1
|
Zhang M, Gong W, Wang X, Blaney L, Peng G, Sharma VK. Chloride-enhanced degradation of micropollutants in natural water by the iron/biochar/peroxymonosulfate system: Role of iron(IV) and radicals. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:137952. [PMID: 40188542 DOI: 10.1016/j.jhazmat.2025.137952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/16/2025] [Accepted: 03/13/2025] [Indexed: 04/08/2025]
Abstract
The increased occurrence and concentration of micropollutants in water supplies raise public health concerns. Advanced oxidation of micropollutants in real water sources remains challenging due to scavenging reactions involving background anions and natural organic matter. For the first time, this paper demonstrates that chloride (Cl-) accelerates the activation of peroxymonosulfate (PMS) by iron-biochar (Fe/BC) composites. Under the tested conditions, this novel system completely degraded bisphenol A (BPA), a representative micropollutant, within 1.0 min. Micropollutant degradation was investigated at different Cl- contents, PMS levels, Fe/BC doses, and solution pH. The primary reactive species involved with BPA degradation were iron(IV) (Fe(IV)), sulfate radical (SO4•-), hydroxyl radical (•OH), and reactive chlorine species (Cl•, ClO•, Cl2•-). The steady-state concentrations of these reactive species were evaluated to determine their relationships to the Cl- and PMS contents. Fe(IV) was confirmed as the dominant reactive species, with Fe(IV) concentrations increasing with Cl- content and salinity to enhance the overall BPA degradation. Importantly, BPA degradation by the Fe/BC/PMS/Cl- system was not greatly affected by background anions or natural organic matter (NOM) present in real water sources, and the system was successfully applied for five sequential cycles of BPA treatment.
Collapse
Affiliation(s)
- Mengqiao Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Wenwen Gong
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Xiling Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Lee Blaney
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, Baltimore, MD 21250, USA.
| | - Guilong Peng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Virender K Sharma
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, 1251 Memorial Drive, Miami, FL 33146, USA
| |
Collapse
|
2
|
Li Y, Lu Y, Li X, Zhong W, Zhu B, Tang X, Liu K. Activation of peroxymonosulfate by iron tailings for degradation of tetracycline hydrochloride: Identification of active minerals and study on catalytic mechanism. ENVIRONMENTAL RESEARCH 2025; 276:121515. [PMID: 40180261 DOI: 10.1016/j.envres.2025.121515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/11/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025]
Abstract
Cost-effective Fe tailings were utilized to activate peroxymonosulfate (PMS) for the removal of persistent antibiotics such as tetracycline hydrochloride (TC) from water. In this study, ilmenite-containing tailings served as raw material for preparing a magnetic Fe tailings catalyst (MFT) through magnetic separation, which increased the concentration of active components. The MFT catalyst efficiently activates PMS for rapid TC degradation. It achieves a 24.05 % adsorption ratio within 20 min. Within 35 min, it achieves a 91 % degradation ratio. After six cycles, the catalyst maintained an 86 % degradation ratio despite a slight decline in adsorption. The outstanding adsorption performance of the catalyst for TC was primarily attributed to calcite and chlorite. Importantly, ilmenite, magnetite, anatase, calcite, and chlorite served as active minerals in the catalyst. Ilmenite, magnetite, chlorite, and anatase activated PMS to generate a large amount of SO4•- and O2•-, while and calcite activated PMS to produce a significant quantity of 1O2. TC underwent rapid mineralization through the action of both free and non-free radicals. A 0.5-1 mm granular catalyst maintained a 75 % degradation ratio after treating 40 L of TC wastewater, with low heavy metal ion leaching, preventing secondary pollution. This method presents a sustainable solution for water remediation and waste valorization.
Collapse
Affiliation(s)
- Yifan Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha, 410083, China
| | - Yao Lu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; CAWALSON Intelligent Technology (Nanjing) Co., LTD, Nanjing, 211135, China
| | - Xinglan Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha, 410083, China
| | - Wanling Zhong
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha, 410083, China
| | - Binnan Zhu
- CAWALSON Intelligent Technology (Nanjing) Co., LTD, Nanjing, 211135, China
| | - Xuekun Tang
- School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Kun Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha, 410083, China.
| |
Collapse
|
3
|
Ma L, Jin CJ, Niu HY, Dong ZT, Sui L, Wu Q, Peng YR, Wang JJ, Niu CG. Low-valent Cu doping optimizes Ruddlesden-Popper perovskite for accelerated levofloxacin removal: Enhanced Ni-dominated dual radical/nonradical pathways. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138615. [PMID: 40408963 DOI: 10.1016/j.jhazmat.2025.138615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/25/2025]
Abstract
Ruddlesden-Popper (R-P) perovskites have emerged as superior candidates for peroxymonosulfate-based advanced oxidation processes (PMS-AOPs) due to their tunable electronic configurations and enhanced electron transfer kinetics. Although metal doping has been extensively studied as the most common catalyst modification strategy in PMS activation processes, systematic identification of the dominant metal species in doped systems remains lacked. In this work, copper-doped R-P perovskite (La1.2Sr0.8Ni0.7Cu0.3O4+δ, LSNC0.3) was employed to investigate the influence of B-site ion electronic environment evolution on reactive oxygen species (ROS) generation during PMS activation, with the dominant metal species being determined through combined density functional theory (DFT) calculations and characterization. LSNC0.3 demonstrated exceptional activation performance, achieving 94 % levofloxacin (LVFX) removal within 30 min (k = 0.0853 min-1), significantly surpassing undoped La1.2Sr0.8NiO4+δ (LSNO). Cu doping induced anisotropic lattice strain through synergistic Jahn-Teller distortion and B-site dual-metal redox cycling, thereby enhancing oxygen vacancies (OVs) density and enabling dual radical (•OH/•O2⁻) and non-radical (1O2/electron transfer process (ETP)) pathways. DFT calculations revealed that Cumediated downshift of Ni 3d band center (-0.266 eV) optimized PMS adsorption energy (-4.218 eV), confirming Ni's predominant role in this system. LC-MS/DFT analyses identified piperazine cleavage and quinolone oxidation as primary LVFX degradation pathways, with toxicity reduction verified by T.E.S.T. This work provides guidance for designing robust perovskite catalysts in advanced water remediation applications.
Collapse
Affiliation(s)
- Lei Ma
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Chu-Jia Jin
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Huai-Yuan Niu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zheng-Tao Dong
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Long Sui
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Qian Wu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Yan-Rong Peng
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Jia-Jia Wang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Cheng-Gang Niu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China.
| |
Collapse
|
4
|
Mei RX, Wang P, Wang FX, Zhang ZC, Yi XH, Jia ZY, Li KX, Wang CC. Z-Scheme MIL-88A(Fe)/LaFeO 3 Heterostructured Photocatalyst: Boosting Photo-Fenton Activity for Enhanced Organic Pollutant Detoxification. ENVIRONMENTAL RESEARCH 2025:121863. [PMID: 40383425 DOI: 10.1016/j.envres.2025.121863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
A series of MIL-88A(Fe)/LaFeO3 were prepared by mechanical ball-milling method for boosted photo-Fenton ofloxacin (OFX) degradation under visible light irradiation. The optimized M160L40/photo-Fenton system accomplished complete degradation of 5.0 mg/L OFX within 10 min, attributed to synergistic enhancement of mass transfer efficiency and photogenerated carriers separation. Environmental adaptability was demonstrated through pH robustness (3.0-9.0), interference resistance to coexisting ions, and stable performance under natural sunlight in real water matrices, while 95.0% activity retention after five cycles confirmed practical durability. Mechanistic investigations combining radical trapping, ESR spectroscopy, photodeposition, and DFT calculations revealed a direct Z-scheme charge transfer pathway between MIL-88A(Fe) and LaFeO3, enabling simultaneous preservation of strong redox potentials and efficient carrier separation. Biotoxicity assessment via bacterial growth inhibition assays showed significant reduction in ecotoxicity of degradation intermediates. This work establishes a new paradigm for designing MOF/perovskite hybrid systems in advanced oxidation processes while offering mechanistic insights into Z-scheme photocatalysis for environmental remediation.
Collapse
Affiliation(s)
- Ruo-Xuan Mei
- Institute of Advanced Materials, Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China; Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Peng Wang
- Institute of Advanced Materials, Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China; Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China.
| | - Fu-Xue Wang
- Institute of Advanced Materials, Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China; Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Zi-Chen Zhang
- Institute of Advanced Materials, Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China; Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Xiao-Hong Yi
- Institute of Advanced Materials, Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China; Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Zi-Yu Jia
- Institute of Advanced Materials, Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China; Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Ke-Xin Li
- Institute of Advanced Materials, Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China; Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Chong-Chen Wang
- Institute of Advanced Materials, Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China; Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China.
| |
Collapse
|
5
|
Zhou LL, Xu H, Sheng YH, Wang WK, Xu J. Mn xCo 3-xO 4 spinel activates peroxymonosulfate for highly effective bisphenol A degradation with ultralow catalyst and persulfate usage. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136826. [PMID: 39672067 DOI: 10.1016/j.jhazmat.2024.136826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/24/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Persulfates-based advanced oxidation processes are highly efficient in degrading refractory organic contaminants in wastewater. However, their practical application is often limited by the extensive consumption of catalysts and oxidants. Therefore, constructing catalysts with abundant and efficient reaction interfaces is essential for improving the efficiency of persulfate activation. In this work, we develop a novel MnxCo3-xO4 spinel with highly exposed surface active sites by etching Mn-based precursors with Co ions. This process forms sufficient interface Co-O-Mn bonds, which effectively activate peroxymonosulfate (PMS) for bisphenol A (BPA) degradation. A clear structure-activity relationship is observed between the Co/Mn content ratio and the BPA degradation rate in the MnxCo3-xO4/PMS system. Notably, Mn0.1Co2.9O4 demonstrates superior PMS activation efficiency, achieving 100 % degradation of 10 mg/L BPA within 2 minutes with 0.05 g/L catalyst and 0.05 g/L persulfate usage. Experimental analyses combined with theoretical calculations identify the interface Co-O-Mn as the active site, which plays a crucial role in accelerating PMS molecule adsorption and O-O bond activation. Additionally, the spatially adjacent Co-O-Mn sites promote redox cycling for efficient interface electron transfer during the PMS activation process. Furthermore, Zebrafish toxicity studies revealed a considerable reduction in the toxicity of the BPA treatment residue in the MnxCo3-xO4/PMS system. Overall, this work presents a novel strategy for constructing spatially adjacent redox sites in dual-metal spinel materials, offering valuable insights into reducing chemical input and advancing persulfate-based environmental remediation technology.
Collapse
Affiliation(s)
- Lu-Lu Zhou
- Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Hengyue Xu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yi-Han Sheng
- Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wei-Kang Wang
- Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Juan Xu
- Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
6
|
Jeon H, Kim YH, Kim H, Jeong H, Won BR, Jang W, Park CH, Lee KT, Myung JH. Optimizing Reversible Exsolution and Phase Transformation in Double Perovskite Sr 2Fe 1.5-xCo xMo 0.5O 6-δ Electrodes for High-Performance Symmetric Solid Oxide Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401628. [PMID: 39248663 DOI: 10.1002/smll.202401628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Double perovskite (DP) oxides are promising electrode materials for symmetric solid oxide cells (SSOCs) due to their excellent electrochemical activity and stability. B-site cation doping in DP oxides affects the reversibility of phase transformation and exsolution, which plays a crucial role in the catalyst recovery. Yet, few studies have been conducted on this topic. In this study, the Sr2Fe1.5-xCoxMo0.5O6-δ (CSFM, x = 0, 0.1, 0.3, 0.5) DP system demonstrates modulated exsolution and phase transformation reversibility by manipulating the oxygen vacancy concentration. The correlation between Co-doping level and oxygen vacancy concentration is investigated to optimize the exsolution and phase transformation properties. Sr2Fe1.2Co0.3Mo0.5O6-δ (3CSFM) exhibits reversible transformation between DP and Ruddlesden-Popper phases with a high density of exsolved CoFe nanoparticles under redox atmospheres. The quasi-symmetric cell with 3CSFM shows a peak power density of 1.27 W cm-2 at 850 °C in H2 fuel cell mode and a current density of 2.33 A cm-2 at 1.6 V and 800 °C in H2O electrolysis mode. The 3CSFM electrode exhibits robust stability during continuous operation for ≈700 h. These results demonstrate the significant role of B-site doping in designing DP materials capable of dynamic phase transformation in diverse environments.
Collapse
Affiliation(s)
- Hyejin Jeon
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yo Han Kim
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hyeonggeun Kim
- Department of Mechanical Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Hyeongwon Jeong
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Bo-Ram Won
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Wonjun Jang
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Chan-Ho Park
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Kang Taek Lee
- Department of Mechanical Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Graduate School of Green Growth & Sustainability, Daejeon, 34141, Republic of Korea
| | - Jae-Ha Myung
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| |
Collapse
|
7
|
Han M, Liu Z, Huang S, Zhang H, Yang H, Liu Y, Zhang K, Zeng Y. Application of Biochar-Based Materials for Effective Pollutant Removal in Wastewater Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1933. [PMID: 39683321 PMCID: PMC11870060 DOI: 10.3390/nano14231933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
With the growth of the global population and the acceleration of industrialization, the problem of water pollution has become increasingly serious, posing a major threat to the ecosystem and human health. Traditional water treatment technologies make it difficult to cope with complex pollution, so the scientific community is actively exploring new and efficient treatment methods. Biochar (BC), as a low-cost, green carbon-based material, exhibits good adsorption and catalytic properties in water treatment due to its porous structure and abundant active functional groups. However, BC's pure adsorption or catalytic capacity is limited, and researchers have dramatically enhanced its performance through modification means, such as loading metals or heteroatoms. In this paper, we systematically review the recent applications of BC and its modified materials for water treatment in adsorption, Fenton-like, electrocatalytic, photocatalytic, and sonocatalytic systems, and discuss their adsorption/catalytic mechanisms. However, most of the research in this field is at the laboratory simulation stage and still needs much improvement before it can be applied in large-scale wastewater treatment. This review improves the understanding of the pollutant adsorption/catalytic properties and mechanisms of BC-based materials, analyzes the limitations of the current studies, and investigates future directions.
Collapse
Affiliation(s)
- Meiyao Han
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China; (M.H.); (Z.L.); (S.H.); (H.Y.); (K.Z.)
| | - Ziyang Liu
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China; (M.H.); (Z.L.); (S.H.); (H.Y.); (K.Z.)
| | - Shiyue Huang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China; (M.H.); (Z.L.); (S.H.); (H.Y.); (K.Z.)
| | - Huanxing Zhang
- Luoyang Petrochemical Engineering Design Co., Ltd., Luoyang 471003, China;
| | - Huilin Yang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China; (M.H.); (Z.L.); (S.H.); (H.Y.); (K.Z.)
| | - Yuan Liu
- Chengdu Tiantou Industry Co., Ltd., Chengdu 610000, China;
| | - Ke Zhang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China; (M.H.); (Z.L.); (S.H.); (H.Y.); (K.Z.)
| | - Yusheng Zeng
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China; (M.H.); (Z.L.); (S.H.); (H.Y.); (K.Z.)
| |
Collapse
|
8
|
Liang H, Liu T, Li R, Li R, Zhu Y, Fang F. Highly Efficient Activation of Peroxymonosulphate by Co and Cu Co-Doped Sawdust Biochar for Ultra-Fast Removal of Bisphenol A. Molecules 2024; 29:5296. [PMID: 39598685 PMCID: PMC11596690 DOI: 10.3390/molecules29225296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
The rapid, efficient, and thorough degradation of Bisphenol A (BPA) is challenging. In this study, we prepared an effective peroxymonosulphate (PMS) activation catalyst derived from sawdust containing calcium carbonate. The Co and Cu co-doped sawdust biochar (CoO/CuO@CBC) catalyst could activate PMS quickly, and the degradation rate of BPA reached 99.3% in 5 min, while the rate constant was approximately 30 times higher than in the CBC/PMS and CoCuOx/PMS systems. Moreover, the interaction between CoO, CuO, and CBC endows the CoO/CuO@CBC catalyst with excellent catalytic performance under different conditions, such as initial pH, temperature, water matrix, inorganic anions, and humic acid, which maintained fast PMS activation via the cyclic transformation of Cu and Co for BPA degradation. The results demonstrated that both the radical (•O2- and •SO4-) and non-radical (1O2) pathways participate in the degradation of BPA in the CoO/CuO@CBC/PMS system. The efficient and stable degradation over a wide range of pH, temperature, and aqueous matrices indicates the potential application of the CoO/CuO@CBC catalyst.
Collapse
Affiliation(s)
- Hui Liang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.); (T.L.); (R.L.); (R.L.); (Y.Z.)
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
| | - Tongjin Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.); (T.L.); (R.L.); (R.L.); (Y.Z.)
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
| | - Ruijuan Li
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.); (T.L.); (R.L.); (R.L.); (Y.Z.)
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
| | - Rumei Li
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.); (T.L.); (R.L.); (R.L.); (Y.Z.)
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
| | - Yuxiao Zhu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.); (T.L.); (R.L.); (R.L.); (Y.Z.)
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
| | - Feng Fang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.); (T.L.); (R.L.); (R.L.); (Y.Z.)
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
| |
Collapse
|
9
|
Chen Z, Guo J, Li S, Pu L, Huang L. Insight in sulfadiazine degradation by peroxymonosulfate activated by polydopamine-derived nitrogen-doped carbon supported CoFe 2O 4: Co leaching inhibition and degradation enhancement. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117126. [PMID: 39369664 DOI: 10.1016/j.ecoenv.2024.117126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/18/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Heterogeneous catalyst-mediated sulfate radical-based advanced oxidation processes (SR-AOPs) showed excellent performance during antibiotics degradation. Spinel was a promising catalyst for SR-AOPs, but the secondary contamination due to metal ions leaching needed to be addressed. And the destruction of catalyst structure could lead to the reduction of catalytic activity and the difficulty of recovery. Thus, a novel nitrogen-doped carbon (NC)-supported CoFe2O4 (CoFe2O4@NC) was synthesized as the activator of PMS for sulfadiazine (SDZ) degradation under low Co leaching conditions. The consequences indicated that the CoFe2O4@NC/PMS system exhibited higher PMS decomposition efficiency and reaction stoichiometry efficiency than the bare CoFe2O4/PMS systems (CoFe2O4-180 and CoFe2O4-800), which in turn demonstrated a better SDZ removal performance. Under the condition of CoFe2O4@NC dosage 0.1 g/L, PMS concentration 0.5 mM, solution pH 6.8 and temperature 25°C, SDZ (20 mg/L) was almost completely degraded within 60 min. XPS analysis showed that the NC not only protected and stabilized CoFe2O4, but also provided additional active sites for PMS activation. During SDZ degradation, SO4•-, HO•, •O2- and 1O2 were involved in the reaction, among which SO4• and HO• made the main contribution. Meanwhile, CoFe2O4@NC could be recovered by magnetic separation, and showed great stability (Co leaching 0.852 mg/L) and reusability. In the fifth cycle experiment, 85.02 % SDZ degradation was obtained. Based on the detected intermediates (12 intermediates were identified) and DFT calculations, possible degradation pathways for SDZ in CoFe2O4@NC/PMS were proposed. The condensed dual descriptor indicated that the N7, N11, and C15 atoms on SDZ molecule were the main sites of electrophilic attack, which was consistent with the detected intermediates. The degradation of SDZ involved hydroxylation of NH2, cleavage of S-N and extrusion of SO2. This study explored the improvements made in NC support material to catalytic performance and resistance to dissolution of spinel, providing new insights for subsequent researches.
Collapse
Affiliation(s)
- Ziyi Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China.
| | - Sirui Li
- Sichuan Province Academy of Industrial Environmental Monitoring, Chengdu, Sichuan 610041, China.
| | - Ling Pu
- Sichuan Province Academy of Industrial Environmental Monitoring, Chengdu, Sichuan 610041, China
| | - Li Huang
- Sichuan Province Academy of Industrial Environmental Monitoring, Chengdu, Sichuan 610041, China
| |
Collapse
|
10
|
Zhu L, Zhang J, Wang J, Liu J, Zhao W, Yan W. Efficient Formaldehyde Gas Sensing Performance via Promotion of Oxygen Vacancy on In-Doped LaFeO 3 Nanofibers. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1595. [PMID: 39404321 PMCID: PMC11478380 DOI: 10.3390/nano14191595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Perovskite oxide LaFeO3(LFO) emerges as a potential candidate for formaldehyde (HCHO) detection due to its exceptional electrical conductivity and abundant active metal sites. However, the sensitivity of the LFO sensor needs to be further enhanced. Herein, a series of LaxIn1-xFeO3 (x = 1.0, 0.9, 0.8, and 0.7) nanofibers (LxIn1-xFO NFs) with different ratios of La/In were obtained via the electrospinning method followed by a calcination process. Among all these LxIn1-xFO NFs sensors, the sensor based on the L0.8In0.2FO NFs possessed the maximum response value of 18.8 to 100 ppm HCHO at the operating temperature of 180 °C, which was 4.47 times higher than that based on pristine LFO NFs (4.2). Furthermore, the L0.8In0.2FO NFs sensor also exhibited a rapid response/recovery time (2 s/22 s), exceptional repeatability, and long-term stability. This excellent gas sensing performance of the L0.8In0.2FO NFs can be attributed to the large number of oxygen vacancies induced by the replacement of the A-site La3+ by In3+, the large specific surface area, and the porous structure. This research presents an approach to enhance the HCHO gas sensing capabilities by adjusting the introduced oxygen vacancies through the doping of A-sites in perovskite oxides.
Collapse
Affiliation(s)
- Lei Zhu
- Xi’an Key Laboratory of Solid Waste Resource Regeneration and Recycling, State Key Laboratory of Multiphase Flow Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (L.Z.)
- School of Physics and Electrical Engineering, Weinan Normal University, Chaoyang Street, Weinan 714099, China
| | - Jiaxin Zhang
- Xi’an Key Laboratory of Solid Waste Resource Regeneration and Recycling, State Key Laboratory of Multiphase Flow Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (L.Z.)
| | - Jianan Wang
- Xi’an Key Laboratory of Solid Waste Resource Regeneration and Recycling, State Key Laboratory of Multiphase Flow Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (L.Z.)
| | - Jianwei Liu
- Xi’an Key Laboratory of Solid Waste Resource Regeneration and Recycling, State Key Laboratory of Multiphase Flow Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (L.Z.)
- School of Chemistry and Chemical Engineering, Xi’an University of Science & Technology, Xi’an 710054, China
| | - Wei Zhao
- School of Physics and Electrical Engineering, Weinan Normal University, Chaoyang Street, Weinan 714099, China
| | - Wei Yan
- Xi’an Key Laboratory of Solid Waste Resource Regeneration and Recycling, State Key Laboratory of Multiphase Flow Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (L.Z.)
| |
Collapse
|
11
|
Kumi M, Wang T, Ejeromedoghene O, Wang J, Li P, Huang W. Exploring the Potentials of Chitin and Chitosan-Based Bioinks for 3D-Printing of Flexible Electronics: The Future of Sustainable Bioelectronics. SMALL METHODS 2024; 8:e2301341. [PMID: 38403854 DOI: 10.1002/smtd.202301341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 02/27/2024]
Abstract
Chitin and chitosan-based bioink for 3D-printed flexible electronics have tremendous potential for innovation in healthcare, agriculture, the environment, and industry. This biomaterial is suitable for 3D printing because it is highly stretchable, super-flexible, affordable, ultrathin, and lightweight. Owing to its ease of use, on-demand manufacturing, accurate and regulated deposition, and versatility with flexible and soft functional materials, 3D printing has revolutionized free-form construction and end-user customization. This study examined the potential of employing chitin and chitosan-based bioinks to build 3D-printed flexible electronic devices and optimize bioink formulation, printing parameters, and postprocessing processes to improve mechanical and electrical properties. The exploration of 3D-printed chitin and chitosan-based flexible bioelectronics will open new avenues for new flexible materials for numerous industrial applications.
Collapse
Affiliation(s)
- Moses Kumi
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Onome Ejeromedoghene
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Junjie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
12
|
Cui J, Liu X, Qie F, Xie C, He Q, Liu J, Suib SL, Wang W. Multiple interface coupling on natural tourmaline enables high-efficiency removal of antibiotic: Superior property and mechanism. J Environ Sci (China) 2024; 140:242-254. [PMID: 38331505 DOI: 10.1016/j.jes.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 02/10/2024]
Abstract
Reasonably designing highly active, environmentally friendly, and cost-effective catalysts for efficient elimination of pollutants from water is desirable but challenging. Herein, an efficient heterogeneous photo-Fenton catalyst tourmaline (TM)/tungsten oxide (WO3-x) (named TW10) containing tungsten/boron/iron (W/B/Fe) synergistic active centers and 90% of cheap natural tourmaline (TM) mineral rich in Fe and B elements. The TW10 catalyst can quickly activate peroxymonosulfate (PMS) to generate massive active free radicals, which may induce the rapid and efficient degradation of tetracycline (TC). The TW10/PMS/Visible light system can effectively degrade up to 98.7% of tetracycline (TC) in actual waters (i.e. seawater, Yellow River, and Yangtze River water), and the catalytic degradation rates reach 1.65, 5.569, and 2.38 times higher than those of TM, WO3-x, and commercial P25 (Degussa, Germany), respectively. In addition, the catalyst can be recycled and reused multiple times. Electron spin resonance spectroscopy (EPR), X-ray photoelectron spectroscopy (XPS), and liquid chromatograph-mass spectrometer (LC-MS) analyses confirm that the synergistic catalytic effect of W/B/Fe sites on the TW10 catalyst accelerates the electron transfer between Fe(II) and Fe(III), as well as between W(V) and W(VI), and thus promotes the rapid degradation of TC. The catalytic reaction mechanism and degradation pathway of TC were explored. This work provides a feasible route for the design and development of new eco-friendly and efficient catalyst.
Collapse
Affiliation(s)
- Jingjing Cui
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Xiangyu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Feifan Qie
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Chengzhe Xie
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Qingdong He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Jian Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Steven L Suib
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, United States.
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
13
|
Qu G, Jia P, Tang S, Pervez MN, Pang Y, Li B, Cao C, Zhao Y. Enhanced peroxymonosulfate activation via heteroatomic doping defects of pyridinic and pyrrolic N in 2D N‑doped carbon nanosheets for BPA degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132626. [PMID: 37769450 DOI: 10.1016/j.jhazmat.2023.132626] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 09/30/2023]
Abstract
Understanding the role of intrinsic defects and nonmetallic heteroatom doping defects in activating peroxymonosulfate (PMS) and subsequently degrading endocrine-disrupting compounds is crucial for designing more efficient carbon catalysts. Therefore, we synthesized N-rich carbon nanosheets (NCs) through pyrolysis of a glutamic acid and melamine mixture and utilized them to activate PMS for bisphenol A (BPA) degradation. Different weight ratios of the above mixtures were allowed for manipulating NCs' defect level and N configuration. The reaction rate constant (k) was significantly positively correlated with the pyridinic and pyrrolic N content, and negatively and weakly positively correlated with graphite N and intrinsic defects, respectively. These findings suggest pyridinic and pyrrolic N, rather than graphitic N and intrinsic defects, enhance PMS activation to generate reactive oxygen species (specifically O•-2 and 1O2) and oxidize BPA. The NC-activated PMS system with the highest N content (17.9 atom%) demonstrated a remarkably high k (0.127 min-1) using minimal concentrations of PMS (0.4 mM) and NC (0.15 g/L), highlighting the system's efficiency. Excess halide anions led to significantly increased k with only a limited formation of trichloromethane (disinfection byproducts) in presence of 100 mM Cl-. This study offers novel perspectives on identifying catalytic sites within N-doped carbonaceous materials.
Collapse
Affiliation(s)
- Guojuan Qu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Peng Jia
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Sea-Area Management Technology (SOA), National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Shuai Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Md Nahid Pervez
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Yixiong Pang
- Guangdong AWS Environment Technologies Ltd, GuangDong Province, 511400, China
| | - Bin Li
- Guangdong AWS Environment Technologies Ltd, GuangDong Province, 511400, China
| | - Chengjin Cao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
14
|
Guo Y, Sui M, Liu S, Li T, Lv X, Yu M, Mo Y. Insight into cobalt substitution in LaFeO 3-based catalyst for enhanced activation of peracetic acid: Reactive species and catalytic mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132662. [PMID: 37801973 DOI: 10.1016/j.jhazmat.2023.132662] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
In this study, a hollow sphere-like Co-modified LaFeO3 perovskite catalyst (LFC73O) was developed for peracetic acid (PAA) activation to degrade sulfamethoxazole (SMX). Results indicated that the constructed heterogeneous system achieved a 99.7% abatement of SMX within 30 min, exhibiting preferable degradation performance. Chemical quenching experiments, probe experiments, and EPR techniques were adopted to elucidate the involved mechanism. It was revealed that the superior synergistic effect of electron transfer and oxygen defects in the LFC73O/PAA system enhanced the oxidation ability of PAA. The Co atoms doped into LaFeO3 as the main active site with the original Fe atoms as an auxiliary site exhibited high activity to mediate PAA activation via the Co(III)/Co(II) cycle, generating carbon-centered radicals (RO·) including CH3C(O)O· and CH3C(O)OO·. The oxygen vacancies induced by cobalt substitution also served as reaction sites, facilitating the dissociation of PAA and production of ROS. Furthermore, the degradation pathways were postulated by DFT calculation and intermediates identification, demonstrating that the electron-rich sites of SMX molecules such as amino group, aromatic ring, and S-N bond, were more susceptible to oxidation by reactive species. This study offers a novel perspective on developing catalysts with the coexistence of multiple active units for PAA activation in environmental remediation.
Collapse
Affiliation(s)
- Yali Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Minghao Sui
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Shuan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Tian Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xinyuan Lv
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Miao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yaojun Mo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
15
|
Sui C, Nie Z, Liu H, Boczkaj G, Liu W, Kong L, Zhan J. Singlet oxygen-dominated peroxymonosulfate activation by layered crednerite for organic pollutants degradation in high salinity wastewater. J Environ Sci (China) 2024; 135:86-96. [PMID: 37778844 DOI: 10.1016/j.jes.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 10/03/2023]
Abstract
Advanced oxidation processes have been widely studied for organic pollutants treatment in water, but the degradation performance of radical-dominated pathway was severely inhibited by the side reactions between the anions and radicals, especially in high salinity conditions. Here, a singlet oxygen (1O2)-dominated non-radical process was developed for organic pollutants degradation in high salinity wastewater, with layered crednerite (CuMnO2) as catalysts and peroxymonosulfate (PMS) as oxidant. Based on the experiments and density functional theory calculations, 1O2 was the dominating reactive species and the constructed Cu-O-Mn with electron-deficient Mn captured electron from PMS promoting the generation of 1O2. The rapid degradation of bisphenol A (BPA) was achieved by CuMnO2/PMS system, which was 5-fold and 21-fold higher than that in Mn2O3/PMS system and Cu2O/PMS system. The CuMnO2/PMS system shown prominent BPA removal performance under high salinity conditions, prominent PMS utilization efficiency, outstanding total organic carbon removal rate, wide range of applicable pH and good stability. This work unveiled that the 1O2-dominated non-radical process of CuMnO2/PMS system overcame the inhibitory effect of anions in high salinity conditions, which provided a promising technique to remove organic pollutants from high saline wastewater.
Collapse
Affiliation(s)
- Chengji Sui
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan 250100, China
| | - Zixuan Nie
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan 250100, China
| | - Huan Liu
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan 250100, China
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Weizhen Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Lingshuai Kong
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan 250100, China.
| | - Jinhua Zhan
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan 250100, China.
| |
Collapse
|
16
|
Qian J, Zhang Y, Chen Z, Yu R, Ye Y, Ma R, Li K, Wang L, Wang D, Ni BJ. Sulfur-decorated Fe/C composite synthesized from MIL-88A(Fe) for peroxymonosulfate activation towards tetracycline degradation: Multiple active sites and non-radical pathway dominated mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118440. [PMID: 37343477 DOI: 10.1016/j.jenvman.2023.118440] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Peroxymonosulfate (PMS)-mediated advanced oxidation processes gain growing attention in degrading antibiotics (e.g., tetracycline (TC)) in wastewater for their high capacity and relatively low cost, while designing efficient catalysts for PMS activation remains a challenge. In this study, a sulfur-doped Fe/C catalyst (Fe@C-S) synthesized from iron metal-organic frameworks (Fe-MOFs) was developed for PMS activation towards TC removal. Under optimal conditions, the TC removal efficiency of Fe@C-S150/PMS system within 40 min was 91.2%. Meanwhile, the k value for Fe@C-S150/PMS system (0.2038 min-1) was 3.36-fold as high as the S-free Fe@C-based PMS system. Also, Fe@C-S150/PMS system showed high robustness in different water matrices. Further studies found that the TC degradation mechanism was mainly ascribed to the non-radical pathway (1O2 and electron transfer). Fe nanoparticles, S and CO groups on the catalyst all participated in the generation of reactive oxygen species (ROS). Besides, S species could enhance the Fe2+/Fe3+ redox cycle and accelerate the electron transfer process. This work highlights the critical role of S in enhancing the catalytic performance of Fe/C-based catalysts for PMS activation, which would provide meaningful insights into the design of high-performance PMS activators for the sustainable remediation of emerging contaminants-polluted water bodies.
Collapse
Affiliation(s)
- Jin Qian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Yichu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia.
| | - Ran Yu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Yin Ye
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Rui Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Kailong Li
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Lingzhen Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, China
| | - Dongqi Wang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia.
| |
Collapse
|
17
|
Xiang S, Lin Y, Chang T, Mei B, Liang Y, Wang Z, Sun W, Cai C. Oxygen doped graphite carbon nitride as efficient metal-free catalyst for peroxymonosulfate activation: Performance, mechanism and theoretical calculation. CHEMOSPHERE 2023; 338:139539. [PMID: 37474028 DOI: 10.1016/j.chemosphere.2023.139539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/20/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
In this study, oxygen-doped graphitic carbon nitride (g-C3N4), named O-g-C3N4, was successfully fabricated and characterized, and its performance in activating peroxymonosulfate (PMS, HSO5-) for the removal of phenol, 2,4-dichlorophenol (2,4-DCP), bisphenol A (BPA), rhodamine B (RhB), reactive brilliant blue (RBB) and acid orange 7 (AO7) was evaluated. The catalytic performance of O-g-C3N4 for AO7 removal increased by 14 times compared to g-C3N4. In the presence of 0.2 g L-1 O-g-C3N4, 3.5 mM PMS at natural pH 5.8, 96.4% of AO7 could be removed in 60 min, reduced toxicity of the treated AO7 solution was obtained, and the mineralization efficiency was 47.2% within 120 min. Density functional theory (DFT) calculations showed that the charge distribution changed after oxygen doping, and PMS was more readily adsorbed by O-g-C3N4 with the adsorption energy (Eads) of -0.855 kcal/mol than that of the pristine g-C3N4 (Eads: -0.305 kcal/mol). Mechanism investigation implied that AO7 was primarily removed by the sulfate radicals (SO4•-) and hydroxyl radicals (•OH) on the surface of O-g-C3N4, but the role of singlet oxygen (1O2) to AO7 elimination was negligible. The results of cyclic experiments and catalyst characterization after reaction confirmed the favorable catalytic activity and structural stability of O-g-C3N4 particles. Furthermore, the O-g-C3N4/PMS system was very resistant to most of the environmental impacts, and AO7 removal was still acceptable in natural water environment. This study may provide an efficient metal-free carbonaceous activator with low dosage for PMS activation to remove recalcitrant organic pollutants (ROPs).
Collapse
Affiliation(s)
- Shaofeng Xiang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China.
| | - Yu Lin
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Tongda Chang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Bingrui Mei
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Yuhang Liang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Ziqian Wang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Wenwu Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Chun Cai
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
18
|
Chen W, Lei L, Zhu K, He D, He H, Li X, Wang Y, Huang J, Ai Y. Peroxymonosulfate activation by Fe-N-S co-doped tremella-like carbocatalyst for degradation of bisphenol A: Synergistic effect of pyridine N, Fe-N x, thiophene S. J Environ Sci (China) 2023; 129:213-228. [PMID: 36804237 DOI: 10.1016/j.jes.2022.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA) has received increasing attention due to its long-term industrial application and persistence in environmental pollution. Iron-based carbon catalyst activation of peroxymonosulfate (PMS) shows a good prospect for effective elimination of recalcitrant contaminants in water. Herein, considering the problem about the leaching of iron ions and the optimization of heteroatoms doping, the iron, nitrogen and sulfur co-doped tremella-like carbon catalyst (Fe-NS@C) was rationally designed using very little iron, S-C3N4 and low-cost chitosan (CS) via the impregnation-calcination method. The as-prepared Fe-NS@C exhibited excellent performance for complete removal of BPA (20 mg/L) by activating PMS with the high kinetic constant (1.492 min-1) in 15 min. Besides, the Fe-NS@C/PMS system not only possessed wide pH adaptation and high resistance to environmental interference, but also maintained an excellent degradation efficiency on different pollutants. Impressively, increased S-C3N4 doping amount modulated the contents of different N species in Fe-NS@C, and the catalytic activity of Fe-NS@C-1-x was visibly enhanced with increasing S-C3N4 contents, verifying pyridine N and Fe-Nx as main active sites in the system. Meanwhile, thiophene sulfur (C-S-C) as active sites played an auxiliary role. Furthermore, quenching experiment, EPR analysis and electrochemical test proved that surface-bound radicals (·OH and SO4⋅-) and non-radical pathways worked in the BPA degradation (the former played a dominant role). Finally, possible BPA degradation route were proposed. This work provided a promising way to synthesize the novel Fe, N and S co-doping carbon catalyst for degrading organic pollutants with low metal leaching and high catalytic ability.
Collapse
Affiliation(s)
- Wenjin Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China.
| | - Lele Lei
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Ke Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Dongdong He
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Hongmei He
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Xiulan Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Yumeng Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jin Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Yushi Ai
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| |
Collapse
|
19
|
Cheng C, Chang L, Zhang X, Deng Q, Chai H, Huang Y. Interface engineering-induced perovskite/spinel LaCoO 3/Co 3O 4 heterostructured nanocomposites for efficient peroxymonosulfate activation to degrade levofloxacin. ENVIRONMENTAL RESEARCH 2023; 229:115994. [PMID: 37105283 DOI: 10.1016/j.envres.2023.115994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
Conventional perovskite oxides (ABO3) tend to suffer from their inactive surfaces and limited active sites that reduce their catalytic activity and stability, while interface engineering is a facile modulating technique to boost the catalyst's inherent activity by constructing heterogeneous interfaces. In this study, perovskite/spinel LaCoO3/Co3O4 nanocomposites with heterogeneous interfaces were synthesized via sol-gel and in-situ gradient etching methods to activate peroxymonosulfate (PMS) for degrading levofloxacin (LEV). LaCoO3 on the surface was etched into spinel Co3O4, and LaCoO3/Co3O4 nanocomposites with two crystal structures of perovskite and spinel were successfully formed. The surface-modified LaCoO3/Co3O4 exhibited superior catalytic performance with a reaction rate constant more than 2 times that of the original LaCoO3, as well as excellent pH adaptability (3-11) and reusability (more than 6 recyclings) for LEV degradation. Besides, multiple characterization techniques were carried out to find that LaCoO3/Co3O4 possessed a larger specific surface area and richer oxygen vacancies after surface modification, which provided more active sites and accelerated mass transfer rate. The mechanism of reactive oxygen species involved in the reaction system was proposed that LaCoO3/Co3O4 not only reacted with PMS directly to produce SO4•- and •OH but also its surface hydroxyl group helped to form the [≡Co(Ⅲ)OOSO3]+ reactive complex with PMS to produce O2•- and 1O2. In addition, electrochemical experiments demonstrated that the surface electronic structure of LaCoO3/Co3O4 was effectively regulated, exhibiting a faster electron transfer rate and facilitating the redox process. By detecting and identifying degradation intermediates, three degradation pathways for LEV were proposed. Our work provided profound insights into the design of efficient and long-lasting catalysts for advanced oxidation processes.
Collapse
Affiliation(s)
- Cheng Cheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Lian Chang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xiaodan Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Qingchen Deng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Yuming Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
20
|
Feng L, Yuan Y, He X, Wu M, Zhang L, Gong J. Efficient degradation of atrazine through in-situ anchoring NiCo 2O 4 nanosheets on biochar to activate sulfite under neutral condition. J Environ Sci (China) 2023; 126:81-94. [PMID: 36503806 DOI: 10.1016/j.jes.2022.04.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 06/17/2023]
Abstract
Sulfite (S(IV)) is a promising substitute for sulfate radical-based advanced oxidation processes. Here, a composite of in-situ anchoring NiCo2O4 nanosheets on biochar (BC) was firstly employed as a heterogeneous activator for sulfite (NiCo2O4@BC-sulfite) to degrade atrazine (ATZ) in the neutral environment. The synergistic coupling of BC and NiCo2O4 endows the resulting composite excellent catalytic activity. 82% of the degradation ratio of ATZ (1 mg/L) could be achieved within 10 min at initial concentrations of 0.6 g/L NiCo2O4@BC, 3.0 mmol/L sulfite in neutral environment. When further supplementing sulfite into the system at 20 min (considering the depletion of sulfite), outstanding degradation efficiency (∼ 100%) were achieved in the next 10 min without any other energy input by the NiCo2O4@BC-sulfite system. The features of the prepared catalysts and the effects of some key parameters on ATZ degradation were systematically examined. A strong inner-sphere complexation (Co2+/Ni2+-SO32-) was explored between sulfite and the metal sites on the NiCo2O4@BC surface. The redox cycle of the surface metal efficiently mediated sulfite activation and triggered the series radical chain reactions. The generated radicals, in particular the surface-bound radicals were involved in ATZ degradation. High performance liquid chromatography-tandem mass spectrometry (LC-MS) technique was used to detect the degradation intermediates. Density functional theory (DFT) calculations were performed to illustrate the possible degradation pathways of ATZ. Finally, an underlying mechanism for ATZ removal was proposed. The present study offered a low-cost and sustainable catalyst for sulfite activation to remove ATZ in an environmentally friendly manner from wastewater.
Collapse
Affiliation(s)
- Lizhen Feng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yijin Yuan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xianqin He
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Mengsi Wu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Jingming Gong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
21
|
Jing J, Wang X, Zhou M. Electro-enhanced activation of peroxymonosulfate by a novel perovskite-Ti 4O 7 composite anode with ultra-high efficiency and low energy consumption: The generation and dominant role of singlet oxygen. WATER RESEARCH 2023; 232:119682. [PMID: 36746031 DOI: 10.1016/j.watres.2023.119682] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Traditional free radicals-dominated electrochemical advanced oxidation processes (EAOPs) and sulfate radical-based advanced oxidation processes (SR-AOPs) are limited by pH dependence and weak reusability, respectively. To overcome these shortcomings, electro-enhanced activation of peroxymonosulfate (PMS) on a novel perovskite-Ti4O7 composite anode (E-PTi-PMS system) was proposed. It achieved an ultra-efficient removal rate (k = 0.467 min-1) of carbamazepine (CBZ), approximately 36 and 8 times of the E-PTi and PTi-PMS systems. Singlet oxygen (1O2) played a dominant role in the E-PTi-PMS system and transformed from SO4•-, O2•-, •OH and oxygen vacancy (Vo••). The electric field expedited the decomposition and utilization of PMS, promoting the generation of radicals and expanding the formation pathway of 1O2. The E-PTi-PMS system presented superiorities over wide pH (3-10) and less dosage of PMS (1 mM), expanding the pH adaptability and reducing the cost of EAOPs. Simultaneously, the excellent reusability (30 cycles) solved the bottleneck of recycling catalysts in SR-AOPs via an ultra-low energy (0.025 kWh/m3-log). This work provides a promising alternative towards high-efficiency and low-cost treatment of polluted waters.
Collapse
Affiliation(s)
- Jiana Jing
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuechun Wang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
22
|
Highly Efficient Copper Doping LaFeO3 Perovskite for Bisphenol A Removal by Activating Peroxymonosulfate. Catalysts 2023. [DOI: 10.3390/catal13030575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
A series of copper doping LaFeO3 perovskite (LaCuxFe1−xO3, LCFO, x = 0.1, 0.4, 0.5, 0.6, 0.9) are successfully synthesized by the sol-gel method under mild conditions. In this study, it is applied for the activation of peroxymonosulfate (PMS) for bisphenol A (BPA) removal. More than 92.6% of BPA was degraded within 30 min at 0.7 g/L of LCFO and 10.0 mM of PMS over a wide pH range with limited leaching of copper and iron ions. The physical–chemical properties of the catalysts were demonstrated by using X-ray diffraction (XRD), N2 adsorption–desorption isotherms, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Furthermore, the effects of catalyst dosage, PMS concentration, initial pH value, and inorganic anions on the LCFO/PMS system were fully investigated. Quenching experiments were performed to verify the formation of reactive oxidant species, which showed that the radical reaction and mechanisms play a great role in the catalytic degradation of BPA. The perovskite LCFO is considered a stable, easy to synthesize, and efficient catalyst for the activation of PMS for wastewater treatment.
Collapse
|
23
|
Yang X, Duan J, Qi J, Li X, Gao J, Liang Y, Li S, Duan T, Liu W. Modulating the electron structure of Co-3d in Co 3O 4-x/WO 2.72 for boosting peroxymonosulfate activation and degradation of sulfamerazine: Roles of high-valence W and rich oxygen vacancies. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130576. [PMID: 37055981 DOI: 10.1016/j.jhazmat.2022.130576] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 06/19/2023]
Abstract
Sulfate radical (SO4•-)-based heterogonous advanced oxidation processes (AOPs) show promising potential to degrade emerging contaminants, however, regulating the electron structure of a catalyst to promote its catalytic activity is challenging. Herein, a hybrid that consists of Co3O4-x nanocrystals decorated on urchin-like WO2.72 (Co3O4-x/WO2.72) with high-valence W and rich oxygen vacancies (OVs) used to modulate the electronic structure of Co-3d was prepared. The Co3O4-x/WO2.72 that developed exhibited high catalytic activity, activating peroxymonosulfate (PMS), and degrading sulfamerazine (SMR). With the use of Co3O4-x/WO2.72, 100 % degradation of SMR was achieved within 2 min, at a pH of 7, with the reaction rate constant k1 = 3.09 min-1. Both characterizations and density functional theory (DFT) calculations confirmed the formation of OVs and the promotion of catalytic activity. The introduction of WO2.72 greatly regulated the electronic structure of Co3O4-x. Specifically, the introduction of high-valence W enabled the Co-3d band centre to be closer to the Fermi level and enhanced electrons (e-) transfer ability, while the introduction of OVs-Co in Co3O4-x promoted the activity of electrons in the Co-3d orbital and the subsequent catalytic reaction. The reactive oxygen species (ROS) were identified as •OH, SO4•-, and singlet oxygen (1O2) by quenching experiments and electron spin resonance (EPR) analysis. The DFT calculation using the Fukui index indicated the reactive sites in SMR were available for an electrophilic attack, and three degradation pathways were proposed.
Collapse
Affiliation(s)
- Xudong Yang
- The Key Laboratory of Resources and Environmental System Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jun Duan
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Juanjuan Qi
- The Key Laboratory of Resources and Environmental System Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Xiuze Li
- The Key Laboratory of Resources and Environmental System Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jing Gao
- The Key Laboratory of Resources and Environmental System Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yifei Liang
- The Key Laboratory of Resources and Environmental System Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Duan
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Wen Liu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Zhao H, Chen W, Wu D, Liu X, Hu W, Zhang X. Coupling the effect of Co and Mo on peroxymonosulfate activation for the removal of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48389-48400. [PMID: 36759407 DOI: 10.1007/s11356-023-25755-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Although heterogeneous cobalt-based catalysts have been widely studied and used in SO4•- based advanced oxidation processes, the efficiencies were still not high enough due to the limiting step of Co(III)/Co(II) cycle in the system. In this study, a bimetallic oxide composed of Co and Mo was designed and used for enhancing the performance of peroxymonosulfate activation on organic pollutants removal. The CoMoO4 nanorods exhibited superior catalytic activity for methylene blue (MB) degradation than Co3O4, MoO3, and their mechanical mixture, which was attributed to the synergetic effect between Co and Mo. CoMoO4 nanorods were able to efficiently degrade MB under a wide pH range of 3-11 and could maintain high efficiency in 5 cycles with less leakage of metal ions. Moreover, CoMoO4 nanorods displayed broad spectrum applicability to the different water matrix and a variety of pollutants such as phenol and Congo red. The Co(II) was proved to be the main active site of the catalyst, while Mo played an important role in promoting the Co(III)/Co(II) cycle. Surface free radicals are the main active species in the degradation process. This work provides new insights into the design of cobalt-based bimetallic catalyst and the improvement on PMS activation.
Collapse
Affiliation(s)
- Huanxin Zhao
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China.
| | - Wenkai Chen
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Dan Wu
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Xinyue Liu
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Wanjie Hu
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Xuejun Zhang
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| |
Collapse
|
25
|
Li Y, Chen L, Zhang J, Zhu C, Liu L. Synergistic photocatalytic degradation of TC-HCl by Mn3+/Co2+/Bi2O3 and PMS. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
26
|
Oxygen-Deficient Engineering for Perovskite Oxides in the Application of AOPs: Regulation, Detection, and Reduction Mechanism. Catalysts 2023. [DOI: 10.3390/catal13010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A perovskite catalyst combined with various advanced oxidation processes (AOPs) to treat organic wastewater attracted extensive attention. The physical and chemical catalytic properties of perovskite were largely related to oxygen vacancies (OVs). In this paper, the recent advances in the regulation of OVs in perovskite for enhancing the functionality of the catalyst was reviewed, such as substitution, doping, heat treatment, wet-chemical redox reaction, exsolution, and etching. The techniques of detecting the OVs were also reviewed. An insight was provided into the OVs of perovskite and reduction mechanism in AOPs in this review, which is helpful for the reader to better understand the methods of regulating and detecting OVs in various AOPs.
Collapse
|
27
|
Su C, Jia M, Xue X, Tang C, Li L, Hu X. Core-shell magnetic CFO@COF composites toward peroxymonosulfate activation for degradation of sulfamethoxazole from aqueous solution: A comparative study and mechanistic consideration. CHEMOSPHERE 2023; 311:137159. [PMID: 36343735 DOI: 10.1016/j.chemosphere.2022.137159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/23/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
A core-shell covalent organic framework encapsulated Co1.2Fe1.8O4 magnetic particles (CFO@COF) was designed and prepared successfully to activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) degradation. It displays amazing catalytic reactivity since the unique interior structure and synergistic effect between COF shell and CFO core, reaching 99.8% removal of SMX (10 mg/L) within 30 min and 90.8% TOC removal. The synergy between bimetals vests high reactivity to CFO core. And the outer COF shell can stabilize the CFO core under intricate reaction conditions to restrain the leaching of Co ions (decreased from 0.75 to 0.25 mg/L). Further investigation compared the activation mechanism in two different system, CFO/PMS system and CFO@COF/PMS system. The result showed that the radical mechanism controlled by SO4⋅- guided the SMX degradation in CFO/PMS system whereas the 1O2 played a pivotal role in CFO@COF/PMS system called non-radical leading. The influences of various factors on degradation experiments and SMX degradation pathway were also studied. Most importantly, risk assessment in CFO@COF/PMS/SMX system was estimated via "ecological structure activity relationships". In most case, the toxicities of intermediates were lower than the initial samples, which confirmed the effectiveness of CFO@COF/PMS/SMX system in the reduction of toxicity of SMX.
Collapse
Affiliation(s)
- Chenxin Su
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Muhan Jia
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xiaofei Xue
- Beijing Enterprises Water Group (China) Limited, Beijing, 100102, PR China
| | - Chenliu Tang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Lingyun Li
- Beijing Enterprises Water Group (China) Limited, Beijing, 100102, PR China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
28
|
Li Y, Wang Y, Liu L, Tian L. Non-radical-dominated catalytic degradation of methylene blue by magnetic CoMoO 4/CoFe 2O 4 composite peroxymonosulfate activators. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116587. [PMID: 36323118 DOI: 10.1016/j.jenvman.2022.116587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
In this study, magnetic CoMoO4/CoFe2O4 (CMO/CFO) nanospheres with a core-shell structure were synthesized via two-step hydrothermal methods. The obtained particles were employed as catalysts to activate peroxymonosulfate (PMS) and degrade methylene blue (MB). The physico-chemical characterizations of the synthesized CMO/CFO showed that the CMO shell contributed to the enhancement of redox conversion and the increase in the concentration of oxygen vacancies (OVs). By examining reactive oxygen species (ROS) in the CMO/CFO/PMS system, the MB degradation was dominated by a non-radical pathway, and 1O2 was identified as the most abundant ROS. Besides, the CMO/CFO exhibited faster reaction kinetics than the pristine CFO. Moreover, the magnetic properties guaranteed the recycling and reuse of CMO/CFO, and the removal rate of MB was maintained at ∼94% after continuous use five times. Both the tolerance to SO42-and the wide pH range where the material is applicable make it a promising catalyst for dyeing wastewater treatment.
Collapse
Affiliation(s)
- Yueyue Li
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, PR China
| | - Yuan Wang
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, PR China
| | - Lei Liu
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, PR China.
| | - Lecheng Tian
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, PR China
| |
Collapse
|
29
|
Wang P, Lou X, Chen Q, Liu Y, Sun X, Guo Y, Zhang X, Wang R, Wang Z, Chen S, Zhang L, Zhang RQ, Guan J. Spent LiFePO 4: An old but vigorous peroxymonosulfate activator for degradation of organic pollutants in water. ENVIRONMENTAL RESEARCH 2022; 214:113780. [PMID: 35779620 DOI: 10.1016/j.envres.2022.113780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Iron-based catalysts have been demonstrated to activate peroxymonosulfate (PMS) to generate reactive radicals, which is however limited by their complex preparation process, high costs and inefficiency for practical applications. Herein we obtain spent LiFePO4 (SLFP), with powerful catalytic capacity by a simple one-step treatment of the retired LiFePO4 cathode material, for PMS activation to decontaminate organic pollutants. Lithium defects and oxygen vacancies in SLFP play critical roles for PMS utilization, further confirmed by density functional theory (DFT) calculations. SLFP materials rapidly adsorb PMS, and the surface PMS is activated by Fe(II) to generate radicals, with •OH playing a major role for the degradation of organics after multi-step reactions. The SLFP/PMS process is finally validated for ability to remove organic contaminants and potential environmental application.
Collapse
Affiliation(s)
- Pu Wang
- Shanghai Collaborative Innovation Centre for WEEE Recycling, School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Xiaoyi Lou
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Qianqian Chen
- Shanghai Collaborative Innovation Centre for WEEE Recycling, School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Yujing Liu
- Shanghai Collaborative Innovation Centre for WEEE Recycling, School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Xiaohu Sun
- Shanghai Collaborative Innovation Centre for WEEE Recycling, School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Yaoguang Guo
- Shanghai Collaborative Innovation Centre for WEEE Recycling, School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China.
| | - Xiaojiao Zhang
- Shanghai Collaborative Innovation Centre for WEEE Recycling, School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Ruixue Wang
- Shanghai Collaborative Innovation Centre for WEEE Recycling, School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai, 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China
| | - Shuai Chen
- Shanghai Collaborative Innovation Centre for WEEE Recycling, School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Li Zhang
- Shanghai Collaborative Innovation Centre for WEEE Recycling, School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Rui-Qin Zhang
- Department of Physics, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jie Guan
- Shanghai Collaborative Innovation Centre for WEEE Recycling, School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China.
| |
Collapse
|
30
|
Zhang X, Yang Z, Cui X, Liu W, Zou B, Liao W. Cobalt/calcium bimetallic oxides based on bio-waste eggshells for the efficient degradation of norfloxacin by peroxymonosulfate activation. J Colloid Interface Sci 2022; 621:1-11. [DOI: 10.1016/j.jcis.2022.03.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/10/2022] [Accepted: 03/27/2022] [Indexed: 01/18/2023]
|
31
|
Wu J, Su H, Wang Z, Hou B, Cheng X, Stolbikhin Yury V, Wang X, Liu B, Zhu X, Mao Y, Gao H, Li S. N/ZnFe2O4 codoped biochar as an activator for peroxydisulfate to degrade oxytetracycline: Synthesis, property and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Mahmoudi F, Saravanakumar K, Maheskumar V, Njaramba LK, Yoon Y, Park CM. Application of perovskite oxides and their composites for degrading organic pollutants from wastewater using advanced oxidation processes: Review of the recent progress. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129074. [PMID: 35567810 DOI: 10.1016/j.jhazmat.2022.129074] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
In the recent years, perovskite oxides are gaining an increasing amount of attention owing to their unique traits such as tunable electronic structures, flexible composition, and eco-friendly properties. In contrast, their catalytic performance is not satisfactory, which hinders real wastewater remediation. To overcome this shortcoming, various strategies are developed to design new perovskite oxide-based materials to enhance their catalytic activities in advanced oxidation process (AOPs). This review article is to provide overview of basic principle and different methods of AOPs, while the strategies to design novel perovskite oxide-based composites for enhancing the catalytic activities in AOPs have been highlighted. Moreover, the recent progress of their synthesis and applications in wastewater remediation (pertaining to the period 2016-2022) was described, and the related mechanisms were thoroughly discussed. This review article helps scientists to have a clear outlook on the selection and design of new effective perovskite oxide-based materials for the application of AOPs. At the end of the review, perspective on the challenges and future research directions are discussed.
Collapse
Affiliation(s)
- Farzaneh Mahmoudi
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Karunamoorthy Saravanakumar
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Velusamy Maheskumar
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Lewis Kamande Njaramba
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA.
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
33
|
Margellou A, Manos D, Petrakis D, Konstantinou I. Activation of persulfate by LaFe 1-xCo xO 3 perovskite catalysts for the degradation of phenolics: Effect of synthetic method and metal substitution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155063. [PMID: 35395300 DOI: 10.1016/j.scitotenv.2022.155063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
The presence of resistant organic pollutants in environmental substrates requires the development and finding of novel decontamination methods. Advanced oxidation processes are among the most effective methods used for degradation of these pollutants through their oxidation and degradation into non-toxic and harmless, for the environment, final products. Ιn this research, a series of perovskites of ABO3-type, with La and Fe and/or Co in A and B positions respectively, LaFe1-xCoxO3 (x = 0, 0.25, 0.5, 0.75, 1), were synthesized with two different methods, a soft template method using anionic surfactant and by glycine combustion method and studied for their catalytic activity towards the degradation of phenolic compounds, a major class of environmental pollutants, through persulfate activation. The catalytic activity depended both by the B metal ion of perovskites and their ratio as well as by the synthesis method. LaCoO3 prepared with the anionic surfactant method, showed the highest catalytic activity with a rate constant of 0.024 min-1. Furthermore, the synthesis method also influenced the stability of perovskites as metal leaching studies showed that perovskites synthesized with the anionic surfactant showed greater stability. Quenching experiments were also used in order to shed light on the catalytic activation mechanism of persulfate for the degradation of phenolics. Overall, the results showed that the synthesis method can significantly affect the catalytic activity of the materials and their stability since the same materials synthesized with different methods show significantly different catalytic properties.
Collapse
Affiliation(s)
- A Margellou
- Department of Chemistry, University of Ioannina, 45100 Ioannina, Greece
| | - D Manos
- Department of Chemistry, University of Ioannina, 45100 Ioannina, Greece
| | - D Petrakis
- Department of Chemistry, University of Ioannina, 45100 Ioannina, Greece.
| | - I Konstantinou
- Department of Chemistry, University of Ioannina, 45100 Ioannina, Greece; Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), 45110, Greece.
| |
Collapse
|
34
|
Photo-Fenton Degradation of Ciprofloxacin by Novel Graphene Quantum Dots/α-FeOOH Nanocomposites for the Production of Safe Drinking Water from Surface Water. WATER 2022. [DOI: 10.3390/w14142260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the current work, novel graphene quantum dots (GQDs)-doped goethite (α-FeOOH) nanocomposites (GQDs/α-FeOOH) were prepared by following a feasible hydrolysis method and applied for ciprofloxacin (CIP) removal. Results showed that the CIP degradation efficiency was significant (93.73%, 0.0566 min−1) in the GQDs/α-FeOOH + H2O2 + Vis system using much lower amounts of H2O2 (0.50 mM), which is 3.9 times the α-FeOOH + H2O2 + Vis system. It was found that •OH, O2•−, and 1O2 were mainly responsible for CIP degradation in the GQDs/α-FeOOH photo-Fenton system. GQDs/α-FeOOH demonstrated broad-spectrum UV–vis-IR responsiveness in the degradation of ciprofloxacin as a function of the doping of GQDs. Additionally, GQDs/α-FeOOH showed outstanding durability (recyclability up to 3 cycles with a lower iron leaking amount, 0.020 mg L−1), a broad range of application pH, and a pretty acceptable catalytic efficacy in a variety of surface water matrices. Overall, GQDs/α-FeOOH have been shown to be an effective photocatalyst for the remediation of emerging contaminants via the workable exploitation of solar energy.
Collapse
|
35
|
Ren X, Song K, Zhang Q, Xu L, Yu Z, Tang P, Pan Z. Performance of a Three-Dimensional Electrochemical Reactor (3DER) on Bisphenol A Degradation. Front Chem 2022; 10:960003. [PMID: 35910742 PMCID: PMC9337772 DOI: 10.3389/fchem.2022.960003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/22/2022] [Indexed: 11/24/2022] Open
Abstract
This study constructed a three-dimensional electrochemical reactor (3DER) using meshed stainless steel sheets and titanic magnetite particles (TMP) to investigate bisphenol A (BPA) degradation through the synergistic action of electrical current and TMP. We examined some TMP characteristics, such as particle size, specific surface areas, X-ray diffraction, surface imaging, elemental constituents, and electrical resistivity. It was found that TMP was a micron-level material with excellent electrical conductivity, and it could be regarded as a magnetite-based material comprising Fe(II) and Fe(III). The single-factor experiment determined the optimal conditions for BPA removal in 3DER, specifically by introducing 200 ml of BPA-simulated wastewater (10 mg L−1) into 3DER. At the initial pH of 9.00, current and electrodes gap of 300 mA and 15 mm, respectively, and adding 1 ml of 0.5 M potassium peroxymonosulfate and 1 g TMP, > 98% of BPA was removed after 55 min of electrochemical reaction. In addition, liquid chromatography–mass spectrometry identified the intermediates formed during the BPA treatment, showing two possible pathways for BPA degradation. The final degradation intermediates were chain organics with simple molecular structures. This research provided an understanding of the potential application of 3DER for BPA removal in water.
Collapse
Affiliation(s)
- Xu Ren
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu University, Chengdu, China
- Postdoctoral Research Station of Haitian Water Group CO, Ltd, AVIC International Exchange Center, Chengdu, China
- Postdoctoral Research Station in Environmental Science and Engineering, Sichuan University, Chengdu, China
| | - Kai Song
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu University, Chengdu, China
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
- *Correspondence: Kai Song,
| | - Qiaoyun Zhang
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu University, Chengdu, China
| | - Linghan Xu
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu University, Chengdu, China
| | - Zhuyi Yu
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu University, Chengdu, China
| | - Peixin Tang
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu University, Chengdu, China
- Postdoctoral Research Station of Haitian Water Group CO, Ltd, AVIC International Exchange Center, Chengdu, China
| | - Zhicheng Pan
- Postdoctoral Research Station of Haitian Water Group CO, Ltd, AVIC International Exchange Center, Chengdu, China
| |
Collapse
|
36
|
Amiri M, Akbari Javar H, Mahmoudi-Moghaddam H, Salavati-Niasari M. Green synthesis of perovskite-type nanocomposite using Crataegus for modification of bisphenol a sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Yang Q, Niu X, Zhu Y, Cui Y, Chao Y, Liang P, Zhang C, Wang S. Modulating anion defect in La 0.6Sr 0.4Co 0.8Fe 0.2O 3-δ for enhanced catalytic performance on peroxymonosulfate activation: Importance of hydrated electrons and metal-oxygen covalency. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128686. [PMID: 35299110 DOI: 10.1016/j.jhazmat.2022.128686] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Perovskite oxides are promising catalysts in peroxymonosulfate (PMS) activation for wastewater treatment, attributed to their flexible structures. In this study, halogen anion (F- or Cl-) was doped in La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF) for PMS activation, showing that appropriate anion doping enhances the catalytic performances. La0.6Sr0.4Co0.8Fe0.2O2.75-δCl0.25 (LSCFCl0.25) exhibits a superior catalytic activity to pristine LSCF and La0.6Sr0.4Co0.8Fe0.2O2.75-δF0.25 (LSCFF0.25), attributed to the strong surface acidity, sufficient oxygen vacancies, and improved B-site metal-oxygen bonding. The rich acidic sites favor PMS adsorption on the catalyst surface. The sufficient hydrated electrons (eaq-) in the oxygen vacancies participated in the generation of free radicals (SO4•- and O2•-) and singlet oxygen (1O2). The enlarged B-site metal-oxygen covalency could boost the electron transfer between PMS and Co(III)/Fe(III), and thus accelerate the redox reaction. SO4•- and 1O2 are the dominating species for the degradation. This study deepens the catalytic mechanism and uncovers the active sites of perovskite catalysts for PMS activation, providing an inspiring modification strategy to improve the catalytic performances.
Collapse
Affiliation(s)
- Qina Yang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, China
| | - Xuyao Niu
- School of Applied Physics and Materials, Wuyi University, Jiangmen, China
| | - Yongjian Zhu
- School of Applied Physics and Materials, Wuyi University, Jiangmen, China
| | - Yu Cui
- School of Applied Physics and Materials, Wuyi University, Jiangmen, China
| | - Yang Chao
- School of Applied Physics and Materials, Wuyi University, Jiangmen, China
| | - Ping Liang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, China.
| | - Chi Zhang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, China.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
38
|
One-Step Fabrication of Novel Polyethersulfone-Based Composite Electrospun Nanofiber Membranes for Food Industry Wastewater Treatment. MEMBRANES 2022; 12:membranes12040413. [PMID: 35448383 PMCID: PMC9028427 DOI: 10.3390/membranes12040413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/10/2022] [Accepted: 04/08/2022] [Indexed: 02/05/2023]
Abstract
Using an environmentally friendly approach for eliminating methylene blue from an aqueous solution, the authors developed a unique electrospun nanofiber membrane made of a combination of polyethersulfone and hydroxypropyl cellulose (PES/HPC). SEM results confirmed the formation of a uniformly sized nanofiber membrane with an ultrathin diameter of 168.5 nm (for PES/HPC) and 261.5 nm (for pristine PES), which can be correlated by observing the absorption peaks in FTIR spectra and their amorphous/crystalline phases in the XRD pattern. Additionally, TGA analysis indicated that the addition of HPC plays a role in modulating their thermal stability. Moreover, the blended nanofiber membrane exhibited better mechanical strength and good hydrophilicity (measured by the contact angle). The highest adsorption capacity was achieved at a neutral pH under room temperature (259.74 mg/g), and the pseudo-second-order model was found to be accurate. In accordance with the Langmuir fitted model and MB adsorption data, it was revealed that the adsorption process occurred in a monolayer form on the membrane surface. The adsorption capacity of the MB was affected by the presence of various concentrations of NaCl (0.1–0.5 M). The satisfactory reusability of the PES/HPC nanofiber membrane was revealed for up to five cycles. According to the mechanism given for the adsorption process, the electrostatic attraction was shown to be the most dominant in increasing the adsorption capacity. Based on these findings, it can be concluded that this unique membrane may be used for wastewater treatment operations with high efficiency and performance.
Collapse
|
39
|
Ag nanoparticles immobilized sulfonated polyethersulfone/polyethersulfone electrospun nanofiber membrane for the removal of heavy metals. Sci Rep 2022; 12:5814. [PMID: 35388115 PMCID: PMC8986829 DOI: 10.1038/s41598-022-09802-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/22/2022] [Indexed: 12/19/2022] Open
Abstract
In this work, Eucommia ulmoides leaf extract (EUOLstabilized silver nanoparticles (EUOL@AgNPs) incorporated sulfonated polyether sulfone (SPES)/polyethersulfone (PES) electrospun nanofiber membranes (SP ENMs) were prepared by electrospinning, and they were studied for the removal of lead (Pb(II)) and cadmium (Cd(II)) ions from aqueous solutions. The SP ENMs with various EUOL@AgNPs loadings were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscope, thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and contact angle (CA) measurements. The adsorption studies showed that the adsorption of Cd(II) and Pb(II) was rapid, achieved equilibrium within 40 min and 60 min, respectively and fitted with non-linear pseudo-second-order (PSO) kinetics model. For Cd(II) and Pb(II), the Freundlich model described the adsorption isotherm better than the Langmuir isotherm model. The maximum adsorption capacity for Cd(II) and Pb(II) was 625 and 370.37 mg g−1 respectively at neutral pH. Coexisting anions of fluoride, chloride, and nitrate had a negligible influence on Cd(II) removal than the Pb(II). On the other hand, the presence of silicate and phosphate considerably affected Cd(II) and Pb(II) adsorption. The recyclability, regeneration, and reusability of the fabricated EUOL@AgNPs-SP ENMs were studied and they retained their high adsorption capacity up to five cycles. The DFT measurements revealed that SP-5 ENMs exhibited the highest adsorption selectivity for Cd(II) and the measured binding energies for Cd(II), Pb(II), are 219.35 and 206.26 kcal mol−1, respectively. The developed ENM adsorbent may find application for the removal of heavy metals from water.
Collapse
|
40
|
Chen Y, Shi Y, Wan D, Liu Y, Wang Y, Han X, Liu M. Degradation of bisphenol A by iron-carbon composites derived from spent bleaching earth. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Wang Z, Meng C, Zhang W, Zhang S, Yang B, Zhang Z. Honeycomb-like holey Co 3O 4 membrane triggered peroxymonosulfate activation for rapid degradation of organic contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152698. [PMID: 34974016 DOI: 10.1016/j.scitotenv.2021.152698] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Heterogeneous advanced oxidation processes (AOPs) are commonly employed for the degradation of recalcitrant contaminants, however, practical application of heterogeneous AOPs has been limited by their low activation efficiency and inefficient utilization of radicals. Herein, this study demonstrates for the first time that 2D honeycomb-like holey membranes assembled by Co3O4 nanosheets, serve as an excellent activator for peroxymonosulfate (PMS) and aid in rapid pollutant removal. The Co3O4 membrane achieved 100% target pollutant ranitidine removal and a membrane retention time of only ~385 ms with the degradation rate 3-5 orders of magnitude faster than that achieved by conventional heterogeneous catalysis. Ranitidine degradation was maintained at >90% for 13 h of continuous-flow operation at a high flux of 176 L m-2 h-1 bar-1. Furthermore, the Co3O4 membrane could also effectively degrade several recalcitrant pollutants, including pharmaceutical personal care products, phenols, and dyes. SO4•- and •OH were identified as the primary reactive oxygen species in the Co3O4 membrane/PMS system, with Co providing the active site for PMS activation. This strategy of membrane-based AOP treatment offers helpful guidance for the design of other efficient heterogeneous catalytic systems and presents a novel approach to overcoming the limitations of conventional heterogeneous catalysis.
Collapse
Affiliation(s)
- Zheng Wang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Chenchen Meng
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wei Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Shaoze Zhang
- National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
42
|
Abdel Maksoud MIA, Fahim RA, Bedir AG, Osman AI, Abouelela MM, El-Sayyad GS, Elkodous MA, Mahmoud AS, Rabee MM, Al-Muhtaseb AH, Rooney DW. Engineered magnetic oxides nanoparticles as efficient sorbents for wastewater remediation: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:519-562. [DOI: 10.1007/s10311-021-01351-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/21/2021] [Indexed: 09/02/2023]
Abstract
AbstractThe rapid urbanization and industrialization is causing worldwide water pollution, calling for advanced cleaning methods. For instance, pollutant adsorption on magnetic oxides is efficient and very practical due to the easy separation from solutions by an magnetic field. Here we review the synthesis and performance of magnetic oxides such as iron oxides, spinel ferrites, and perovskite oxides for water remediation. We present structural, optical, and magnetic properties. Magnetic oxides are also promising photocatalysts for the degradation of organic pollutants. Antimicrobial activities and adsorption of heavy metals and radionucleides are also discussed.
Collapse
|
43
|
Yuan X, Leng Y, Fang C, Gao K, Liu C, Song J, Guo Y. The synergistic effect of PMS activation by LaCoO 3/g-C 3N 4 for degradation of tetracycline hydrochloride: performance, mechanism and phytotoxicity evaluation. NEW J CHEM 2022. [DOI: 10.1039/d2nj01848a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A LaCoO3/g-C3N4 catalyst with high stability was designed and used for PMS activation to degrade TC.
Collapse
Affiliation(s)
- Xiaoying Yuan
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yue Leng
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Changlong Fang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Kangqi Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Chenyu Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Jianjun Song
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| |
Collapse
|
44
|
Sustainable Treatment of Food Industry Wastewater Using Membrane Technology: A Short Review. WATER 2021. [DOI: 10.3390/w13233450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Water is needed for food processing facilities to carry out a number of tasks, including moving goods, washing, processing, and cleaning operations. This causes them to produce wastewater effluent, and they are typically undesirable since it contains a high volume of suspended solids, bacteria, dyestuffs, salts, oils, fats, chemical oxygen demand and biological oxygen demand. Therefore, treatment of food industry wastewater effluent is critical in improving process conditions, socio-economic benefits and our environmental. This short review summarizes the role of available membrane technologies that have been employed for food wastewater treatment and analyse their performance. Particularly, electrospun nanofiber membrane technology is revealed as an emerging membrane science and technology area producing materials of increasing performance and effectiveness in treating wastewater. This review reveals the challenges and perspectives that will assist in treating the food industry wastewater by developing novel membrane technologies.
Collapse
|