1
|
Wu F, Deng Y, Sokolov EP, Falfushynska H, Glänzer A, Xie L, Sokolova IM. Nanopollutants (nZnO) amplify hypoxia-induced cellular stress in a keystone marine bivalve, Mytilus edulis. ENVIRONMENTAL RESEARCH 2025; 274:121346. [PMID: 40058547 DOI: 10.1016/j.envres.2025.121346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Zinc oxide nanoparticles (nZnO) are increasingly utilized in industrial, medical, and personal care products, particularly as the main ingredient in sunscreens, raising concerns about their environmental impact, especially in coastal ecosystems. The Baltic Sea, experiencing severe eutrophication, faces persistent hypoxia due to excessive nutrient runoff and limited water exchange. Simultaneously, coastal pollution from industrial and urban activities introduces nZnO, a highly biotoxic nanopollutant. The combined effects of hypoxia and nZnO contamination may amplify environmental stress, yet their interactions remain insufficiently studied. This study investigates the combined effects of nZnO exposure and fluctuating dissolved oxygen regimes (specifically short- and long-term hypoxia and subsequent reoxygenation) on Mytilus edulis, a sentinel species in these ecosystems. By assessing a range of cellular and molecular markers, including oxidative stress, oxygen sensing, protein quality control, stress response, apoptosis, and inflammation, we show that nZnO exacerbates hypoxia-induced oxidative stress, delaying redox recovery and prolonging oxidative damage during reoxygenation. Specifically, nZnO exposure maintains elevated LPO and PC levels after reoxygenation, indicating prolonged oxidative imbalance. While M. edulis typically recovers from hypoxia-induced stress, nZnO disrupts this process by impairing antioxidant defenses, prolonging HIF-1α activation, and dysregulating p53, JNK, and p38 expression, thereby interfering with normal hypoxia-reoxygenation response. Additionally, nZnO alters HSP70, Lon protease, and caspase-3 regulation, disrupting protein-folding and apoptotic pathways. These findings suggest a synergistic interaction between nZnO and hypoxia, heightening the organism's vulnerability to environmental stress and suggesting risks for marine organisms in nanoparticle-polluted, hypoxia-prone coastal regions.
Collapse
Affiliation(s)
- Fangli Wu
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China
| | - Yuqing Deng
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Eugene P Sokolov
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Halina Falfushynska
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Faculty of Economics, Anhalt University of Applied Sciences, 06406, Köthen, Germany; ENERTRAG SE, Gut Dauerthal, Dauerthal, 17291, Germany
| | - Aneka Glänzer
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Lingtian Xie
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
2
|
Falfushynska H, Sokolov EP, Sokolova IM. Combined effects of a pharmaceutical pollutant, gemfibrozil, and abiotic stressors (warming and air exposure) on cellular stress responses of the blue mussels Mytilus edulis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107233. [PMID: 39756170 DOI: 10.1016/j.aquatox.2024.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
Lipid-lowering drugs such as gemfibrozil (GFB) are widely used and highly biologically active, contributing to their persistence in wastewater and subsequent release into aquatic ecosystems. However, the potential impacts and toxic mechanisms of these emerging pollutants on non-target marine organisms, particularly keystone bivalves like Mytilus edulis, remain poorly understood. To address this knowledge gap, we investigated the effects of environmentally relevant concentrations of GFB (25 µg l-1) on oxidative, nitrosative, and dicarbonyl stress in M. edulis, and explored how abiotic stressors such as elevated temperature and air exposure modulate these effects. Our results indicated that GFB and temperature interact to significantly influence oxidative stress markers, including lipid peroxidation (LPO) and protein carbonylation (PC) levels in mussels. Notably, the combination of GFB and warming exhibited antagonistic effects, leading to reduced LPO levels in both submerged and air-exposed mussels. Air exposure alone elevated PC levels across all groups, while warming reduced these levels. Total antioxidant capacity increased during air exposure, with GFB exerting minimal influence on this parameter. Nitrosative stress, as indicated by nitric oxide levels, was significantly affected by GFB only under air exposure conditions. The glutathione system underwent notable alterations, with glutathione reductase activity stimulated during immersion and suppressed during air exposure. Dicarbonyl stress markers, including methylglyoxal and glyoxalase enzyme activities, generally intensified in response to GFB during air exposure. Overall, environmentally relevant concentrations of GFB induced oxidative and dicarbonyl stress in M. edulis, suggesting a shift toward glycolytic metabolism that could impair energy-dependent processes like reproduction. Combined stressor scenarios involving GFB and warming typically exhibited antagonistic rather than synergistic effects. Despite these biochemical disruptions, the mussels demonstrated resilience, particularly during air exposure, highlighting the complexity of environmental stress interactions. These findings emphasize the importance of considering multiple stressors in pollution risk assessments for aquatic ecosystems.
Collapse
Affiliation(s)
- Halina Falfushynska
- Anhalt University of Applied Sciences, Köthen, Germany; ENERTRAG SE, Berlin, Germany; Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Eugene P Sokolov
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
3
|
Leão GR, Silva LPS, Damacena-Silva L, Rocha TL. Toxicity of environmental chemicals in gastropods' hemocytes: Trends and insights based on investigations using Biomphalaria spp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177522. [PMID: 39561895 DOI: 10.1016/j.scitotenv.2024.177522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/28/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Affiliation(s)
- Gabrielly Rodrigues Leão
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Luiz Phelipe Souza Silva
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Luciana Damacena-Silva
- Research Laboratory on Parasite-Host Interaction, State University of Goiás, Anápolis, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
4
|
Wei S, Mao Y, Sokolova IM, Li Z, Li L, Khalid MS, Tu Z, Zhong Z, Hu M, Wang Y. Extreme heat event influences the toxic impacts of nano-TiO 2 with different crystal structures in mussel Mytilus coruscus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176916. [PMID: 39454788 DOI: 10.1016/j.scitotenv.2024.176916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
The wide use of nano‑titanium dioxide (nano-TiO2) and its ubiquitous emission into aquatic environments are threatening environmental health. Ambient temperature can affect the aggregation state of nano-TiO2 in seawater, thus influencing the intake and physiological effects on marine species. We studied the physiological effects of mixed nano-TiO2 (a mixture of anatase and rutile crystals with an average particle size of 25 nm, P25) on mussels. Subsequently, we investigated the oxidative stress, immunotoxicity, neurotoxicity, and detoxification in Mytilus coruscus exposed to two different crystal structures of nano-TiO2 (anatase and rutile) at 100 μg/L concentration under marine heatwaves (MHWs, 28 °C). MHWs and nano-TiO2 exposure induced neurotoxicity and immune damage and caused dysregulation of redox balance in the gills. Moreover, MHWs exposure disturbed the glutathione system and detoxification function of mussels, resulting in enhanced toxicity of nano-TiO2 under co-exposure. Anatase exposure significantly impaired the antioxidant system and downregulated the relative expression of antioxidant-related genes (Nrf2 and Bcl-2), HSP-90, and immune parameters under MHWs, while producing higher ROS levels compared to rutile. Based on integrated biomarker response (IBR), mussels co-exposed to anatase and MHW showed the highest value (19.29). However, there was no significant difference in bioaccumulation of titanium between anatase (6.07 ± 0.47 μg/g) and rutile (5.3 ± 0.44 μg/g) exposures under MHWs. These results indicate that MHWs would elevate the potential hazard of nanoparticles to marine organisms.
Collapse
Affiliation(s)
- Shuaishuai Wei
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yiran Mao
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Zhuoqing Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Li'ang Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Malik Shahzaib Khalid
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhihan Tu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhen Zhong
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
5
|
Gökmen GG, Mirsafi FS, Leißner T, Akan T, Mishra YK, Kışla D. Zinc oxide nanomaterials: Safeguarding food quality and sustainability. Compr Rev Food Sci Food Saf 2024; 23:e70051. [PMID: 39530622 DOI: 10.1111/1541-4337.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
In this era, where food safety and sustainability are paramount concerns, the utilization of zinc oxide (ZnO) nanoparticles (NPs) is a promising solution to enhance the safety, quality, and sustainability of food products. ZnO NPs in the food industry have evolved significantly over time, reflecting advancements in synthesizing methods, antimicrobial activities, and risk assessment considerations for human health and the environment. This comprehensive review delves into the historical trajectory, current applications, and prospects of ZnO NPs in food-related contexts. Synthesizing methods, ranging from solvothermal and solgel techniques to laser ablation and microfluidic reactors, have facilitated the production of ZnO NPs with tailored properties suited for diverse food applications. The remarkable antimicrobial activity of ZnO NPs against a wide spectrum of pathogens has garnered attention for their potential to enhance food safety and extend shelf-life. Furthermore, comprehensive risk assessment methodologies have been employed to evaluate the potential impacts of ZnO NPs on human health and the environment, regarding toxicity, migration, and ecological implications. By navigating the intricate interplay between synthesis methods, antimicrobial efficacy, inhibitory mechanisms, and risk assessment protocols, by elucidating the multifaceted role of ZnO NPs in shaping the past, present, and future of the food industry, this review offers valuable insights and promising avenues for researchers, policymakers, and industry stakeholders to enhance food safety, quality, and sustainability.
Collapse
Affiliation(s)
- Gökhan Gurur Gökmen
- Department of Food Engineering, Faculty of Engineering, Ege University, Izmir, Bornova, Turkey
| | - Fatemeh Sadat Mirsafi
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
| | - Till Leißner
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
| | - Tamer Akan
- Department of Physics, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, Odunpazarı, Turkey
| | - Yogendra Kumar Mishra
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
| | - Duygu Kışla
- Department of Food Engineering, Faculty of Engineering, Ege University, Izmir, Bornova, Turkey
| |
Collapse
|
6
|
Xing Z, Cai Z, Mi L, Zhang J, Wang J, Chen L, Xu M, Ma B, Tao R, Yang B, Lv X, Wang L, Zhao Y, Liu X, You L. Toxic effects of ZnO NPs on immune response and tissue pathology in Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107102. [PMID: 39288657 DOI: 10.1016/j.aquatox.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Nano-zinc oxide (ZnO NPs), as widely used nanomaterials, are inevitably released into aquatic environments, posing potential threats to aquatic organisms. Mytilus galloprovincialis is a bivalve species sensitive to changes in marine ecological environments, but there has been limited research on its toxicity response to ZnO NPs. Therefore, we selected M. galloprovincialis as the research subject and exposed them to 50 µg/L ZnO NPs for 96 h and 30 days to determine the dissolution of ZnO NPs in seawater and their distribution in M. galloprovincialis. The toxicity of ZnO NPs in M. galloprovincialis was then evaluated through gene expression, tissue pathology, and cellular immune response. The results showed that ZnO NPs could enrich Zn in various tissues of the mussel, in the order of gills > hepatopancreas > adductor muscle > mantle. Seven immune-related genes including four heat shock protein genes (HSPA12A, sHSP24.1, sHSP22, TCTP) and three apoptotic genes (Ras, p63 and Bcl-2) were altered to varying degrees. There was a downward trend in lysosomal membrane stability of M. galloprovincialis after exposure to ZnO NPs for 96 h and 30 days, while ROS and apoptosis rates increased significantly. Furthermore, the seven genes, apoptosis, LMS, and ROS were dependent on exposure time, treatment, and their interaction. Histopathological damage included disorganisation of hepatopancreas epithelial cells, gill filament swelling, and contraction of blood sinuses. These results indicated that ZnO NPs exerted toxicity in M. galloprovincialis, affecting the immune system, resulting in changes in the expression of immune-related genes and ultimately leading to histopathological changes. Our research findings could contribute to systematically understand the impact of ZnO NPs on bivalves in aquatic environments and provide a theoretical basis for marine pollution assessment.
Collapse
Affiliation(s)
- Zihan Xing
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Zimin Cai
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Liuya Mi
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Juan Zhang
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resources and Environment Research Institute, Yantai, 264006, PR China
| | - Jiaying Wang
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resources and Environment Research Institute, Yantai, 264006, PR China
| | - Lizhu Chen
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resources and Environment Research Institute, Yantai, 264006, PR China
| | - Mingzhe Xu
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Bangguo Ma
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Ruijia Tao
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Bowen Yang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Xinmeng Lv
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Lei Wang
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Yancui Zhao
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Xiaoli Liu
- School of Life Sciences, Ludong University, Yantai, 264025, PR China.
| | - Liping You
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resources and Environment Research Institute, Yantai, 264006, PR China.
| |
Collapse
|
7
|
Zhong Z, Shang W, Yang P, Wang S, Chen L, Chen Z, Li L, Khalil MF, Hu M, Xu X, Wang Y. Bio-based microplastic polylactic acid exerts the similar toxic effects to traditional petroleum-based microplastic polystyrene in mussels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174386. [PMID: 38960152 DOI: 10.1016/j.scitotenv.2024.174386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Microplastics (MPs) have accumulated in the oceans, causing adverse effects on marine organisms and the environment. Biodegradable polylactic acid (PLA) is considered as an excellent substitute for traditional petroleum-based plastics, but it is difficult to degrade completely and easily become MPs in the marine environment. To test the ecological risk of bio-based PLA, we exposed thick-shelled mussels (Mytilus coruscus) to bio-based PLA and petroleum-based polystyrene (PS) (at 102, 104, and 106 particles/L) for 14 days. The significant increase in enzyme activities related to oxidative stress and immune response showed that mussels were under physiological stress after MP ingestion. While enzyme activities of nerve conduction and energy metabolism were significantly disturbed after exposure. Meanwhile, normal physiological activities in respiration, ingestion and assimilation were also suppressed in association with enzyme changes. The negative effects of PS and PLA in mussels were not differentiated, and further integration analysis of integrated biomarker response (IBR) and principal component analysis (PCA) also showed that PLA would induce adverse effects in mussels and ecological risks as PS, especially at environmental concentrations. Therefore, it is necessary to pay more attention to the environmental and ecological risk of bio-based MP PLA accumulating in the marine environment.
Collapse
Affiliation(s)
- Zhen Zhong
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Wenrui Shang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Peiwen Yang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Shixiu Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Liming Chen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Zhaowen Chen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Li'ang Li
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Muhammad Faisal Khalil
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China.
| |
Collapse
|
8
|
Chelebieva ES, Kladchenko ES, Podolskaya MS, Bogacheva EA, Mosunov AA, Andreyeva AY. Toxic effect of mussel Mytilus galloprovincialis exposed to Ag-TiO 2 and ZnTi 2O 4-TiO 2 bicomponent nanoparticles. CHEMOSPHERE 2024; 363:142884. [PMID: 39019185 DOI: 10.1016/j.chemosphere.2024.142884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
Nanoparticles (NPs) are widely used in various fields, including antifouling paints for ships and industrial structures submerged in water. The potential impact of NPs on aquatic organisms, particularly their potential toxicity, is a significant concern, as their negative impact has been relatively poorly studied. In this study, we evaluated the effect of different concentrations of bimetallic Ag-TiO₂ and ZnTi₂O₄-TiO₂ NPs, which could potentially be used in antifouling coatings, on the hemocytes of the Mediterranean mussel Mytilus galloprovincialis. Hemocytes were exposed to NPs at concentrations of 0.1-1 mg/L for 1 and 2 h, and the production of reactive oxygen species (ROS), levels of DNA damage, and number of dead cells were measured. Exposure to Ag-TiO₂ NPs at 1 mg/L concentration for 1 h suppressed ROS production in hemocytes and reduced the relative number of agranulocytes in cell suspensions, without inducing DNA damage or cell death. Exposure to ZnTi2O4-TiO2 NPs did not cause changes in the ratio of granulocytes to agranulocytes in suspensions, nor did it affect other functional parameters of hemocytes. However, after a 2 h exposure period, ZnTi2O4-TiO2 NPs (1 mg/L) significantly reduced the production of ROS by hemocytes. These findings suggest that Ag-TiO2 and ZnTi2O4-TiO2 NPs have low acute toxicity for marine bivalves.
Collapse
Affiliation(s)
- Elina S Chelebieva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow, 119991, Russia
| | - Ekaterina S Kladchenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow, 119991, Russia.
| | - Maria S Podolskaya
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow, 119991, Russia
| | - Elizaveta A Bogacheva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow, 119991, Russia
| | - Andrey A Mosunov
- Sevastopol State University, 33 Universitetskaya Street, Sevastopol, 299053, Russia
| | - Aleksandra Yu Andreyeva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow, 119991, Russia
| |
Collapse
|
9
|
Wu F, Kong H, Xie L, Sokolova IM. Exposure to nanopollutants (nZnO) enhances the negative effects of hypoxia and delays recovery of the mussels' immune system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124112. [PMID: 38705446 DOI: 10.1016/j.envpol.2024.124112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
Aquatic environments face escalating challenges from multiple stressors like hypoxia and nanoparticle exposure, with impact of these combined stressors on mussel immunity being poorly understood. We investigated the individual and combined effects of short-term and long-term hypoxia and exposure to zinc oxide nanoparticles (nZnO) on immune system of the mussels (Mytilus edulis). Hemocyte functional traits (mortality, adhesion capacity, phagocytosis, lysosomal abundance, and oxidative burst), and transcript levels of immune-related genes involved in pathogen recognition (the Toll-like receptors, the complement system components, and the adaptor proteins MyD88) were assessed. Short-term hypoxia minimally affected hemocyte parameters, while prolonged exposure led to immunosuppression, impacting hemocyte abundance, viability, phagocytosis, and defensin gene expression. Under normoxia, nZnO stimulated immune responses of mussel hemocytes. However, combined nZnO and hypoxia induced more pronounced and rapid immunosuppression than hypoxia alone, indicating a synergistic interaction. nZnO exposure hindered immune parameter recovery during post-hypoxic reoxygenation, suggesting persistent impact. Opposing trends were observed in pathogen-sensing and pathogen-elimination mechanisms, with a positive correlation between pathogen-recognition system activation and hemocyte mortality. These findings underscore a complex relationship and potential conflict between pathogen-recognition ability, immune function, and cell survival in mussel hemocytes under hypoxia and nanopollutant stress, and emphasize the importance of considering multiple stressors in assessing the vulnerability and adaptability of mussel immune system under complex environmental conditions of anthropogenically modified coastal ecosystems.
Collapse
Affiliation(s)
- Fangli Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Hui Kong
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
10
|
Wei S, Xu P, Mao Y, Shi Y, Liu W, Li S, Tu Z, Chen L, Hu M, Wang Y. Differential intestinal effects of water and foodborne exposures of nano-TiO 2 in the mussel Mytilus coruscus under elevated temperature. CHEMOSPHERE 2024; 355:141777. [PMID: 38527634 DOI: 10.1016/j.chemosphere.2024.141777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
With the wide use of nanomaterials in daily life, nano-titanium dioxide (nano-TiO2) presents potential ecological risks to marine ecosystems, which can be exacerbated by ocean warming (OW). However, most previous studies have only centered around waterborne exposure, while there is a scarcity of studies concentrating on the impact of trophic transfer exposure on organisms. We investigated the differences in toxic effects of 100 μg/L nano-TiO2 on mussels via two pathways (waterborne and foodborne) under normal (24 °C) and warming (28 °C) conditions. Single nano-TiO2 exposure (waterborne and foodborne) elevated the superoxide dismutase (SOD) and catalase (CAT) activities as well as the content of glutathione (GSH), indicating activated antioxidatant response in the intestine. However, depressed antioxidant enzymes and accumulated peroxide products (LPO and protein carbonyl content, PCC) demonstrated that warming in combination with nano-TiO2 broke the prooxidant-antioxidant homeostasis of mussels. Our findings also indicated that nano-TiO2 and high temperature exhibited adverse impacts on amylase (AMS), trypsin (PS), and trehalase (THL). Additionally, activated immune function (lysozyme) comes at the cost of energy expenditure of protein (decreased protein concentration). The hydrodynamic diameter of nano-TiO2 at 24 °C (1693-2261 nm) was lower than that at 28 °C (2666-3086 nm). Bioaccumulation results (range from 0.022 to 0.432 μg/g) suggested that foodborne induced higher Ti contents in intestine than waterborne. In general, the combined effects of nano-TiO2 and warming demonstrated a more pronounced extent of interactive effects and severe damage to antioxidant, digestive, and immune parameters in mussel intestine. The toxicological impact of nano-TiO2 was intensified through trophic transfer. The toxic effects of nano-TiO2 are non-negligible and can be exerted together through both water- and foodborne exposure routes, which deserves further investigation.
Collapse
Affiliation(s)
- Shuaishuai Wei
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Peng Xu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yiran Mao
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuntian Shi
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Liu
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, CH-1211, Geneva, Switzerland
| | - Saishuai Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhihan Tu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Liming Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
11
|
Li Z, Li L, Sokolova I, Shang Y, Huang W, Khor W, Fang JKH, Wang Y, Hu M. Effects of elevated temperature and different crystal structures of TiO 2 nanoparticles on the gut microbiota of mussel Mytilus coruscus. MARINE POLLUTION BULLETIN 2024; 199:115979. [PMID: 38171167 DOI: 10.1016/j.marpolbul.2023.115979] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Coastal habitats are exposed to increasing pressure of nanopollutants commonly combined with warming due to the seasonal temperature cycles and global climate change. To investigate the toxicological effects of TiO2 nanoparticles (TiO2 NPs) and elevated temperature on the intestinal health of the mussels (Mytilus coruscus), the mussels were exposed to 0.1 mg/L TiO2 NPs with different crystal structures for 14 days at 20 °C and 28 °C, respectively. Compared to 20 °C, the agglomeration of TiO2 NPs was more serious at 28 °C. Exposure to TiO2 NPs led to elevated mortality of M. coruscus and modified the intestinal microbial community as shown by 16S rRNA sequence analysis. Exposure to TiO2 NPs changed the relative abundance of Bacteroidetes, Proteobacteria and Firmicutes. The relative abundances of putative mutualistic symbionts Tenericutes and Fusobacteria increased in the gut of M. coruscus exposed to anatase, which have contributed to the lower mortality in this group. LEfSe showed the combined stress of warming and TiO2 NPs increased the risk of M. coruscus being infected with potential pathogenic bacteria. This study emphasizes the toxicity differences between crystal structures of TiO2 NPs, and will provides an important reference for analyzing the physiological and ecological effects of nanomaterial pollution on bivalves under the background of global climate change.
Collapse
Affiliation(s)
- Zhuoqing Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li'ang Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Inna Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Yueyong Shang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Waiho Khor
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Terengganu, Terengganu 20000, Malaysia
| | - James K H Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Lingang Special Area Marine Biomedical Innovation Platform, Shanghai 201306, China.
| |
Collapse
|
12
|
Wang S, Ma L, Chen L, Sokolova IM, Huang W, Li D, Hu M, Khan FU, Shang Y, Wang Y. The combined effects of phenanthrene and micro-/nanoplastics mixtures on the cellular stress responses of the thick-shell mussel Mytilus coruscus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122999. [PMID: 37995954 DOI: 10.1016/j.envpol.2023.122999] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Pollution with complex mixtures of contaminants including micro- and nano-plastics (MNPs) and organic pollutants like polycyclic aromatic hydrocarbons (PAH) poses a major threat to coastal marine ecosystems. Toxic mechanisms of contaminant mixtures are not well understood in marine organisms. We studied the effects of single and combined exposures to polycyclic aromatic hydrocarbon phenanthrene (Phe) and MNPs mixture with sizes of 70 nm, 5 μm and 100 μm on the immune health and oxidative stress parameters in the thick-shell mussel Mytilus coruscus. Immune cells (hemocytes) were more sensitive to the pollutant-induced oxidative stress than the gills. In hemocytes of co-exposed mussels, elevated mortality, lower lysosomal content, high production of reactive oxygen species (ROS) and decrease mitochondrial were found. Disparate responses of antioxidant enzymes in the hemolymph (e.g. increased superoxide dismutase (SOD) activity without a corresponding increase in catalase (CAT) in Phe exposures and an increase in CAT without a change in SOD in MNPs exposures) suggests misbalance of the antioxidant defense in the pollutant-exposed mussels. Gill lacked pronounced oxidative stress response showing a decline in ROS and antioxidant levels. Tissue-specific single and combined effects of Phe and MNPs suggest variation in bioavailability and/or different sensitivity to these pollutants in the studied tissues. Notably, the combined effects of MNPs and Phe were additive or antagonistic, showing that MNPs do not enhance and occasionally mitigate the toxic effects of Phe on the hemocytes and the gills of the mussels. Overall, our study sheds light on the impact of long-term exposure to MNPs and Phe mixtures on mussels, showing high sensitivity of the immune system and modulation of the Phe toxicity by MNPs co-exposure. These findings that may have implications for understanding the impacts of combined PAH and MNPs pollution on the health of mussel populations from polluted coastal habitats.
Collapse
Affiliation(s)
- Shixiu Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Lukuo Ma
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Liming Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
13
|
Bordin ER, Ramsdorf WA, Lotti Domingos LM, de Souza Miranda LP, Mattoso Filho NP, Cestari MM. Ecotoxicological effects of zinc oxide nanoparticles (ZnO-NPs) on aquatic organisms: Current research and emerging trends. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119396. [PMID: 37890295 DOI: 10.1016/j.jenvman.2023.119396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
The rapid advancement of nanotechnology has contributed to the development of several products that are being released to the consumer market without careful analysis of their potential impact on the environment. Zinc oxide nanoparticles (ZnO-NPs) are used in several fields and are applied in consumer products, technological innovations, and biomedicine. In this sense, this study aims to compile existing knowledge regarding the effects of ZnO-NPs on non-target organisms, with the goal of ensuring the safety of human health and the environment. To achieve this objective, a systematic review of the available data on the toxicity of these nanomaterials to freshwater and marine/estuarine aquatic organisms was carried out. The findings indicate that freshwater invertebrates are the most commonly used organisms in ecotoxicological tests. The environmental sensitivity of the studied species was categorized as follows: invertebrates > bacteria > algae > vertebrates. Among the most sensitive species at each trophic level in freshwater and marine/estuarine environments are Daphnia magna and Paracentrotus lividus; Escherichia coli and Vibrio fischeri; Scenedesmus obliquus and Isochrysis galbana; and Danio rerio and Rutilus caspicus. The primary mechanisms responsible for the toxicity of ZnO-NPs involve the release of Zn2+ ions and the generation of reactive oxygen species (ROS). Thus, the biosynthesis of ZnO-NPs has been presented as a less toxic form of production, although it requires further investigation. Therefore, the synthesis of the information presented in this review can help to decide which organisms and which exposure concentrations are suitable for estimating the toxicity of nanomaterials in aquatic ecosystems. It is expected that this information will serve as a foundation for future research aimed at reducing the reliance on animals in ecotoxicological testing, aligning with the goal of promoting the sustainable advancement of nanotechnology.
Collapse
Affiliation(s)
| | - Wanessa Algarte Ramsdorf
- Department of Chemistry and Biology, Federal University of Technology (UTFPR), Curitiba, PR, Brazil
| | | | | | | | | |
Collapse
|
14
|
Sanpradit P, Byeon E, Lee JS, Peerakietkhajorn S. Ecotoxicological, ecophysiological, and mechanistic studies on zinc oxide (ZnO) toxicity in freshwater environment. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109720. [PMID: 37586582 DOI: 10.1016/j.cbpc.2023.109720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
The world has faced climate change that affects hydrology and thermal systems in the aquatic environment resulting in temperature changes, which directly affect the aquatic ecosystem. Elevated water temperature influences the physico-chemical properties of chemicals in freshwater ecosystems leading to disturbing living organisms. Owing to the industrial revolution, the mass production of zinc oxide (ZnO) has been led to contaminated environments, and therefore, the toxicological effects of ZnO become more concerning under climate change scenarios. A comprehensive understanding of its toxicity influenced by main factors driven by climate change is indispensable. This review summarized the detrimental effects of ZnO with a single ZnO exposure and combined it with key climate change-associated factors in many aspects (i.e., oxidative stress, energy reserves, behavior and life history traits). Moreover, this review tried to point out ZnO kinetic behavior and corresponding mechanisms which pose a problem of observed detrimental effects correlated with the alteration of elevated temperature.
Collapse
Affiliation(s)
- Paweena Sanpradit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Saranya Peerakietkhajorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
15
|
Xu L, Wang Y, Lin S, Li H, Qi P, Buttino I, Wang W, Guo B. Insights into the Response in Digestive Gland of Mytilus coruscus under Heat Stress Using TMT-Based Proteomics. Animals (Basel) 2023; 13:2248. [PMID: 37508026 PMCID: PMC10376264 DOI: 10.3390/ani13142248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Ocean warming can cause injury and death in mussels and is believed to be one of the main reasons for extensive die-offs of mussel populations worldwide. However, the biological processes by which mussels respond to heat stress are still unclear. In this study, we conducted an analysis of enzyme activity and TMT-labelled based proteomic in the digestive gland tissue of Mytilus coruscus after exposure to high temperatures. Our results showed that the activities of superoxide dismutase, acid phosphatase, lactate dehydrogenase, and cellular content of lysozyme were significantly changed in response to heat stress. Furthermore, many differentially expressed proteins involved in nutrient digestion and absorption, p53, MAPK, apoptosis, and energy metabolism were activated post-heat stress. These results suggest that M. coruscus can respond to heat stress through the antioxidant system, the immune system, and anaerobic respiration. Additionally, M. coruscus may use fat, leucine, and isoleucine to meet energy requirements under high temperature stress via the TCA cycle pathway. These findings provide a useful reference for further exploration of the response mechanism to heat stress in marine mollusks.
Collapse
Affiliation(s)
- Lezhong Xu
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yuxia Wang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shuangrui Lin
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hongfei Li
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Pengzhi Qi
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research ISPRA, Via del Cedro n.38, 57122 Livorno, Italy
| | - Weifeng Wang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Baoying Guo
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
16
|
Duan Z, Wang J, Zhang H, Wang Y, Chen Y, Cong J, Gong Z, Sun H, Wang L. Elevated temperature decreases cardiovascular toxicity of nanoplastics but adds to their lethality: A case study during zebrafish (Danio rerio) development. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131679. [PMID: 37421853 DOI: 10.1016/j.jhazmat.2023.131679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/13/2023] [Accepted: 05/21/2023] [Indexed: 07/10/2023]
Abstract
To highlight the key role of global warming on the toxicity of contaminants, the cardiovascular toxicity of nanoparticles (NPs) was estimated in developing zebrafish (Danio rerio) at different exposure temperatures, and the toxicity mechanisms were explored via multi-omic analyses. Polystyrene NPs (50 nm) at 0.1 mg·L-1 entered zebrafish embryos at 24 h post-fertilization and caused cardiovascular toxicity in the developing zebrafish at 27 ℃. This was explained by the down-regulation of the branched-chain amino acid and insulin signaling pathways owing to induced oxidative stress. Elevated exposure temperatures promoted the accumulation of NPs in developing zebrafish, increased the levels of oxidative stress and enhanced the oxidative phosphorylation rate in mitochondria, thus resulting in an additive effect on the mortality of zebrafish larvae. Notably, elevated exposure temperatures reduced the cardiovascular toxicity of NPs, as the effective concentration of NPs for inhibiting embryonic heartbeat rate increased from 0.1 mg·L-1 at 27 ℃ to 1.0 mg·L-1 at 30 ℃. Experiments of transgenic zebrafish Tg(myl7:GFP) and multi-omic analyses revealed that elevated temperatures enhanced the myocardial contractility of larvae, thus reducing the cardiovascular toxicity of NPs. However, the health risks of enhanced myocardial contraction caused by NP exposure at elevated temperatures requires further consideration.
Collapse
Affiliation(s)
- Zhenghua Duan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jing Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Haihong Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yudi Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yizhuo Chen
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jiaoyue Cong
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Hongwen Sun
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
17
|
Bruhns T, Timm S, Sokolova IM. Metabolomics-based assessment of nanoparticles (nZnO) toxicity in an infaunal marine annelid, the lugworm Arenicola marina (Annelida: Sedentaria). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160039. [PMID: 36356734 DOI: 10.1016/j.scitotenv.2022.160039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Nanopollutants such as nZnO gain importance as contaminants of emerging concern due to their high production volume and potential toxicity. Coastal sediments serve as sinks for nanoparticles but the impacts and the toxicity mechanisms of nZnO in sediment-dwelling organisms are not well understood. We used metabolomics to assess the effects of nZnO-contaminated sediments on a benthic ecosystem engineer, an infaunal polychaete Arenicola marina. The worms were exposed to unpolluted (control) sediment or to the sediment spiked with 100 or 1000 μg Zn kg-1 of nZnO. Oxidative lesions (lipid peroxidation and protein carbonyls) were measured in the body wall as traditional biomarkers of nanopollutant toxicity. Metabolite profiles (including amino acids, tricarboxylic acid (TCA) cycle and urea cycle intermediates) were determined in the body wall and the coelomic fluid. Exposure to nZnO altered metabolism of the lugworms via suppression of the metabolism of gluconeogenic and aromatic amino acids, and altered the TCA cycle likely via suppression of fumarase activity. These metabolic changes may negatively affect carbohydrate metabolism and energy storage, and impair hormonal signaling in the worms. The total pool of free amino acids was depleted in nZnO exposures with potentially negative consequences for osmoregulation and protein synthesis. Exposure to nZnO led to accumulation of the lipid peroxidation products demonstrating high susceptibility of the cellular membranes to nZnO-induced oxidative stress. The nZnO-induced shifts in the metabolite profiles were more pronounced in the coelomic fluid than the body wall. This finding emphasizes the important metabolic role of the coelomic fluid as well as its suitability for assessing the toxic impacts of nZnO and other metabolic disruptors. The metabolic disruptions caused by environmentally relevant concentrations of nZnO can have negative effects on the organisms' fitness impairing growth and reproduction of the populations of marine bioturbators like the lugworms in nanoparticle-polluted sediments.
Collapse
Affiliation(s)
- Torben Bruhns
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Stefan Timm
- Department of Plant Physiology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
18
|
Wang YX, Lin SR, Xu LZ, Ye YY, Qi PZ, Wang WF, Buttino I, Li HF, Guo BY. Comparative transcriptomic analysis revealed changes in multiple signaling pathways involved in protein degradation in the digestive gland of Mytilus coruscus during high-temperatures. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101060. [PMID: 36731219 DOI: 10.1016/j.cbd.2023.101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
As a result of global warming, the Mytilus coruscus living attached in the intertidal zone experience extreme and fluctuating changes in temperature, and extreme temperature changes are causing mass mortality of intertidal species. This study explores the transcriptional response of M. coruscus at different temperatures (18 °C, 26 °C, and 33 °C) and different times (0, 12, and 24 h) of action by analyzing the potential temperature of the intertidal zone. In response to high temperatures, several signaling pathways in M. coruscus, ribosome, endocytosis, endoplasmic reticulum stress, protein degradation, and lysosomes, interact to counter the adverse effects of high temperatures on protein homeostasis. Increased expression of key genes, including heat shock proteins (Hsp70, Hsp20, and Hsp110), Lysosome-associated membrane glycoprotein (LAMP), endoplasmic reticulum chaperone (BiP), and baculoviral IAP repeat-containing protein 7 (BIRC7), may further mitigate the effects of heat stress and delay mortality in M. coruscus. These results reveal changes in multiple signaling pathways involved in protein degradation during high-temperature stress, which will contribute to our overall understanding of the molecular mechanisms underlying the response of M. coruscus to high-temperature stress.
Collapse
Affiliation(s)
- Yu-Xia Wang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Shuang-Rui Lin
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Le-Zhong Xu
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Ying-Ying Ye
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Peng-Zhi Qi
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Wei-Feng Wang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research ISPRA, Via del Cedro n.38, 57122 Livorno, Italy
| | - Hong-Fei Li
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China.
| | - Bao-Ying Guo
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China.
| |
Collapse
|
19
|
Falfushynska H, Wu F, Sokolov EP, Sokolova IM. Salinity variation modulates cellular stress response to ZnO nanoparticles in a sentinel marine bivalve, the blue mussel Mytilussp. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105834. [PMID: 36521302 DOI: 10.1016/j.marenvres.2022.105834] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Zinc oxide nanoparticles are released into marine environments from industrial, medical and consumer uses sparking concerns about their potential ecotoxicological effects. Ecological hazard assessment of nZnO in marine ecosystems is hindered by the lack of understanding of the potential interactive effects of nZnO toxicity with other common abiotic stressors, such as salinity fluctuations, in marine organisms. To close this gap in our knowledge, we carried out a comprehensive biomarker-based assessment of the combined effects of salinity and nZnO in a sentinel marine bivalve, the blue mussels Mytilus edulis. The mussels were exposed for 21 days to clean seawater (control), an environmentally relevant concentration (100 μg Zn l-1) of nZnO or dissolved Zn (to identify the toxic effects attributable to Zn2+ toxicity) under the normal (15), low (5) and fluctuating (5-15) salinity regimes. The selected molecular and biochemical markers focused on the oxidative stress, apoptosis, detoxification system and inflammation in the gills and the digestive gland of the mussels. Biomarker analysis showed different effects of nZnO and dissolved Zn on biomarkers of oxidative stress, xenobiotic detoxification and apoptosis but similar effects of both pollutants on the levels of metallothioneins and inflammatory markers. Exposure to nZnO led to elevated levels of lipid peroxidation, upregulation of p53 and p38 stress kinases and apoptosis-related genes, most notably in the gills. Exposure to dissolved Zn led to accumulation of protein carbonyls and activated redox-sensitive detoxification enzymes (NADPH-P450 reductase and glutathione-S-transferase) in the mussels. The ambient salinity had significant effects the cellular adverse effects of nZnO in the mussels. The nZnO-induced cellular stress was detectable under the normal (15) and fluctuating (5-15) salinity conditions in the studied brackish water population of the mussels. At low salinity (5), nZnO toxicity signal was almost completely dampened. These findings indicate that chronic osmotic stress close to the tolerance limits of M. edulis prevails over the effects of the environmentally relevant nZnO and dissolved Zn concentrations in combined exposures. These stressor interactions might ameliorate the cellular toxicity of nZnO in the mussels but limit applicability of cellular stress biomarkers for detecting the toxic effects of nanopollutants in low salinity habitats.
Collapse
Affiliation(s)
- Halina Falfushynska
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Anhalt University of Applied Sciences, Köthen, Germany
| | - Fangli Wu
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz ScienceCampus Phosphorus Research Rostock, Warnemünde, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
20
|
Zhang H, Chen Y, Wang J, Wang Y, Wang L, Duan Z. Effects of temperature on the toxicity of waterborne nanoparticles under global warming: Facts and mechanisms. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105757. [PMID: 36208504 DOI: 10.1016/j.marenvres.2022.105757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Global climate change is predicted to increase the average temperature of aquatic environments. Temperature changes modulate the toxicity of emerging chemical contaminants, such as nanoparticles (NPs). However, current hazard assessments of waterborne NPs seldom consider the influence of temperature. In this review, we gathered and analyzed the effects of temperature on the toxicity of waterborne NPs in different organisms. There was a general decrease in bioavailability with increasing temperature in algae and plants due to NPs aggregation, thus, reducing their toxicities. However, the agglomerated large particles caused by the increase in temperature induce a shading effect and inhibit algal photosynthesis. The toxicity of NPs in microorganisms and aquatic animals increases with increasing temperature. This may be due to the significant influence of high temperature on the uptake and excretion of chemicals across membranes, which increase the production of reactive oxygen species and enhance oxidative damage to organisms. High temperature also affect the formation and composition of a protein corona on NPs, altering their toxicity. Our results provide new insights into the toxicity of NPs in the context of global warming, and highlight the deficiencies of current research on NPs.
Collapse
Affiliation(s)
- Haihong Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yizhuo Chen
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jing Wang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yudi Wang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Lei Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhenghua Duan
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China; College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
21
|
Weng N, Meng J, Huo S, Wu F, Wang WX. Hemocytes of bivalve mollusks as cellular models in toxicological studies of metals and metal-based nanomaterials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120082. [PMID: 36057327 DOI: 10.1016/j.envpol.2022.120082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/05/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Understanding the impacts of environmental pollutants on immune systems is indispensable in ecological and health risk assessments due to the significance of normal immunological functions in all living organisms. Bivalves as sentinel organisms with vital ecological importance are widely distributed in aquatic environments and their innate immune systems are the sensitive targets of environmental pollutants. As the central component of innate immunity, bivalve hemocytes are endowed with specialized endolysosomal systems for particle internalization and metal detoxification. These intrinsic biological features make them a unique cellular model for metal- and nano-immunotoxicology research. In this review, we firstly provided a general overview of bivalve's innate immunity and the classification and immune functions of hemocytes. We then summarized the recent progress on the interactions of metals and nanoparticles with bivalve hemocytes, with emphasis on the involvement of hemocytes in metal regulation and detoxification, the interactions of hemocytes and nanoparticles at eco/bio-nano interface and hemocyte-mediated immune responses to the exposure of metals and nanoparticles. Finally, we proposed the key knowledge gaps and future research priorities in deciphering the fundamental biological processes of the interactions of environmental pollutants with the innate immune system of bivalves as well as in developing bivalve hemocytes into a promising cellular model for nano-immuno-safety assessment.
Collapse
Affiliation(s)
- Nanyan Weng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Shouliang Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
22
|
Nano-ecotoxicology in a changing ocean. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
AbstractThe ocean faces an era of change, driven in large by the release of anthropogenic CO2, and the unprecedented entry of pollutants into the water column. Nanomaterials, those particles < 100 nm, represent an emerging contaminant of environmental concern. Research on the ecotoxicology and fate of nanomaterials in the natural environment has increased substantially in recent years. However, commonly such research does not consider the wider environmental changes that are occurring in the ocean, i.e., ocean warming and acidification, and occurrence of co-contaminants. In this review, the current literature available on the combined impacts of nanomaterial exposure and (i) ocean warming, (ii) ocean acidification, (iii) co-contaminant stress, upon marine biota is explored. Here, it is identified that largely co-stressors influence nanomaterial ecotoxicity by altering their fate and behaviour in the water column, thus altering their bioavailability to marine organisms. By acting in this way, such stressors, are able to mitigate or elevate toxic effects of nanomaterials in a material-specific manner. However, current evidence is limited to a relatively small set of test materials and model organisms. Indeed, data is biased towards effects upon marine bivalve species. In future, expanding studies to involve other ecologically significant taxonomic groups, primarily marine phytoplankton will be highly beneficial. Although limited in number, the available evidence highlights the importance of considering co-occurring environmental changes in ecotoxicological research, as it is likely in the natural environment, the material of interest will not be the sole stressor encountered by biota. As such, research examining ecotoxicology alongside co-occurring environmental stressors is essential to effectively evaluating risk and develop effective long-term management strategies.
Collapse
|
23
|
Wu F, Sokolov EP, Khomich A, Fettkenhauer C, Schnell G, Seitz H, Sokolova IM. Interactive effects of ZnO nanoparticles and temperature on molecular and cellular stress responses of the blue mussel Mytilus edulis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151785. [PMID: 34808156 DOI: 10.1016/j.scitotenv.2021.151785] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/04/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Temperature is an important abiotic factor that modulates all aspects of ectotherm physiology, including sensitivity to pollutants. Nanoparticles are emerging pollutants in coastal environments, and their potential to cause toxicity in marine organisms is a cause for concern. Here we studied the interactive effects of temperature (including seasonal and experimental warming) on sublethal toxicity of ZnO nanoparticles (nano-ZnO) in a model marine bivalve, the blue mussel Mytilus edulis. Molecular markers were used to assess the pollutant-induced cellular stress responses in the gills and the digestive gland of mussels exposed for 21 days to 10 μg l-1 and 100 μg l-1 of nano-ZnO or dissolved Zn under different temperature regimes including ambient temperature (10 °C and 15 °C in winter and summer, respectively) or experimental warming (+5 °C). Exposure to high concentration (100 μg l-1) of nano-ZnO caused oxidative injury to proteins and lipids and induced a marked apoptotic response indicated by increased transcript levels of apoptosis-related genes p53, caspase 3 and the MAPK pathway (JNK and p38) and decreased mRNA expression of anti-apoptotic Bcl-2. No significant induction of inflammatory cytokine-related response (TGF-β and NF-κB) of tissues was observed in nano-ZnO exposed-mussels. Furthermore, the oxidative injury and apoptotic response could differentiate the effects of nano-ZnO from those of dissolved Zn in the mussels. This study revealed that oxidative stress and stress-related transcriptional responses to nano-ZnO were strongly modified by warming and season in the mussels. No single biomarker could be shown to consistently respond to nano-ZnO in all experimental groups, which implies that multiple biomarkers are needed to assess nano-ZnO toxicity to marine organisms under the variable environmental conditions of coastal habitats.
Collapse
Affiliation(s)
- Fangli Wu
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz Science Campus Phosphorus Research Rostock, Warnemünde, Germany
| | - Andrei Khomich
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; International Sakharov Environmental Institute of Belarusian State University, Minsk, Belarus
| | | | - Georg Schnell
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Hermann Seitz
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany; Department Life, Light & Matter, University of Rostock, Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|