1
|
Chang Y, Meng J, Hu Y, Lee PH, Zhan X. A review in Fe(0)/Fe(Ⅱ) mediated autotrophic denitrification for low C/N wastewater treatment. WATER RESEARCH 2025; 282:123925. [PMID: 40472433 DOI: 10.1016/j.watres.2025.123925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/19/2025] [Accepted: 05/28/2025] [Indexed: 06/18/2025]
Abstract
Fe-mediated autotrophic denitrification has emerged as a promising technology for low carbon-to-nitrogen (C/N) wastewater treatment due to its cost-effectiveness, operational safety, and independence from organic carbon. While several reviews have addressed this process, there is still a lack of comprehensive analyses that connect iron materials, denitrification performance, and microbial communities. The practical applicability of solid-phase iron has received little attention, and the key controversial issue - Fe(Ⅱ) oxidation pathway - has not been specifically examined. This review systematically examines both liquid- and solid-phase iron sources, with particular emphasis on the practical applicability of solid-phase iron, and further provides an integrated discussion of denitrification performance and associated functional microbes. In addition, this review summarizes a range of iron-oxidizing denitrifiers and highlights several key genera in detail. It also provides an in-depth analysis of Fe(Ⅱ) oxidation pathways, with particular attention to the ongoing debate regarding the involvement of enzymatic mechanisms. Moreover, the latest advancements in both natural and engineered applications are reviewed. Operational parameters such as temperature (T), pH, dissolved oxygen (DO), Fe/N ratio, and other influencing factors are discussed. Finally, several critical challenges that fundamentally affect Fe-mediated autotrophic denitrification are highlighted. This review aims to support the practical implementation of Fe-mediated autotrophic denitrification in low C/N wastewater treatment and contribute to the sustainable development of environmentally friendly biotechnologies for advanced nitrogen control.
Collapse
Affiliation(s)
- Yating Chang
- Civil Engineering, College of Science and Engineering, University of Galway, Ireland
| | - Jizhong Meng
- Animal and Grassland Research and Innovation Central, Livestock Systems Research Department, Teagasc, Grange, Ireland.
| | - Yuansheng Hu
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Ireland
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, Faculty of Engineering, Imperial College London, United Kingdom
| | - Xinmin Zhan
- Civil Engineering, College of Science and Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland.
| |
Collapse
|
2
|
Zheng X, Wang Y, Jiang Y, Mao W, Li M, Guan Y. Enhanced and sustainable advanced nitrogen removal in mixotrophic systems using pyrite and solid carbon source. ENVIRONMENTAL RESEARCH 2025; 275:121379. [PMID: 40081648 DOI: 10.1016/j.envres.2025.121379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Utilizing widespread minerals/solid wastes as electron donors for denitrification is conducive to sustainable wastewater treatment. The current denitrification technologies based on single pyrite/solid carbon sources have problems of limited removal efficiency or unstable carbon release. In this study, two continuous biofilters, pyrite-corncob mixotrophic system (RPCM) and pyrite-polybutylene succinate mixotrophic system (RPPM), were conducted and operated steadily for a long period (>326 d). The mixotrophic systems achieved advanced removal of NO3--N (18 mg L-1) and a small amount of NH4+-N (2.5 mg L-1), with stabilized effluent TIN less than 2 mg L-1 at HRT of 4 h. Additionally, the systems demonstrated several distinct advantages, including no additional alkalinity requirement and a low risk of secondary contamination. RPCM could achieve advanced nitrogen removal at a higher nitrogen loading rate (93.6 mg L-1 d-1) but demanded periodic replenishment of corncob. In contrast, the organic matter release and nitrogen removal performance of RPPM exhibited stability throughout the operation. The increased abundance of functional microorganisms related to C, N, S, and Fe metabolism was essential for advanced nitrogen removal through synergistic effects. This study will provide implications for developing novel wastewater treatment processes emphasizing both nitrogen removal and waste valorization.
Collapse
Affiliation(s)
- Xiaona Zheng
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yanfei Wang
- Nanjing Historical City Protection & Construction (Group) Co., Ltd., Nanjing, 210000, PR China
| | - Yanbo Jiang
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China; Nanning Engineering Technology Research Center for Water Safety, Guangxi Beitou Environmental Protection &Water Group Co., Ltd., Nanning, 530022, PR China
| | - Wei Mao
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Minlong Li
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yuntao Guan
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
3
|
Sun RZ, Pan Y, Wang J, Gao T, Yu HQ, Wang J. Metabolic and ecological responses of denitrifying consortia to different carbon source strategies under fluctuating C/N conditions. ENVIRONMENTAL RESEARCH 2025; 274:121292. [PMID: 40049354 DOI: 10.1016/j.envres.2025.121292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Frequent fluctuations in the carbon-to-nitrogen (C/N) ratio of urban wastewater influent can undermine denitrification performance, posing challenges for stable nitrogen removal. Although supplying additional carbon sources is a recognized strategy to mitigate these issues, the underlying microbial interactions and metabolic reconfigurations triggered by changing C/N ratios remain incompletely understood. Here, we employed methanol, glycerol, sodium acetate, and glucose in long-term denitrification reactors and integrated denitrification kinetics, 16S rRNA gene amplicon sequencing, metagenomic binning, and metabolic modeling to elucidate how these systems respond to a declining C/N ratio. Our results show that lower C/N ratios diminished denitrification efficiency in all treatments, with each carbon source eliciting distinct shifts in microbial assemblages. Fluctuations in the C/N ratio determine the extent of directional selection of microbial communities based on carbon source metabolism and induce significant changes in non-dominant microorganisms. Throughout the process, the synthesis potential of PHA is closely linked to the system's ability to withstand fluctuations. Notably, metabolic modeling indicated that heightened tricarboxylic acid (TCA) cycle activity in the methanol- and glucose-fed communities was associated with suboptimal nitrogen removal. These findings offer novel insights into the metabolic and ecological mechanisms governing carbon source-driven denitrification under fluctuating C/N conditions, providing a valuable framework for optimizing nitrogen removal in urban wastewater treatment systems.
Collapse
Affiliation(s)
- Rui-Zhe Sun
- School of Resources & Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, 230026, China; Anhui Municipal Sludge Disposal and Resource Utilization Engineering Technology Center, Hefei, 230026, China
| | - Yuan Pan
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, 230026, China; Anhui Municipal Sludge Disposal and Resource Utilization Engineering Technology Center, Hefei, 230026, China.
| | - Jun Wang
- Anhui Municipal Sludge Disposal and Resource Utilization Engineering Technology Center, Hefei, 230026, China
| | - Tong Gao
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, 230026, China
| | - Han-Qing Yu
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, 230026, China
| | - Jin Wang
- School of Resources & Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
4
|
Wang X, Li W, Yang S, He Z, Li Y, Wang Y, Li J. Iron-dependent autotrophic denitrification as a novel microbial driven and iron-mediated denitrification process: A critical review. ENVIRONMENTAL RESEARCH 2025; 273:120808. [PMID: 39920964 DOI: 10.1016/j.envres.2025.120808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 02/10/2025]
Abstract
Based on previous research results, iron-dependent autotrophic denitrification (IDAD) was evaluated in an all-around way to provide a theoretical basis for further research. First, this review systematically and comprehensively summarizes the development of IDAD technology and describes the physiological properties of relevant functional microorganisms and their potential mechanisms from different perspectives. Second, the possible Fe-N pathways involved in the reaction of different iron-based materials are discussed in detail. Then, the theoretical advantages of the IDAD process and potential problems are described, and the corresponding control strategies are summarized. The influence of key factors on denitrification is discussed in terms of operational and water quality parameters. In addition, the application and research direction of this technology in engineering are summarized. Finally, the latest development trends and prospects for future applications are discussed to promote an in-depth understanding of IDAD and its practical application in sewage treatment.
Collapse
Affiliation(s)
- Xuechao Wang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| | - Wenxuan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Shirong Yang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| | - Zihan He
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| | - Yanyu Li
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| | - Yae Wang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| | - Jie Li
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| |
Collapse
|
5
|
Zhao X, Chen Y, Hu J, Wang H, Ye Z, Zhang J, Meng J, Li J, Dahlgren RA, Zhang S, Gao H, Chen Z. Efficacy of nitrate and biochar@birnessite composite microspheres for simultaneous suppression of As(III) mobilization and greenhouse gas emissions in flooded paddy soils. ENVIRONMENTAL RESEARCH 2025; 279:121757. [PMID: 40324616 DOI: 10.1016/j.envres.2025.121757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/24/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Elevated As(III) pollution and greenhouse gas (GHG) emissions are two primary environmental concerns associated with flooded paddy soils. Herein, a novel biochar@birnessite composite microsphere was engineered using a biochar, birnessite and sodium alginate formulation. The microspheres were applied along with nitrate to examine their efficacy in suppressing As(III) mobilization and GHG emissions in an As-contaminated flooded paddy soil. After a 10-day incubation period, the combined nitrate + microsphere treatment achieved desirable remediation effects versus a nitrate-alone treatment, with mobile As(III) (initially 0.1 mM in flooded layer) completely immobilized and N2O, CH4 and CO2 emissions declining by 89 %, 73 % and 31 %, respectively. As(III) immobilization was ascribed to oxidation/adsorption/coprecipitation by FeOx/MnOx regenerated from successive cycles of Feammox/Mnammox and nitrate-reduction coupled with Fe(II) oxidation (NRFO)/nitrate-reduction coupled with Mn(II) oxidation (NRMO). Moreover, NRFO/NRMO-derived full denitrification displayed high thermodynamic feasibility, leading to full denitrification with the generation of N2 rather than N2O. The co-occurrence of anaerobic oxidation of methane (AOM) driven by biochar-shuttling and coupled reduction of nitrate/FeOx/MnOx fostered anaerobic oxidation of CH4 to CO2. A portion of the resulting CO2 was incorporated into poorly-soluble carbonate minerals leading to lower CO2 emission and soil carbon sequestration. Metagenomic sequencing revealed that the nitrate + microsphere treatment enriched the abundances of key microorganisms linked to As/Fe/Mn oxidation and GHG mitigation (e.g., Geobacter, Streptomyces, Cupriavidus and Chloroflexus). Our findings document the efficacy of nitrate + biochar@birnessite microsphere treatment as an effective remediation strategy to simultaneously mitigate As(III) pollution and GHG emissions in flooded paddy soils.
Collapse
Affiliation(s)
- Xiyu Zhao
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Yilin Chen
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Jiehua Hu
- Department of Marine Biology, Xiamen Ocean Vocational College, Xiamen, 361100, PR China
| | - Honghui Wang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, PR China
| | - Zilu Ye
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, PR China; School of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Jing Zhang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, PR China
| | - Jun Meng
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China
| | - Jiale Li
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Randy A Dahlgren
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, PR China; Department of Land, Air & Water Resources, University of California, Davis, CA, 95616, USA
| | - Shuyun Zhang
- School of Medicine, Taizhou University, Taizhou, 318000, PR China
| | - Hui Gao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, PR China.
| | - Zheng Chen
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
6
|
Moezzi SA, Rastgar S, Faghani M, Ghiasvand Z, Javanshir Khoei A. Optimization of carbon membrane performance in reverse osmosis systems for reducing salinity, nitrates, phosphates, and ammonia in aquaculture wastewater. CHEMOSPHERE 2025; 376:144304. [PMID: 40090114 DOI: 10.1016/j.chemosphere.2025.144304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
This study investigates the performance of various types of carbon membranes in reverse osmosis systems aimed at reducing salinity, nitrates, phosphates, and ammonia in aquaculture wastewater. As sustainable aquaculture practices become increasingly essential, effective treatment solutions are needed to mitigate pollution from nutrient-rich effluents. The research highlights several carbon membranes types, including carbon molecular sieves, activated carbon membranes, carbon nanotube membranes, and graphene oxide membranes, all of which demonstrate exceptional filtration capabilities due to their unique structural properties. Findings reveal that these carbon membranes can achieve removal efficiencies exceeding 90 % for critical pollutants, thereby significantly improving water quality and supporting environmental sustainability. The study also explores the development of hybrid membranes and nanocomposites, which enhance performance by combining the strengths of different materials, allowing for customized solutions tailored to the specific requirements of aquaculture wastewater treatment. Additionally, operational parameters such as pH, temperature, and feed water characteristics are crucial for maximizing membrane efficiency. The integration of real-time monitoring technologies is proposed to enable prompt adjustments to treatment processes, thereby improving system performance and reliability. Overall, this research emphasizes the importance of interdisciplinary collaboration among researchers and industry stakeholders to drive innovation in advanced filtration technologies. The findings underscore the substantial potential of carbon membranes in tackling the pressing water quality challenges faced by the aquaculture sector, ultimately contributing to the sustainability of aquatic ecosystems and ensuring compliance with environmental standards for future generations.
Collapse
Affiliation(s)
- Sayyed Ali Moezzi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Saeedeh Rastgar
- Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran.
| | - Monireh Faghani
- Water Science and Engineering-Irrigation and Drainage, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran
| | - Zahra Ghiasvand
- Faculty of Agriculture, Department of Animal Sciences and Aquaculture, Dalhousie University, Halifax, Canada
| | - Arash Javanshir Khoei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
7
|
Mingcheng W, Daoqi L, Huili X, Gailing W, Chaoying L, Yanan G, Aizhen G. Multiomics-based analysis of the mechanism of ammonia reduction in Sphingomonas. Front Microbiol 2025; 15:1437056. [PMID: 40376685 PMCID: PMC12078293 DOI: 10.3389/fmicb.2024.1437056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/06/2024] [Indexed: 05/18/2025] Open
Abstract
Ammonia is the primary component of malodorous substances in chicken farms. Currently, the microbial ammonia reduction is considered a potential method due to its low cost, high safety, and environmental friendliness. Sphingomonas sp. Z392 can significantly reduce the ammonia level in broiler coops. However, the mechanisms of ammonia nitrogen reduction by Sphingomonas sp. Z392 remain unclear. To explore the mechanisms of ammonia reduction by Sphingomonas sp. Z392, the transcriptome and metabolome analysis of Sphingomonas sp. Z392 under high ammonium sulfate level were conducted. It was found that the transcription levels of genes related to purine metabolism (RS01720, RS07605, purM, purC, purO) and arginine metabolism (glsA, argB, argD, aguA, aguB) were decreased under high ammonium sulfate environment, and the levels of intermediate products such as ornithine, arginine, IMP, and GMP also were also decreased. In addition, the ncd2 gene in nitrogen metabolism was upregulated, and intracellular nitrite content increased by 2.27 times than that without ammonium sulfate. These results suggested that under high ammonium sulfate level, the flux of purine and arginine metabolism pathways in Sphingomonas sp. Z392 might decrease, while the flux of nitrogen metabolism pathway might increase, resulting in increased nitrite content and NH3 release. To further verify the effect of the ncd2 gene on ammonia removal, ncd2 was successfully overexpressed and knocked out in Sphingomonas sp. Z392. ncd2 Overexpression exhibited the most ammonia reduction capability, the ammonia concentration of ncd2 overexpression group decreased by 43.33% than that of without Sphingomonas sp. group, and decreased by 14.17% than that of Sphingomonas sp. Z392 group. In conclusion, Sphingomonas sp. Z392 might reduce the release of NH3 by reducing the flux of purine and arginine metabolisms, while enhancing ammonia assimilation to form nitrite. In this context, ncd2 might be one of the key genes to reduce ammonia.
Collapse
Affiliation(s)
- Wang Mingcheng
- Country National Laboratory of Agricultural Microbiology, Wuhan, Hubei, China
- Country College of Veterinary Medicine, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Biological and Food Engineering, Huanghuai University, Zhumadian, Henan, China
| | - Liu Daoqi
- College of Biological and Food Engineering, Huanghuai University, Zhumadian, Henan, China
| | - Xia Huili
- College of Biological and Food Engineering, Huanghuai University, Zhumadian, Henan, China
| | - Wang Gailing
- College of Biological and Food Engineering, Huanghuai University, Zhumadian, Henan, China
| | - Liu Chaoying
- College of Biological and Food Engineering, Huanghuai University, Zhumadian, Henan, China
| | - Guo Yanan
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, China
| | - Guo Aizhen
- Country National Laboratory of Agricultural Microbiology, Wuhan, Hubei, China
- Country College of Veterinary Medicine, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Deng Y, Mo X, Lai SKM, Haw SC, Au-Yeung HY, Tse ECM. Mechanical and Covalent Tailoring of Copper Catenanes for Selective Aqueous Nitrate-to-Ammonia Electrocatalysis. J Am Chem Soc 2025; 147:14316-14325. [PMID: 40260598 PMCID: PMC12046556 DOI: 10.1021/jacs.4c18547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 04/23/2025]
Abstract
Electrocatalytic nitrate reduction reaction (NO3RR) for the selective generation of ammonia (NH3) enables the removal of deleterious nitrate pollutants while simultaneously upcycling them into a value-added fertilizer. The development of nonprecious metal-derived catalysts such as those featuring copper (Cu) as earth-abundant alternatives for the state-of-the-art precious metal catalysts is of urgent need yet suffering from the activity-selectivity-durability trilemma. Rational design of molecular Cu complexes with well-defined coordination structures permitting systematic structure-activity relationship (SAR) investigations is key to addressing the challenge. Here, a series of molecular Cu(I) complexes with [2]catenane ligands are developed as NO3RR electrocatalysts for the first time. By engineering multiple cationic ammoniums on the catenane backbone, acceptance of the anionic nitrate substrate as well as the release of the cationic ammonium product are promoted, thereby facilitating a higher Faradaic efficiency and product selectivity toward ammonia via an 8e- pathway. Of note, the mutual Coulombic repulsion between the multiply charged ligands is overcome by the mechanical interlocking such that the catalyst integrity can be maintained under practical conditions. This report highlights the promise of employing mechanically interlocked ligands as a platform for customizing metal complexes as catalysts for redox processes involving multiple proton-coupled electron transfer steps.
Collapse
Affiliation(s)
- Yulin Deng
- HKU-CAS
Joint Laboratory on New Materials & Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xiaoyong Mo
- HKU-CAS
Joint Laboratory on New Materials & Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Samuel Kin-Man Lai
- HKU-CAS
Joint Laboratory on New Materials & Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Shu-Chih Haw
- National
Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Ho Yu Au-Yeung
- HKU-CAS
Joint Laboratory on New Materials & Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
- State
Key Laboratory of Synthetic Chemistry, The
University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Edmund C. M. Tse
- HKU-CAS
Joint Laboratory on New Materials & Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| |
Collapse
|
9
|
Xu M, Savio F, Kjærgaard C, Jensen MM, Kovalovszki A, Smets BF, Valverde-Pérez B, Zhang Y. Inorganic bioelectric system for nitrate removal with low N 2O production at cold temperatures of 4 and 10 °C. WATER RESEARCH 2025; 274:123061. [PMID: 39752922 DOI: 10.1016/j.watres.2024.123061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 02/17/2025]
Abstract
Groundwater, essential for ecological stability and freshwater supply, faces escalating nitrate contamination. Traditional biological methods struggle with organic carbon scarcity and low temperatures, leading to an urgent need to explore efficient approaches for groundwater remediation. In this work, we proposed an inorganic bioelectric system designed to confront these challenges. At 10 and 4 °C, the system achieved total nitrogen (TN) removal efficiencies of 95.4 ± 2.7% and 90.9 ± 1.9% at 2 h hydraulic retention time (HRT), while maximum TN removal rates were recorded as 206.0 ± 6.3 and 178.3 ± 9.4 g N·m-3·d-1 at 1 h HRT. The microbial analysis uncovered shifts in dominant genera across temperatures, with Dechloromonas prevalent at 10 °C and Chryseobacterium at 4 °C, highlighting adaptability to cold-tolerant species. Gene analysis on narG, napA, nirS, nirK, norB, nosZI, nosZII, and nifA examined the nitrate reduction processes, and analysis on mtrC and omcA hinted at electrotrophic processes. Additionally, we demonstrated system resilience to disruptions of power outage and short periods without flow through. These findings establish a foundational understanding of electricity-driven nitrate bioreduction in cold environments, crucial in groundwater remediation strategies and paving the way for future optimization and upscaling efforts.
Collapse
Affiliation(s)
- Mingyi Xu
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Bygning 115, 2800 Kgs, Lyngby, Denmark
| | - Francesco Savio
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Bygning 115, 2800 Kgs, Lyngby, Denmark
| | | | - Marlene Mark Jensen
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Bygning 115, 2800 Kgs, Lyngby, Denmark
| | - Adam Kovalovszki
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Bygning 115, 2800 Kgs, Lyngby, Denmark
| | - Barth F Smets
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Bygning 115, 2800 Kgs, Lyngby, Denmark
| | - Borja Valverde-Pérez
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Bygning 115, 2800 Kgs, Lyngby, Denmark.
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Bygning 115, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
10
|
Luo Y, Liu S, Shi J, Xu S, Gao Y. A new particle material (CTS/ZMS) for removing ammonia and nitrate from groundwater: performance and regeneration. ENVIRONMENTAL TECHNOLOGY 2025; 46:1648-1665. [PMID: 39234743 DOI: 10.1080/09593330.2024.2397737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
A new type of particle material modified zeolite molecular sieve (CTS/ZMS) is developed for the simultaneous removal of NH4+-N and NO3--N in groundwater. To ascertain the optimal performance of CTS/ZMS, a custom central composite design (CCD) was utilised to assess the operational parameters (dosage and contact time) of CTS/ZMS composites. Batch experiments were carried out to determine the removal efficiency and adsorption capacity across varying pH values (3-12) and temperatures (5 °C to 30 °C). The results of response surface three-dimensional analysis showed the removal efficiencies of nitrate and ammonium ions are the highest at a dosage of 5.5 g/L of CTS/ZMS adsorbents and adsorption time of 6.25 h and are respectively observed to be 40%, and 80.2%. Adsorption thermodynamic analysis (ΔG0<0, ΔH0>0, ΔS0>0) revealed ammonia and nitrate adsorption on CTS/ZMS composites are spontaneous and feasible at high temperatures. SEM, EDS, BET, FTIR and XPS were employed for analyzing the adsorption mechanism of CTS/ZMS for NH4+-N and NO3--N and included mostly ion exchange, electrostatic interaction, and hydrogen bonding. Different regeneration methods including water regeneration, thermal regeneration, and chemical regeneration for CTS/ZMS composites were analyzed to evaluate the removal efficiency of NH4+-N and NO3--N. The saturated CTS/ZMS composites regenerated by first 1 mol/L NaCl solution, followed by 1 mol/L Na2CO3 solution demonstrated the highest ammonia and nitrate removal efficiency. The experimental data indicated pseudo-second-order kinetic model and the Freundlich model explained well the ammonia and nitrate adsorption process of regenerated CTS/ZMS composites. According to the Langmuir model, the regenerated CTS/ZMS can adsorb a maximum of 0.92 mg/g of ammonia and 1.98 mg/g of nitrate. The results demonstrate that CTS/ZMS composites serve as a potentially efficient adsorbent for removing ammonia and ions from groundwater. This study offers technical guidelines and support for the future production and application of CTS/ZMS.
Collapse
Affiliation(s)
- Yingjie Luo
- School of Environmental and Chemical Engineering, Foshan University, Foshan, People's Republic of China
| | - Shui Liu
- Foshan Water, Foshan Water and Environmental Protection Co., Ltd., Foshan, People's Republic of China
| | - Junying Shi
- School of Environmental and Chemical Engineering, Foshan University, Foshan, People's Republic of China
| | - Song Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, People's Republic of China
| | - Yunan Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan, People's Republic of China
| |
Collapse
|
11
|
Li T, Liu H, Zhang S, Li Y, Li B. Carbon source driven microbial ecological behaviors achieving efficient synchronous elimination of nitrogen and sulfamethoxazole within MABR. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125028. [PMID: 40106985 DOI: 10.1016/j.jenvman.2025.125028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/27/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
As carbon source shaped microbial ecosystem, the limited information on microbial ecological behaviors and ecological interrelationships between nitrogen and antibiotics metabolism under carbon source blocked the achievement of efficient synchronous nitrogen and antibiotics removal. Four typical carbon sources were selected to investigate their impact on nitrogen and sulfamethoxazole (SMX) metabolism in a membrane-aerated biofilm reactor (MABR) system. Detailed ecological insights were obtained, including degradation pathways, microbiota composition, functional genes, and microbial interactions. The microbial community's carbon source preferences related to nitrogen and SMX metabolism, as well as their interrelationships under different carbon sources, were elucidated. Specifically, sucrose, providing a "gradual-releasing" energy source, promoted the abundance of Chryseobacterium and Paenarthrobacter, which facilitated the cleavage of the S-N bond in SMX and generated more small-molecule metabolites, enhancing SMX removal. Acetate, serving as a "first aid" energy source, resulted in multiple nitrogen metabolic pathways, leading to efficient nitrogen removal. Further, ecological networks revealed that sucrose caused superior SMX removal by enhancing metabolites cross-feeding between keystone N-cycling microbes (e.g., Paracoccus, Bdellovibrio) and keystone SMX degraders (e.g., Mycobacterium, Nocardioide), while acetate induced excellent nitrogen removal as it resulted in intensive complexity and connectivity within microbial ecosystem. Structural equation models (SEMs) analysis confirmed the dominant contribution of ecological networks complexity and cross-feeding on nitrogen and SMX removal than other ecological features. Based on fundamental insights, it was demonstrated that the acetate and sucrose mixture achieved more efficient SMX and nitrogen removal.
Collapse
Affiliation(s)
- Ting Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-media Pollution, Nankai University, Tianjin 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin 300350, China
| | - Hao Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-media Pollution, Nankai University, Tianjin 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin 300350, China
| | - Shuo Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-media Pollution, Nankai University, Tianjin 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin 300350, China.
| | - Yi Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-media Pollution, Nankai University, Tianjin 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin 300350, China
| | - Baoan Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-media Pollution, Nankai University, Tianjin 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin 300350, China.
| |
Collapse
|
12
|
Shen Q, Chen Y, Zhao Y, Zhu Y, Xu C, Chang M, Gao Y, Ji F. Operational strategy for solid phase denitrification to achieve carbon balance between organic release and denitrification consumption. BIORESOURCE TECHNOLOGY 2025; 422:132239. [PMID: 39961518 DOI: 10.1016/j.biortech.2025.132239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 01/22/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
This study developed a pilot-scale vertical-baffled solid-phase denitrification reactor (VbSPDR) incorporating polycaprolactone (PCL) and ceramsite as fillers to balance organic carbon release and denitrification consumption. The Box-Behnken design was employed to assess the effects of hydraulic retention time (HRT), temperature, and influent nitrate concentration on nitrate removal efficiency and COD accumulation. Optimal conditions yielded a 95 % nitrate removal rate at 33 °C, an HRT of 1.22 h, and an influent nitrate concentration of 19 mg/L. Conversely, effluent COD concentration was minimized and dropped 2.5 mg/L at 13 °C, an HRT of 0.39 h, and an influent nitrate concentration of 19 mg/L. The PCL layer enriched hydrolysis-acidification and heterotrophic denitrifying bacteria by unclassified_f__Comamonadaceae and Acidovorax, while heterotrophic genera Phreatobacter thrived in ceramsite layer, enhancing the metabolism of COD over-released from PCL. These findings indicate that inorganic fillers can effectively enhance nitrate removal and controll effluent COD under varied operational parameters.
Collapse
Affiliation(s)
- Qiushi Shen
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430012, PR China; National Engineering Research Center for Ecological Environment of Yangtze River Economic Belt, Wuhan 430012, PR China
| | - Yasong Chen
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430012, PR China; National Engineering Research Center for Ecological Environment of Yangtze River Economic Belt, Wuhan 430012, PR China
| | - Yunpeng Zhao
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430012, PR China; National Engineering Research Center for Ecological Environment of Yangtze River Economic Belt, Wuhan 430012, PR China
| | - Yating Zhu
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430012, PR China; National Engineering Research Center for Ecological Environment of Yangtze River Economic Belt, Wuhan 430012, PR China
| | - Chaowei Xu
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430012, PR China; National Engineering Research Center for Ecological Environment of Yangtze River Economic Belt, Wuhan 430012, PR China
| | - Manqi Chang
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430012, PR China; National Engineering Research Center for Ecological Environment of Yangtze River Economic Belt, Wuhan 430012, PR China
| | - Yanjin Gao
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430012, PR China; National Engineering Research Center for Ecological Environment of Yangtze River Economic Belt, Wuhan 430012, PR China
| | - Fangying Ji
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
13
|
Lan B, Liu C, Wang S, Jin Y, Yadav AK, Srivastava P, Yuan S, Hu C, Zhu G. Enhanced electron transfer for the improvement of nitrogen removal efficiency and N 2O reduction at low temperatures. WATER RESEARCH 2025; 272:122993. [PMID: 39708380 DOI: 10.1016/j.watres.2024.122993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Low temperature generally restricts biological activity, slowing down electron transfer in biogeochemical cycles and causing a series of environmental problems such as nitrogen pollution. We present a strategy to boost electron transfer in microbial cell at low temperatures via stimulation with low current. It is demonstrated by establishing a constructed wetland system coupled with solar powered microbial electrolysis cell, which enhances microbial activity through external micro currents (18.9 ± 5.5 μA) for removing nitrogen pollution in winter (average temperature from -6.6 to 4.5 °C). We investigated the efficiency of pollutants removal, microbial activity, N2O production and its mechanisms using complexes activity detection, RT-qPCR, incubation, and 15N-18O dual-isotope labeling techniques. The activity of complexes I, II, III, and IV collectively represent the microbial electron transfer rate. Results indicated that the microcurrents increased the activity of complexes II, III and IV by 96 %, 172 %, and 313 %, respectively. The transcription abundance of amoA genes in ammonia oxidation and nirS/K genes in denitrification by 263 % and 51 %, respectively. Consequently, NH4+-N removal efficiency improved from 23 % to 35 %, and NO3--N removal efficiency from 21 % to 31 %. Moreover, microcurrents reduced N2O emission by 44 %. However, external microcurrent stimulation did not alter the microbial production pathway of N2O as determined by the 15N-18O dual isotope labeling technique. The relative abundance of the nitrifying bacteria Nitrosomonas, Nitrosospira, and Nitrospira, as well as the denitrifying bacteria Methylotenera, significantly increased due to microcurrent stimulation. Specifically, Nitrospira exhibited the highest increase of 156 %. Our findings provide a novel way to enhance N removal efficiency and simultaneously reduce N2O emission of biological system like constructed wetlands in winter conditions.
Collapse
Affiliation(s)
- Bangrui Lan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chunlei Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shanyun Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yucheng Jin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Asheesh Kumar Yadav
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pratiksha Srivastava
- Department of Chemical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, 3010, VIC, Australia
| | - Shengguang Yuan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Chengzhi Hu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guibing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
14
|
Pyo M, Kim D, Kim HS, Hwang MH, Lee S, Lee EJ. Sulfur powder utilization and denitrification efficiency in an elemental sulfur-based membrane bioreactor with coagulant addition. WATER RESEARCH 2025; 272:122882. [PMID: 39674135 DOI: 10.1016/j.watres.2024.122882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
The integration of elemental sulfur-based autotrophic denitrification with membrane bioreactor (MBR) technology offers a cost-effective solution for nitrate removal; however, stable operation demands efficient sulfur utilization and phosphorus management. This study explores sulfur consumption dynamics and the impacts of coagulant injection on denitrification efficiency. Sulfur consumption was closely correlated with nitrate removal rates, highlighting the critical role of stoichiometric sulfur availability for sustained denitrification. While coagulant addition enhanced phosphorus removal, excessive dosing impaired elemental sulfur-based microbial activity, reducing nitrate removal efficiency and increasing nitrite accumulation. Notably, microbial community analysis revealed a decline in the abundance of key sulfur-oxidizing bacteria, such as Sulfurimonas, under high coagulant concentrations. These findings emphasize the need for optimized sulfur and coagulant dosing strategies to balance phosphorus and nitrate removal while preserving microbial diversity and reactor stability. This study provides practical insights into operational parameters for efficient and sustainable ESAD-MBR processes.
Collapse
Affiliation(s)
- Minsu Pyo
- Department of Environmental Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan-si, Gyeongbuk 38453, Republic of Korea; Graduate School of Water Resources, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440746, Republic of Korea
| | - Dongyeon Kim
- Department of Environmental Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan-si, Gyeongbuk 38453, Republic of Korea
| | - Hyung Soo Kim
- Graduate School of Water Resources, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440746, Republic of Korea
| | - Moon-Hyun Hwang
- Institute of Conversions Science, Korea University, 145, Anam-ro, Sungbuk-gu, Seoul 02841, Republic of Korea
| | - Sangyoup Lee
- Institute of Conversions Science, Korea University, 145, Anam-ro, Sungbuk-gu, Seoul 02841, Republic of Korea.
| | - Eui-Jong Lee
- Department of Environmental Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan-si, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
15
|
Zeng Q, Pu Y, Liu Q, Li Y, Sun Y, Hao Y, Yang Q, Yang B, Wu Y, Shi S, Gong Z. Effects of decabromodiphenyl ethane (DBDPE) exposure on soil microbial community: Nitrogen cycle, microbial defense and repair and antibiotic resistance genes transfer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124503. [PMID: 39946809 DOI: 10.1016/j.jenvman.2025.124503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
DBDPE, a widely used brominated flame retardant, is frequently detected in soil. However, the toxic effects of DBDPE on soil microbial communities remain unclear. This study investigated the effects of DBDPE on the microbial community shifts, the nitrogen cycle, microbial defense and repair, and antibiotic resistance genes (ARGs) transfer. After 28 days of DBDPE exposure, the soil microbial community was altered. Denitrifier were enriched by 4.07-78.22% under DBDPE exposure concentrations of 100-1000 ng/g. Additionally, the abundances of genes encoding enzymes involved in nitrification and denitrification processes were up-regulated at 100 ng/g DBDPE exposure, and further promoted at 1000 ng/g DBDPE exposure. Meanwhile, DBDPE exposure at concentrations of 100-1000 ng/g stimulated the production of extracellular polymers substances (EPS) (2155-2347 mg/kg), increased the accumulation of reactive oxygen species (ROS) (by 97.95-108.38%), and activated the antioxidant defense system of soil microorganisms, which correspondingly down-regulated catalase (CAT) genes (by 4.65-4.91%), while up-regulated superoxide dismutase (SOD) (by 0.52-2.63%) and glutathione (GSH) genes (by 19.03%-44.61%). Genes related to the tricarboxylic acid (TCA) cycle, glycerophospholipid metabolism, and peptidoglycan biosynthesis were up-regulated, enhancing cell membrane repair in response to DBDPE exposure. Moreover, the increase in DBDPE concentration selectively enriched and promoted the transmission of ARGs. The co-occurrence network of ARGs and mobile genetic elements (MGEs) revealed that DBDPE facilitated the horizontal gene transfer (HGT)-mediated transmission of transposase, ist, and insertion sequence-associated ARGs.
Collapse
Affiliation(s)
- Qianzhi Zeng
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Yunhong Pu
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Qiangwei Liu
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Yuxin Li
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Yanan Sun
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Yiming Hao
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Qing Yang
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Bowen Yang
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Yaxuan Wu
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Shengnan Shi
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China.
| | - Zheng Gong
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China.
| |
Collapse
|
16
|
Wei Z, Zhang B, Xu R, Li H, Chen A, Wei C, Wu H. Mixotrophic denitrification using thiocyanate as an electron donor: Role of thiocyanate under different C/N conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124264. [PMID: 39862820 DOI: 10.1016/j.jenvman.2025.124264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/20/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Thiocyanate (SCN-) is a highly toxic reducing inorganic compound commonly found in various nitrogen-rich wastewater and is also a promising electron donor for mixotrophic denitrification. However, its extent of involvement in mixotrophic denitrification under conditions of carbon limitation or excess remains unclear. In this study, five reactors were constructed to investigate the participation and microbial mechanisms of SCN- in mixotrophic denitrification under high C/N and low C/N conditions. The results showed that under low C/N conditions, SCN⁻ synergizes with organic electron donors to enhance denitrification, with mixotrophic systems exhibiting higher electron utilization efficiency and achieving 1.12 times the TN removal rate of autotrophic and heterotrophic systems combined. Under high C/N conditions, an ample supply of electron donors achieve 100% nitrate removal; however, SCN⁻ also participates in denitrification, competing with organic electron donors for NO3--N, which leads to the waste of organic matter. Additionally, high-throughput sequencing revealed that under low C/N mixotrophic conditions, SCN⁻ effectively promoted the growth of SCN⁻-degrading microorganisms such as Thiobacillus, with its abundance increasing from 0% to 8.86%, approximately 1.85 times higher than under autotrophic conditions. This enhancement strengthened the sulfur and nitrogen metabolic capabilities of the microbial community, enabling the system to utilize SCN- more fully for denitrification. This study provides novel insights for reducing the addition of external organic matter to nitrogen-rich wastewater containing SCN-, offering theoretical and technical support for energy-saving and emission reduction in denitrification processes of actual industrial wastewater treatment.
Collapse
Affiliation(s)
- Zhuocheng Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Bin Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Rui Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Haoling Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Acong Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen, 361024, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
17
|
Feng Y, Ren JT, Sun ML, Yuan ZY. Valorization systems based on electrocatalytic nitrate/nitrite conversion for energy supply and valuable product synthesis. Chem Sci 2025; 16:1528-1559. [PMID: 39722785 PMCID: PMC11668169 DOI: 10.1039/d4sc05936k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
The excessive accumulation of nitrate/nitrite (NO x -) in surface and groundwater has severely disrupted the global nitrogen cycle and jeopardized public health. The electrochemical conversion of NO x - to ammonia (NH3) not only holds promise for ecofriendly NO x - removal, but also provides a green alternative to the energy-intensive Haber-Bosch process for NH3 production. Recently, in addition to the electrocatalyst design explosion in this field, many innovative valorization systems based on NO x --to-NH3 conversion have been developed for generating energy and expanding the range of value-added products. Collective knowledge of advanced conversion systems is indispensable for restoring the global nitrogen cycle and promoting a N-based economy. Herein, a timely and comprehensive review is provided on the important progress of valorization systems based on NO x - conversion, including waste treatment systems, novel electrolytic systems, and energy conversion and storage systems. Some mechanism explorations, device designs, key electrode developments and feasibility analyses are involved to gain deeper understanding of various systems and facilitate implementing these cleaning systems in industry. Finally, challenges and future prospects are outlined in the NO x - conversion field with an aim to promote large-scale electrocatalytic system development and prosperous N-based electrochemistry.
Collapse
Affiliation(s)
- Yi Feng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University Tianjin 300350 China
| | - Jin-Tao Ren
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University Tianjin 300350 China
| | - Ming-Lei Sun
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University Tianjin 300350 China
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University Tianjin 300350 China
| |
Collapse
|
18
|
Fu J, Zhao Y, Dai Y, Yao Q, Zhang X, Yang Y. Pyrite in recirculating stacking hybrid constructed wetland: Electron transfer for nitrate reduction and phosphorus immobilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123906. [PMID: 39740448 DOI: 10.1016/j.jenvman.2024.123906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/28/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
Pyrite is considered as an effective and environmentally friendly substrate in constructed wetlands (CW) for wastewater treatment, but its application in recirculation stacking hybrid constructed wetlands (RSHCW) has been scarcely studied. This study uses varying amounts of pyrite as the substrate in RSHCW, leveraging the recirculation of wastewater to alter microenvironments such as dissolved oxygen (DO) and pH, to explore the potential mechanisms of nitrogen (N) and phosphorus (P) removal in pyrite-based RSHCW. The results show that as the proportion of pyrite increases, the removal rate of total phosphorus (TP) in the effluent also increases (25%→58%), significantly enhancing the deposition of iron-bound phosphorus (Fe-P) on the substrate, thereby turning CW into a P reservoir. Even in the absence of a carbon source, the total nitrogen (TN) removal rate in the CW still increases by 20%, which can be attributed to the enrichment of sulfur autotrophic denitrifying bacteria driving autotrophic denitrification by pyrite. Additionally, the addition of pyrite significantly increases the electron transfer system activity (ETSA) in the CW system by approximately 6.14 times and facilitates a "charging and discharging" function through the sulfur-iron electron cycle. Selective enrichment of microbes in moderated pH environment due to RSHCW recirculation in the pyrite-CW (PCW) enhances the coordination among microbial communities and the interaction among functional genes. This study provides new insights into the mechanisms of N and P removal in CWs under the influence of pyrite.
Collapse
Affiliation(s)
- Jingmiao Fu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China; Department of Ecology, Engineering Research Center for Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China.
| | - Yunv Dai
- Department of Ecology, Engineering Research Center for Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Qi Yao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Xiaomeng Zhang
- Department of Ecology, Engineering Research Center for Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Yang Yang
- Department of Ecology, Engineering Research Center for Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
19
|
Wang J, Cheng Z, Su Y, Wang J, Chen D, Chen J, Wu X, Chen A, Gu Z. Metagenomics and metatranscriptomics insights into microbial enhancement of H 2S removal and CO 2 assimilation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123714. [PMID: 39675328 DOI: 10.1016/j.jenvman.2024.123714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
This study focuses on the coupled process of bio-enhanced absorption and biodesulfurization for the toxic gas H2S and the greenhouse gas CO2. The results show that on the basis of stabilized absorption of H2S and CO2 by alkaline solution (Stage I), the addition of air-lift bioreactor process solution in the absorption column enhanced their absorption (Stage II). Specifically, at constant inlet concentrations of H₂S and CO₂ of 3% (30,000 ppmv) and 30% (300,000 ppmv), respectively, the outlet gases were primarily H₂S, CO₂, and N₂. And the outlet H2S and CO2 concentrations decreased from 10,038 ± 1166 ppmv and 49,897 ± 2545 ppmv in Stage I to 940 ± 163 ppmv and 21,000 ± 2165 ppmv in Stage II. S0-producing performance (348 ± 20-503 ± 23 mg S/L) and biomass concentration (467 ± 13-677 ± 55 mg/L) in the subsequent bioreactor also increased in response to the enhanced absorption of H2S and CO2. Biologically enhanced H2S and CO2 absorption differs from physicochemical factors in that it depends on several physiological parameters such as microbial community composition and gene expression levels. In this study, the sulfur autotrophic denitrifying bacteria Thioalkalivibrio and Arenimonas had high abundance and activity (abundance: 69.5% and 21.1%, expression: 82.4% and 13.9%), and they were the main contributors to the bio-enhanced absorption of H2S and CO2 in this system. In addition, the main factor for enhanced H2S absorption could be the high expression of sulfide:quinone oxidoreductase (SQR, encoding gene sqr) (45 ± 9 to 821 ± 102 transcripts per million). Enhanced CO2 absorption could have been achieved by the oxidation of more H2S generating more energy to increase the carboxylation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, encoding genes rbcLS). Enhanced H2S absorption enhances CO2 absorption and facilitates microbial growth, which in turn benefits the metabolism of H2S, creating a complementary biologically enhanced absorption. This study provides a novel strategy, demonstrating the potential of autotrophic sulfide-oxidizing microorganisms in the simultaneous removal of H₂S and assimilation of CO₂, and offers a deeper understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Junjie Wang
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China; Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province, Eco-environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, 310007, China; Future Water Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Zhuowei Cheng
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China; Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province, Eco-environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, 310007, China.
| | - Yunfei Su
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China
| | - Dongzhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China; School of Environment & Natural Resources, Zhejiang University of Science & Technology, HangZhou, 310023, China
| | - Xiaoming Wu
- Ruze Environment Engineerng Ltd., Nantong, Jiangsu, 226001, China
| | - Aobo Chen
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China
| | - Zhenyu Gu
- Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province, Eco-environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, 310007, China
| |
Collapse
|
20
|
Ma T, He Q, Cao G, Li X. Enhanced Nitrogen Removal from a Recirculating Aquaculture System Using a Calcined FeS x -Packed Denitrification Bioreactor. ACS OMEGA 2024; 9:51089-51097. [PMID: 39758661 PMCID: PMC11696438 DOI: 10.1021/acsomega.4c06374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
In this study, a recirculating aquaculture system (RAS) was constructed, and a denitrification bioreactor was installed to enhance nitrogen removal. In addition, the nitrogen removal performance of the system was investigated. FeS x was prepared by calcining iron (Fe) and S0 powder, which was used as an electron donor for denitrification. In the phase using simulating aquaculture wastewater, the concentrations of NO2 --N and NH4 +-N in the RAS were lower than 0.20 and 0.50 mg/L, respectively, and NO3 --N gradually accumulated without the operation of the FeS x -packed denitrification bioreactor. After introducing cultured fish and operating the denitrification bioreactor, NO2 --N and NH4 +-N in the fish tank were lower than 0.01 mg/L and lower detection limit, respectively, and the NO3 --N removal efficiency was 79.04%. After 24 days of operation, the SO4 2- concentration was lower than 200 mg/L, and the pH was stable at around 7. The survival rate of fish was 95%, and they grew 6 to 7 cm at the end of the experiment. The average weight gain of fish was 5.31 g, and the culture density increased from the initial 10 to 26.54 kg/m3. Microbial community structure analysis showed that the diversity in the denitrification bioreactor operated in the RAS (RAS_Sludge) was higher than that in the reactor operated using synthetic wastewater (Synthetic_Sludge) due to the introduction of organic matter. Thermomonas, Longilina, Arenimonas, and Thiobacillus were dominant in RAS_Sludge, while unclassified genera were dominant in Synthetic_Sludge. Functional genes in RAS_Sludge and Synthetic_Sludge were predicted based on Functional Annotation of Prokaryotic Taxa, revealing differences in genes related to denitrification as well as sulfur and iron oxidation. This study provides a theoretical basis for the application of FeS x -based autotrophic denitrification technology in RASs, promoting it from theoretical research to engineering practice.
Collapse
Affiliation(s)
- Tian Ma
- Water
Environment and Health Henan Engineering Technology Research Center, Zhengzhou 451100, Henan, China
- School
of Pharmacy and Chemical Engineering, Zhengzhou
University of Industrial Technology, Zhengzhou 451100, China
| | - Qiaochong He
- College
of Environmental Engineering, Henan University
of Technology, Zhengzhou 450001, China
| | - Gaigai Cao
- College
of Environmental Engineering, Henan University
of Technology, Zhengzhou 450001, China
| | - Xiaoli Li
- College
of Environmental Engineering, Henan University
of Technology, Zhengzhou 450001, China
| |
Collapse
|
21
|
Zhou Q, Wang J. Sulfur-based mixotrophic denitrification: A promising approach for nitrogen removal from low C/N ratio wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177419. [PMID: 39542261 DOI: 10.1016/j.scitotenv.2024.177419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Sulfur-based mixotrophic denitrification has significant potential as a promising denitrification technology for treating low ratio of carbon-to‑nitrogen (C/N) wastewater. This paper provided an in-depth and comprehensive overview of the sulfur-based mixotrophic denitrification process and discussed the underlying mechanisms and functional microorganisms. Possible electron transfer pathways involved in the sulfur-based mixotrophic denitrification process are also analyzed in detail. This review focused on the various sulfur-based electron donors used in the sulfur-based mixotrophic denitrification process, including S0, S2-, S2O32-, and pyrite (FeS2), and their performances when combined with various carbon sources (such as methanol, ethanol, glucose, and woodchips) were also explored. The analysis of the contribution proportion between autotrophic and heterotrophic denitrification suggested an appropriate C/N ratio can emphasize the dominance of autotrophs, thus exerting synergistic effects and reducing the consumption of carbon sources. Additionally, three strategies, including developing new composites, new bioreactors, and new sulfur sources, were proposed to improve the performance and stability of the sulfur-based mixotrophic denitrification process. Finally, the applications (such as secondary effluent, groundwater, and agricultural/urban storm water runoff), challenges, and perspectives of the sulfur-based mixotrophic denitrification were highlighted. This review provided an in-depth insight into the coupling mechanism of sulfur-based autotrophic and heterotrophic denitrification and guidance for the future implementation of the sulfur-based mixotrophic denitrification process.
Collapse
Affiliation(s)
- Qi Zhou
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory for Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
22
|
Xu Z, Wu Y, Zhu Q, Qian D, Yuan M, Yu J, Chen Z, Yang J, Hu J, Hou H. Effects of potassium-mediated electrical communication inhibition on nitrogen removal in microbial fuel cells. ENVIRONMENTAL RESEARCH 2024; 262:119822. [PMID: 39173816 DOI: 10.1016/j.envres.2024.119822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Potassium ion signaling mediates microbial communication in electroactive biofilms within microbial fuel cells (MFCs), but its role in nitrogen removal remains unclear. This study investigated the impact of inhibiting potassium signaling on nitrogen removal in MFCs using tetraethylammonium chloride (TEA) as an inhibitor. Results demonstrated that 5 mM and 10 mM TEA reduced the maximum power generation of MFCs from 77.95 mW/cm2 to 57.18 mW/cm2 and 48.23 mW/cm2, respectively. Correspondingly, total nitrogen (TN) removal efficiency was decreased from 46.57 ± 1.01% to 35.93 ± 0.63% and 38.97 ± 0.74%, respectively. This decline was attributed to inhibited potassium ion signaling, which compromised the electrochemical performance of the MFC and hindered the nitrogen removal process. The relative abundance of exoelectrogen Geobactor decreased from 15.37% to 5.17% and 8.05%, while the relative abundance of cathodic nitrifying bacteria Nitrosomonas decreased from 17.87% to 4.92% and 3.63% under 5 mM and 10 mM TEA. These findings underscore the crucial role of potassium ion signaling in enhancing the bioelectrochemical nitrogen removal process in MFCs.
Collapse
Affiliation(s)
- Ziming Xu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei, 430074, PR China
| | - Yaqian Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei, 430074, PR China
| | - Qian Zhu
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi, 435002, PR China
| | - Dingkang Qian
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei, 430074, PR China
| | - Mengjiao Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei, 430074, PR China
| | - Jie Yu
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Zhuqi Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China.
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei, 430074, PR China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China.
| |
Collapse
|
23
|
Hao Y, Guo T, Li H, Liu W, Chen Z, Zhang W, Wang X, Guo J. Fe/GMP functional nanomaterial enhancing the denitrification efficiency by bi-signal regulation: Electron transfer and microbial community. BIORESOURCE TECHNOLOGY 2024; 413:131533. [PMID: 39326537 DOI: 10.1016/j.biortech.2024.131533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
A novel functional nanomaterial composed of guanosine monophosphate (GMP) and Fe enhanced denitrification efficiency by regulating electron transfer and microbial community. Fe/GMP enhanced nitrate (NO3-) degradation rates by 3.00-fold in serum vial batch experiments, with a rate constant of 17.39 mg/(L·h) in sequencing batch reactor. Fe/GMP-mediated interface promoted the secretion of redox-active substances in the extracellular polymeric substances to enhance the extracellular electron transfer. Specifically, Fe/GMP regulated electron transfer and metabolism activity by dynamic conversion of Fe3+/Fe2+ redox signal. Additionally, enzyme activity assays verified the optimized electron distribution function of Fe/GMP and thus enhanced intracellular electron transfer. High-throughput sequencing confirmed Fe/GMP selectively enriched microorganisms (especially Thauera 50.70 %). The tetraethylammonium stress experiment demonstrated Fe/GMP as an exogenous signaling molecule to restore microbial communication for microbial community regulation. The study proposes a multifaceted synergistic mechanism based on the repeater function of Fe/GMP in denitrification and offers insights for practical applications.
Collapse
Affiliation(s)
- Yunzhe Hao
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Tingting Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Wenli Liu
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China
| | - Zhi Chen
- Department of Building, Civil, and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W. Montreal, Quebec, Canada
| | - Wenjuan Zhang
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Xiaoping Wang
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China.
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
24
|
Lun J, Zhou W, Sun M, Li N, Shi W, Gao Z, Li M. Meta-analysis: Global patterns and drivers of denitrification, anammox and DNRA rates in wetland and marine ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176694. [PMID: 39366563 DOI: 10.1016/j.scitotenv.2024.176694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/22/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Nitrogen cycling is one of the most important biogeochemical processes on Earth, and denitrification, anammox and DNRA processes are important nitrogen cycling processes in estuarine ecosystems. However, due to the large input of anthropogenic nitrogen sources, a large number of environmental problems have now occurred in the estuary. But the global patterns and controlling factors of denitrification, anammox and DNRA rates in wetland marine ecosystems are not yet known. We reached our conclusions through a global synthesis of 546 observation sites from 78 peer-reviewed papers: The three rates were generally higher in areas near wetlands than in coastal areas. The rate of denitrification was highest in the subtropical region the seasonal variability was not significant; and TOC was the main factor controlling denitrification. The rate of anammox was significantly higher in the subtropical region than in the tropical and boreal zones, and the seasonal variability was significant; and at the same time, TN was the main driver of the anammox rate of the wetland ocean. DNRA rates were significantly higher in the tropics than in the subtropics and temperate zones; and the main driver of DNRA rates was temperature. Nitrogen cycle functional genes also had an indirect effect on their rates. With NH4 + -N significantly affecting nirK abundance and TN significantly affecting the gene abundance of nirS; TOC and TN had a greater effect on hzo abundance, which indirectly affected anammox rates; for DNRA, C/N significantly affects the gene abundance of nrfA, which indirectly affects the DNRA rate. Therefore, the findings of this study indicate that physicochemical indicators about N and climatic characteristics have a profound effect on the nitrogen cycling process, which provides a good feedback for studying the role of denitrification and provides a positive impact on global climate and environmental governance.
Collapse
Affiliation(s)
- Jiaqi Lun
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Wenxi Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Mengyue Sun
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Na Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Wenchong Shi
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Zheng Gao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China.
| | - Mingcong Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
25
|
Wang T, Wang H, Li X, Wang Y. Unveiling the mechanism underlying in-situ enhancement on anammox system by sulfide: Integration of biological and isotope analysis. WATER RESEARCH 2024; 267:122483. [PMID: 39326183 DOI: 10.1016/j.watres.2024.122483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/01/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
The in-situ utilization of sulfide to remove the nitrate produced during the anaerobic ammonium oxidation (anammox) process can avoid prolonged sludge acclimatization, facilitating the rapid initiation of coupled nitrogen removal processes. However, the understanding of in-situ enhancement on anammox system by sulfide remains unclear. Herein, sulfide (Na2S) was introduced as an additional electron donor to remove the nitrate derived from the anammox under varying sulfide/nitrogen (S/N, S2--S/NO3--N, molar ratio) ratios (0.004-4.375). The underlying mechanisms were elucidated by molecular biology techniques including flow cytometry, quantitative polymerase chain reaction, and 16S rRNA amplicon sequencing, alongside isotope tracer analysis. Results revealed that anammox reactors, when operated with in-situ sulfide addition, exhibited a significant enhancement in total nitrogen removal efficiency (NRE) ranging from 11.5 %-41.7 % (achieved 96 %), with the optimal S/N ratios of 0.01-0.8. Isotope tracer analysis indicated the successful coupling of the anammox, sulfur autotrophic denitrification (SADN), and dissimilatory nitrate reduction to ammonium (DNRA) processes within the system, with their contributions to nitrogen removal being 46 %-50 %, 24 %-30 %, and 20 %-22 %, respectively. Moreover, a notable increase in the abundance of sulfur-oxidizing bacteria (SOB) (20 %-40 % increase) and DNRA bacteria (10 %-20 % increase) were observed. Effective collaboration was further supported by the sustained viability of microbial communities. It is speculated that the heightened presence of SOB and DNRA bacteria created a low toxicity environment by converting sulfide to biogenic sulfur, thereby promoting the well-being of anammox bacteria. However, the excessive dosage of sulfide (S/N = 1.8) intensified the DNRA process (contribution>35 %) and weakened the anammox process, leading to an increase in effluent NH4+-N concentration and a decline in NRE. This study confirms that the in-situ adding an appropriate amount of sulfide favors achieving complete nitrogen removal in anammox system, which provides a novel avenue to resolve the issue of the residual nitrate in anammox process.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| |
Collapse
|
26
|
Zhou Q, Jia L, Li Y, Wu W, Wang J. Deciphering stratified structure and microbiota assembly of biofilms from a pyrite-based biofilter driven by mixotrophic denitrification. BIORESOURCE TECHNOLOGY 2024; 414:131568. [PMID: 39366511 DOI: 10.1016/j.biortech.2024.131568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The precise structure and assembly process of pyrite-based biofilms remain poorly understood. The polysaccharides (PN), proteins (PS), and extracellular DNA were enriched in the soluble extracellular polymeric substance (EPS), loosely bound EPS, and tightly bound EPS, respectively, indicating a significant stratified structure of biofilms. The tryptophan facilitated mixotrophic metabolic processes. Both dominant (>1%) and rare species (<0.01 %) harbored core bacteria, including sulfur autotrophic bacteria, sulfate-reducing bacteria, and heterotrophic bacteria. Furthermore, partial least-squares path modeling quantified the contributions of total phosphorus (TP) (λ = 0.32), dissolved organic matter (DOC) (λ = 0.29), and NH4+-N (λ = 0.26) to variations in the microbial community. Nonmetric multidimensional scaling analysis revealed three distinct stages in biofilm development: colonization (0-36 d), succession (36-149 d), and maturation/old (149-215 d). Furthermore, neutral community model indicated that stochastic processes drove the colonization and maturation/old stages, while deterministic processes dominated the succession stage. This study offered valuable insights into the regulation of pyrite-based engineered ecosystems.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China
| | - Lixia Jia
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuanwei Li
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
27
|
Jiao F, Zhang X, Zhang T, Hu Y, Lu R, Ma G, Chen T, Guo H, Li D, Pan Y, Li YY, Kong Z. Insights into carbon-neutral treatment of rural wastewater by constructed wetlands: A review of current development and future direction. ENVIRONMENTAL RESEARCH 2024; 262:119796. [PMID: 39147183 DOI: 10.1016/j.envres.2024.119796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
In recent years, with the global rise in awareness regarding carbon neutrality, the treatment of wastewater in rural areas is increasingly oriented towards energy conservation, emission reduction, low-carbon output, and resource utilization. This paper provides an analysis of the advantages and disadvantages of the current low-carbon treatment process of low-carbon treatment for rural wastewater. Constructed wetlands (CWs) are increasingly being considered as a viable option for treating wastewater in rural regions. In pursuit of carbon neutrality, advanced carbon-neutral bioprocesses are regarded as the prospective trajectory for achieving carbon-neutral treatment of rural wastewater. The incorporation of CWs with emerging biotechnologies such as sulfur-based autotrophic denitrification (SAD), pyrite-based autotrophic denitrification (PAD), and anaerobic ammonia oxidation (anammox) enables efficient removal of nitrogen and phosphorus from rural wastewater. The advancement of CWs towards improved removal of organic and inorganic pollutants, sustainability, minimal energy consumption, and low carbon emissions is widely recognized as a viable low-carbon approach for achieving carbon-neutral treatment of rural wastewater. This study offers novel perspectives on the sustainable development of wastewater treatment in rural areas within the framework of achieving carbon neutrality in the future.
Collapse
Affiliation(s)
- Feifei Jiao
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xinzheng Zhang
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tao Zhang
- College of Design and Innovation, Shanghai International College of Design & Innovation, Tongji University, Shanghai, 200092, China
| | - Yong Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Rui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guangyi Ma
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tao Chen
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Hongbo Guo
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Dapeng Li
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yang Pan
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Zhe Kong
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
28
|
Zhang Y, Wang W, Xu X, Zhang Q, Xing D, Lee DJ, Ren N, Chen C. Sulfur cycle-mediated biological nitrogen removal and greenhouse gas abatement processes: Micro-oxygen regulation tells the story. BIORESOURCE TECHNOLOGY 2024; 414:131614. [PMID: 39395607 DOI: 10.1016/j.biortech.2024.131614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Sulfur-mediated autotrophic biological nitrogen removal (BNR) processes favor the reduction of greenhouse gas (GHG) emissions compared to heterotrophic BNR processes. Micro-oxygen environments are widely prevalent in practical BNR systems, and the mechanisms of GHG emissions mediated by multi-elements, including nitrogen (N), sulfur (S), and oxygen (O), remain to be systematically summarized. This review reveals the functional microorganisms involved in sulfur-mediated BNR processes under micro-oxygen regulation, elucidating their metabolic mechanisms and interactions. The GHG abatement potential of sulfur-mediated BNR processes under micro-oxygen regulation is highlighted, along with recent advances in multi-scenario applications. The fate of GHG in wastewater treatment systems is explored and insights into future multi-scale GHG regulatory strategies are provided. Overall, the application of sulfur-mediated BNR processes under micro-oxygen regulation exhibits great potential. This review can act as a guide for the effective implementation of strategies to mitigate the environmental impacts of GHG emissions from wastewater treatment processes.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|
29
|
Shi X, Zhang J, Wang Q, Wang K, Han J, Hui Y, Jin X, Jin P. The sewer advances: How to select eco-friendly pipe materials for environmental protection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175853. [PMID: 39222807 DOI: 10.1016/j.scitotenv.2024.175853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Sewer pipe materials exhibit diverse inner-surface features, which can affect the attachment of biofilm and influence microbial metabolic processes. To investigate the role of the type of pipe material on the composition and metabolic capabilities of the adhering microorganisms, three sets of urban sewers (High-Density Polyethylene Pipe (HDPE), Ductile Iron Pipe (DIP), and Concrete Pipe (CP)) were constructed. Measurements of biofilm thickness and environmental factors revealed that the thickest biofilm in CP pipes reached 2000 μm, with ORP values as low as -325 mV, indicating a more suitable anaerobic microbial habitat. High-throughput sequencing showed similar relative abundances of genera related to carbon and sulfur metabolism in the DIP and CP pipes, whereas HDPE exhibited only half the relative abundance compared to that found in the other pipes. To explore the impact of pipe materials on the mechanisms of microbial response, a metagenomic approach was used to investigate the biological transformation of carbon and sulfur in wastewater. The annotations of the crucial enzyme-encoding genes related to methyl coenzyme M and sulfite reductase in DIP and CP were 50 and 110, respectively, whereas HDPE exhibited lower counts (25 and 70, respectively). This resulted in significantly lower carbon and sulfur metabolism capabilities in the HDPE biofilm than in the other two pipes. The stability of wastewater quality during the transmission process in HDPE pipes reduces the metabolic generation of toxic and harmful gases within the pipes, favoring the preservation of carbon sources for sewer systems. This study reveals the variations in carbon and sulfur metabolism in wastewater pipe systems influenced by pipe materials and provides insights for designing future sewers.
Collapse
Affiliation(s)
- Xuan Shi
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Jin Zhang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China; College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, Hebei Province 056038, China
| | - Qize Wang
- Future City Innovation Technology Co., Ltd., Shaanxi Construction Engineering Holding Group, Xi'an 710116, China; SCEGC-XJTU Joint Research Center for Future City Construction and Management Innovation, Xi'an Jiaotong University, Xi'an 710116, China
| | - Kai Wang
- Future City Innovation Technology Co., Ltd., Shaanxi Construction Engineering Holding Group, Xi'an 710116, China; SCEGC-XJTU Joint Research Center for Future City Construction and Management Innovation, Xi'an Jiaotong University, Xi'an 710116, China
| | - Jianshuang Han
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Yilian Hui
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Xin Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Pengkang Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China.
| |
Collapse
|
30
|
Li P, Jin A, Liang Y, Zhang Y, Ding D, Xiang H, Ding Y, Qiu X, Han W, Ye F, Feng H. Biocathode-anode cascade system in PRB: Efficient degradation of p-chloronitrobenzene in groundwater. WATER RESEARCH 2024; 266:122359. [PMID: 39232255 DOI: 10.1016/j.watres.2024.122359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/10/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
The consistent presence of p-chloronitrobenzene (p-CNB) in groundwater has raised concerns regarding its potential harm. In this study, we developed a biocathode-anode cascade system in a permeable reactive barrier (BACP), integrating biological electrochemical system (BES) with permeable reactive barrier (PRB), to address the degradation of p-CNB in the groundwater. BACP efficiently accelerated the formation of biofilms on both the anode and cathode using the polar periodical reversal method, proving more conducive to biofilm development. Notably, BACP demonstrated a remarkable p-CNB removal efficiency of 94.76 % and a dechlorination efficiency of 64.22 % under a voltage of 0.5 V, surpassing the results achieved through traditional electrochemical and biological treatment processes. Cyclic voltammetric results highlighted the primary contributing factor as the synergistic effect between the bioanode and biocathode. It is speculated that this system primarily relies on bioelectrocatalytic reduction as the predominant process for p-CNB removal, followed by subsequent dechlorination. Furthermore, electrochemical and microbiological tests demonstrated that BACP exhibited optimal electron transfer efficiency and selective microbial enrichment ability under a voltage of 0.3-0.5 V. Additionally, we investigated the operational strategy for initiating BACP in engineering applications. The results showed that directly introducing BACP technology effectively enhanced microbial film formation and pollutant removal performance.
Collapse
Affiliation(s)
- Pingli Li
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Anan Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Yuxiang Liang
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; Zhejiang Bainuo Digital Intelligence Environmental Technology Co., Ltd., Hangzhou, Zhejiang 310061, China
| | - Yanqing Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Danna Ding
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Hai Xiang
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Yangcheng Ding
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Xiawen Qiu
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Wei Han
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Fangfang Ye
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Huajun Feng
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
31
|
Hu F, Ye J, Zhang J, Zhang W, Chen P, Yuan Z, Xu Z. Synergistic removal of bio-recalcitrant organic compounds and nitrate: Coupling photocatalysis and biodegradation to enhance the bioavailability of electron donors. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135605. [PMID: 39191007 DOI: 10.1016/j.jhazmat.2024.135605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Nitrate pollution poses significant threats to both aquatic ecosystems and human well-being, particularly due to eutrophication and increased risks of methemoglobinemia. Conventional treatment for nitrate-contaminated wastewater face challenges stemming from limited availability of carbon sources and the adverse impacts of toxins on denitrification processes. This study introduces an innovative Intimately Coupled Photocatalysis and Biodegradation (ICPB) system, which utilizes Ag3PO4/Bi4Ti3O12, denitrifying sludge, and polyurethane sponge within an anoxic environment. This system demonstrates remarkable efficacy in simultaneously removing bio-recalcitrant organic compounds (such as sulfamethoxazole) and nitrates, surpassing standalone treatment methods. Optimally, the ICPB achieves complete removal of sulfamethoxazole, along with 87.7 % removal of DOC, and 81.8 % reduction in nitrate levels. Its ability to sustain pollutant removal and biological activity over multiple cycles can be attributed to the special formation of biofilm and mineralization of sulfamethoxazole, minimizing both photocatalytic damage and toxic inhibitory effects on microbes. The dominant microbial genera of ICPB system included Castellaniella, Acidovorax, Raoultella, Giesbergeria, and Alicycliphilus. Additionally, the study sheds light on a potential mechanism for the concurrent treatment of recalcitrant organics and nitrates by the ICPB system, presenting a novel and highly effective approach for addressing biologically resistant wastewater.
Collapse
Affiliation(s)
- Feng Hu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Jianfeng Ye
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China.
| | - Jingyi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Wencan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Peipei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Zhanzhan Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China.
| |
Collapse
|
32
|
Cao M, Bai Y, Su J, Wang Y, Feng J, Zhang Q. Denitrification performance of the nitrate-dependent manganese redox strain Dechloromonas sp. YZ8 under copper ion (Cu(Ⅱ)) stress: Promotion mechanism and immobilization efficacy. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135748. [PMID: 39243540 DOI: 10.1016/j.jhazmat.2024.135748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
A novel nitrate-dependent manganese (Mn) redox strain was isolated and identified as Dechloromonas sp.YZ8 in this study. The growth conditions of strain YZ8 were optimized by kinetic experiments. The nitrate (NO3--N) removal efficiency was 100.0 % at 16 h at C/N of 2.0, pH of 7.0, and Mn(II) or Mn(IV) addition of 10.0 or 500.0 mg L-1, along with an excellent Mn redox capacity. Transmission electron microscopy supported the Mn redox process inside and outside the cells of strain YZ8. When strain YZ8 was exposed to different concentrations of copper ion (Cu(II)), it turned out that moderate amounts of Cu(II) increased microbial activity and metabolic activities. Moreover, it was discovered that the appropriate amount of Cu(II) promoted the conversion of Mn(IV) and Mn(II) to Mn(III) and improved electron transfer capacity in the Mn redox system, especially the Mn redox process dominated by Mn(IV) reduction. Then, δ-MnO2 and bio-manganese oxides (BMO) produced during the reaction process have strong adsorption of Cu(II). The surface valence changes of δ-MnO2 before and after the reaction and the production of BMO, Mn(III)-rich intermediate black manganese ore (Mn3O4), and Mn secondary minerals together confirmed the Mn redox pathway. The study provided new insights into the promotion mechanism and immobilization effects of redox-coupled denitrification of Mn in groundwater under Cu(II) stress.
Collapse
Affiliation(s)
- Meng Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jingting Feng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qingli Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
33
|
Li J, Zhu Z, Lv X, Tan H, Liu W, Luo G. Optimizing carbon sources on performance for enhanced efficacy in single-stage aerobic simultaneous nitrogen and phosphorus removal via biofloc technology. BIORESOURCE TECHNOLOGY 2024; 411:131347. [PMID: 39182794 DOI: 10.1016/j.biortech.2024.131347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Bioflocs can efficiently achieve simultaneous nitrate and phosphate removal through a single-stage aerobic process, provided they are continuously supplemented with an organic carbon source. This study investigated the effects of different carbon sources on this process. Results revealed that phosphate removal rate in the glucose group was 0.61 ± 0.02 mg/L/h, significantly higher than those in the acetate (0.28 ± 0.01 mg/L/h) and propionate (0.29 ± 0.03 mg/L/h) groups (p < 0.05). However, the three groups observed no significant differences in nitrate removal rates (p > 0.05). The superior performance of the glucose group in simultaneous nitrogen and phosphorus removal is likely due to the higher biomass synthesis. In contrast, nitrate removal in the acetate and propionate groups was primarily driven by denitrification, resulting in lower sludge production and reduced phosphate uptake. For practical application of bioflocs in simultaneous nitrogen and phosphorus removal, glucose is recommended as the optimal carbon source.
Collapse
Affiliation(s)
- Jiayang Li
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Ze Zhu
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | - Xinlan Lv
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Hongxin Tan
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Wenchang Liu
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Guozhi Luo
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
34
|
Chen H, Tang M, He L, Xiao X, Yang F, He Q, Sun S, Gao Y, Zhou L, Li Y, Sun J, Zhang W. Exploring the impact of fulvic acid on electrochemical hydrogen-driven autotrophic denitrification system: Performance, microbial characteristics and mechanism. BIORESOURCE TECHNOLOGY 2024; 412:131432. [PMID: 39236909 DOI: 10.1016/j.biortech.2024.131432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
In this study, the effect of modulating fulvic acid (FA) concentrations (0, 25 and 50 mg/L) on nitrogen removal in a bioelectrochemical hydrogen autotrophic denitrification system (BHDS) was investigated. Results showed that FA increased the nitrate (NO3--N) removal rate of the BHDSs from 37.8 to 46.2 and 45.2 mg N/(L·d) with a current intensity of 40 mA. The metagenomic analysis revealed that R2 (25 mg/L) was predominantly populated by autotrophic denitrifying microorganisms, which enhanced denitrification performance by facilitating electron transfer. Conversely, R3 (50 mg/L) exhibited an increase in genes related to the heterotrophic process, which improved the denitrification performance through the collaborative action of both autotrophic and heterotrophic denitrification pathways. Besides, the study also identified a potential for nitrogen removal in Serpentinimonas, which have been rarely studied. The interesting set of findings provide valuable reference for optimizing BHDS for nitrogen removal and promoting specific denitrifying genera within the system.
Collapse
Affiliation(s)
- Haolin Chen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Meiyi Tang
- China West Construction Hunan Group Co. Ltd., Changsha 410114, China
| | - Liang He
- Hunan Hengyong Expressway Construction and Development Co. Ltd., Hengyang 421600, China
| | - Xinxin Xiao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Fei Yang
- Hunan Hengyong Expressway Construction and Development Co. Ltd., Hengyang 421600, China
| | - Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Lean Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Yifu Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Julong Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Wei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China.
| |
Collapse
|
35
|
Liu X, Yu J, Wang H, Jin C, Zhao Y, Guo L. Effect of magnetic powder (Fe 3O 4) on heterotrophic-sulfur autotrophic denitrification efficiency and electron transport system activity for marine recirculating aquacultural wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122749. [PMID: 39368389 DOI: 10.1016/j.jenvman.2024.122749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
As an efficient nitrogen removal process, heterotrophic-sulfur autotrophic denitrification (HSAD) has attracted extensive attention in wastewater treatment. However, the effects of magnetic powder (Fe3O4) on the electron transport activity in HSAD process remain unclear. Therefore, in this study, a heterotrophic-sulfur autotrophic denitrification system was established to remove nitrogen from marine recirculating aquacultural wastewater for evaluating the effects of Fe3O4. At the optimal Fe3O4 concentration of 50 mg/L, the nitrogen removal efficiency reached 100% with lower sulfate accumulation, and the start-up time was shortened. The assays of denitrifying enzymes and electron transport system activity showed that Fe3O4 improved the activities of nitrate and nitrite reductases, and increased the efficiency of electron transport. Microbial community analysis revealed that Fe3O4 enriched heterotrophic denitrifier Thauera and sulfur autotrophic denitrifier Canditatus Thiobios, and thus enhanced denitrification efficiencies. This study demonstrated that Fe3O4 is an efficient denitrification accelerator in HSAD for treating marine recirculating aquacultural wastewater.
Collapse
Affiliation(s)
- Xiangrong Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jinghan Yu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Hutao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
36
|
Zhao Y, Liu Y, Cao S, Hao Q, Liu C, Li Y. Anaerobic oxidation of methane driven by different electron acceptors: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174287. [PMID: 38945238 DOI: 10.1016/j.scitotenv.2024.174287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/31/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Methane, the most significant reduced form of carbon on Earth, acts as a crucial fuel and greenhouse gas. Globally, microbial methane sinks encompass both aerobic oxidation of methane (AeOM), conducted by oxygen-utilizing methanotrophs, and anaerobic oxidation of methane (AOM), performed by anaerobic methanotrophs employing various alternative electron acceptors. These electron acceptors involved in AOM include sulfate, nitrate/nitrite, humic substances, and diverse metal oxides. The known anaerobic methanotrophic pathways comprise the internal aerobic oxidation pathway found in NC10 bacteria and the reverse methanogenesis pathway utilized by anaerobic methanotrophic archaea (ANME). Diverse anaerobic methanotrophs can perform AOM independently or in cooperation with symbiotic partners through several extracellular electron transfer (EET) pathways. AOM has been documented in various environments, including seafloor methane seepages, coastal wetlands, freshwater lakes, soils, and even extreme environments like hydrothermal vents. The environmental activities of AOM processes, driven by different electron acceptors, primarily depend on the energy yields, availability of electron acceptors, and environmental adaptability of methanotrophs. It has been suggested that different electron acceptors driving AOM may occur across a wider range of habitats than previously recognized. Additionally, it is proposed that methanotrophs have evolved flexible metabolic strategies to adapt to complex environmental conditions. This review primarily focuses on AOM, driven by different electron acceptors, discussing the associated reaction mechanisms and the habitats where these processes are active. Furthermore, it emphasizes the pivotal role of AOM in mitigating methane emissions.
Collapse
Affiliation(s)
- Yuewen Zhao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Yaci Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China.
| | - Shengwei Cao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Qichen Hao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Chunlei Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Yasong Li
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China.
| |
Collapse
|
37
|
Sun S, Yan P, Zhang M, Fan Y, Gu X, Chachar A, He S. Reveling the micromolecular biological mechanism of acetate, thiosulfate and Fe 0 in ecological floating beds for treating low C/N wastewater: Insight into nitrogen removals and greenhouse gases reductions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174042. [PMID: 38908573 DOI: 10.1016/j.scitotenv.2024.174042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Selecting an appropriate electron donor to enhance nitrogen removal for treating low C/N wastewater in ecological floating beds (EFBs) is controversy. In this study, a systematic and comprehensive evaluation of sodium acetate (EFB-C), sodium thiosulfate (EFB-S) and iron scraps (EFB-Fe) was performed in a 2-year experiment on long-term viability including nitrogen removal and greenhouse gas emissions associated with key molecular biological mechanisms. The results showed that EFB-C (43-85 %) and EFB-S (40-88 %) exhibited superior total nitrogen (TN) removal. Temperature and hydraulic retention time (HRT) have significant impacts on TN removal of EFB-Fe, however, it could reach 86 % under high temperature (30-35 °C) and a long HRT (3 days), and it has lowest N2O (0-6.2 mg m-2 d-1) and CH4 (0-5.3 mg m-2 d-1) fluxes. Microbial network analysis revealed that the microbes changed from competing to cooperating after adding electron donors. A higher abundance of anammox genera was enriched in EFB-Fe. The Mantel's test and structural equation model provided proof of the differences, which showed that acetate and thiosulfate were similar, whereas Fe0 was different in the nitrogen removal mechanism. Molecular biology analyses further verified that heterotrophic, autotrophic, and mixotrophic coupled with anammox were the main TN removal pathways for EFB-C, EFB-S, and EFB-Fe, respectively. These findings provide a better understanding of the biological mechanisms for selecting appropriate electron donors for treating low C/N wastewater.
Collapse
Affiliation(s)
- Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuanyuan Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Azharuddin Chachar
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| |
Collapse
|
38
|
Wang P, Tan J, Xiao Z, Xu F, Jin Q, He D. New insights and enhancement mechanisms of activated carbon in autotrophic denitrification system utilizing zero-valent iron as indirect electron donors. BIORESOURCE TECHNOLOGY 2024; 410:131237. [PMID: 39127355 DOI: 10.1016/j.biortech.2024.131237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Zero-valent iron acts as an indirect electron donor, supplying ferrous iron for the nitrate-dependent ferrous oxidation (NDFO) process. The addition of activated carbon (AC) increased the specific NDFO activity in situ and ex situ by 0.4 mg-N/(d·g VSS) and 2.2 mg-N/(d·g VSS), respectively, due to the enrichment of NDFO bacteria. Furthermore, AC reduced the nitrous oxide emission potential of the sludge, a mechanism that metagenomic analysis suggests may act as a cellular energy storage strategy. During a 196-day experiment, a total nitrogen removal efficiency of 53.7 % was achieved, which may be attributed to the upregulation of key genes involved in iron oxidation and denitrification. Based on these findings, a model involving pilin, 'nanowires,' and a cyc2/?→/(FoxE→FoxY)/?→cymA/Complex III/?-mediated pathway for extracellular electron uptake was proposed. Overall, this work provides a feasible strategy for enhancing the nitrogen removal performance of the ZVI-NDFO process.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jun Tan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhenxiong Xiao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Fei Xu
- Shenzhen Pangu Environmental Protection Technology Co. Ltd, Shenzhen 518055, PR China
| | - Qinghai Jin
- Shenzhen Pangu Environmental Protection Technology Co. Ltd, Shenzhen 518055, PR China
| | - Di He
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
39
|
Fan Y, Zhou Z, Liu F, Qian L, Yu X, Huang F, Hu R, Su H, Gu H, Yan Q, He Z, Wang C. The vertical partitioning between denitrification and dissimilatory nitrate reduction to ammonium of coastal mangrove sediment microbiomes. WATER RESEARCH 2024; 262:122113. [PMID: 39032335 DOI: 10.1016/j.watres.2024.122113] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Mangrove aquatic ecosystems receive substantial nitrogen (N) inputs from both land and sea, playing critical roles in modulating coastal N fluxes. The microbially-mediated competition between denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in mangrove sediments significantly impacts the N fate and transformation processes. Despite their recognized role in N loss or retention in surface sediments, how these two processes vary with sediment depths and their influential factors remain elusive. Here, we employed a comprehensive approach combining 15N isotope tracer, quantitative PCR (qPCR) and metagenomics to verify the vertical dynamics of denitrification and DNRA across five 100-cm mangrove sediment cores. Our results revealed a clear vertical partitioning, with denitrification dominated in 0-30 cm sediments, while DNRA played a greater role with increasing depths. Quantification of denitrification and DNRA functional genes further explained this phenomenon. Taxonomic analysis identified Pseudomonadota as the primary denitrification group, while Planctomycetota and Pseudomonadota exhibited high proportion in DNRA group. Furthermore, genome-resolved metagenomics revealed multiple salt-tolerance strategies and aromatic compound utilization potential in denitrification assemblages. This allowed denitrification to dominate in oxygen-fluctuating and higher-salinity surface sediments. However, the elevated C/N in anaerobic deep sediments favored DNRA, tending to generate biologically available NH4+. Together, our results uncover the depth-related variations in the microbially-mediated competition between denitrification and DNRA, regulating N dynamics in mangrove ecosystems.
Collapse
Affiliation(s)
- Yijun Fan
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengyuan Zhou
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Fei Liu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Qian
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoli Yu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Fangjuan Huang
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruiwen Hu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Hualong Su
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Hang Gu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingyun Yan
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| | - Cheng Wang
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
40
|
Nakano A. Effect of sand minerals on microbially induced carbonate precipitation by denitrification. CHEMOSPHERE 2024; 363:142890. [PMID: 39025311 DOI: 10.1016/j.chemosphere.2024.142890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
Soil improvement techniques utilizing the metabolic functions of microorganisms, including microbially induced carbonate precipitation (MICP), have been extensively researched over the past few decades as part of bio-inspired geotechnical engineering research. Given that metabolic reactions in microorganisms produce carbonate minerals, an enhanced understanding of microbial interaction with soils could improve the effectiveness of MICP as a soil improvement technique. Therefore, this study investigated the effects of sands on MICP by denitrification to employ MICP for geotechnical soil improvement. Under the coexistence of natural sand and artificial silica sand, nitrate-reducing bacteria were cultured in a mixed liquid medium with nitrate, acetate, and calcium ions at 37 °C. Nitrate reduction occurred only in the presence of natural sand. However, the lack of chemical weathering of the composed minerals likely prevented the progress of bacterial growth and nitrate reduction in artificial silica sands. For natural sand, artificial chemical weathering by acid wash and ferrihydrite coating of the sand improved bacterial growth and accelerated nitrate reduction. The calcium carbonate formation induced by denitrification was also influenced by the state of the minerals in the soil and the nitrate reduction rate. The observed MICP enhancement is due to the involvement of coexisting secondary minerals like ferrihydrite with large specific surface areas and surface charges, which may improve the reaction efficiency by serving as adsorbents for bacteria and electron donors and acceptors in the solid phases, thereby promoting the precipitation and crystallization of calcium carbonate on the surfaces. This crystal formation in the minerals provides valuable insights for improving sand solidification via MICP. Considering the interactions between the target soil and microorganisms is essential to improving MICP processes for ground improvement.
Collapse
Affiliation(s)
- Akiko Nakano
- Faculty of Agriculture, Kyushu University, 819-0395, 744 Motooka, Nishi-ku, Fukuoka, Japan.
| |
Collapse
|
41
|
Kulshreshtha NM, Chauhan K, Singh A, Soti A, Kumari M, Gupta AB. Intertwining of the C-N-S cycle in passive and aerated constructed wetlands. World J Microbiol Biotechnol 2024; 40:301. [PMID: 39136809 DOI: 10.1007/s11274-024-04102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/05/2024] [Indexed: 10/17/2024]
Abstract
The microbial processes occurring in constructed wetlands (CWs) are difficult to understand owing to the complex interactions occurring between a variety of substrates, microorganisms, and plants under the given physicochemical conditions. This frequently leads to very large unexplained nitrogen losses in these systems. In continuation of our findings on Anammox contributions, our research on full-scale field CWs has suggested the significant involvement of the sulfur cycle in the conventional C-N cycle occurring in wetlands, which might closely explain the nitrogen losses in these systems. This paper explored the possibility of the sulfur-driven autotrophic denitrification (SDAD) pathway in different types of CWs, shallow and deep and passive and aerated systems, by analyzing the metagenomic bacterial communities present within these CWs. The results indicate a higher abundance of SDAD bacteria (Paracoccus and Arcobacter) in deep passive systems compared to shallow systems and presence of a large number of SDAD genera (Paracoccus, Thiobacillus, Beggiatoa, Sulfurimonas, Arcobacter, and Sulfuricurvum) in aerated CWs. The bacteria belonging to the functional category of dark oxidation of sulfur compounds were found to be enriched in deep and aerated CWs hinting at the possible role of the SDAD pathway in total nitrogen removal in these systems. As a case study, the percentage nitrogen removal through SDAD pathway was calculated to be 15-20% in aerated wetlands. The presence of autotrophic pathways for nitrogen removal can prove highly beneficial in terms of reducing sludge generation and hence reducing clogging, making aerated CWs a sustainable wastewater treatment solution.
Collapse
Affiliation(s)
- Niha Mohan Kulshreshtha
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur, 302017, India
- Dr. B. Lal Institute of Biotechnology, 6E-Malaviya Industrial Area, Jaipur, 302017, India
| | - Karishma Chauhan
- Department of Civil Engineering, Manipal University, Dehmi Kalan, Off Jaipur-Ajmer Expressway, Jaipur, 303007, India
| | - Abhyudaya Singh
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur, 302017, India
| | - Abhishek Soti
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur, 302017, India
- Bluedrop Enviro Private Limited, 101, Vasantha Golden Residency Plot No-521 and 536, Phillu Street, Raja Rajeswari Nagar, Kondapur, Telangana, 500084, India
| | - Meena Kumari
- Dr. B. Lal Institute of Biotechnology, 6E-Malaviya Industrial Area, Jaipur, 302017, India
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur, 302017, India.
| |
Collapse
|
42
|
Liu Y, Zhang Z, Song Y, Peng F, Feng Y. Long-term evaluating the strengthening effects of iron-carbon mediator for coking wastewater treatment in EGSB reactor. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134701. [PMID: 38824774 DOI: 10.1016/j.jhazmat.2024.134701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
Coking wastewater (CWW) treatment is difficult due to its complex composition and high biological toxicity. Iron-carbon mediators was used to enhance the treatment of CWW through iron-carbon microelectrolysis (ICME). The results indicated that the removal rate of COD and phenolic compounds were enhanced by 24.1 % and 23.5 %, while biogas production and methane content were promoted by 50 % and 7 %. Microbial community analysis indicated that iron-carbon mediators had a transformative impact on the reactor's performance and dependability by enriching microorganisms involved in direct and indirect electron transfer, such as Anaerolineae and Methanothrix. The mediator also produced noteworthy gains in LB-EPS and TB-EPS, increasing by roughly 109.3 % and 211.6 %, respectively. PICRISt analysis demonstrated that iron-carbon mediators effectively augment the abundance of functional genes associated with metabolism, Citrate cycle, and EET pathway. This study provides a new approach for CWW treatment.
Collapse
Affiliation(s)
- Yanbo Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China.
| | - Yanfang Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Fangyue Peng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
43
|
Chen J, Tang X, Wu X, Li B, Tang X, Lin X, Li P, Chen H, Huang F, Deng X, Xie X, Wei C, Zou Y, Qiu G. Relating the carbon sources to denitrifying community in full-scale wastewater treatment plants. CHEMOSPHERE 2024; 361:142329. [PMID: 38763396 DOI: 10.1016/j.chemosphere.2024.142329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/17/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
Carbon source is a key factor determining the denitrifying effectiveness and efficiency in wastewater treatment plants (WWTPs). Whereas, the relationships between diverse and distinct denitrifying communities and their favorable carbon sources in full-scale WWTPs were not well-understood. This study performed a systematic analysis of the relationships between the denitrifying community and carbon sources by using 15 organic compounds from four categories and activated sludge from 8 full-scale WWTPs. Results showed that, diverse denitrifying bacteria were detected with distinct relative abundances in 8 WWTPs, such as Haliangium (1.98-4.08%), Dechloromonas (2.00-3.01%), Thauera (0.16-1.06%), Zoogloea (0.09-0.43%), and Rhodoferax (0.002-0.104%). Overall, acetate resulted in the highest denitrifying activities (1.21-4.62 mg/L/h/gMLSS), followed by other organic acids (propionate, butyrate and lactate, etc.). Detectable dissimilatory nitrate reduction to ammonium (DNRA) was observed for all 15 carbon sources. Methanol and glycerol resulted in the highest DRNA. Acetate, butyrate, and lactate resulted in the lowest DNRA. Redundancy analysis and 16S cDNA amplicon sequencing suggested that carbon sources within the same category tended to correlate to similar denitrifiers. Methanol and ethanol were primarily correlated to Haliangium. Glycerol and amino acids (glutamate and aspartate) were correlated to Inhella and Sphaerotilus. Acetate, propionate, and butyrate were positively correlated to a wide range of denitrifiers, explaining the high efficiency of these carbon sources. Additionally, even within the same genus, different amplicon sequence variants (ASVs) performed distinctly in terms of carbon source preference and denitrifying capabilities. These findings are expected to benefit carbon source formulation and selection in WWTPs.
Collapse
Affiliation(s)
- Jinling Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xia Tang
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Xuewei Wu
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China.
| | - Biping Li
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Xia Tang
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Xueran Lin
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Pengfei Li
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Fu Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiaojing Xie
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China
| | - Yao Zou
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Society of Environmental Sciences, Guangzhou, 510000, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| |
Collapse
|
44
|
Chang Y, Meng J, Hu Y, Qi S, Hu Z, Wu G, Zhou J, Zhan X. Unacclimated activated sludge improved nitrate reduction and N 2 selectivity in iron filling/biochar systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174581. [PMID: 38981552 DOI: 10.1016/j.scitotenv.2024.174581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Iron (Fe)-based denitrification is a proven technology for removing nitrate from water, yet challenges such as limited pH preference range and low N2 selectivity (reduction of nitrate to N2) persist. Adding biochar (BC) can improve the pH preference range but not N2 selectivity. This study aimed to improve nitrate reduction and N2 selectivity in iron filling/biochar (Fe/BC) systems with a simplified approach by coupling unacclimated microbes (M) in the system. Factors such as initial pH, Fe/BC ratio, and Fe/BC dosage on nitrate removal efficiency and N2 selectivity were evaluated. Results show that the introduction of microbes significantly enhanced nitrate removal and N2 selectivity, achieving 100 % nitrate removal and 79 % N2 selectivity. The Fe/BC/M system exhibited efficient nitrate reduction at pH of 2-10. Moreover, the Fe/BC/M system demonstrated an improved electrochemical active surface area (ECSA), lower electron transfer resistance and lower corrosion potential, leading to enhanced nitrate reduction. The high i0 value in Fe/BC/M system means more Hads could be generated, thus improving the N2 selectivity. This study provides valuable insights into a novel approach for effective nitrate removal, offering a potential solution to the environmental challenges posed by excessive nitrate in wastewater, surface water and ground water.
Collapse
Affiliation(s)
- Yating Chang
- Civil Engineering, College of Science and Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; SFI MaREI Research Centre, University of Galway, Ireland
| | - Jizhong Meng
- Civil Engineering, College of Science and Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; SFI MaREI Research Centre, University of Galway, Ireland
| | - Yuansheng Hu
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Ireland
| | - Shasha Qi
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, China
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, China
| | - Guangxue Wu
- Civil Engineering, College of Science and Engineering, University of Galway, Ireland
| | - Jinhong Zhou
- College of Geography and Environment, Baoji University of Arts and Sciences, Baoji, Shaanxi, China
| | - Xinmin Zhan
- Civil Engineering, College of Science and Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; SFI MaREI Research Centre, University of Galway, Ireland.
| |
Collapse
|
45
|
Wang Q, Zhang C, Song J, Bamanu B, Zhao Y. Inhibitory mechanism of Cr(VI) on sulfur-based denitrification: Bio-toxicity, bio-electron characteristics, and microbial evolution. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134447. [PMID: 38692000 DOI: 10.1016/j.jhazmat.2024.134447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/24/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Sulfur-based denitrification is a promising technology for efficient nitrogen removal in low-carbon wastewater, while it is easily affected by toxic substances. This study revealed the inhibitory mechanism of Cr(VI) on thiosulfate-based denitrification, including bio-toxicity and bio-electron characteristics response. The activity of nitrite reductase (NIR) was more sensitive to Cr(VI) than that of nitrate reductase (NAR), and NIR was inhibited by 21.32 % and 19.86 % under 5 and 10 mg/L Cr(VI), resulting in 10.12 and 15.62 mg/L of NO2--N accumulation. The biofilm intercepted 36.57 % of chromium extracellularly by increasing 25.78 % of extracellular polymeric substances, thereby protecting microbes from bio-toxicity under 5 mg/L Cr(VI). However, it was unable to resist 20-30 mg/L of Cr(VI) bio-toxicity as 19.95 and 14.29 mg Cr/(g volatile suspended solids) invaded intracellularly, inducing the accumulation of reactive oxygen species by 165.98 % and 169.12 %, which triggered microbial oxidative-stress and damaged the cells. In terms of electron transfer, S2O32- oxidation was inhibited, and parts of electrons were redirected intracellularly to maintain microbial activity, resulting in insufficient electron donors. Meanwhile, the contents of flavin adenine dinucleotide and cytochrome c decreased under 5-30 mg/L Cr(VI), reducing the electron acquisition rate of denitrification. Thermomonas (the dominant genus) possessed denitrification and Cr(VI) resistance abilities, playing an important role in antioxidant stress and biofilm formation. ENVIRONMENTAL IMPLICATION: Sulfur-based denitrification (SBD) is a promising method for nitrate removal in low-carbon wastewater, while toxic heavy metals such as Cr(VI) negatively impair denitrification. This study elucidated Cr(VI) inhibitory mechanisms on SBD, including bio-toxicity response, bio-electron characteristics, and microbial community structure. Higher concentrations Cr(VI) led to intracellular invasion and oxidative stress, evidenced by ROS accumulation. Moreover, Cr(VI) disrupted electron flow by inhibiting thiosulfate oxidation and affecting electron acquisition by denitrifying enzymes. This study provided valuable insights into Cr(VI) toxicity, which is of great significance for improving wastewater treatment technologies and maintaining efficient and stable operation of SBD in the face of complex environmental challenges.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jinxin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bibek Bamanu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
46
|
Zeng M, Liu Y, Li Z, Song G, Liu X, Xia X, Li Z. Maximizing pollutant removal and greenhouse gas emission reduction in vertical flow constructed wetlands: an orthogonal experimental approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44730-44743. [PMID: 38954343 DOI: 10.1007/s11356-024-34086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Owing to the impact of the effluent C/N from the secondary structures of urban domestic wastewater treatment plants, the denitrification efficiency in constructed wetlands (CWs) is not satisfactory, limiting their widespread application in the deep treatment of urban domestic wastewater. To address this issue, we constructed enhanced CWs and conducted orthogonal experiments to investigate the effects of different factors (C/N, fillers, and plants) on the removal of conventional pollutants and the reduction of greenhouse gas (GHG) emission. The experimental results indicated that a C/N of 8, manganese sand, and calamus achieved the best denitrification efficiencies with removal efficiencies of 85.7%, 95.9%, and 88.6% for TN, NH4+-N, and COD, respectively. In terms of GHG emission reduction, this combination resulted in the lowest global warming potential (176.8 mg/m2·day), with N2O and CH4 emissions of 0.53 and 1.25 mg/m2·day, respectively. Characterization of the fillers revealed the formation of small spherical clusters of phosphates on the surfaces of manganese sand and pyrite and iron oxide crystals on the surface of pyrite. Additionally, the surface Mn (II) content of the manganese sand increased by 8.8%, and the Fe (III)/Fe (II) and SO42-/S2- on pyrite increased by 2.05 and 0.26, respectively, compared to pre-experiment levels. High-throughput sequencing indicated the presence of abundant autotrophic denitrifying bacteria (Sulfuriferula, Sulfuritalea, and Thiobacillus) in the CWs, which explains denitrification performance of the enhanced CWs. This study aimed to explore the mechanism of efficient denitrification and GHG emission reduction in the enhanced CWs, providing theoretical guidance for the deep treatment of urban domestic wastewater.
Collapse
Affiliation(s)
- Mingxiao Zeng
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100084, China
| | - Yongli Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100084, China
| | - Zhanfeng Li
- China Construction Eco-Environmental Group Co., Ltd, Beijing, 100070, China
| | - Guangqing Song
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100084, China
| | - Xiping Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100084, China
| | - Xunfeng Xia
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100084, China
| | - Zhitao Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100084, China.
| |
Collapse
|
47
|
Sun X, Chen H, Cui T, Zhao L, Wang C, Zhu X, Yang T, Yin Y. Enhanced medium-chain fatty acid production from sewage sludge by combined electro-fermentation and anaerobic fermentation. BIORESOURCE TECHNOLOGY 2024; 404:130917. [PMID: 38824969 DOI: 10.1016/j.biortech.2024.130917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Electro-fermentation (EF) was combined with anaerobic fermentation (AF) to promote medium-chain fatty acid (MCFA) from sewage sludge. Results showed that EF at acidification process significantly increased short-chain fatty acid (SCFA) production of by 0.5 times (82.4 mmol C/L). AF facilitated the chain elongation (CE) process by enhancing the SCFA conversion. Combined EF at acidification and AF at CE (EF-AF) achieved the highest MCFA production of 27.9 mmol C/L, which was 20 %-866 % higher than the other groups. Electrochemical analyses showed that enhanced SCFA and MCFA production was accompanied with good electrochemical performance at acidification and CE. Microbial analyses showed that EF-AF promoted MCFA production by enriching electrochemically active bacteria (EAB, Bacillus sp.). Enzyme analyses indicated that EF-AF promoted MCFA production by enriching the functional enzymes involved in Acetyl-CoA formation and the fatty acid biosynthesis (FAB) pathway. This study provided new insights into the production of MCFA from enhanced sewage sludge.
Collapse
Affiliation(s)
- Xiaoyan Sun
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, PR China; Division of Materials Chemistry and New Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Hui Chen
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, PR China
| | - Ting Cui
- Department of Industrial Technology, Sinopec (Beijing) Research Institute of Chemical Industry CO., Ltd., Beijing 100013, PR China
| | - Lei Zhao
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, PR China.
| | - Cheng Wang
- Division of Materials Chemistry and New Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Xuejun Zhu
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, Sichuan 617000, PR China
| | - Tao Yang
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, Sichuan 617000, PR China
| | - Yanan Yin
- Division of Materials Chemistry and New Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
48
|
Li Y, Chen T, Chen W, Liu H, Xie Q, Zhou Y, Chen D, Zou X. Manganese sulfide-sulfur and limestone autotrophic denitrification system for deep and efficient nitrate removal: Feasibility, performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 403:130874. [PMID: 38782191 DOI: 10.1016/j.biortech.2024.130874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Despite the great potential of sulfur-based autotrophic denitrification, an improvement in nitrate removal rate is still needed. This study used the desulfurized products of Mn ore to develop the MnS-S0-limestone autotrophic denitrification system (MSLAD). The feasibility of MSLAD for denitrification was explored and the possible mechanism was proposed. The nitrate (100 mg/L) was almost removed within 24 h in batch experiment in MSLAD. Also, an average TN removal of 98 % (472.0 mg/L/d) at hydraulic retention time of 1.5 h in column experiment (30 mg/L) was achieved. MnS and S0 could act as coupled electron donors and show synergistic effects for nitrate removal. γ-MnS with smaller particle size and lower crystallinity was more readily utilized by the bacterium and had higher nitrate removal efficiency than that of α-MnS. Thiobacillus and Sulfurimonas were the core functional bacterium in denitrification. Therefore, MnS-S0-limestone bio-denitrification provides an efficient alternative method for nitrate removal in wastewater.
Collapse
Affiliation(s)
- Yaqian Li
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Tianhu Chen
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Weizhe Chen
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Haibo Liu
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Qiaoqin Xie
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Yuefei Zhou
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Dong Chen
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Xuehua Zou
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
49
|
Sun L, Ayele Shewa W, Bossy K, Dagnew M. Partial denitrification in rope-type biofilm reactors: Performance, kinetics, and microflora using internal vs. external carbon sources. BIORESOURCE TECHNOLOGY 2024; 404:130890. [PMID: 38788803 DOI: 10.1016/j.biortech.2024.130890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Stable nitrite accumulation through partial denitrification (PDN) represents an efficient pathway to support the anammox process, but limited studies explored the internal wastewater carbon sources and biofilm processes. This study assessed the viability of the PDN process, biofilm community evolution, and functional enzyme formation in rope-type biofilm media reactors using primary effluent (PE) and anaerobically pretreated wastewater carbon sources for the first time. Comparison was made with external carbon (acetate) under varied pH and biofilm thicknesses, maintaining a favourable sCOD: NO3-N ratio of 3. The wastewater's internal carbon resulted in thinner biofilms; nevertheless, modest nitrite accumulation (0.24 g/m2/d) occurred only at elevated pH. The highest nitrite accumulation (0.79 g/m2/d) was exhibited in the biofilm thickness-controlled acetate-fed reactor, featuring porous biofilms dominated by denitrifier Thauera (10.24 %) and imbalance between Nar, Nap, and Nir reductases. Using internal wastewater carbon sources offers a sustainable avenue for adopting the PDN process in full-scale application.
Collapse
Affiliation(s)
- Lin Sun
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada
| | - Wudneh Ayele Shewa
- Bishop Water Inc., 203-16 Edward Street South, Arnprior, ON K7S 3W4, Canada
| | - Kevin Bossy
- Bishop Water Inc., 203-16 Edward Street South, Arnprior, ON K7S 3W4, Canada
| | - Martha Dagnew
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada.
| |
Collapse
|
50
|
Yu W, Liu L, Yan N, Zheng X. Groundwater denitrification enhanced by a hydrogel immobilized iron/solid carbon source: impact on denitrification and substrate release performance. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1042-1051. [PMID: 38712385 DOI: 10.1039/d3em00444a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Encapsulating a solid carbon source and zero-valent iron (ZVI) within a hydrogel can prevent direct contact with groundwater, thereby extending the lifespan of their released active substrates. It is currently unclear whether the solid carbon source and ZVI will mutually influence each other's active substrate release process and the corresponding denitrification patterns, necessitating further investigation. In this study a hydrogel encapsulating different weight ratios of micron-sized zero-valent iron (mZVI, as ZVI) and polyhydroxybutyrate (PHB, as a solid carbon source) was synthesized. The aim was to investigate the influence of PHB on the release of dissolved iron from mZVI and denitrification mechanism. Results indicated that PHB was consumed at a higher rate than mZVI, and more mZVI active sites could be exposed after PHB consumption. Meanwhile, PHB increased the porosity of the hydrogel, allowing more active sites of mZVI to be exposed and thus releasing more dissolved iron. Furthermore, PHB enhanced the rate of microbial corrosion of mZVI, which further increased the release of dissolved iron. Higher PHB content in the hydrogel reduced the oxidation of the released dissolved iron, resulting in a microbial community dominated by heterotrophic microorganisms. Conversely, lower PHB content led to significant Fe(II) oxidation and a considerable relative abundance of mixotrophic microorganisms in the microbial community. Microorganisms with iron reduction potential were also detected. This study provides theoretical support for the precise control of mixed nutrient denitrification based on hydrogel immobilization and lays the foundation for its further practical application in groundwater.
Collapse
Affiliation(s)
- Wenhao Yu
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China.
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Lecheng Liu
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China.
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Ni Yan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China.
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Xilai Zheng
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China.
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|