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 12/13/2024]
Abstract
Recent advancements in bio-electrochemical systems (BESs) for antibiotic removal are receiving great attentions due to the electro-active bacteria on the electrode that could elevate the removal efficiency. Enhanced detoxification performance of BESs compared to the traditional biological processes indicates the great potential serving as a sustainable alternative or a pre-/post-processing unit to improve the performance of biological processes. However, the successfully application of BESs to antibiotic-polluted water remediation requires a deeper discussion on their operational performance and emerging coupled systems. In order to address BESs as a practical option for antibiotic removal, we deeply analyze the detoxification mechanism of antibiotic treatment by BESs, involving BES fundamentals, extracellular electron transfer and degradation pathways via functional enzymes of microorganisms, followed by systematic evaluations of the operational conditions. Furthermore, the recently-emerged BESs combined with other techniques for practical applications has been summarized and emphasized. This review further directions the current limitations such as the potential risk of antibiotic resistance genes, etc., and prospects for the attenuation of antibiotics via BESs related techniques, promoting the development of practical application.
Collapse
Affiliation(s)
- Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| | - Zijun Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| | - Baicheng Liu
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Wei Huang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Qingqing Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Chenrui Lan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Shuai Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| |
Collapse
|
24
|
Knight ME, Farkas K, Wade M, Webster G, Pass DA, Perry W, Kille P, Singer A, Jones DL. Wastewater-based analysis of antimicrobial resistance at UK airports: Evaluating the potential opportunities and challenges. ENVIRONMENT INTERNATIONAL 2025; 195:109260. [PMID: 39813953 DOI: 10.1016/j.envint.2025.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
With 40 million annual passenger flights, airports are key hubs for microbial communities from diverse geographic origins to converge, mix, and distribute. Wastewater derived from airports and aircraft represent both a potential route for the global dispersion of antimicrobial resistant (AMR) organisms and an under-utilised resource for strengthening global AMR surveillance. This study investigates the abundance and diversity of antimicrobial resistance genes (ARGs) in wastewater samples collected from airport terminals (n = 132), aircraft (n = 25), and a connected wastewater treatment plant (n = 11) at three international airports in the UK (London Heathrow, Edinburgh and Bristol). A total of 76 ARGs were quantified using high throughput qPCR (HT-qPCR) while a subset of samples (n = 30) was further analysed by metagenomic sequencing. Our findings reveal that aircraft wastewater resistomes were compositionally distinct from those observed at airport terminals, despite their similar diversity. Notably, flights originating from Asia and Africa carried a higher number of unique ARGs compared to those from Europe and North America. However, clustering of the ARG profile displayed no overall association with geography. Edinburgh terminal and pumping station wastewater had compositionally comparable resistomes to that of the connected urban wastewater treatment plant, though further research is needed to determine the relative contributions of the local population and international travellers. This study provides the first comprehensive investigation of AMR in wastewater from both aircraft and terminals across multiple international airports. Our results highlight aircraft wastewater as a potential route for cross-border AMR transmission and a valuable tool for global AMR surveillance. However, the findings also underscore the limitations and need for standardised approaches for AMR monitoring in airport environments, to effectively mitigate the global spread of AMR and enhance public health surveillance strategies.
Collapse
Affiliation(s)
- Margaret E Knight
- School of Environmental & Natural Sciences, Bangor University, Bangor LL57 2UW, UK.
| | - Kata Farkas
- School of Environmental & Natural Sciences, Bangor University, Bangor LL57 2UW, UK; Verily Life Sciences LLC., South San Francisco, CA 94080, United States
| | | | - Gordon Webster
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Museum Avenue, Cardiff University, Cardiff CF10 3AX, UK
| | - Daniel A Pass
- Compass Bioinformatics, 17 Habershon Street, Cardif, CF24 2DU, Wales, UK
| | - William Perry
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Museum Avenue, Cardiff University, Cardiff CF10 3AX, UK
| | - Peter Kille
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Museum Avenue, Cardiff University, Cardiff CF10 3AX, UK
| | | | - Davey L Jones
- School of Environmental & Natural Sciences, Bangor University, Bangor LL57 2UW, UK; Verily Life Sciences LLC., South San Francisco, CA 94080, United States
| |
Collapse
|
25
|
Chukwu EE, Okwuraiwe A, Kunle-Ope CN, Igbasi UT, Onyejepu N, Osuolale K, Shaibu JO, Ojogbede A, Abuh D, Afocha E, Awoderu O, Obiozor K, Mustapha A, Audu R. Surveillance of public health pathogens in Lagos wastewater canals: a cross-sectional study. BMC Public Health 2024; 24:3590. [PMID: 39725906 DOI: 10.1186/s12889-024-21157-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Wastewater-based epidemiology (WBE) is already being adopted for the surveillance of health conditions of communities and shows great potential for the monitoring of infectious pathogens of public health importance. There is however paucity of robust data to support extensive WBE in Nigeria. This study evaluated the prevalence of clinically relevant infectious pathogens and provided antimicrobial resistance profiles of bacteria pathogens in wastewater canals in Lagos State at a single point in time. METHODS This is a cross-sectional survey of wastewater canals in 20 Local Government Areas (LGAs) in Lagos State for detection of bacteria pathogens of public health importance including non-tuberculous mycobacteria and SARS-Cov-2 virus using cultural analysis and conventional Polymerase Chain Reaction (PCR) techniques. Descriptive epidemiological survey of communities around the canals was done using questionnaires to assess exposure pathways. Statistical analysis was done using SPSS version 27 while P value of < 0.05 was considered as significant. RESULTS Three thousand and fifty-four (3054) questionnaires were administered to 1215 (39.8%) females and 1658 (54.3%) males in communities situated around 40 canals in 20 LGAs. Although majority (81.8%) reported using water closet toilet system and pit latrine (12.5%), a few of them admitted to open defaecation [101 (3.3%)] while 299 (9.8%) engaged in open field waste disposal. SARS-CoV-2 was not detected from wastewater in this study. Two mycobacterial species that included Mycobacterium fortitium group (13, 32.5%) and Mycobacterium kansasii (11, 27.5%) were identified in 15 out of 20 LGAs sampled. A total of 123 bacteria pathogens were isolated across the 40 canals. Prominent enteropathogens isolated included Escheriachia coli (28.5%), Salmonella spp (16.3%), Vibro cholerae (10.6%) and Shigella spp (5.7%). Extended spectrum beta-lactamase genes were prominent (87.5%) in the wastewater samples with almost a half (42.5%) of the canals containing both SHV and CTX-M. CONCLUSION This study highlights the presence of pathogens with potential to cause epidemic in wastewater canals in Lagos State and provides evidence to inform policy and strategies for wastewater monitoring and treatment. Further studies involving longitudinal monitoring of time-based variations is needed to identify trends in pathogen loads and AMR patterns over time.
Collapse
Affiliation(s)
- Emelda E Chukwu
- Center for Infectious Diseases Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria.
- Department of Medical Laboratory Sciences, Faculty of Sciences, Trinity University, Sabo, Yaba, Lagos State, Nigeria.
- Antimicrobial Resistance and Stewardship Research Group (AMRS-RG), Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria.
| | - Azuka Okwuraiwe
- Center for Human Virology and Genomics, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Chioma N Kunle-Ope
- Center for Tuberculosis Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Uche T Igbasi
- Center for Infectious Diseases Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Nneka Onyejepu
- Center for Tuberculosis Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Kazeem Osuolale
- Monitoring and Evaluation Unit, Nigerian Institute of Medical Research, Yaba, , Lagos State, Nigeria
- Antimicrobial Resistance and Stewardship Research Group (AMRS-RG), Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Joseph O Shaibu
- Center for Human Virology and Genomics, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Adewale Ojogbede
- Public Health and Epidemiology Department, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Dennis Abuh
- Center for Infectious Diseases Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
- Antimicrobial Resistance and Stewardship Research Group (AMRS-RG), Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Ebelechukwu Afocha
- Center for Infectious Diseases Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Oluwatoyin Awoderu
- Center for Infectious Diseases Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
- Antimicrobial Resistance and Stewardship Research Group (AMRS-RG), Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Kelechi Obiozor
- Center for Infectious Diseases Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
- Antimicrobial Resistance and Stewardship Research Group (AMRS-RG), Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Adetoun Mustapha
- Center for Infectious Diseases Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Rosemary Audu
- Center for Human Virology and Genomics, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
- Antimicrobial Resistance and Stewardship Research Group (AMRS-RG), Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| |
Collapse
|
26
|
Callejas IA, Kong Y, Osborn K, Hung WC, Cira M, Cason T, Sloane A, Shenkiryk A, Masikip A, Singh A, Jones A, Steele JA, Jay JA. The influence of urbanization and water reclamation plants on fecal indicator bacteria and antibiotic resistance in the Los Angeles River watershed: A case study with complementary monitoring methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177577. [PMID: 39566612 DOI: 10.1016/j.scitotenv.2024.177577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/22/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Urban land use and water reclamation plants (WRPs) can impact fecal indicator bacteria (FIB) and antimicrobial resistance (AMR) in coastal watersheds. However, there is a lack of studies exploring these effects on the US West Coast. Additionally, there is limited research using a complementary approach across culture-, qPCR-, and metagenomics-based techniques for characterizing environmental AMR. In this study, sixteen locations were sampled in the Los Angeles River, encompassing both upstream and downstream of three WRPs discharging into the river. Culture-dependent methods quantified Enterococcus, total coliforms, E. coli, and extended spectrum beta-lactamase-producing E. coli as a low-cost screening tool for AMR, while qPCR measured selected antibiotic resistance genes (ARGs): sul1, ermF, tetW, blaSHV, along with intI1 and 16S rRNA genes. Bacteroides HF183 and crAssphage markers were quantified via ddPCR. All samples underwent shotgun sequencing to investigate gene abundance and mobility and an overall risk score for AMR. Results reveal downstream sites contain ARGs at least two orders of magnitude greater than upstream locations. Developed areas had the highest ARG sequence abundances and the most ARG classes as indicated by metagenomic analysis. WRP effluent exhibited elevated ARGs and co-location of ARGs, mobile genetic elements, and pathogens. A culture-based assessment of AR in E. coli and Pseudomonas aeruginosa revealed increased resistance ratios for most antibiotics from upstream to downstream a WRP discharge point. This study highlights the impacts of land use and WRPs on ARGs and FIB, offering a multi-pronged analysis of AMR.
Collapse
Affiliation(s)
- Ileana A Callejas
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA; Department of Biological Sciences, Biola University, La Mirada, CA, USA.
| | - Yuwei Kong
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Katie Osborn
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wei-Cheng Hung
- Department of Chemistry, Southern Oregon University, Ashland, OR, USA
| | - Marisol Cira
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Taylor Cason
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ashlyn Sloane
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexis Shenkiryk
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aaron Masikip
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Akshyae Singh
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Adriane Jones
- Department of Biological Sciences, Mount Saint Mary's University, Los Angeles, CA, USA
| | - Joshua A Steele
- Department of Microbiology, Southern California Coastal Water Research Project, Costa Mesa, CA, USA
| | - Jennifer A Jay
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
27
|
Endalamaw K, Tadesse S, Asmare Z, Kebede D, Erkihun M, Abera B. Antimicrobial resistance profile of bacteria from hospital wastewater at two specialized hospitals in Bahir Dar city, Ethiopia. BMC Microbiol 2024; 24:525. [PMID: 39695370 DOI: 10.1186/s12866-024-03693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The high levels of antimicrobial consumption in hospitals contribute to the occurrence of antimicrobial resistant bacteria. Antimicrobial resistant bacteria and sub-lethal concentrations of antimicrobial metabolites can end up in hospital wastewater which can spread to the environment and to the community. However, information on the resistance profile of bacteria isolated from environments is not well studied. Thus, the main aim of this study was to determine the antibiotic resistance profile of bacteria from hospital wastewater in Bahir Dar City, Northwest Ethiopia. METHOD A total of 70 hospital wastewater samples were collected from two comprehensive specialized hospitals using a grab-sampling technique. Bacteria were identified using colony morphology, Gram staining, and biochemical tests. The drug susceptibility test was performed using the Kirby-Bauer disc diffusion method on Muller-Hinton agar. RESULT The most dominant bacterial isolates from hospital wastewater were Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Citrobacter spp., Acinetobacter spp., Enterobacter spp., Klebsiella pneumoniae (K. pneumoniae), and Pseudomonas aeruginosa (P. aeruginosa). All K. pneumoniae and 52.4% (11/21) E. coli were resistant to ceftazidime (third-generation cephalosporin), while Citrobacter spp., Acinetobacter spp., and Enterobacter spp., were susceptible to ceftazidime. Likewise, S. aureus revealed 64% (16/25) resistance to erythromycin. Overall, 22.2% of bacterial isolates were multidrug resistant bacteria to the commonly prescribed antimicrobials. CONCLUSION Hospital waste waters contain high prevalence of multiple drug-resistant bacteria, particularly the third-generation cephalosporin resistant K. pneumoniae and E. coli would be a big concern. Infection prevention and control practices with proper treatment of hospital wastewater before discharging should be in practice to contain the spread of drug-resistant bacteria from hospital to external environment.
Collapse
Affiliation(s)
- Kirubel Endalamaw
- Department of Diagnostic Laboratory, Shegaw Motta General Hospital, East Gojjam, Motta Town, PO Box 50, Ethiopia
| | - Senait Tadesse
- Department of Medical Microbiology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, PO Box 79, Ethiopia
| | - Zelalem Asmare
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Injibara University, Injibara, PO Box 40, Ethiopia
| | - Destaw Kebede
- Department of Diagnostic Laboratory, Shegaw Motta General Hospital, East Gojjam, Motta Town, PO Box 50, Ethiopia
| | - Mulat Erkihun
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, PO. Box 272, Ethiopia
| | - Bayeh Abera
- Department of Medical Microbiology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, PO Box 79, Ethiopia.
| |
Collapse
|
28
|
Che TH, Qiu GK, Yu HW, Wang QY. Impacts of micro/nano plastics on the ecotoxicological effects of antibiotics in agricultural soil: A comprehensive study based on meta-analysis and machine learning prediction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177076. [PMID: 39454772 DOI: 10.1016/j.scitotenv.2024.177076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Micro/nano plastics (M/NPs) and antibiotics, as widely coexisting pollutants in environment, pose serious threats to soil ecosystem. The purpose of this study was to systematically evaluate the ecological effects of the co-exposure of M/NPs and antibiotics on soil organisms through the meta-analysis and machine learning prediction. Totally, 1002 data set from 38 articles were studied. The co-exposure of M/NPs significantly promoted the abundance (62.68 %) and migration level (55.22 %) of antibiotic contamination in soil, and caused serious biotoxicity to plants (-12.31 %), animals (-12.03 %), and microorganisms (35.07 %). Using 10 variables, such as risk response categories, basic physicochemical properties, exposure objects, and exposure time of M/NPs, as data sources, Random Forests (RF) and eXtreme Gradient Boosting (XGBoost) models were developed to predict the impacts of M/NPs on the ecotoxicological effects of antibiotics in agricultural soil. The effective R2 values (0.58 and 0.60, respectively) indicated that both models can be used to predict the future ecological risk of M/NPs and antibiotics coexistence in soil. Particle size (13.54 %), concentration (5.02 %), and type (11.18 %) of M/NPs were the key characteristic parameters that affected the prediction results. The findings of this study indicate that the co-exposure of M/NPs and antibiotics in soil not only exacerbates antibiotic contamination levels but also causes severe toxic effects to soil organism. Furthermore, this study provides an effective approach for ecological risk assessment of the coexistence of M/NPs and antibiotics in environment.
Collapse
Affiliation(s)
- Tian-Hao Che
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Yanbian University, Agricultural college, Yanji 133002, China
| | - Guan-Kai Qiu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hong-Wen Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Quan-Ying Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
29
|
Wang B, Farhan MHR, Yuan L, Sui Y, Chu J, Yang X, Li Y, Huang L, Cheng G. Transfer dynamics of antimicrobial resistance among gram-negative bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176347. [PMID: 39306135 DOI: 10.1016/j.scitotenv.2024.176347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Antimicrobial resistance (AMR) in gram-negative bacteria (GNBs) is a significant global health concern, exacerbated by mobile genetic elements (MGEs). This review examines the transfer of antibiotic resistance genes (ARGs) within and between different species of GNB facilitated by MGEs, focusing on the roles of plasmids and phages. The impact of non-antibiotic chemicals, environmental factors affecting ARG transfer frequency, and underlying molecular mechanisms of bacterial resistance evolution are also discussed. Additionally, the study critically assesses the impact of fitness costs and compensatory evolution driven by MGEs in host organisms, shedding light on the transfer frequency of ARGs and host evolution within ecosystems. Overall, this comprehensive review highlights the factors and mechanisms influencing ARG movement among diverse GNB species and underscores the importance of implementing holistic One-Health strategies to effectively address the escalating public health challenges associated with AMR.
Collapse
Affiliation(s)
- Bangjuan Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Haris Raza Farhan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Linlin Yuan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Sui
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinhua Chu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaohan Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
30
|
Yu J, Fang M, Shi L, Zhu J, Fu C, Zhang Y, Xu H, Li L, Shen Y, Wang M. High efficiency removal of antibiotic resistance gene with designer zinc-finger protein. BIORESOURCE TECHNOLOGY 2024; 413:131462. [PMID: 39260734 DOI: 10.1016/j.biortech.2024.131462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
The use of agricultural biomass-based fertilizers, and the release of feces into the environment leads to last-lasting pollution of antibiotic resistance genes that cannot be removed from waters via traditional methods, resulting in significant health threats. To solve this issue, an antibiotic resistance gene removal method was proposed and tested that used sequence-specific DNA-binding designer zinc finger proteins, which target an 18-bp DNA sequence for specific antibiotic resistance gene binding and removal. Targeting the sulfonamide-resistant sul1 gene, sul1-binding zinc-finger protein was designed, overexpressed, and purified. This protein showed specific binding with sul1 over tetA that do not have the targeted sequence. This protein was further immobilized on agarose-based resins to prepare a sul1-removal column. When loaded with 10 mg protein, this column can remove over 99 % sul1 in water, suggesting high efficiency. This work presents a new method attempting to eliminate environmental and health threats posed by antibiotic resistance genes.
Collapse
Affiliation(s)
- Jianghao Yu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Meng Fang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Lulu Shi
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Jiaming Zhu
- School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Ling Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
31
|
Martín-Vélez V, Navarro J, Vazquez M, Navarro-Ramos MJ, Bonnedahl J, van Toor ML, Bustamante J, Green AJ. Dirty habits: potential for spread of antibiotic-resistance by black-headed gulls from waste-water treatment plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66079-66089. [PMID: 39615007 DOI: 10.1007/s11356-024-35551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/07/2024] [Indexed: 12/21/2024]
Abstract
Anthropogenic environments such as wastewater treatment plants (WWTPs) and landfills are sources of antimicrobial resistance (AMR). Black-headed gulls (Chroicocephalus ridibundus) frequently use WWTPs and may be vectors for AMR. We used GPS tracking data for 39 gulls for up to 8 months, combined with a shedding curve, to study sources and dispersal distances of AMR in Iberia. The gulls used 21 different WWTPs (684 visits) and three landfills (21 visits). Areas of high risk of AMR dissemination were an average of 25 km from the infection source, with a maximum of 500 km. Solar saltworks and natural waterbodies were particularly exposed to AMR dissemination, followed by agriculture, sports facilities, and tourist beaches. There was important variability between individual gulls in their habitat specialization, and which WWTPs they visited. Studying the spatial movements of gulls after visiting WWTPs and landfills helps pinpoint sensitive locations where pathogen transmission is most likely.
Collapse
Affiliation(s)
- Víctor Martín-Vélez
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
- Departamento de Ciencias de La Vida, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
| | - Joan Navarro
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Manuel Vazquez
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Américo Vespucio 26, 41092, Seville, Spain
| | - María J Navarro-Ramos
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Américo Vespucio 26, 41092, Seville, Spain
| | - Jonas Bonnedahl
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
- Department of Infectious Diseases, Region Kalmar County, 391 85, Kalmar, Sweden
| | - Mariëlle L van Toor
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Stuvaregatan 2, 392 31, Kalmar, Sweden
| | - Javier Bustamante
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Américo Vespucio 26, 41092, Seville, Spain
| | - Andy J Green
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Américo Vespucio 26, 41092, Seville, Spain
| |
Collapse
|
32
|
Lin L, Sun M, Pan X, Zhang W, Yang Y, Yang Y. Absence of synergistic effects between microplastics and copper ions on the spread of antibiotic resistance genes within aquatic bacteria at the community level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176591. [PMID: 39343406 DOI: 10.1016/j.scitotenv.2024.176591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Microplastics and copper ions (Cu2+) are favorable in accelerating the propagation of antibiotic resistance genes (ARGs) in the plastisphere, however, their combined effects on the ARG spread within the bacterial community of the natural environment were less understood. The influence of microplastic types and Cu2+ concentrations on the horizontal gene transfer (HGT) of ARGs mediated by RP4 plasmid within natural bacterial communities in aquatic environments was investigated. Both biodegradable polybutylene succinate (PBS) and non-biodegradable polyvinyl chloride (PVC) microplastics significantly enhanced the transfer of ARGs, with PBS showing a significant higher effect compared to PVC. Cu2+ also increased transconjugation rates at environmentally relevant concentrations (5 μg L-1), but higher levels (50 μg L-1) lead to decreased rates due to severe bacterial cell membrane damage. The transconjugation rates in the presence of both microplastics and Cu2+ were lower than the sum of their individual effects, indicating no synergistic effects between them on transconjugation. Proteobacteria dominated the composition of transconjugates for all the treatment. Transmission electron microscope images and reactive oxygen species production in bacterial cells indicated that the increased contact frequency due to extracellular polymeric substances, combined with enhanced membrane permeability induced by microplastics and Cu2+, accounted for the increasing transconjugation rates. The study provides valuable insight into the potential effects of microplastics and heavy metals on the spread of ARGs from donors to bacterial communities in natural environments.
Collapse
Affiliation(s)
- Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430014, China
| | - Mengge Sun
- China University of Geosciences (Beijing), Beijing 100083, China
| | - Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430014, China
| | - Weihong Zhang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yang Yang
- Guizhou Normal University, Guiyang, China
| | - Yuyi Yang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
33
|
Makumbi JP, Leareng SK, Pierneef RE, Makhalanyane TP. Synergizing Ecotoxicology and Microbiome Data Is Key for Developing Global Indicators of Environmental Antimicrobial Resistance. MICROBIAL ECOLOGY 2024; 87:150. [PMID: 39611949 PMCID: PMC11607014 DOI: 10.1007/s00248-024-02463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024]
Abstract
The One Health concept recognises the interconnectedness of humans, plants, animals and the environment. Recent research strongly supports the idea that the environment serves as a significant reservoir for antimicrobial resistance (AMR). However, the complexity of natural environments makes efforts at AMR public health risk assessment difficult. We lack sufficient data on key ecological parameters that influence AMR, as well as the primary proxies necessary for evaluating risks to human health. Developing environmental AMR 'early warning systems' requires models with well-defined parameters. This is necessary to support the implementation of clear and targeted interventions. In this review, we provide a comprehensive overview of the current tools used globally for environmental AMR human health risk assessment and the underlying knowledge gaps. We highlight the urgent need for standardised, cost-effective risk assessment frameworks that are adaptable across different environments and regions to enhance comparability and reliability. These frameworks must also account for previously understudied AMR sources, such as horticulture, and emerging threats like climate change. In addition, integrating traditional ecotoxicology with modern 'omics' approaches will be essential for developing more comprehensive risk models and informing targeted AMR mitigation strategies.
Collapse
Affiliation(s)
- John P Makumbi
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Samuel K Leareng
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Rian E Pierneef
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Thulani P Makhalanyane
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa.
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
34
|
Siri Y, Sresung M, Paisantham P, Mongkolsuk S, Sirikanchana K, Honda R, Precha N, Makkaew P. Antibiotic resistance genes and crAssphage in hospital wastewater and a canal receiving the treatment effluent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124771. [PMID: 39168435 DOI: 10.1016/j.envpol.2024.124771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/26/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Hospital wastewater is a major hotspot for the spread of antimicrobial resistance (AMR) in aquatic ecosystems. This study aimed to investigate the prevalence of antibiotic resistance genes (ARGs) and their correlation with crAssphage in a hospital wastewater treatment plant (HWWTP) and a receiving canal. Water samples were analyzed for 94 ARGs and crAssphage relative to the 16S rRNA using high-throughput quantitative polymerase chain reaction (HT-qPCR). Subsequently, 7 ARGs and crAssphage were selected and quantified using qPCR. The results showed that the detected genes ranged from 79 to 93 out of 95 genes. The raw wastewater (WW) samples had the highest gene diversity compared to the upstream canal, which had less diversity than downstream samples, as determined by HT-qPCR. The blaGES was the most abundant in WW samples, while qacEΔ1, merA, IS6100, tnpA, and IS26 showed high prevalence throughout the treatment processes. The concentrations of intI1, sul1, blaTEM,blaNDM,blaVIM,tetQ, mcr-1, crAssphage, and 16S rRNA, measured using qPCR, were the highest in WW and significantly reduced in treated water samples. Although some water quality parameters, such as total suspended solids and dissolved oxygen, did not significantly differ before and after treatment, removal efficiency ranged from 0.60 to 3.23 log reduction values (LRV). The highest LRV was observed for the tetQ, whereas the mcr-1 had the lowest LRV. Strong positive correlations among the absolute concentrations of ARGs and crAssphage were observed (Spearman's rho = 0.6-1.0), and biochemical oxygen demand correlated with blaTEM and blaVIM (Spearman's rho = 0.6). These results indicate that crAssphage and water quality could reflect the distribution of other ARGs throughout the HWWTP. Further studies are needed to underscore the importance of monitoring ARGs and genetic markers such as crAssphage in HWWTPs and their receiving waters to enhance our understanding of ARG distribution.
Collapse
Affiliation(s)
- Yadpiroon Siri
- Environmental, Safety Technology and Health Program, School of Public Health, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat, 80160, Thailand
| | - Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Phongsawat Paisantham
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Nopadol Precha
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, 80160, Thailand; Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Prasert Makkaew
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, 80160, Thailand; Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
35
|
Ifedinezi OV, Nnaji ND, Anumudu CK, Ekwueme CT, Uhegwu CC, Ihenetu FC, Obioha P, Simon BO, Ezechukwu PS, Onyeaka H. Environmental Antimicrobial Resistance: Implications for Food Safety and Public Health. Antibiotics (Basel) 2024; 13:1087. [PMID: 39596781 PMCID: PMC11591122 DOI: 10.3390/antibiotics13111087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is a serious global health issue, aggravated by antibiotic overuse and misuse in human medicine, animal care, and agriculture. This study looks at the different mechanisms that drive AMR, such as environmental contamination, horizontal gene transfer, and selective pressure, as well as the severe implications of AMR for human and animal health. This study demonstrates the need for concerted efforts across the scientific, healthcare, agricultural, and policy sectors to control the emergence of AMR. Some crucial strategies discussed include developing antimicrobial stewardship (AMS) programs, encouraging targeted narrow-spectrum antibiotic use, and emphasizing the significance of strict regulatory frameworks and surveillance systems, like the Global Antimicrobial Resistance and Use Surveillance System (GLASS) and the Access, Watch, and Reserve (AWaRe) classification. This study also emphasizes the need for national and international action plans in combating AMR and promotes the One Health strategy, which unifies environmental, animal, and human health. This study concludes that preventing the spread of AMR and maintaining the effectiveness of antibiotics for future generations requires a comprehensive, multidisciplinary, and internationally coordinated strategy.
Collapse
Affiliation(s)
| | - Nnabueze Darlington Nnaji
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
- Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria
| | | | | | | | | | - Promiselynda Obioha
- Microbiology Research Unit, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - Blessing Oteta Simon
- Department of Public Health Sciences, National Open University of Nigeria, Abuja 900108, Nigeria
| | | | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
36
|
Wardi M, Lemkhente Z, Alla AA, Slimani N, Abali M, Idaghdour Y, Belmouden A. Resistome analysis of wastewater treatment plants in Agadir city, Morocco, using a metagenomics approach. Sci Rep 2024; 14:26328. [PMID: 39487157 PMCID: PMC11530435 DOI: 10.1038/s41598-024-76773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
Water scarcity has evolved into a pressing global issue, significantly impacting numerous regions worldwide. The use of treated wastewater stands out as a promising solution to this problem. However, the proliferation of various contaminants, primarily Antimicrobial Resistance Genes (ARGs), poses a significant challenge to its safe and sustainable use. In this study, we assessed the composition and abundance of 373 ARGs, corresponding to 31 different classes of antibiotics, in six wastewater treatment plants (WWTP) in Agadir city of Morocco. Influent and effluent samples were collected during the months of February and July in 2020, in addition to samples from the Atlantic Ocean. In total, 223 ARGs were uncovered, highlighting in particular resistance to aminoglycoside, macrolide lincosamide, beta-lactamase, chloramphenicol, sulfonamide, tetracycline, and other antibiotics. The mechanisms of action of these ARGs were mainly antibiotic inactivation, antibiotic target alteration, efflux pump and cellular protection. Mobile genetic elements (MGEs) were detected at high levels their co-occurrence with ARGs highlights their involvement in the acquisition and transmission of ARGs in microbial communities through horizontal gene transfer. While many wastewater treatment methods effectively reduce a large proportion of gene material and pathogens, a substantial fraction of ARGs and other contaminants persist in treated wastewater. This persistence poses potential risks to both human health and the environment, warranting the need of more effective treatment strategies.
Collapse
Affiliation(s)
- Maryem Wardi
- Laboratory of Cellular Biology and Molecular Genetics, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - Zohra Lemkhente
- Laboratory of Medical-Surgical, Biomedicine and Infectiology Research, Faculty of Medicine and Pharmacy, Ibnou Zohr University, Agadir, Morocco
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Ecosystems, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - Noureddine Slimani
- Laboratory of Aquatic Systems: Marine and Continental Ecosystems, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - M'hamed Abali
- Laboratory of Aquatic Systems: Marine and Continental Ecosystems, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - Youssef Idaghdour
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ahmed Belmouden
- Laboratory of Cellular Biology and Molecular Genetics, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco.
| |
Collapse
|
37
|
Ji X, Zhang X, Ju T, Zhou L, Jin D, Wu P. Mechanisms of inhibition and recovery under multi-antibiotic stress in anammox: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122754. [PMID: 39366232 DOI: 10.1016/j.jenvman.2024.122754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
With the escalating global concern for emerging pollutants, particularly antibiotics, microplastics, and nanomaterials, the potential disruption they pose to critical environmental processes like anaerobic ammonia oxidation (anammox) has become a pressing issue. The anammox process, which plays a crucial role in nitrogen removal from wastewater, is particularly sensitive to external pollutants. This paper endeavors to address this knowledge gap by providing a comprehensive overview of the inhibition mechanisms of multi-antibiotic on anaerobic ammonia-oxidizing bacteria, along with insights into their recovery processes. The paper dives deeply into the various ways antibiotics interact with anammox bacteria, focusing specifically on their interference with the bacteria's extracellular polymers (EPS) - crucial components that maintain the structural integrity and functionality of the cells. Additionally, it explores how anammox bacteria utilize quorum sensing (QS) mechanisms to regulate their community structure and respond to antibiotic stress. Moreover, the paper summarizes effective removal methods for these antibiotics from wastewater systems, which is crucial for mitigating their inhibitory effects on anammox bacteria. Finally, the paper offers valuable insights into how anammox communities can recuperate from multi-antibiotic stress. This includes strategies for reintroducing healthy bacteria, optimizing operational conditions, and using bioaugmentation techniques to enhance the resilience of anammox communities. In summary, this paper not only enriches our understanding of the complex interactions between antibiotics and anammox bacteria but also provides theoretical and practical guidance for the treatment of antibiotic pollution in sewage, ensuring the sustainability and effectiveness of wastewater treatment processes.
Collapse
Affiliation(s)
- Xu Ji
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ting Ju
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Li Zhou
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Da Jin
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
38
|
Chen J, Su Z, Li F, Cao F, Xiong F, Jiang B, Xing Y, Wen D. The variation of resistome, mobilome and pathogen in domestic and industrial wastewater treatment systems. ENVIRONMENT INTERNATIONAL 2024; 193:109051. [PMID: 39418785 DOI: 10.1016/j.envint.2024.109051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
Wastewater treatment plants (WWTPs), including both domestic and industrial facilities, are key contributors to antibiotic resistance genes (ARGs) and human pathogens in the environment. However, the characteristics and dissemination mechanisms of ARGs in domestic (SD) and industrial (SI) wastewater treatment systems remain unclear, leading to uncertainties in risk assessment. Based on metagenomic analysis, we observed significant differences in the compositions of resistome (ARGs and metal resistance genes, MRGs), mobilome (mobile genetic elements, MGEs), and bacterial community between SD and SI. SI exhibited lower diversity of ARGs but higher abundance of MRGs compared to SD. The removal efficiency of resistome was lower in the SI than that in the SD. MGEs emerged as the primary driver of ARG dissemination in the WWTPs, followed by the bacterial community. Environmental conditions (physicochemical parameters, heavy metals, and antibiotics) indirectly influenced the variation of resistome. Significantly, environmental conditions and MGEs highly influenced the composition of resistome in the SI, while bacterial community more associated with resistome in the SD. Additionally, we identified 36 human bacterial pathogens as potential hosts of ARGs, MRGs, and MGEs in wastewater samples. This study provides new insights on the dissemination mechanisms and risk assessment of antimicrobial resistance in the different types of WWTPs.
Collapse
Affiliation(s)
- Jiayu Chen
- School of Energy and Environmental Engineering, University of Science and Technology, Beijing 100083, China
| | - Zhiguo Su
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Feifei Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Feng Cao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Fuzhong Xiong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology, Beijing 100083, China.
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology, Beijing 100083, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
39
|
Bertrans-Tubau L, Martínez-Campos S, Lopez-Doval J, Abril M, Ponsá S, Salvadó V, Hidalgo M, Pico-Tomàs A, Balcazar JL, Proia L. Nature-based bioreactors: Tackling antibiotic resistance in urban wastewater treatment. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100445. [PMID: 39055482 PMCID: PMC11269294 DOI: 10.1016/j.ese.2024.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
The overuse and misuse of antibiotics have accelerated the selection of antibiotic-resistant bacteria, significantly impacting human, animal, and environmental health. As aquatic environments are vulnerable to antibiotic resistance, suitable management practices should be adopted to tackle this phenomenon. Here we show an effective, nature-based solution for reducing antibiotic resistance from actual wastewater. We utilize a bioreactor that relies on benthic (biofilms) and planktonic microbial communities to treat secondary effluent from a small urban wastewater treatment plant (<10,000 population equivalent). This treated effluent is eventually released into the local aquatic ecosystem. We observe high removal efficiency for genes that provide resistance to commonly used antibiotic families, as well as for mobile genetic elements that could potentially aid in their spread. Importantly, we notice a buildup of sulfonamide (sul1 and sul2) and tetracycline (tet(C), tet(G), and tetR) resistance genes specifically in biofilms. This advancement marks the initial step in considering this bioreactor as a nature-based, cost-effective tertiary treatment option for small UWWTPs facing antibiotic resistance challenges.
Collapse
Affiliation(s)
- Lluís Bertrans-Tubau
- BETA Technological Centre- University of Vic- Central University of Catalunya (BETA- UVIC- UCC), Carretera de Roda 70, 08500, Vic, Barcelona, Spain
| | - Sergio Martínez-Campos
- BETA Technological Centre- University of Vic- Central University of Catalunya (BETA- UVIC- UCC), Carretera de Roda 70, 08500, Vic, Barcelona, Spain
| | - Julio Lopez-Doval
- BETA Technological Centre- University of Vic- Central University of Catalunya (BETA- UVIC- UCC), Carretera de Roda 70, 08500, Vic, Barcelona, Spain
| | - Meritxell Abril
- BETA Technological Centre- University of Vic- Central University of Catalunya (BETA- UVIC- UCC), Carretera de Roda 70, 08500, Vic, Barcelona, Spain
| | - Sergio Ponsá
- BETA Technological Centre- University of Vic- Central University of Catalunya (BETA- UVIC- UCC), Carretera de Roda 70, 08500, Vic, Barcelona, Spain
| | - Victoria Salvadó
- Chemistry Department, University of Girona. Campus Montilivi, 17005, Girona, Spain
| | - Manuela Hidalgo
- Chemistry Department, University of Girona. Campus Montilivi, 17005, Girona, Spain
| | - Anna Pico-Tomàs
- Catalan Institute Water Research (ICRA-CERCA), Emili Grahit 101, 17003, Girona, Spain
| | - Jose Luis Balcazar
- Catalan Institute Water Research (ICRA-CERCA), Emili Grahit 101, 17003, Girona, Spain
- University of Girona, 17004, Girona, Spain
| | - Lorenzo Proia
- BETA Technological Centre- University of Vic- Central University of Catalunya (BETA- UVIC- UCC), Carretera de Roda 70, 08500, Vic, Barcelona, Spain
| |
Collapse
|
40
|
Zhang J, Chen J, Wang C, Wang P, Gao H, Feng B, Fu J. Vertical variation of antibiotic resistance genes and their interaction with environmental nutrients in sediments of Taihu lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122661. [PMID: 39332305 DOI: 10.1016/j.jenvman.2024.122661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Antibiotic resistance is a growing environmental issue. As a sink for antibiotic resistance genes (ARGs), lake surface sediments are well known for the spread of ARGs. However, the distribution pattern of ARGs and their relationship with environmental factors in vertical sediment layers are unclear. In this study, we investigated the resistome distribution in sediment cores from Taihu Lake using metagenomic analysis. The results showed that the abundance of total ARGs increased by 153% as the sediment depth rose from 0 to 50 cm, and the ARG Shannon index significantly increased. Among all the ARG types, efflux pump genes (e.g., mexT and mexW) were dominant, especially in 40-50 cm sediment. The variation in ARG with depth described above was related to the changes in bacterial adaptation to environmental gradients. Specifically, sulfate and nitrate concentrations decreased with depth, and random forest analysis showed that they were the main factors affecting the changes in ARG abundance. Environmental factors were also found to indirectly impact the distribution of ARGs by affecting the bacterial community. Potential sulfate-reducing gene/nitrate-reducing gene-ARG co-hosts were annotated through metagenomic assembly. The dominant co-hosts, Curvibacter, and Comamonas, which were enriched in deeper sediments, may have contributed to the enrichment of ARGs in deep sediments. Overall, our findings demonstrated that bacterial-mediated sulfate and nitrate reduction was closely related to sediment resistance, which provided new insights into the control of antibiotic resistance.
Collapse
Affiliation(s)
- Jingjing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Bingbing Feng
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Jingjing Fu
- PowerChina Huadong Engineering Corporation Limited, No.201, Gaojiao Road, Yuhang District, Hangzhou, Zhejiang, 311122, PR China
| |
Collapse
|
41
|
Shang KM, Elsheikha HM, Ma H, Wei YJ, Zhao JX, Qin Y, Li JM, Zhao ZY, Zhang XX. Metagenomic profiling of cecal microbiota and antibiotic resistome in rodents. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117186. [PMID: 39426111 DOI: 10.1016/j.ecoenv.2024.117186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
The rodent gut microbiota is a known reservoir of antimicrobial resistance, yet the distribution of antibiotic resistance genes (ARGs) within rodent cecal microbial communities and the specific bacterial species harboring these ARGs remain largely underexplored. This study employed high-throughput sequencing of 122 samples from five distinct rodent species to comprehensively profile the diversity and distribution of ARGs and to identify the bacterial hosts of these genes. A gene catalog of the rodent cecal microbiome was constructed, comprising 22,757,369 non-redundant genes. Analysis of the microbial composition and diversity revealed that Bacillota and Bacteroidota were the dominant bacterial phyla across different rodent species, with significant variations in species composition among the rodents. In total, 3703 putative antimicrobial resistance protein-coding genes were identified, corresponding to 392 unique ARG types classified into 32 resistance classes. The most enriched ARGs in the rodent cecal microbiome were associated with multidrug resistance, followed by glycopeptide and elfamycin antibiotics. Procrustes analysis demonstrated a correlation between the structure of the microbial community and the resistome. Metagenomic assembly-based host tracking indicated that most ARG-carrying contigs originated from the bacterial family Oscillospiraceae. Additionally, 130 ARGs showed significant correlations with mobile genetic elements. These findings provide new insights into the cecal microbiota and the prevalence of ARGs across five rodent species. Future research on a wider range of wild rodent species carrying ARGs will further elucidate the mechanisms underlying the transmission of antimicrobial resistance.
Collapse
Affiliation(s)
- Kai-Meng Shang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China
| | - Yong-Jie Wei
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China
| | - Ji-Xin Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China
| | - Ya Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China; College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, PR China
| | - Jian-Ming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province, PR China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, Jilin Province, PR China; Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun, Jilin Province, PR China
| | - Zi-Yu Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, PR China
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China.
| |
Collapse
|
42
|
Banerji A, Brinkman NE, Davis B, Franklin A, Jahne M, Keely SP. Food Webs and Feedbacks: The Untold Ecological Relevance of Antimicrobial Resistance as Seen in Harmful Algal Blooms. Microorganisms 2024; 12:2121. [PMID: 39597512 PMCID: PMC11596618 DOI: 10.3390/microorganisms12112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial resistance (AMR) has long been framed as an epidemiological and public health concern. Its impacts on the environment are unclear. Yet, the basis for AMR is altered cell physiology. Just as this affects how microbes interact with antimicrobials, it can also affect how they interact with their own species, other species, and their non-living environment. Moreover, if the microbes are globally notorious for causing landscape-level environmental issues, then these effects could alter biodiversity and ecosystem function on a grand scale. To investigate these possibilities, we compiled peer-reviewed literature from the past 20 years regarding AMR in toxic freshwater cyanobacterial harmful algal blooms (HABs). We examined it for evidence of AMR affecting HAB frequency, severity, or persistence. Although no study within our scope was explicitly designed to address the question, multiple studies reported AMR-associated changes in HAB-forming cyanobacteria (and co-occurring microbes) that pertained directly to HAB timing, toxicity, and phase, as well as to the dynamics of HAB-afflicted aquatic food webs. These findings highlight the potential for AMR to have far-reaching environmental impacts (including the loss of biodiversity and ecosystem function) and bring into focus the importance of confronting complex interrelated issues such as AMR and HABs in concert, with interdisciplinary tools and perspectives.
Collapse
Affiliation(s)
- Aabir Banerji
- US Environmental Protection Agency, Office of Research and Development, Duluth, MN 55804, USA
| | - Nichole E. Brinkman
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Benjamin Davis
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Alison Franklin
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Michael Jahne
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Scott P. Keely
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| |
Collapse
|
43
|
Ramos B, Lourenço AB, Monteiro S, Santos R, Cunha MV. Metagenomic profiling of raw wastewater in Portugal highlights microbiota and resistome signatures of public health interest beyond the usual suspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174272. [PMID: 38925382 DOI: 10.1016/j.scitotenv.2024.174272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
In response to the rapid emergence and dissemination of antimicrobial resistant bacteria (ARB) and genes (ARGs), integrated surveillance systems are needed to address antimicrobial resistance (AMR) within the One Health Era. Wastewater analyses enable biomarker monitoring at the sewershed level, offering timely insights into pathogen circulation and ARB/ARGs trends originating from different compartments. During two consecutive epidemic waves of the COVID-19 pandemic in Portugal, taxonomic and functional composition of raw urban wastewater from two wastewater treatment plants (WWTPs) representing one million in equivalent population, located in the main urban areas of the country, were profiled by shotgun metagenomics. Hospital wastewater from two central hospitals located in the WWTPs catchment areas were also sequenced. The resistome and virulome were profiled using metagenomic assemblies without taxonomic constraint, and then specifically characterized for ESKAPE pathogens. Urban and hospital wastewater exhibited specific microbiota signatures, Pseudomonadota dominated in the first and Bacteroidota in the latter. Correlation network analyses highlighted 85 (out of top 100) genera co-occurring across samples. The most frequent ARGs were classified in the multidrug, tetracyclines, and Macrolides, Lincosamides, Streptogramins (MLS) classes. Links established between AMR determinants and bacterial hosts evidenced that the diversity and abundance of ARGs is not restricted to ESKAPE, being also highly predominant among emergent enteropathogens, like Aeromonas and Aliarcobacter, or in the iron (II) oxidizer Acidovorax. The Aliarcobacter genus accumulated high abundance of sulphonamides and polymyxins ARGs, while Acinetobacter and Aeromonas hosted the highest abundance of ARGs against beta-lactams. Other bacteria (e.g. Clostridioides, Francisella, Vibrio cholerae) and genes (e.g. vanA-type vancomycin resistance) of public health interest were detected, with targeted monitoring efforts being needed to establish informative baseline data. Altogether, results highlight that wastewater monitoring is a valuable component of pathogen and AMR surveillance in healthy populations, providing a community-representative snapshot of public health trends beyond priority pathogens.
Collapse
Affiliation(s)
- Beatriz Ramos
- Pathogen Biology & Global Health Laboratory, Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Artur B Lourenço
- Pathogen Biology & Global Health Laboratory, Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Silvia Monteiro
- Laboratório de Águas, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Civil Engineering Research and Innovation for Sustainability (CERIS), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Department of Nuclear Sciences and Engineering (DECN), Instituto Superior Técnico, Universidade de Lisboa, Bobadela, Portugal
| | - Ricardo Santos
- Laboratório de Águas, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Civil Engineering Research and Innovation for Sustainability (CERIS), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Department of Nuclear Sciences and Engineering (DECN), Instituto Superior Técnico, Universidade de Lisboa, Bobadela, Portugal
| | - Mónica V Cunha
- Pathogen Biology & Global Health Laboratory, Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
44
|
Cheney C, Johnson JD, Ste. Marie JP, Gacosta KYM, Denlinger Drumm NB, Jones GD, Waite-Cusic J, Navab-Daneshmand T. Resolved genomes of wastewater ESBL-producing Escherichia coli and metagenomic analysis of source wastewater samples. Microbiol Spectr 2024; 12:e0071724. [PMID: 39166863 PMCID: PMC11448238 DOI: 10.1128/spectrum.00717-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli pose a serious threat to human health because of their resistance to the most commonly prescribed antibiotics: penicillins and cephalosporins. In this study, we provide a genomic and metagenomic context for the determinant beta-lactam resistance genes of ESBL-positive E. coli isolated from various wastewater treatment utilities in Oregon, USA. Class A beta-lactamase genes on chromosomes (blaCTX-M, blaTEM) were clustered with antibiotic resistance genes associated with other classes of antibiotics (sulfonamides and aminoglycosides) along with insertional elements. ESBL genes such as blaCTX-M, blaTEM, and blaSHV were also detected on conjugable plasmids of IncF and IncI incompatibility types. One novel IncF plasmid (pSHV2A_ESBLF) was identified, which carried a multidrug resistance genotype (blaSHV-2A, aadA22, aac3, aph6, tetA, and sul1) in addition to a mer (mercury resistance) operon, colicin, and aerobactin genes. Shotgun metagenomic analysis of the ESBL-producing E. coli-originating wastewater samples showed the presence of class A beta-lactamases; however, the ESBL genes identified in the E. coli genomes were below the detection limits. Other ESBL-associated genes (i.e., blaOXA.11, blaFOX.7, and blaGES.17) were identified in the wastewater samples, and their occurrences were correlated with the core microbial genera (e.g., Paraprevotella). In the E. coli genomes and wastewater samples, tetracycline, aminoglycoside, and beta-lactam resistance determinants frequently co-occurred. The combination of whole-genome and metagenomic analysis provides a holistic description of ESBL-producing organisms and genes in wastewater systems.IMPORTANCEUsing a hybrid sequencing and assembly strategy (short- and long-read sequencing), we identified the distribution of ARGs and virulence factors harbored on plasmids and chromosomes. We further characterized plasmids' incompatibility types and the co-occurrences of ARGs and virulence factors on plasmids and chromosomes. We investigated the transferability of plasmid-mediated beta-lactams via conjugation. Finally, using shotgun metagenomic analysis of the ESBL-producing Escherichia coli-originated wastewater samples, we described the microbial community, the resistome composition, and the potential associations with plasmid-mediated beta-lactam genes and other ARGs.
Collapse
Affiliation(s)
- Clinton Cheney
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Jared D. Johnson
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - John P. Ste. Marie
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Kayla Y. M. Gacosta
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Natalie B. Denlinger Drumm
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Gerrad D. Jones
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Joy Waite-Cusic
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Tala Navab-Daneshmand
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
45
|
Swain PP, Sahoo S, Behera B, Behera DU, Subudhi E, Sahoo RK. Characterization of colistin-resistant carbapenemase producing Klebsiella pneumoniae in a river receiving wastewater treatment plant effluent. Lett Appl Microbiol 2024; 77:ovae090. [PMID: 39317674 DOI: 10.1093/lambio/ovae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/12/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Genes conferring antibiotic resistance phenotype, particularly to last resort antibiotics, pose a significant concern globally. Wastewater treatment plant (WWTP) effluent substantially contributes to antibiotic resistance in receiving rivers, threatening human health. Globally, colistin- and carbapenem-resistant Klebsiella pneumoniae infections cause high morbidity and mortality. We investigated colistin-resistant carbapenemase-producing K. pneumoniae (Co-CRKP) isolates in Kathajodi river receiving WWTP effluent, their resistance genes, and pathogenic potential. Four isolates (Co-CRKP-7, Co-CRKP-8, Co-CRKP-10, and Co-CRKP-15) exhibited extensively drug-resistant (XDR) phenotype, harbouring blaTEM-1, blaCTX-M-15, blaNDM-5, and blaOXA-48 genes. Colistin resistance was attributed to mutations in the pmrA and pmrB genes. Virulence genes (fimH, mrkD, entB, iucA, iutA, and irp1), capsular serotypes (K1, K2) and biofilm formation in the isolates explicated their pathogenicity. Furthermore, Inc plasmid replicons (Y, FrepB, P, K/B, L/M, N, FIA, A/C, and FIB) indicated the dissemination potential of the resistance genes in Co-CRKP isolates. The multi-locus sequence typing showed that Co-CRKP-7 and Co-CRKP-8 belonged to ST42, while Co-CRKP-10 and Co-CRKP-15 were ST16 and ST231, respectively. These high-risk clones carrying multidrug resistance and virulence genes, implicated in numerous outbreaks, have spread worldwide. Our findings emphasize the necessity for effective treatment of hospital wastes to restrict the spread of clinical isolates into aquatic environments.
Collapse
Affiliation(s)
- Pragyan Paramita Swain
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Saubhagini Sahoo
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
- Department of Biotechnology, MITS School of Biotechnology, Bhubaneswar, Odisha 751024, India
| | - Birasen Behera
- Department of Microbiology, IMS and SUM Hospital, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
- ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha 751023, India
| | - Dibyajyoti Uttameswar Behera
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
- ICAR-Central Tubers Crop Research Institute, Bhubaneswar, Odisha 751019, India
| | - Enketeswara Subudhi
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Rajesh Kumar Sahoo
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| |
Collapse
|
46
|
Aggerbeck MR, Frøkjær EE, Johansen A, Ellegaard-Jensen L, Hansen LH, Hansen M. Non-target analysis of Danish wastewater treatment plant effluent: Statistical analysis of chemical fingerprinting as a step toward a future monitoring tool. ENVIRONMENTAL RESEARCH 2024; 257:119242. [PMID: 38821457 DOI: 10.1016/j.envres.2024.119242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/25/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
In an attempt to discover and characterize the plethora of xenobiotic substances, this study investigates chemical compounds released into the environment with wastewater effluents. A novel non-targeted screening methodology based on ultra-high resolution Orbitrap mass spectrometry and nanoflow ultra-high performance liquid chromatography together with a newly optimized data-processing pipeline were applied to effluent samples from two state-of-the-art and one small wastewater treatment facility. In total, 785 molecular structures were obtained, of which 38 were identified as single compounds, while 480 structures were identified at a putative level. Most of these substances were therapeutics and drugs, present as parent compounds and metabolites. Using R packages Phyloseq and MetacodeR, originally developed for bioinformatics, significant differences in xenobiotic presence in the wastewater effluents between the three sites were demonstrated.
Collapse
Affiliation(s)
- Marie Rønne Aggerbeck
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; Aarhus University Centre for Water Technology (WATEC), Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark.
| | - Emil Egede Frøkjær
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Anders Johansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; Aarhus University Centre for Water Technology (WATEC), Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark; Aarhus University Centre for Circular Bioeconomy, Aarhus University, 8830 Tjele, Denmark
| | - Lea Ellegaard-Jensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; Aarhus University Centre for Water Technology (WATEC), Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Martin Hansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; Aarhus University Centre for Water Technology (WATEC), Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark.
| |
Collapse
|
47
|
Zhong J, Chang Y, Liang M, Zhou Y, Ai Y. Phosphorylation-amplified synchronized droplet microfluidics sensitizes bacterial growth kinetic real-time monitoring. Biosens Bioelectron 2024; 259:116397. [PMID: 38772249 DOI: 10.1016/j.bios.2024.116397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
The necessity for rapid and accurate bacterial growth monitoring is imperative across various domains, including healthcare and environmental safety. We introduce the self-synchronized droplet-amplified electrical screening cytometry (SYNC) system, a novel meld of droplet microfluidics and electrochemical amplification tailored for precise bacterial growth kinetic monitoring. SYNC encapsulates single bacteria in picolitre droplets, enabling real-time, fluorescence-free electrochemical monitoring. A specially devised phosphorylation-amplified culture medium translates bacterial metabolic activity into discernible electrical impedance changes. The dual-channel design and a rail-based structure in SYNC facilitate parallel screening and self-synchronization of droplets, addressing the limitations of conventional impedance cytometry. SYNC showcases a 5-fold enhancement in detection sensitivity and reduces 50% of the detection time compared to traditional approaches. Notably, SYNC is pioneering in providing exact initial bacterial concentrations, achieve to 104 bacteria/ml, a capability unmatched by existing real-time techniques measuring electrochemical variations. Along with its robust performance, this earmarks SYNC as a powerful tool for applications such as antibiotic susceptibility testing, food quality monitoring, and real-time water bacteria monitoring, paving the way for enhanced microbial process management and infection control.
Collapse
Affiliation(s)
- Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Yifu Chang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Minhui Liang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore.
| |
Collapse
|
48
|
Gao Y, Guo Y, Wang L, Guo L, Shi B, Zhu L, Wang J, Kim YM, Wang J. Tebuconazole exacerbates co-occurrence and horizontal transfer of antibiotic resistance genes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106026. [PMID: 39277355 DOI: 10.1016/j.pestbp.2024.106026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 09/17/2024]
Abstract
As one of the most widely used pesticides in the global fungicide market, tebuconazole has become heavily embedded in soil along with antibiotic resistance genes (ARGs). However, it remains unclear whether the selective pressure produced by tebuconazole affects ARGs and their horizontal transfer. In this experiment, we simulated a tebuconazole-contaminated soil ecosystem and observed changes in the abundance of ARGs and mobile genetic element (MGEs) due to tebuconazole exposure. We also established a plasmid RP4-mediated conjugative transfer system to investigate in depth the impact of tebuconazole on the horizontal transfer of ARGs and its mechanism of action. The results showed that under tebuconazole treatment at concentrations ranging from 0 to 10 mg/L, there was a gradual increase in the frequency of plasmid conjugative transfer, peaking at 10 mg/L which was 7.93 times higher than that of the control group, significantly promoting horizontal transfer of ARGs. Further analysis revealed that the conjugative transfer system under tebuconazole stress exhibited strong ability to form biofilm, and the conjugative transfer frequency ratio of biofilm to planktonic bacteria varied with the growth cycle of biofilm. Additionally, scanning electron microscopy and flow cytometry demonstrated increased cell membrane permeability in both donor and recipient bacteria under tebuconazole stress, accompanied by upregulation of ompA gene expression controlling cell membrane permeability. Furthermore, enzyme activity assays indicated significant increases in CAT, SOD activity, and GSH content in recipient bacteria under tebuconazole stress. Moreover, expression levels of transmembrane transporter gene trfAp as well as genes involved in oxidative stress and SOS response were found to be correlated with the frequency of plasmid conjugative transfer.
Collapse
Affiliation(s)
- Yuanfei Gao
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Yuchen Guo
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Lanjun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Luyu Guo
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Baihui Shi
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China.
| |
Collapse
|
49
|
Gunawardana W, Kalupahana RS, Kottawatta SA, Gamage A, Merah O. A Review of the Dissemination of Antibiotic Resistance through Wastewater Treatment Plants: Current Situation in Sri Lanka and Future Perspectives. Life (Basel) 2024; 14:1065. [PMID: 39337850 PMCID: PMC11433486 DOI: 10.3390/life14091065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence of antibiotic resistance (AR) poses a significant threat to both public health and aquatic ecosystems. Wastewater treatment plants (WWTPs) have been identified as potential hotspots for disseminating AR in the environment. However, only a limited number of studies have been conducted on AR dissemination through WWTPs in Sri Lanka. To address this knowledge gap in AR dissemination through WWTP operations in Sri Lanka, we critically examined the global situation of WWTPs as hotspots for transmitting antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) by evaluating more than a hundred peer-reviewed international publications and available national publications. Our findings discuss the current state of operating WWTPs in the country and highlight the research needed in controlling AR dissemination. The results revealed that the impact of different wastewater types, such as clinical, veterinary, domestic, and industrial, on the dissemination of AR has not been extensively studied in Sri Lanka; furthermore, the effectiveness of various wastewater treatment techniques in removing ARGs requires further investigation to improve the technologies. Furthermore, existing studies have not explored deeply enough the potential public health and ecological risks posed by AR dissemination through WWTPs.
Collapse
Affiliation(s)
- Wasana Gunawardana
- China Sri Lanka Joint Research and Demonstration Centre for Water Technology (JRDC), E.O.E Pereira Mawatha, Meewathura Road, Peradeniya 20400, Sri Lanka;
| | - Ruwani S. Kalupahana
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka; (R.S.K.); (S.A.K.)
| | - Sanda A. Kottawatta
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka; (R.S.K.); (S.A.K.)
| | - Ashoka Gamage
- China Sri Lanka Joint Research and Demonstration Centre for Water Technology (JRDC), E.O.E Pereira Mawatha, Meewathura Road, Peradeniya 20400, Sri Lanka;
- Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle, LCA, Institut National de la Recherche Agronomique et Environnement, Université de Toulouse, 31030 Toulouse, France
- Département Génie Biologique, Institut Universitaire de Technologie Paul Sabatier, Université Paul Sabatier, 32000 Auch, France
| |
Collapse
|
50
|
Duran-Bedolla J, Téllez-Sosa J, Bocanegra-Ibarias P, Schilmann A, Bravo-Romero S, Reyna-Flores F, Villa-Reyes T, Barrios-Camacho H. Citrobacter spp. and Enterobacter spp. as reservoirs of carbapenemase blaNDM and blaKPC resistance genes in hospital wastewater. Appl Environ Microbiol 2024; 90:e0116524. [PMID: 39012101 PMCID: PMC11337798 DOI: 10.1128/aem.01165-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Antibiotic resistance has emerged as a global threat to public health, generating a growing interest in investigating the presence of antibiotic-resistant bacteria in environments influenced by anthropogenic activities. Wastewater treatment plants in hospital serve as significant reservoirs of antimicrobial-resistant bacteria, where a favorable environment is established, promoting the proliferation and transfer of resistance genes among different bacterial species. In our study, we isolated a total of 243 strains from 5 hospital wastewater sites in Mexico, belonging to 21 distinct Gram-negative bacterial species. The presence of β-lactamase was detected in 46.9% (114/243) of the isolates, which belonging to the Enterobacteriaceae family. We identified a total of 169 β-lactamase genes; blaTEM in 33.1%, blaCTX-M in 25.4%, blaKPC in 25.4%, blaNDM 8.8%, blaSHV in 5.3%, and blaOXA-48 in 1.1% distributed in 12 different bacteria species. Among the 114 of the isolates, 50.8% were found to harbor at least one carbapenemase and were discharged into the environment. The carbapenemase blaKPC was found in six Citrobacter spp. and E. coli, while blaNDM was detected in two distinct Enterobacter spp. and E. coli. Notably, blaNDM-1 was identified in a 110 Kb IncFII conjugative plasmid in E. cloacae, E. xiangfangensis, and E. coli within the same hospital wastewater. In conclusion, hospital wastewater showed the presence of Enterobacteriaceae carrying a high frequency of carbapenemase blaKPC and blaNDM. We propose that hospital wastewater serves as reservoirs for resistance mechanism within bacterial communities and creates an optimal environment for the exchange of this resistance mechanism among different bacterial strains. IMPORTANCE The significance of this study lies in its findings regarding the prevalence and diversity of antibiotic-resistant bacteria and genes identified in hospital wastewater in Mexico. The research underscores the urgent need for enhanced surveillance and prevention strategies to tackle the escalating challenge of antibiotic resistance, particularly evident through the elevated frequencies of carbapenemase genes such as blaKPC and blaNDM within the Enterobacteriaceae family. Moreover, the identification of these resistance genes on conjugative plasmids highlights the potential for widespread transmission via horizontal gene transfer. Understanding the mechanisms of antibiotic resistance in hospital wastewater is crucial for developing targeted interventions aimed at reducing transmission, thereby safeguarding public health and preserving the efficacy of antimicrobial therapies.
Collapse
Affiliation(s)
- Josefina Duran-Bedolla
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Cuernavaca, Morelos, Mexico
| | - Juan Téllez-Sosa
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Cuernavaca, Morelos, Mexico
| | - Paola Bocanegra-Ibarias
- Facultad de Medicina, Hospital Universitario "Dr. José Eleuterio González", Departamento de Enfermedades Infecciosas, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Astrid Schilmann
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación en Salud Poblacional, Cuernavaca, Morelos, Mexico
| | - Sugey Bravo-Romero
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Cuernavaca, Morelos, Mexico
| | - Fernando Reyna-Flores
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Cuernavaca, Morelos, Mexico
| | - Tania Villa-Reyes
- Coordinación Nacional de la Red Hospitalaria de Vigilancia Epidemiológica, Dirección General de Epidemiología, Ciudad de México, Mexico
| | - Humberto Barrios-Camacho
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Cuernavaca, Morelos, Mexico
| |
Collapse
|