1
|
Rosic N. Unveiling the Anti-Aging Potential of Marine Natural Bioproducts. Mar Drugs 2025; 23:165. [PMID: 40278286 PMCID: PMC12028505 DOI: 10.3390/md23040165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Aging is a natural process resulting in the progressive impairment of multiple functions in the human body, leading to a decline in cellular functionality and the development of aging-related diseases. External stress factors, such as ultraviolet (UV) radiation, pollution, and toxin exposure, increase oxidative stress, damage cellular repair mechanisms, and speed up aging processes. With the rise in the world's aging population, there are enlarged demands for the use of sustainable natural products in food, nutrient supplements and cosmetics that can slow down aging and prolong healthy life and longevity. Algae, including both macroalgae and microalgae, have been recognised as a source of valuable proteins, amino acids, fatty acids, vitamins, and minerals useful for human consumption and medical applications. With increasing demands for nutraceutical and pharmaceutical bioproducts from environmentally friendly resources, the biotechnological industry, over recent decades, has had to provide new, advanced solutions using modern high-throughput omics technologies. The application of proteomics in the area of discoveries of natural products with anti-aging properties has become more popular for wide industry applications. New proteomics profiling provides a better understanding of changes occurring in protein and peptide content, their structure, function and interactions, as well as the regulatory processes and molecular pathways. Mass spectrometry-based proteomics has been used for a wide range of applications including protein identification, characterisation, as well as quantification of proteins within the proteome and sub-proteome. The application of chemical proteomics facilitated the identification of natural products approach and included the synthesis of probes and target fishing, allowing the advanced identification of proteins of interest. This review focuses on marine macro- and microalgal anti-aging compounds and novel proteomics approaches, providing recent experimental evidence of their involvement in anti-aging processes that should facilitate their use in innovative approaches and sustainable biotechnological applications.
Collapse
Affiliation(s)
- Nedeljka Rosic
- Faculty of Health, Southern Cross University, Gold Coast, QLD 4225, Australia;
- Marine Ecology Research Centre, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
2
|
Wei S, Hu M, Sokolova I, Tu Z, Chen L, Xu P, Mao Y, Wang S, Wang Y. Laboratory-simulated marine heatwave enhances physiological damage to mussels exposed to titanium dioxide nanoparticles by disrupting the gut-hepatopancreas axis. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137006. [PMID: 39752825 DOI: 10.1016/j.jhazmat.2024.137006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/29/2024] [Accepted: 12/23/2024] [Indexed: 03/12/2025]
Abstract
The aggregation state of nano-TiO2 in the environment is altered under marine heatwaves (MHWs), thus affecting its bioavailability and toxicity to the marine organisms. Here, we investigated the toxic mechanisms and effects of nano-TiO2 on gut-hepatopancreas axis health of Mytilus coruscus exposed to 25 and 250 μg/L of nano-TiO2 under laboratory-simulated MHW. Compared with the control conditions or post-MHW cooling phase, prolonged MHW exposure significantly inhibited digestive function, decreased immune-related enzymes activities, and caused neurotoxicity in the mussels. 16S rRNA analysis demonstrated that high concentration nano-TiO2 and combined exposures decreased the abundance of Bacteroidota while increased the Proteobacteria. Additionally, the elevated pro-inflammatory bacteria released endotoxin lipopolysaccharide (LPS), which activated Toll-like receptor 4 (TLR-4) in the hepatopancreas and induced hepatopancreatic inflammation by downregulating nuclear factor-kappa B (NF-κB) signaling pathway and detoxification-related genes. Furthermore, nano-TiO2 and MHW exposure dysregulated the glutathione system, decreased the levels of antioxidation-related genes, and induced the accumulation of ROS and lipid peroxide (LPO) contents, thus causing severe oxidative damage and hepatopancreatic cell apoptosis. These findings demonstrate that nano-TiO2 and MHW induce hepatopancreatic inflammation and cell damage, which are strongly associated with the gut lesions and disrupted gut-hepatopancreas axis homeostasis.
Collapse
Affiliation(s)
- Shuaishuai Wei
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Inna Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Zhihan Tu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Liming Chen
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Peng Xu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yiran Mao
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Shixiu Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
Parizadeh L, Saint-Picq C, Barbier P, Bringer A, Huet V, Dubillot E, Thomas H. "Groundbreaking study: Combined effect of marine heatwaves and polyethylene microplastics on Pacific oysters, Crassostrea gigas". ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125164. [PMID: 39433206 DOI: 10.1016/j.envpol.2024.125164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Microplastics (MPs) and rising marine seawater temperatures are one of the major environmental problems threatening the survival of marine organisms and biodiversity. However, interactions between such multiple stressors are virtually unexplored. This study aimed to assess the combined effect of two temperatures and polyethylene MPs on the Pacific oyster Crassostrea gigas, one of the most globalized mollusc species for aquaculture. Our work highlights the potential ecological risk posed by these two factors on marine bivalve molluscs. The experimental design was carried out following a 14-day exposure of oysters to environmental concentrations of polyethylene MPs (0.01 mg.L-1), and to two temperatures (15 °C and 22 °C). Sampling was performed on days 0, 7, and 14. The μ-FTIR analysis was applied to quantify MPs of interest and to check a potential environmental contamination. Tissue samples of digestive glands were collected from the oysters to evaluate the activity of biomarkers including superoxide dismutase, glutathione-s-transferase, malondialdehyde and laccase through protein levels. We note that the combination of MPs and high water temperature (HWT, 22 °C) had a significant impact both on the survival of animals and on stress markers, by modifying lipid peroxidation and immune responses. This original study gave the first innovative results on this topic and provides us with knowledge of the combined effects of MPs pollution and HWT (simulating marine heatwaves situation) on C. gigas. There remains a lack of information on the toxicity and the potential environmental hazard of plastics in the marine environment.
Collapse
Affiliation(s)
- Leila Parizadeh
- Littoral Environnement et Sociétés (LIENSs), UMRi, 7266, CNRS, La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France.
| | - Camille Saint-Picq
- Littoral Environnement et Sociétés (LIENSs), UMRi, 7266, CNRS, La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Pierrick Barbier
- Centre pour l'Aquaculture, la Pêche et l'Environnement de Nouvelle-Aquitaine (CAPENA), Prise de Terdoux, 17480, Le Château d'Oléron, France
| | - Arno Bringer
- Qualyse, 5 allée de l'Océan, 17000, La Rochelle, France
| | - Valérie Huet
- Littoral Environnement et Sociétés (LIENSs), UMRi, 7266, CNRS, La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Emmanuel Dubillot
- Littoral Environnement et Sociétés (LIENSs), UMRi, 7266, CNRS, La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Hélène Thomas
- Littoral Environnement et Sociétés (LIENSs), UMRi, 7266, CNRS, La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| |
Collapse
|
4
|
Ross PM, Pine C, Scanes E, Byrne M, O’Connor WA, Gibbs M, Parker LM. Meta-analyses reveal climate change impacts on an ecologically and economically significant oyster in Australia. iScience 2024; 27:110673. [PMID: 39758984 PMCID: PMC11699282 DOI: 10.1016/j.isci.2024.110673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/24/2024] [Accepted: 08/01/2024] [Indexed: 01/07/2025] Open
Abstract
Global oceans are warming and acidifying because of increasing greenhouse gas emissions that are anticipated to have cascading impacts on marine ecosystems and organisms, especially those essential for biodiversity and food security. Despite this concern, there remains some skepticism about the reproducibility and reliability of research done to predict future climate change impacts on marine organisms. Here, we present meta-analyses of over two decades of research on the climate change impacts on an ecologically and economically valuable Sydney rock oyster, Saccostrea glomerata. We confirm with high confidence that ocean acidification (OA) has a significant impact on the size and mortality of offspring of S. glomerata, ocean warming (OW) impacts size, and transgenerational exposure of adults to OA has positive benefits for offspring. These meta-analyses reveal gaps in understanding of OW and transgenerational plasticity on an ecologically and economically significant oyster species to ensure sustainability of this iconic oyster in Australia.
Collapse
Affiliation(s)
- Pauline M. Ross
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW 2006, Australia
| | - Christopher Pine
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW 2006, Australia
| | - Elliot Scanes
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW 2006, Australia
- Climate Change Cluster, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW 2006, Australia
| | - Wayne A. O’Connor
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
| | - Mitchell Gibbs
- School of Geosciences, The University of Sydney, Camperdown, Sydney, NSW 2006, Australia
| | - Laura M. Parker
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Howarth N, Scanes E, Byrne M, Ross PM. Ocean warming and Marine Heatwaves unequally impact juvenile introduced and native oysters with implications for their coexistence and future distribution. Sci Rep 2024; 14:20688. [PMID: 39237565 PMCID: PMC11377425 DOI: 10.1038/s41598-024-71534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
Climate change is causing ocean warming (OW) and increasing the frequency, intensity, and duration of extreme weather events, including Marine Heat Waves (MHWs). Both OW and MHWs pose a significant threat to marine ecosystems and marine organisms, including oysters, oyster reefs and farmed oysters. We investigated the survival and growth of juveniles of two commercial species of oyster, the Sydney rock oyster, Saccostrea glomerata, and the Pacific oyster, Crassostrea gigas, to elevated seawater temperatures reflecting a moderate and an extreme MHW in context with recent MHWs and beyond. The survival and size of Pacific oysters to moderate MHWs (22-32 °C; 14 days) was greater than that for Sydney rock oysters (24-32 °C; 15 days). While survival and growth of both species was significantly impacted by extreme MHWs (29-38 °C; 5-6 days), Sydney rock oysters were found to survive greater temperatures compared to the Pacific oyster. Overall, this study found that Pacific oyster juveniles were more tolerant of a moderate MHW, while Sydney rock oyster juveniles were more resilient to extreme MHWs. These differences in thermal tolerance may have consequences for aquaculture and coexistence of both species in their intertidal and latitudinal distributions along the south-eastern Australian coastline.
Collapse
Affiliation(s)
- Nate Howarth
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2006, Australia
| | - Elliot Scanes
- Climate Change Cluster, University of Technology, Ultimo, Sydney, NSW, 2007, Australia
| | - Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2006, Australia
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2006, Australia.
| |
Collapse
|
6
|
Sharma SS, Venter L, Frost EJ, Alfaro AC, Ragg NLC, Zamora LN. Behavioural and physiological responses of juvenile geoduck (Panopea zelandica) following acute thermal stress. Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110892. [PMID: 37573964 DOI: 10.1016/j.cbpb.2023.110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Climate extremes, such as heatwaves, are expected to become more intense and of longer duration in the near future. These climatic conditions may have a significant impact on the prospects of establishing a new aquaculture industry for the endemic New Zealand geoduck, Panopea zelandica. This study focused on characterising animal behaviour, haemocytes , and heat shock protein (HSP70 & HSP90) mRNA expression following exposure to elevated temperatures, such as those encountered during marine heatwaves around 20 °C and an extreme scenario of 25 °C, contrasted to an ambient temperature of 17 °C. After 24 h of heat challenge, P. zelandica were found to be significantly influenced by the thermal changes, as there were differences recorded in all the responses examined. With increasing temperatures, juvenile geoduck were observed to fully emerge from the sediment a behaviour that has not previously been quantified nor associated with stress in this species. The ability of P. zelandica juveniles to re-bury still warrants further investigation, as adults are unable to do so. Haemocyte analyses revealed an increase in the abundance of granulocytes, cellular aggregations, and size of these aggregations at the highest temperature exposure. Increased expression of the hsp70 gene in the haemolymph after exposure at 25 °C for 24 h was detected and attributed to attempts to mitigate protein denaturation caused by thermal stress. The inter-individual variability in the response of heat shock proteins recorded could aid in future selective breeding programs if it is reflected in net thermotolerance. P. zelandica shows great potential for growing in subtidal habitats around New Zealand, and this study highlights the importance of temperature considerations when selecting potential farm and reseeding locations.
Collapse
Affiliation(s)
- Shaneel S Sharma
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Leonie Venter
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Emily J Frost
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.
| | | | | |
Collapse
|
7
|
Rosic N, Thornber C. Biotechnological Potential of Macroalgae during Seasonal Blooms for Sustainable Production of UV-Absorbing Compounds. Mar Drugs 2023; 21:633. [PMID: 38132954 PMCID: PMC10744652 DOI: 10.3390/md21120633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Marine macroalgae (seaweeds) are important primary global producers, with a wide distribution in oceans around the world from polar to tropical regions. Most of these species are exposed to variable environmental conditions, such as abiotic (e.g., light irradiance, temperature variations, nutrient availability, salinity levels) and biotic factors (e.g., grazing and pathogen exposure). As a result, macroalgae developed numerous important strategies to increase their adaptability, including synthesizing secondary metabolites, which have promising biotechnological applications, such as UV-absorbing Mycosporine-Like Amino Acid (MAAs). MAAs are small, water-soluble, UV-absorbing compounds that are commonly found in many marine organisms and are characterized by promising antioxidative, anti-inflammatory and photoprotective properties. However, the widespread use of MAAs by humans is often restricted by their limited bioavailability, limited success in heterologous expression systems, and low quantities recovered from the natural environment. In contrast, bloom-forming macroalgal species from all three major macroalgal clades (Chlorophyta, Phaeophyceae, and Rhodophyta) occasionally form algal blooms, resulting in a rapid increase in algal abundance and high biomass production. This review focuses on the bloom-forming species capable of producing pharmacologically important compounds, including MAAs, and the application of proteomics in facilitating macroalgal use in overcoming current environmental and biotechnological challenges.
Collapse
Affiliation(s)
- Nedeljka Rosic
- Faculty of Health, Southern Cross University, Gold Coast, QLD 4225, Australia
- Marine Ecology Research Centre, Southern Cross University, Lismore, NSW 2480, Australia
| | - Carol Thornber
- Department of Natural Resources Science, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA;
| |
Collapse
|
8
|
Venter L, Alfaro AC, Ragg NLC, Delorme NJ, Ericson JA. The effect of simulated marine heatwaves on green-lipped mussels, Perna canaliculus: A near-natural experimental approach. J Therm Biol 2023; 117:103702. [PMID: 37729747 DOI: 10.1016/j.jtherbio.2023.103702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Marine heatwaves (MHW) are projected for the foreseeable future, affecting aquaculture species, such as the New Zealand green-lipped mussel (Perna canaliculus). Thermal stress alters mussel physiology highlighting the adaptive capacity that allows survival in the face of heatwaves. Within this study, adult mussels were subjected to three different seawater temperature regimes: 1) low (sustained 18 °C), 2) medium MHW (18-24 °C, using a +1 °C per week ramp) and 3) high MHW (18-24 °C, using a +2 °C per week ramp). Sampling was performed over 11 weeks to establish the effects of temperature on P. canaliculus survival, condition, specific immune response parameters, and the haemolymph metabolome. A transient 25.5-26.5 °C exposure resulted in 61 % mortality, with surviving animals showing a metabolic adjustment within aerobic energy production, enabling the activation of molecular defence mechanisms. Utilisation of immune functions were seen within the cytology results where temperature stress affected the percentage of superoxide-positive haemocytes and haemocyte counts. From the metabolomics results an increase in antioxidant metabolites were seen in the high MHW survivors, possibly to counteract molecular damage. In the high MHW exposure group, mussels utilised anaerobic metabolism in conjunction with aerobic metabolism to produce energy, to uphold biological functions and survival. The effect of exposure time was mainly seen on very long-, and long chain fatty acids, with increases observed at weeks seven and eight. These changes were likely due to the membrane storage functions of fatty acids, with decreases at week eleven attributed to energy metabolism functions. This study supports the use of integrated analytical tools to investigate the response of marine organisms to heatwaves. Indeed, specific metabolic pathways and cellular markers are now highlighted for future investigations aimed at targeted measures. This research contributes to a larger program aimed to identify resilient mussel traits and support aquaculture management.
Collapse
Affiliation(s)
- Leonie Venter
- Aquaculture Biotechnology Research Group, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Norman L C Ragg
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | | | | |
Collapse
|
9
|
Shalders TC, Champion C, Coleman MA, Butcherine P, Broadhurst MK, Mead B, Benkendorff K. Impacts of seasonal temperatures, ocean warming and marine heatwaves on the nutritional quality of eastern school prawns (Metapenaeus macleayi). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162778. [PMID: 36906039 DOI: 10.1016/j.scitotenv.2023.162778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/26/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Ocean warming and marine heatwaves significantly alter environmental conditions in marine and estuarine environments. Despite their potential global importance for nutrient security and human health, it is not well understood how thermal impacts could alter the nutritional quality of harvested marine resources. We tested whether short-term experimental exposure to seasonal temperatures, projected ocean-warming temperatures, and marine heatwaves affected the nutritional quality of the eastern school prawn (Metapenaeus macleayi). In addition, we tested whether nutritional quality was affected by the duration of exposure to warm temperatures. We show the nutritional quality of M. macleayi is likely to be resilient to short- (28 d), but not longer-term (56 d) exposure to warming temperatures. The proximate, fatty acid and metabolite compositions of M. macleayi were unchanged after 28 d exposure to simulated ocean warming and marine heatwaves. The ocean-warming scenario did, however, show potential for elevated sulphur, iron and silver levels after 28 d. Decreasing saturation of fatty acids in M. macleayi after 28 d exposure to cooler temperatures indicates homeoviscous adaptation to seasonal changes. We found that 11 % of measured response variables were significantly different between 28 and 56 d when exposed to the same treatment, indicating the duration of exposure time and time of sampling are critical when measuring this species' nutritional response. Further, we found that future acute warming events could reduce harvestable biomass, despite survivors retaining their nutritional quality. Developing a combined knowledge of the variability in seafood nutrient content with shifts in the availability of harvested seafood is crucial for understanding seafood-derived nutrient security in a changing climate.
Collapse
Affiliation(s)
- Tanika C Shalders
- Faculty of Science and Engineering, National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia; NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia.
| | - Curtis Champion
- Faculty of Science and Engineering, National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia; NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Melinda A Coleman
- Faculty of Science and Engineering, National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia; NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Peter Butcherine
- Faculty of Science and Engineering, National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Matt K Broadhurst
- Faculty of Science and Engineering, National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia; NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Bryan Mead
- Analytical Research Laboratory, Southern Cross Analytical and Research Services, Southern Cross University, Lismore, New South Wales, Australia
| | - Kirsten Benkendorff
- Faculty of Science and Engineering, National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| |
Collapse
|
10
|
Oliveira H, Maulvault AL, Santos CP, Silva M, Bandarra NM, Valente LMP, Rosa R, Marques A, Anacleto P. Can marine heatwaves affect the fatty acid composition and energy budget of the tropical fish Zebrasoma scopas? ENVIRONMENTAL RESEARCH 2023; 224:115504. [PMID: 36796604 DOI: 10.1016/j.envres.2023.115504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Marine heatwaves (MHWs) are extreme weather events featuring abnormally high seawater temperature, and expected to increase in frequency, duration and severity over this century. The impacts of these phenomena on physiological performance of coral reef species require understanding. This study aimed to evaluate the effects of a simulated MHW (category IV; ΔT = +2 °C, 11 days) (after exposure and 10-day recovery period) on fatty acid (FA) composition (as a biochemical indicator) and energy budget (i.e., growth, G, excretion (faecal, F and nitrogenous losses, U), respiration, R and food consumption, C) of a juvenile tropical surgeonfish species (Zebrasoma scopas). Significant and different changes were found under MHW scenario for some of the most abundant FA and respective groups (i.e., an increase in the contents of 14:0, 18:1n-9, ΣMonounsaturated (ΣMUFA) and 18:2n-6; and a decrease in the levels of 16:0, ΣSaturated (ΣSFA), 18:1n-7, 22:5n-3 and ΣPolyunsaturated (ΣPUFA)). The contents of 16:0 and ΣSFA were also significantly lower after MHW exposure compared to control (CTRL). Additionally, lower feed efficiency (FE), relative growth rate (RGR) and specific growth rate in terms of wet weight (SGRw), as well as higher energy loss for respiration were observed under MHW exposure conditions in comparison with CTRL and MHW recovery period. The energy proportion channelled for faeces dominated the mode of energy allocation, followed by growth in both treatments (after exposure). After MHW recovery, this trend was reversed, and a higher percentage was spent for growth and a lower fraction for faeces than in the MHW exposure period. Overall, FA composition, growth rates and energy loss for respiration of Z. Scopas were the physiological parameters most influenced (mainly in a negative way) by an 11-day MHW event. The observed effects in this tropical species can be exacerbated with increasing intensity and frequency of these extreme events.
Collapse
Affiliation(s)
- Helena Oliveira
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Ana L Maulvault
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, UCIBIO - Unit on Applied Molecular Biosciences, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Quinta da Torre, 2819-516 Caparica, Portugal.
| | - Catarina P Santos
- MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal.
| | - Marlene Silva
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal.
| | - Narcisa M Bandarra
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal.
| | - Luísa M P Valente
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; ICBAS-UP, Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Rui Rosa
- MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; Department of Animal Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal.
| | - António Marques
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Patrícia Anacleto
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
11
|
Barbosa M, Schwaner C, Pales Espinosa E, Allam B. A Transcriptomic Analysis of Phenotypic Plasticity in Crassostrea virginica Larvae under Experimental Acidification. Genes (Basel) 2022; 13:1529. [PMID: 36140697 PMCID: PMC9498863 DOI: 10.3390/genes13091529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022] Open
Abstract
Ocean acidification (OA) is a major threat to marine calcifiers, and little is known regarding acclimation to OA in bivalves. This study combined physiological assays with next-generation sequencing to assess the potential for recovery from and acclimation to OA in the eastern oyster (Crassostrea virginica) and identify molecular mechanisms associated with resilience. In a reciprocal transplant experiment, larvae transplanted from elevated pCO2 (~1400 ppm) to ambient pCO2 (~350 ppm) demonstrated significantly lower mortality and larger size post-transplant than oysters remaining under elevated pCO2 and had similar mortality compared to those remaining in ambient conditions. The recovery after transplantation to ambient conditions demonstrates the ability for larvae to rebound and suggests phenotypic plasticity and acclimation. Transcriptomic analysis supported this hypothesis as genes were differentially regulated under OA stress. Transcriptomic profiles of transplanted and non-transplanted larvae terminating in the same final pCO2 converged, further supporting the idea that acclimation underlies resilience. The functions of differentially expressed genes included cell differentiation, development, biomineralization, ion exchange, and immunity. Results suggest acclimation as a mode of resilience to OA. In addition, the identification of genes associated with resilience can serve as a valuable resource for the aquaculture industry, as these could enable marker-assisted selection of OA-resilient stocks.
Collapse
Affiliation(s)
| | | | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Sony Brook University, Stony Brook, NY 11790, USA
| |
Collapse
|
12
|
Kelaher BP, Clark GF, Johnston EL, Ingleton T, Knott NA, Coleman MA. Desalination Discharge Influences the Composition of Reef Invertebrate and Fish Assemblages. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11300-11309. [PMID: 35880958 DOI: 10.1021/acs.est.2c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Large-scale desalination is used increasingly to address growing freshwater demands and climate uncertainty. Discharge of hypersaline brine from desalination operations has the potential to impact marine ecosystems. Here, we used a 7-year Multiple-Before-After-Control-Impact experiment to test the hypothesis that hypersaline discharge from reverse osmosis desalination alters temperate reef communities. Using replicated, video-based, timed searches at eight sites, we sampled fish and invertebrate assemblages before, during, and after the discharge of hypersaline brine. We found that the composition of fish assemblages was significantly altered out to 55 m while the composition of invertebrate assemblages was altered out to 125 m from the outlet during hypersaline discharge. Fish richness and functional diversity increased around the outlet, while the invertebrate assemblages were no less diverse than those on reference reefs. Differences in faunal assemblages between outlet and reference sites during discharging included changes in the frequency of occurrence of both common and rare reef biota. Overall, we found the influence of hypersaline discharge on temperate reef biota to be spatially localized, with the reefs around the outlet continuing to support rich and diverse faunal communities. In some cases, therefore, the marine environmental consequences of large-scale, well-designed, desalination operations may be appropriately balanced against the positive benefits of improved water security.
Collapse
Affiliation(s)
- Brendan P Kelaher
- National Marine Science Centre and Marine Ecology Research Centre, Southern Cross University, P.O. Box 4321, Coffs Harbour, NSW 2450, Australia
| | - Graeme F Clark
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Emma L Johnston
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Tim Ingleton
- NSW Department of Planning, Industry and Environment, 480 Weerooona Road Lidcombe, Sydney, NSW 2141, Australia
| | - Nathan A Knott
- New South Wales Department of Primary Industries, Fisheries, P.O. Box 89, Huskisson, NSW 2540, Australia
| | - Melinda A Coleman
- National Marine Science Centre and Marine Ecology Research Centre, Southern Cross University, P.O. Box 4321, Coffs Harbour, NSW 2450, Australia
- New South Wales Department of Primary Industries, Fisheries, P.O. Box 4321, Coffs Harbour, NSW 2450, Australia
| |
Collapse
|
13
|
Shalders TC, Champion C, Coleman MA, Benkendorff K. The nutritional and sensory quality of seafood in a changing climate. MARINE ENVIRONMENTAL RESEARCH 2022; 176:105590. [PMID: 35255319 DOI: 10.1016/j.marenvres.2022.105590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Climate change is impacting living marine resources, whilst concomitantly, global reliance on seafood as a source of nutrition is increasing. Here we review an emerging research frontier, identifying significant impacts of climate-driven environmental change on the nutritional and sensory quality of seafood, and implications for human health. We highlight that changing ocean temperature, pH and salinity can lead to reductions in seafood macro and micronutrients, including essential nutrients such as protein and lipids. However, the nutritional quality of seafood appears to be more resilient in taxa that inhabit naturally variable environments such as estuaries and shallow near-coastal habitats. We develop criteria for assessing confidence in categorising the nutritional quality of seafood as vulnerable or resilient to climate change. The application of this criteria to a subset of seafood nutritional studies demonstrates confidence levels are generally low and could be improved by more realistic experimental designs and research collaboration. We highlight knowledge gaps to guide future research in this emerging field.
Collapse
Affiliation(s)
- Tanika C Shalders
- National Marine Science Centre, Southern Cross University, Faculty of Science and Engineering, Coffs Harbour, New South Wales, Australia; Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia.
| | - Curtis Champion
- National Marine Science Centre, Southern Cross University, Faculty of Science and Engineering, Coffs Harbour, New South Wales, Australia; Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Melinda A Coleman
- National Marine Science Centre, Southern Cross University, Faculty of Science and Engineering, Coffs Harbour, New South Wales, Australia; Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Kirsten Benkendorff
- National Marine Science Centre, Southern Cross University, Faculty of Science and Engineering, Coffs Harbour, New South Wales, Australia
| |
Collapse
|