1
|
Hurtado P, Espelta JM, Jaime L, Martínez‐Vilalta J, Kokolaki MS, Lindner M, Lloret F. Biodiversity and Management as Central Players in the Network of Relationships Underlying Forest Resilience. GLOBAL CHANGE BIOLOGY 2025; 31:e70196. [PMID: 40351244 PMCID: PMC12067180 DOI: 10.1111/gcb.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/06/2025] [Accepted: 03/22/2025] [Indexed: 05/14/2025]
Abstract
Global change is threatening the integrity of forest ecosystems worldwide, amplifying the need for resilience-based management to ensure their conservation and sustain the services they provide. Yet, current efforts are still limited by the lack of implementation of clear frameworks for operationalizing resilience in decision-making processes. To overcome this limitation, we aim to identify reliable and effective drivers of forest resilience, considering their synergies and trade-offs. From a comprehensive review of 342 scientific articles addressing resilience in forests globally, we identified factors shaping forest resilience. We recognized them into two categories that influence forest responses to disturbances: resilience predictors, which can be modified through management, and codrivers, which are measurable but largely unmanageable (e.g., climate). We then performed network analyses based on predictors and codrivers underlying forest resilience. In total, we recognized 5332 such relationships linking predictors or codrivers with forest attributes resilience. Our findings support the central role of biodiversity, with mixed, non-planted, or functionally diverse forests promoting resilience across all contexts and biomes. While management also enhanced resilience, the success of specific interventions was highly context-dependent, suggesting that its application requires a careful analysis of trade-offs. Specifically, practices like cutting and prescribed burning generally enhanced resilience in terms of tree growth, plant diversity, landscape vegetation cover, and stand structure. In contrast, pest and herbivore control reduced the resilience of plant taxonomic diversity while offering only minimal gains for other variables. Even long-term restoration projects showed clear trade-offs in the resilience of different forest attributes, highlighting the need for careful consideration of these effects in practical management decisions. Overall, we emphasize that a reduced number of predictors can be used to effectively promote forest resilience across most attributes. Particularly, enhancing biodiversity and implementing targeted management strategies when biodiversity is impoverished emerge as powerful tools to promote forest resilience.
Collapse
Affiliation(s)
- Pilar Hurtado
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès)CataloniaSpain
- DIFARUniversity of GenoaGenoaItaly
- Department of Biology and Geology, Physics and Inorganic ChemistryRey Juan Carlos UniversityMadridSpain
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN‐CSIC)MadridSpain
| | | | - Luciana Jaime
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès)CataloniaSpain
| | - Jordi Martínez‐Vilalta
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès)CataloniaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| | - Manto Samou Kokolaki
- Department of Natural Resources Development and Agricultural EngineeringAgricultural University of AthensAthensGreece
| | | | - Francisco Lloret
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès)CataloniaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| |
Collapse
|
2
|
Liu X, Feng Y, Hu T, Luo Y, Zhao X, Wu J, Maeda EE, Ju W, Liu L, Guo Q, Su Y. Enhancing ecosystem productivity and stability with increasing canopy structural complexity in global forests. SCIENCE ADVANCES 2024; 10:eadl1947. [PMID: 38748796 PMCID: PMC11095460 DOI: 10.1126/sciadv.adl1947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
Forest canopy structural complexity (CSC) plays a crucial role in shaping forest ecosystem productivity and stability, but the precise nature of their relationships remains controversial. Here, we mapped the global distribution of forest CSC and revealed the factors influencing its distribution using worldwide light detection and ranging data. We find that forest CSC predominantly demonstrates significant positive relationships with forest ecosystem productivity and stability globally, although substantial variations exist among forest ecoregions. The effects of forest CSC on productivity and stability are the balanced results of biodiversity and resource availability, providing valuable insights for comprehending forest ecosystem functions. Managed forests are found to have lower CSC but more potent enhancing effects of forest CSC on ecosystem productivity and stability than intact forests, highlighting the urgent need to integrate forest CSC into the development of forest management plans for effective climate change mitigation.
Collapse
Affiliation(s)
- Xiaoqiang Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhao Feng
- Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing 100871, China
| | - Tianyu Hu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Luo
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxia Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Wu
- School of Biological Sciences and Institute for Climate and Carbon Neutrality, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Eduardo E. Maeda
- Department of Geosciences and Geography, University of Helsinki, Helsinki FI-00014, Finland
- Finnish Meteorological Institute, FMI, Helsinki, Finland
| | - Weiming Ju
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing 210023, China
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Guo
- Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing 100871, China
- Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Yanjun Su
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Gazol A, Valeriano C, Colangelo M, Ibáñez R, Valerio M, Rubio-Cuadrado Á, Camarero JJ. Growth of tree (Pinus sylvestris) and shrub (Amelanchier ovalis) species is constrained by drought with higher shrub sensitivity in dry sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170539. [PMID: 38296069 DOI: 10.1016/j.scitotenv.2024.170539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
We lack understanding of how variable is radial growth of coexisting tree and shrub species, and how growth is constrained by drought depending on site aridity. Here, we compared the radial growth of two widespread and coexisting species, a winter deciduous shrub (Amelanchier ovalis Medik.) and an evergreen conifer tree (Pinus sylvestris L.). We sampled four sites in Northeastern Spain subjected to different aridity levels and used dendrochronological methods to quantify growth patterns and responses to climate variables. The growth of the two species varied between regions, being lower in the driest sites. The first-order autocorrelation (growth persistence) was higher in more mesic sites but without clear differences between species. Tree and shrub growth negatively responded to elevated summer temperatures and positively to spring-summer precipitation and wet conditions. However, negative growth responses of the shrub to drought were only observed in the two driest sites in contrast to widespread responses of the tree. Abrupt growth reductions were common in the drier sites, but resilience indices show that the two species rapidly recovered pre-drought growth levels. The lower growth synchrony of the shrub as compared to the tree can be due to the multistemmed architecture, fast growth and low stature of the shrub. Besides, the high dependency of the shrub growth on summer rainfall can explain why drought limitations were only apparent in the two driest sites. In any case, results point out to the dendrochronological potential of shrubs, which is particularly relevant giving its ability to inhabit woodlands and treeless regions under harsh climatic conditions. Nevertheless, further research is required to elucidate the capacity of shrub species to tolerate drought, as well as to understand how shrubs thrive in water- and cold-limited environments.
Collapse
Affiliation(s)
- Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, E-50192 Zaragoza, Spain.
| | - Cristina Valeriano
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, E-50192 Zaragoza, Spain
| | - Michele Colangelo
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Ricardo Ibáñez
- Departamento de Biología Ambiental, Facultad de Ciencias, Universidad de Navarra, Pamplona 31008, Navarra, Spain
| | - Mercedes Valerio
- Departamento de Biología Ambiental, Facultad de Ciencias, Universidad de Navarra, Pamplona 31008, Navarra, Spain; Department of Botany, Faculty of Sciences, University of South Bohemia, Na Zlaté stoce 1, 370 05 České Budějovice, Czech Republic
| | - Álvaro Rubio-Cuadrado
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, E-50192 Zaragoza, Spain
| |
Collapse
|
4
|
Ma Q, Su Y, Niu C, Ma Q, Hu T, Luo X, Tai X, Qiu T, Zhang Y, Bales RC, Liu L, Kelly M, Guo Q. Tree mortality during long-term droughts is lower in structurally complex forest stands. Nat Commun 2023; 14:7467. [PMID: 37978191 PMCID: PMC10656564 DOI: 10.1038/s41467-023-43083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Increasing drought frequency and severity in a warming climate threaten forest ecosystems with widespread tree deaths. Canopy structure is important in regulating tree mortality during drought, but how it functions remains controversial. Here, we show that the interplay between tree size and forest structure explains drought-induced tree mortality during the 2012-2016 California drought. Through an analysis of over one million trees, we find that tree mortality rate follows a "negative-positive-negative" piecewise relationship with tree height, and maintains a consistent negative relationship with neighborhood canopy structure (a measure of tree competition). Trees overshadowed by tall neighboring trees experienced lower mortality, likely due to reduced exposure to solar radiation load and lower water demand from evapotranspiration. Our findings demonstrate the significance of neighborhood canopy structure in influencing tree mortality and suggest that re-establishing heterogeneity in canopy structure could improve drought resiliency. Our study also indicates the potential of advances in remote-sensing technologies for silvicultural design, supporting the transition to multi-benefit forest management.
Collapse
Affiliation(s)
- Qin Ma
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Yanjun Su
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- China National Botanical Garden, 100093, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Chunyue Niu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qin Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tianyu Hu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiangzhong Luo
- Department of Geography, National University of Singapore, Singapore, 117570, Singapore
| | - Xiaonan Tai
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Tong Qiu
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yao Zhang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Roger C Bales
- Sierra Nevada Research Institute and School of Engineering, University of California, Merced, CA, 95343, USA
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Maggi Kelly
- Department of Environmental Sciences, Policy and Management, University of California, Berkeley, CA, 94720, USA
- Division of Agriculture and Natural Resources, University of California, Berkeley, CA, 94720, USA
| | - Qinghua Guo
- Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
- Institute of Ecology, College of Urban and Environmental Science, Peking University, 100871, Beijing, China
| |
Collapse
|
5
|
Krutovsky KV. Dendrogenomics Is a New Interdisciplinary Field of Research of the Adaptive Genetic Potential of Forest Tree Populations Integrating Dendrochronology, Dendroecology, Dendroclimatology, and Genomics. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Jia H, Fang O, Lyu L. Non-linear modelling reveals a predominant moisture limit on juniper growth across the southern Tibetan Plateau. ANNALS OF BOTANY 2022; 130:85-95. [PMID: 35608820 PMCID: PMC9295923 DOI: 10.1093/aob/mcac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/20/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS Tree growth in plateau forests is critically limited by harsh climatic conditions. Many mathematical statistical methods have been used to identify the relationships between tree growth and climatic factors, but there is still uncertainty regarding the relative importance of these factors across different regions. We tested major climatic limits at 30 sites to provide insights into the main climatic limits for juniper trees (Juniperus tibetica Kom.) across the southern Tibetan Plateau. METHODS We analysed the linear and non-linear relationships between tree growth and climatic factors using Pearson correlation statistics and a process-based forward Vaganov-Shashkin-Lite (VS-Lite) model, respectively. These relationships were used to identify the strength of the influence of different climatic factors throughout the species' growing season and to identify the main climatic factors limiting tree growth. KEY RESULTS Growth of juniper trees began in April and ended in October in the study area. The radial growth of juniper trees was limited by soil moisture throughout the summer (June-August) of the current year at 24 sampling sites and was limited by temperature at the other six sites on the southern Tibetan Plateau. CONCLUSIONS Soil moisture limited juniper growth at the majority of sites. Temperature in the current summer limited the growth of juniper trees at a few sampling sites in the western part of the study area. Local climate conditions may contribute to different limiting factors in the growth response of trees on the southern Tibetan Plateau. These findings may contribute to our understanding of divergent forest dynamics and to sustainable forest management under future climate scenarios.
Collapse
Affiliation(s)
- Hengfeng Jia
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Lixin Lyu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|