1
|
Malekzadeh M, Dehghanzadeh R, Ebrahimi SM, Sarbakhsh P, Fathifar Z, Aslani H. Occurrence, sampling, identification and characterization of microplastics in tap water: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118347. [PMID: 40393317 DOI: 10.1016/j.ecoenv.2025.118347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 05/16/2025] [Accepted: 05/16/2025] [Indexed: 05/22/2025]
Abstract
Identifying microplastics (MPs) in tap water has recently attracted considerable attention. The present study aimed to systematically review MPs contamination and characteristics in tap water. All techniques used for sampling, processing, and analyzing MPs in tap water were also assessed. Furthermore, the characteristics of MPs, including abundance, type, color, and shape, were summarized. Various databases, including Web of Science, PubMed, ScienceDirect, Scopus, Springer, and MDPI, were searched to find published articles up to January 2025. The occurrence of MPs in tap water was meta-analyzed using a random-effects model. A total of 6100 articles were found, of which 43 were included in the systematic review. The results indicated that the pooled mean concentration of MPs in tap water was 56.98 particles per liter (P/L). Manual sampling with a sample volume of less than 1 liter was most commonly used, and microscopic, Raman, and Fourier-transform infrared spectroscopy (FTIR) methods were frequently applied for extracting and identifying MPs. The most abundant polymer identified was polyethylene (PE), followed by polyethylene terephthalate (PET) and polypropylene (PP). Fibers and fragments were the dominant forms of MPs found in water. The lack of a harmonized protocol and the difficulty in validating MP analysis methods in tap water have led to inconsistent and sometimes contradictory results, making comparisons unreliable. The findings of this systematic review can support the development of a comprehensive protocol and promote standardized, harmonized methods for MP analysis in tap water.
Collapse
Affiliation(s)
- Masoumeh Malekzadeh
- Department of Environmental Health Engineering, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Dehghanzadeh
- Reza Dehghanzadeh, Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyedeh Masoumeh Ebrahimi
- Department of Environmental Health Engineering, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Parvin Sarbakhsh
- Parvin Sarbakhsh, Epidemiology and Biostatistics Department, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zahra Fathifar
- Zahra Fathifar, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hassan Aslani
- Reza Dehghanzadeh, Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Wei J, Yan B, Wang C, Liu F, Zhang Y. Assessment of suspended atmospheric microplastics in Tianjin Binhai New Area: characterization, human health risks, and correlation with weather conditions and Air Quality Index. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:658. [PMID: 40379872 DOI: 10.1007/s10661-025-14110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 05/11/2025] [Indexed: 05/19/2025]
Abstract
Suspended atmospheric microplastics (SAMPs), as a critical component of environmental microplastic pollution, have garnered substantial scientific interest. The characterization of SAMPs in urban environments, as well as the potential risks on health, continues to be a topic of significant research interest. This study provides a comprehensive report on the presence of SAMPs in the Binhai New Area of Tianjin, China, based on samples collected during the autumn and winter of 2023-2024 using a medium-flow total suspended particulate (TSP) sampler at a monitoring station. Microplastics were detected in all samples, with concentrations ranging from 0.2 to 1.8 items/m3 in autumn and from 0.1 to 1.1 items/m3 in winter, and a total mean of 0.6 ± 0.4 items/m3. Particle sizes spanned 12.28-3248.58 µm, with fibrous shapes dominating the morphological composition. Observed colors included black, blue, yellow, transparent, red, and green, with black microplastics being the most prevalent. These SAMPs were composed of polyethylene terephthalate, polyethylene, rayon, polypropylene, and ethylene-ethyl acrylate copolymer. A risk assessment indicated that residents of Binhai New Area, Tianjin City, face a measurable health risk from microplastic exposure. Significant correlations were identified between SAMPs and dew point temperature as well as relative humidity in the autumn. In the winter, significant correlations were observed between the abundance of SAMPs and ground barometric pressure and wind velocity. Weak negative correlations were observed between SAMP abundances and the Air Quality Index (AQI) in both seasons Future research will utilize more advanced technologies and establish a global monitoring network to further explore the sources, distribution, and impacts of atmospheric microplastics.
Collapse
Affiliation(s)
- Jiayu Wei
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Bo Yan
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin, 300457, People's Republic of China.
- Tianjin Marine Environmental Protection and Restoration Technology Engineering Center, Tianjin, 300457, People's Republic of China.
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin, 300457, People's Republic of China.
| | - Chunyan Wang
- Hebi Institute of Engineering and Technology, Henan Polytechnic University, Hebi, Henan, 458000, People's Republic of China
| | - Fengxu Liu
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Yue Zhang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| |
Collapse
|
3
|
Maliwan T, Hu J. Release of microplastics from polymeric ultrafiltration membrane system for drinking water treatment under different operating conditions. WATER RESEARCH 2025; 274:123047. [PMID: 39740326 DOI: 10.1016/j.watres.2024.123047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/04/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
Drinking water has emerged as an important route for microplastics (MPs) to enter the human body, prompting concerns about their adverse health impacts. Membrane filtration technology is widely recognized as an effective treatment solution for combating MP pollution in water. However, recent research disputes that polymeric membrane systems may serve as additional sources of MPs in drinking water. The aim of this research is to investigate MP release from ultrafiltration membrane systems under different operating conditions by providing concrete evidence, identifying the operational factors contributing to the release, and elucidating the underlying possible mechanisms. Two key pieces of evidence were found to support the assertion that MPs were released from membrane systems, i.e., negative removal efficiency and an alteration in MP compositions observed between feed and permeate samples. Surprisingly, the MPs released from the membrane system originated not only from the membrane material and its additives but also from plastic-made equipment and even the other polymers used in the system. Overall results reveal that destructive activities such as shear stress, mechanical abrasion, and chemical oxidation processes, along with the carrying of MPs from external sources, are identified as potential mechanisms driving the concentration increase and polymer composition shift of MPs in permeate water. This study enhances an understanding of MP pollution in drinking water caused by membrane technology, potentially spurring the development of mitigation strategies for this issue.
Collapse
Affiliation(s)
- Thitiwut Maliwan
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Jiangyong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
4
|
Shokunbi OS, Makanju F, Nneoma J, Shokunbi OS. From source to distribution channel: A baseline study of microplastic occurrence in drinking water in Ogun State, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:438. [PMID: 40108087 DOI: 10.1007/s10661-025-13929-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Microplastics (MPs) are emerging contaminants known to have contaminated not only surface and groundwater but also drinking water treatment plants (DWTPs) and tap water. Little is known about the occurrence of MPs in DWTPs in Africa, particularly in developing countries like Nigeria. To address this knowledge gap, this study investigated the prevalence and estimated daily intake of MPs in raw water, DWTPs, and tap water in a semi-urban area in Ogun State, Nigeria. Using Rose Bengal staining and optical microscopy, MPs in water samples were identified and characterised using standard methods. The abundances of MPs were 16.13 ± 3.83 particles/L in raw water, 10.74 ± 3.76 particles/L in treated water, and 12.43 ± 3.92 particles/L in tap water. Most of the MPs found in the water samples were classified as fibres, followed by fragments, with a size of < 1 mm. This study showed that the drinking water treatment plant reduced microplastics from raw water by 40%, however, there was an increase in the abundance of MPs in tap water. Residents estimated daily consumption of MPs from tap water varied between 0.31 and 0.44 particles for adults and between 1.2 and 1.69 particles for children. This study addresses a critical gap in understanding microplastic pollution in the water distribution systems and DWTPs. The results also indicated that MPs were not effectively removed, requiring a more sophisticated treatment method to lower human exposure to MPs through drinking water from DWTPs.
Collapse
Affiliation(s)
- Oluwatosin Sarah Shokunbi
- Department of Basic Sciences, School of Science and Technology, Babcock University, Ilishan-Remo, Ogun State, Nigeria.
| | - Favour Makanju
- Department of Biochemistry, School of Basic Medical Sciences, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Joshua Nneoma
- Department of Biochemistry, School of Basic Medical Sciences, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Olutayo Sunday Shokunbi
- Department of Biochemistry, School of Basic Medical Sciences, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| |
Collapse
|
5
|
Li J, Peng Z, Zhao W, Chu X, Tian Y. Effects of polystyrene microplastics on the distribution behaviors and mechanisms of metalloid As(III) and As(V) on pipe scales in drinking water distribution systems. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136542. [PMID: 39591933 DOI: 10.1016/j.jhazmat.2024.136542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Pipe scales have long been considered the primary adsorption medium for trace heavy metals in drinking water distribution systems (DWDSs). Microplastics (MPs) potentially affect the distribution of metalloid arsenic (As) pollutants in DWDSs. Herein, the accumulation behaviors of As(Ⅲ) and As(V) on pipe scales and polystyrene microplastics (PSMPs) under different water conditions were studied. Additionally, As(Ⅲ) and As(V) accumulation behaviors on pipe scales coexisting with PSMPs were investigated. Results showed that pipe scales played a key role in the accumulation of As (pipe scales = 1.08-4.80 mg/g > PSMPs = 0.02-3.38 mg/g). The adsorption amount of As(Ⅲ) on PSMPs was higher than that of As(V). The addition of PSMPs promoted the accumulation of As(Ⅲ) on pipe scales at pH = 3-8 while inhibiting the accumulation of As(V) on pipe scales at pH = 3-10 due to the competitive adsorption. The oxidation of As(III) and the reduction of As(V) occurred during the accumulation of As(Ⅲ) and As(V) on pipe scales. Notably, PSMPs accumulated on pipe scales were beneficial to the oxidation of As(Ⅲ), potentially reducing the As-related risks. Overall, our results provide new insights into the hazards posed by MPs in DWDSs.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Southwest Municipal Engineering Design & Research Institute of China, Chengdu, Sichuan 610081, China
| | - Zhu Peng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Weigao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xianxian Chu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yimei Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
6
|
Yu R, Li P, Shen R. Collaborative removal of microplastics, bacteria, antibiotic resistance genes, and heavy metals in a full-scale wastewater treatment plant. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:438-452. [PMID: 40018901 DOI: 10.2166/wst.2025.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/28/2025] [Indexed: 03/01/2025]
Abstract
Plastics are used in large quantities in food packaging and industrial products in China, which results in ecological risks of microplastics (MPs) to the environment. In this study, the MPs' removal efficiency of a full-scale wastewater treatment plant (WWTP) and the internal interaction of microorganisms, antibiotic resistance genes (ARGs), and heavy metals with MPs were investigated. The dominant MPs in urban sewage were polyurethane (PU), acrylate copolymer (ACR), fluororubber, and polyethylene. MPs in wastewater were removed by WWTP with a total efficiency of 76%. The removal efficiencies of ACR, ethylene-vinyl acetate copolymer, polybutadiene, poly(tetrafluoroethylene), polystyrene, and polypropylene reached 100%. The highest concentration of MPs PU in the influent got a removal efficiency of 93.41%. The interactions between MPs, heavy metals, microorganisms, and ARGs involved adsorption, hydrogen bonds, coprecipitation, and polar interaction. Heavy metals and MPs formed larger aggregated particles, which were removed in the primary process. Heavy metals accumulated in sludge pose ecological risks to soil during landfill or compost to fertilizer. The release of MPs from WWTPs leads to accumulation in organisms and soil. It may affect the entire food chain and promote the transmission of ARGs in the environment, posing potential threats to the entire ecosystem.
Collapse
Affiliation(s)
- Ran Yu
- Department of Bioengineering, Beijing Polytechnic, Daxing District, Beijing 100176, China
| | - Peng Li
- Xinkai Environment Investment Co., Ltd, Tongzhou District, Beijing 101101, China; Beijing Zhiyu Tiancheng Design Consulting Co., Ltd, Tongzhou District, Beijing 101101, China E-mail:
| | - Rong Shen
- Department of Bioengineering, Beijing Polytechnic, Daxing District, Beijing 100176, China
| |
Collapse
|
7
|
Świetlik J, Magnucka M. Aging of drinking water transmission pipes during long-term operation as a potential source of nano- and microplastics. Int J Hyg Environ Health 2025; 263:114467. [PMID: 39306896 DOI: 10.1016/j.ijheh.2024.114467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 12/07/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) released into drinking water from transmission pipes can pose a potential health risk to consumers. This paper presents the results of a comprehensive study of PE and PVC pipes after long-term operation in drinking water distribution networks, which confirmed that degradable polymers can be a significant source of MPs. Both plastics age relatively quickly, and the degree of damage to the pipe surface depends on the time and operating conditions. During aging, polymer chains deteriorate, leading to a weakening of the structure and increased amorphousness of the plastics. As a result, the surfaces of PE and PVC crack and peel, resulting in the formation of particles with sizes corresponding to NP and MP with high potential for release into water. The magnitude of the phenomenon increases as the diameter of the pipes decreases, indicating that the most vulnerable customers are those at the ends of the network to which drinking water is supplied through small-diameter pipes. Aging PE and PVC pipes should be considered a real and very important source of MPs and NPs in drinking water, and water quality in this aspect should be monitored by manufacturers.
Collapse
Affiliation(s)
- Joanna Świetlik
- Adam Mickiewicz University, Faculty of Chemistry, Department of Analytical and Environmental Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| | - Marta Magnucka
- Adam Mickiewicz University, Faculty of Chemistry, Department of Analytical and Environmental Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
8
|
Bora SS, Gogoi R, Sharma MR, Anshu, Borah MP, Deka P, Bora J, Naorem RS, Das J, Teli AB. Microplastics and human health: unveiling the gut microbiome disruption and chronic disease risks. Front Cell Infect Microbiol 2024; 14:1492759. [PMID: 39669275 PMCID: PMC11635378 DOI: 10.3389/fcimb.2024.1492759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024] Open
Abstract
Microplastics (MPs), defined as plastic particles smaller than 5 mm, are increasingly recognized as environmental contaminants with potential health risks. These emerge as breakdown products of larger plastics and are omnipresent in marine, freshwater, and terrestrial ecosystems. They are primarily composed of polymers such as polyethylene, polypropylene, polystyrene, and additives that enhance their performance. MPs also adsorb harmful environmental chemicals like persistent organic pollutants and heavy metals, posing risks to human and environmental health. Human exposure to MPs occurs mainly through ingestion and inhalation, with MPs detected in food products, water, and even the air. MPs have been shown to accumulate in the gastrointestinal tract, disrupting the gut microbiome, and causing dysbiosis-a harmful imbalance between beneficial and harmful bacteria. This disruption has been linked to various health issues, including gastrointestinal disorders, systemic inflammation, and chronic diseases. Furthermore, the gut-brain axis may be affected, with potential neuroinflammatory consequences. As research continues to unravel the health impacts of MP exposure, understanding the mechanisms of accumulation and the broader implications on human health is crucial. This review highlights the effects of MPs on human health, emphasizing their impact on the gut microbiome. We discuss the potential connections between MP exposure and cardiometabolic and inflammatory diseases, and disorders related to the Gut-Brain Axis. By synthesizing the latest research, this work sheds light on the silent yet pervasive threat posed by MPs and underscores the importance of further studies to understand their health impacts fully.
Collapse
Affiliation(s)
- Sudipta Sankar Bora
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat, Assam, India
| | - Rahul Gogoi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Madhurjya Ranjan Sharma
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Anshu
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Madhurjya Protim Borah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu, India
| | - Priyadarshini Deka
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Jitul Bora
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Romen Singh Naorem
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat, Assam, India
| | - Jugabrata Das
- College of Horticulture and Farming System Research, Assam Agricultural University, Nalbari, Assam, India
| | - Anju Barhai Teli
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat, Assam, India
- Department of Biochemistry, Jorhat Medical College and Hospital, Jorhat, Assam, India
| |
Collapse
|
9
|
Xu C, Pan L, Zhai L, Wang W, Lu K, Zhu J, Xia G. The Detection and Analysis of Microplastics in a Typical Mountainous Drinking Water System in China. TOXICS 2024; 12:807. [PMID: 39590987 PMCID: PMC11598732 DOI: 10.3390/toxics12110807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Microplastics (MPs) are widely detected in urban drinking water systems. However, the presence and characteristics of MPs in mountainous drinking water systems with independent and simple filtration facilities have been overlooked. In this study, we revealed the ubiquity of MPs and demonstrated that their concentrations increased along with the pipeline length in Bainitan Village, Tiantai County, China. The simple filtration facility in this village did not effectively remove most MPs. Polyethylene, polyurethane, and polyethylene terephthalate were the dominant polymers in water samples (72.32% in total), while polyvinylchloride, polyurethane, and polyethylene were the most prevalent in the sediment (74.00% in total) of the reservoir. Long fragments were the predominant shape of MPs in all samples, with the majority being smaller than 100 μm. The estimated daily intake of MPs through drinking water ingestion was highest in infants (2.14-31.26 MPs/kg bw/day), compared to children (1.41-20.67 MPs/kg bw/day) and adults (1.05-15.35 MPs/kg bw/day), highlighting their increased vulnerability. This emphasizes the need for advanced water treatment systems in mountainous regions. It also underscores the necessity for government attention to improve water safety in remote areas. Our research will contribute valuable baseline data for further research on MP exposure, particularly in mountainous communities.
Collapse
Affiliation(s)
- Chaoxing Xu
- Institute of Environmental Engineering Technology, School of Life Sciences, Taizhou University, Taizhou 318000, China; (C.X.); (K.L.); (J.Z.)
- Taizhou Environmental Science Design and Research Institute Co., Ltd., Taizhou University, Taizhou 318000, China
| | - Lingzhen Pan
- Taizhou Jinghe Testing Technology Co., Ltd., Taizhou 318000, China; (L.P.); (L.Z.)
| | - Linfu Zhai
- Taizhou Jinghe Testing Technology Co., Ltd., Taizhou 318000, China; (L.P.); (L.Z.)
| | - Wenlong Wang
- Zhejiang Taicheng Environmental Technology Co., Ltd., Taizhou 318000, China;
| | - Kejia Lu
- Institute of Environmental Engineering Technology, School of Life Sciences, Taizhou University, Taizhou 318000, China; (C.X.); (K.L.); (J.Z.)
| | - Jianqiang Zhu
- Institute of Environmental Engineering Technology, School of Life Sciences, Taizhou University, Taizhou 318000, China; (C.X.); (K.L.); (J.Z.)
| | - Guanghua Xia
- Institute of Environmental Engineering Technology, School of Life Sciences, Taizhou University, Taizhou 318000, China; (C.X.); (K.L.); (J.Z.)
| |
Collapse
|
10
|
Nguyen TB, Ho TBC, Chen CW, Chen WH, Bui XT, Hsieh S, Dong CD. Enhancing the degradation of microplastics through combined KMnO 4 oxidation and UV radiation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122942. [PMID: 39427621 DOI: 10.1016/j.jenvman.2024.122942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
The pervasive issue of microplastics in aquatic environments presents a formidable challenge to traditional water treatment methodologies, including those utilizing KMnO4. This study pioneers advanced oxidation processes (AOPs) method aimed at improving the degradation of PE microplastics by employing a dual treatment strategy that combines KMnO4 oxidation with UV irradiation. Detailed analysis of the surface modifications and chemical functional groups of the treated PE microplastics revealed the establishment of Mn-O-Mn linkages on their surfaces. Weight reductions of 3.9%, 4.9%, and 7.5% were observed for the KMnO4/UVA, KMnO4/UVB, and KMnO4/UVC treatments over seven days, respectively. The emergence of carboxyl and hydroxyl groups played a crucial role in accelerating the degradation process. Notably, the combined application of UVC rays and KMnO4 resulted in the most effective degradation of PE microplastics observed in our study. The process significantly enhanced the formation of MnO2 particles from KMnO4 oxidation, with concentrations ranging from 0.036 to 0.070 mM for KMnO4/UVA, 0.066-0.097 mM for KMnO4/UVB, and 0.086-0.180 mM for KMnO4/UVC. Furthermore, the influence of varying pH levels, KMnO4 concentrations, and different water sources on the degradation efficacy was investigated. The pivotal role of free radicals and reactive manganese species in promoting the degradation of PE microplastics was identified. A comparative evaluation with treatments solely utilizing KMnO4 or UV light highlighted the enhanced effectiveness of the combined approach, demonstrating its potential as an efficient solution for reducing microplastic contamination in aquatic systems.
Collapse
Affiliation(s)
- Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Thi-Bao-Chau Ho
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc City, Ho Chi Minh City, 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, 700000, Viet Nam
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung City, 80424, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan.
| |
Collapse
|
11
|
Li X, Yu Y, Yang M, Wen S, Zhang J. Tracking Microplastics Contamination in Drinking Water Supply Chain in Haikou, China: From Source to Household Taps. TOXICS 2024; 12:793. [PMID: 39590973 PMCID: PMC11597948 DOI: 10.3390/toxics12110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
The presence of microplastics (MPs) in aquatic environments has become a significant global concern due to their potential adverse effects on human health. This study aimed to investigate the contamination of MPs throughout the drinking water supply chain in Haikou City, China, and to conduct risk assessments regarding the relationship between MPs contamination and human health. The results revealed that the abundance of MPs in raw, treated, and tap water was 0.6 ± 0.6, 5.2 ± 2.7, and 1.2 ± 1.1 particles·L-1, respectively. Fragments were identified as the most prevalent shape across all samples, with the size category of 20-50 μm showing the highest abundance of MPs. Among the 11 types of polymers identified, polyethylene and polypropylene accounted for 50% and 29%, respectively. The potential risk index values were significantly higher for treated water (370.26) and tap water (303.85) compared to raw water (13.46), suggesting that plastic pipes may be a key contributor to MPs contamination in drinking water. Therefore, efforts should be directed toward developing pipes with low release rates of MPs, as well as improving detection methods for smaller particles and accurately assessing associated risks.
Collapse
Affiliation(s)
- Xiangxiang Li
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (X.L.); (M.Y.)
- School of Public Health, Hainan Medical University, Haikou 571199, China
| | - Yihan Yu
- School of Stomatology, Hainan Medical University, Haikou 571199, China;
| | - Mei Yang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (X.L.); (M.Y.)
| | - Shaobai Wen
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (X.L.); (M.Y.)
| | - Jun Zhang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (X.L.); (M.Y.)
- School of Public Health, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
12
|
An R, Liu J, Chu X, Jiang M, Wu X, Tian Y, Zhao W. Polyamide 6 microplastics as carriers led to changes in the fate of bisphenol A and dibutyl phthalate in drinking water distribution systems: The role of adsorption and interfacial partitioning. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134997. [PMID: 38908188 DOI: 10.1016/j.jhazmat.2024.134997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
Microplastics (MPs) co-exist with plastic additives and other emerging pollutants in the drinking water distribution systems (DWDSs). Due to their strong adsorption capacity, MPs may influence the occurrence of additives in DWDSs. The article investigated the occurrence of typical additives bisphenol A (BPA) and dibutyl phthalate (DBP) in DWDSs under the influence of polyamide 6 (PA6) MPs and further discussed the partitioning of BPA/DBP on PA6s, filling a research gap regarding the impact of adsorption between contaminants on their occurrence within DWDSs. In this study, adsorption experiments of BPA/DBP with PA6s and pipe scales were conducted and their interaction mechanisms were investigated. Competitive adsorption experiments of BPA/DBP were also carried out with site energy distribution theory (SEDT) calculations. The results demonstrated that PA6s might contribute to the accumulation of BPA/DBP on pipe scales. The adsorption efficiencies of BPA/DBP with both PA6s and pipe scales were 26.47 and 2.61 times higher than those with only pipe scales. It was noteworthy that BPA had a synergistic effect on the adsorption of DBP on PA6s, resulting in a 26.47 % increase in DBP adsorption. The article provides valuable insights for the compounding effect of different types of additives in water quality monitoring and evaluation.
Collapse
Affiliation(s)
- Ruopan An
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Jing Liu
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Xianxian Chu
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Menghan Jiang
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Xiuli Wu
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Yimei Tian
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China.
| | - Weigao Zhao
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
13
|
Siwach S, Bharti M, Yadav S, Dolkar P, Modeel S, Yadav P, Negi T, Negi RK. Unveiling the ecotoxicological impact of microplastics on organisms - the persistent organic pollutant (POP): A comprehensive review. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104397. [PMID: 39059355 DOI: 10.1016/j.jconhyd.2024.104397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Microplastics have been ubiquitous in our environment for decades, and numerous studies have revealed their extensive dispersion, reaching far beyond the surface of the land, soil, aquatic ecosystems. They have infiltrated the food-chain, the food web, even the air we breathe, as well as the water we drink. Microplastics have been detected in the food we consume, acting as vectors for hazardous chemicals that adhere to their hydrophobic surfaces. This can result in the transfer of these chemicals to the aquatic life, posing a threat to their well-being. The release of microplastics into different environmental settings can give rise to various eco-toxicological implications. The substantial body of literature has led scientists to the consensus that microplastic pollution is a global problem with the potential to impact virtually any type of ecosystem. This paper aims to discuss crucial information regarding the occurrence, accumulation, and ecological effects of microplastics on organisms. It also highlights the new and emerging disease named "Plasticosis" that is directly linked to microplastics and its toxicological effects like permanent scarring and long-term inflammation in the digestive system of the seabirds. By comprehending the behaviour of these microplastic pollutants in diverse habitats and evaluating their ecological consequences, it becomes possible to facilitate a better understanding of this toxicological issue.
Collapse
Affiliation(s)
- Sneha Siwach
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Meghali Bharti
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Sheetal Yadav
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Padma Dolkar
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Sonakshi Modeel
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Pankaj Yadav
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Tarana Negi
- Government College, Dujana, Jhajjar, Haryana 124102, India
| | - Ram Krishan Negi
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India.
| |
Collapse
|
14
|
Cordeiro RDM, Cardoso VV, Carneiro RN, Almeida CMM. Validation of an FT-IR microscopy method for the monitorization of microplastics in water for human consumption in Portugal: Lisbon case study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33966-8. [PMID: 38922468 DOI: 10.1007/s11356-024-33966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024]
Abstract
The growing anthropogenic contamination of natural water by microplastics (MPs) confirms the urgent need to preserve this precious resource. MPs are part of the group of contaminants of emerging concern, and the occurrence studies in surface water and water for human consumption (WHC) are mandatory for environmental and human health risk assessment. This study aims to optimize and validate a Fourier transform infrared spectroscopy method coupled with optical microscopy (micro-FTIR) in transmission mode to monitor MPs in WHC. Water sample (250 mL; without sample pre-treatment) was filtered through 5 µm silicon filters. The infrared spectra identification was performed by OMNIC mathematical correlation, using various spectra libraries for polymers (including the in-house IR spectra library), a background reading on a clean silicon filter, and an aperture of 100 µm × 100 µm. The validated method showed good accuracy, with an average recovery for representative polymers of 91%, a relative standard deviation of 13%, and a reporting limit (RL) of 44 MPs/L. Sixty WHC samples from the Lisbon water supply system showed MPs ranging from 0 (< RL) to 934 MPs/L, with an average value of 309 MPs/L. The most representative polymers were polyethylene (PE, 76.8%), polyethylene terephthalate (PET, 6.9%), polypropylene (PP, 6%), polystyrene (PS, 4%), and polyamide (PA,4%). In terms of size, the microplastic particles had an average length and width of 76 µm and 39 µm, respectively.
Collapse
Affiliation(s)
| | - Vítor V Cardoso
- Empresa Portuguesa das Águas Livres, S.A. - EPAL, Direção de Laboratórios, Lisbon, Portugal
| | - Rui N Carneiro
- Empresa Portuguesa das Águas Livres, S.A. - EPAL, Direção de Laboratórios, Lisbon, Portugal
| | - Cristina M M Almeida
- iMed.UL, Faculdade de Farmácia da Universidade de Lisboa, Lisbon, Portugal.
- Laboratório de Bromatologia e Qualidade da Água, Faculdade de Farmácia da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
15
|
Zhang J, Ma W, Li Y, Zhong D, Zhou Z, Ma J. The resistance change and stress response mechanisms of chlorine-resistant bacteria under microplastic stress in drinking water distribution system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124331. [PMID: 38848962 DOI: 10.1016/j.envpol.2024.124331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The presence of both chlorine-resistant bacteria (CRB) and microplastics (MPs) in drinking water distribution systems (DWDS) poses a threat to water quality and human health. However, the risk of CRB bio evolution under the stress of MPs remains unclear. In this study, polypropylene (PP) and polyethylene (PE) were selected to study the adsorption and desorption behavior of sulfamethoxazole (SMX), and it was clear that MPs had the risk of carrying pollutants into DWDS and releasing them. The results of the antibiotic susceptibility test and disinfection experiment confirmed that MPs could enhance the resistance of CRB to antibiotics and disinfectants. Bacteria epigenetic resistance mechanisms were approached from multiple perspectives, including physiological and biochemical characteristics, as well as molecular regulatory networks. When MPs enter DWDS, CRB could attach to the surface of MPs and directly interact with both MPs and the antibiotics they release. This attachment process promoted changes in the composition and content of extracellular polymers (EPS) within cells, enhanced surface hydrophobicity, stimulated oxidative stress function, and notably elevated the relative abundance of certain antibiotic resistance genes (ARGs). This study elucidates the mechanism by which MPs alter the intrinsic properties of CRB, providing valuable insights into the effective avoidance of biological risks to water quality during CRB evolution.
Collapse
Affiliation(s)
- Jingna Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wencheng Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Chongqing Research Institute of HIT, Chongqing, 401151, China
| | - Yibing Li
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd, Wuhan, 430014, China
| | - Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Chongqing Research Institute of HIT, Chongqing, 401151, China.
| | - Ziyi Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
16
|
Chu X, Liu J, He N, Li J, Li T, Tian Y, Zhao P. Cu fate driven by colloidal polystyrene microplastics with pipe scale destabilization in drinking water distribution systems. WATER RESEARCH 2024; 256:121613. [PMID: 38663210 DOI: 10.1016/j.watres.2024.121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
Microplastics (MPs) and Cu have been detected in drinking water distribution systems (DWDSs). Investigating MP effects on Cu adsorption by pipe scales and concomitant variations of pipe scales was critical for improving the water quality, which remained unclear to date. Therefore, polystyrene microplastics (PSMPs) were adopted for the model MPs to determine their effects on Cu fate and pipe scale stabilization, containing batch adsorption, metal speciation extraction, and Cu release experiments. Findings demonstrated that complexation and electrostatic interactions were involved in Cu adsorption on pipe scales. PSMPs contributed to Cu adsorption via increasing negative charges of pipe scales and providing additional adsorption sites for Cu, which included the carrying and component effects of free and adsorbed PSMPs, respectively. The decreased iron and manganese oxides fraction (45.57 % to 29.91 %) and increased organic fraction (48.51 % to 63.58 %) of Cu in pipe scales when PSMPs were coexisting illustrated that PSMPs had a greater affinity for Cu than pipe scales and thus influenced its mobility. Additionally, the release of Cu could be facilitated by the coexisted PSMPs, with the destabilization of pipe scales. This study was the first to exhibit that Cu fate and pipe scale stabilization were impacted by MPs, providing new insight into MP hazards in DWDSs.
Collapse
Affiliation(s)
- Xianxian Chu
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jing Liu
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Nan He
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaxin Li
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tiantian Li
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yimei Tian
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Peng Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
17
|
Chandra S, Walsh KB. Microplastics in water: Occurrence, fate and removal. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104360. [PMID: 38729026 DOI: 10.1016/j.jconhyd.2024.104360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
A global study on tap water samples has found that up to 83% of these contained microplastic fibres. These findings raise concerns about their potential health risks. Ingested microplastic particles have already been associated with harmful effects in animals, which raise concerns about similar outcomes in humans. Microplastics are ubiquitous in the environment, commonly found disposed in landfills and waste sites. Within indoor environments, the common sources are synthetic textiles, plastic bottles, and packaging. From the various point sources, they are globally distributed through air and water and can enter humans through various pathways. The finding of microplastics in fresh snow in the Antarctic highlights just how widely they are dispersed. The behaviour and health risks from microplastic particles are strongly influenced by their physicochemical properties, which is why their surfaces are important. Surface interactions are also important in pollutant transport via adsorption onto the microplastic particles. Our review covers the latest findings in microplastics research including the latest statistics in their abundance, their occurrence and fate in the environment, the methods of reducing microplastics exposure and their removal. We conclude by proposing future research directions into more effective remediation methods including new technologies and sustainable green remediation methods that need to be explored to achieve success in microplastics removal from waters at large scale.
Collapse
Affiliation(s)
- Shaneel Chandra
- College of Science and Sustainability, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton North, QLD 4702, Australia; Coastal Marine Ecosystems Research Centre, Central Queensland University, Gladstone Marina Campus, Bryan Jordan Drive, Gladstone, QLD 4680, Australia.
| | - Kerry B Walsh
- College of Science and Sustainability, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton North, QLD 4702, Australia
| |
Collapse
|
18
|
Yang L, Kang S, Luo X, Wang Z. Microplastics in drinking water: A review on methods, occurrence, sources, and potential risks assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123857. [PMID: 38537794 DOI: 10.1016/j.envpol.2024.123857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/16/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Microplastics in drinking water captured widespread attention following reports of widespread detection around the world. Concerns have been raised about the potential adverse effects of microplastics in drinking water on human health. Given the widespread interest in this research topic, there is an urgent need to compile existing data and assess current knowledge. This paper provides a systematic review of studies on microplastics in drinking water, their evidence, key findings, knowledge gaps, and research needs. The data collected show that microplastics are widespread in drinking water, with large variations in reported concentrations. Standardized methodologies of sampling and analysis are urgently needed. There were more fibrous and fragmented microplastics, with the majority being <10 μm in size and composed of polyester, polyethylene, polypropylene, and polystyrene. Little attention has been paid to the color of microplastics. More research is needed to understand the occurrence and transfer of microplastics throughout the water supply chain and the treatment efficiency of drinking water treatment plants (DWTPs). Methods capable of analyzing microplastics <10 μm and nanoplastics are urgently needed. Potential ecological assessment models for microplastics currently in use need to be improved to take into account the complexity and specificity of microplastics.
Collapse
Affiliation(s)
- Ling Yang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xi Luo
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoqing Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
19
|
Ramaremisa G, Tutu H, Saad D. Detection and characterisation of microplastics in tap water from Gauteng, South Africa. CHEMOSPHERE 2024; 356:141903. [PMID: 38582157 DOI: 10.1016/j.chemosphere.2024.141903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
This study reports the presence, concentration, and characteristics of microplastics (MPs) in tap water in three suburbs in Gauteng Province in South Africa. Physical characterisation was conducted using stereomicroscopy and scanning electron microscopy following staining of MPs with the Rose Bengal dye. The concentrations of MPs in all samples ranged from 4.7 to 31 particles/L, with a mean of 14 ± 5.6 particles/L. Small-sized (<1 mm) and fibrous-shaped MPs were most abundant in all samples. Fibers accounted for 83.1% of MPs in samples from all the three areas, followed by fragments (12.4%), pellets/beads (3.1%), and films (1.5%), with a minor variation in the distribution of shapes and sizes in samples from each area. Raman microspectroscopy was used for chemical analysis, and five polymers were identified, namely: high-density polyethylene, polyurethane, polyethylene terephthalate, poly(hexamethylene terephtalamide), and poly(acrylamide-co-acrylic acid). C.I Pigment Red 1, C.I. Solvent Yellow 4, Potassium indigotetrasulphonate, and C.I Pigment Black 7 were the colourants detected. These colourants are carcinogenic and mutagenic and are potentially toxic to humans. The prevalence of MPs in tap water implies their inadequate removal during water treatment. For instance, the presence of poly(AM-co-AA) suggests that drinking water treatment plants may be a potential source of MPs in tap water. Other polymers, e.g., high-density polyethylene may be released from pipes during the transportation of drinking water. The estimated daily consumption of MPs from tap water was 1.2, 0.71, and 0.50 particles/kg.day for children, men, and women, respectively. The findings of this study provide evidence of the presence of MPs in drinking water in South Africa, thus giving some insights into the performance of treatment plants in removing these contaminants and a benchmark for the formulation of standard limits for the amount of MPs in drinking water.
Collapse
Affiliation(s)
- Gibbon Ramaremisa
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, South Africa
| | - Hlanganani Tutu
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, South Africa
| | - Dalia Saad
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, South Africa; Department of Chemistry, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
20
|
Mendonça I, Faria M, Rodrigues F, Cordeiro N. Microalgal-based industry vs. microplastic pollution: Current knowledge and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168414. [PMID: 37963529 DOI: 10.1016/j.scitotenv.2023.168414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023]
Abstract
Microalgae can play a crucial role in the environment due to their efficient capture of CO2 and their potential as a solution for a carbon-negative economy. Water quality is critical for the success and profitability of microalgal-based industries, and understanding their response to emergent pollutants, such as microplastics (MPs), is essential. Despite the published studies investigating the impact of MPs on microalgae, knowledge in this area remains limited. Most studies have mainly focused on microalgal growth, metabolite analysis, and photosynthetic activity, with significant discrepancies in what is known about the impact on biomass yield. Recent studies show that the yield of biomass production depends on the levels of water contamination by MPs, making it necessary to reduce the contamination levels in the water. However, present technologies for extracting and purifying water from MPs are limited, and further research and technological advancements are required. One promising solution is the use of bio-based polymer materials, such as bacterial cellulose, which offer biodegradability, cost-effectiveness, and environmentally friendly detoxifying properties. This review summarises the current knowledge on MPs pollution and its impact on the viability and proliferation of microalgae-based industries, highlights the need for further research, and discusses the potential of bio-solutions for MPs removal in microalgae-based industries.
Collapse
Affiliation(s)
- Ivana Mendonça
- LB3 - Faculty of Science and Engineering, University of Madeira, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Marisa Faria
- LB3 - Faculty of Science and Engineering, University of Madeira, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Filipa Rodrigues
- LB3 - Faculty of Science and Engineering, University of Madeira, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Nereida Cordeiro
- LB3 - Faculty of Science and Engineering, University of Madeira, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.
| |
Collapse
|
21
|
Priya AK, Muruganandam M, Imran M, Gill R, Vasudeva Reddy MR, Shkir M, Sayed MA, AlAbdulaal TH, Algarni H, Arif M, Jha NK, Sehgal SS. A study on managing plastic waste to tackle the worldwide plastic contamination and environmental remediation. CHEMOSPHERE 2023; 341:139979. [PMID: 37659517 DOI: 10.1016/j.chemosphere.2023.139979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/12/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Over the past 50 years, the emergence of plastic waste as one of the most urgent environmental problems in the world has given rise to several proposals to address the rising levels of contaminants associated with plastic debris. Worldwide plastic production has increased significantly over the last 70 years, reaching a record high of 359 million tonnes in 2020. China is currently the world's largest plastic producer, with a share of 17.5%. Of the total marine waste, microplastics account for 75%, while land-based pollution accounts for responsible for 80-90%, and ocean-based pollution 10-20% only in overall pollution problems. Even at small dosages (10 μg/mL), microplastics have been found to cause toxic effects on human and animal health. This review examines the sources of microplastic contamination, the prevalent reaches of microplastics, their impacts, and the remediation methods for microplastic contamination. This review explains the relationship between the community composition and the presence of microplastic particulate matter in aquatic ecosystems. The interaction between microplastics and emerging pollutants, including heavy metals, has been linked to enhanced toxicity. The review article provided a comprehensive overview of microplastic, including its fate, environmental toxicity, and possible remediation strategies. The results of our study are of great value as they illustrate a current perspective and provide an in-depth analysis of the current status of microplastics in development, their test requirements, and remediation technologies suitable for various environments.
Collapse
Affiliation(s)
- A K Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Tamilnadu, India; Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun, India.
| | - M Muruganandam
- Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun, India
| | - Muhammad Imran
- Saudi Basic Industries Corporation (SABIC) Technology and Innovation Center, Riyadh 11551, Saudi Arabia
| | - Rana Gill
- University Centre for Research & Development, Electronics & Communication Department Chandigarh University Gharuan, Mohali, Punjab, India
| | | | - Mohd Shkir
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia.
| | - M A Sayed
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - T H AlAbdulaal
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - H Algarni
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohd Arif
- Applied Science and Humanities Section, University Polytechnic, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi-110025, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India.
| | - Satbir S Sehgal
- Division of Research Innovation, Uttaranchal University, Dehradun, India
| |
Collapse
|
22
|
Yang X, Xu X, Zhou Y, Yao Y, Shen C, Liu J. Longitudinal and vertical distribution of microplastics in various pipe scales in an operating drinking water distribution system. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132108. [PMID: 37549578 DOI: 10.1016/j.jhazmat.2023.132108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023]
Abstract
Microplastics (MPs) are ingested by humans through the daily consumption of drinking water. Pipe scales are recognized as important sites of MPs occurrence in the drinking water distribution system (DWDS). Despite extensive research on drinking water, no study has been conducted to investigate the distribution of MPs in pipe scales within an operational DWDS. The underground placement of DWDSs brings challenges for sampling pipe scales. In this study, 5 tap water and 16 pipe scales samples were collected from a typical DWDS. The analysis of MPs abundance in these 21 samples filled the data gap in the distribution of MPs in both pipe scales and tap water along the DWDSs. MPs were detected in all water samples (1.74-20.88 MPs/L) and pipe scales samples (0.03-3.48 MPs/cm2). In tap water, MPs abundance increased abruptly in the stagnant-slow flow region and reached the maximum value (20.88 MPs/L), even surpassing the abundance in raw water (6.42 MPs/L). In the pipe scales, MPs abundance decreased from the upstream to downstream of DWDS and was associated with the heavy metal concentration. MPs smaller than 150 µm accounted for 91.6% of the tap water (21-971 µm) and pipe scales (20-2055 µm). The abundance of MPs showed a logarithmic increase as the size decreased. The proportion of MPs fibers in tap water was lower than that in pipe scales. A total of 35 MPs polymers were detected, with 34 polymers in pipe scales and 26 polymers in tap water. In terms of abundance, polyethylene terephthalate (50.0%) was the dominant polymer in pipe scales, while polyamide (70.3%) was the dominant polymer in tap water. Regarding detection rate, polyamide was detected in all 21 samples, followed by polyurethane in 19 samples. The distribution of MPs along the longitudinal direction of the DWDS was correlated with heavy metal. While the distribution of MPs in the vertical direction of large diameter pipe scales was dependent on their sizes, and densities. The greatest abundance, size and density of MPs were detected at the bottom 120-degree.
Collapse
Affiliation(s)
- Xinxin Yang
- Department of Municipal Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Xin Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yisu Zhou
- Department of Municipal Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Yixin Yao
- Department of Municipal Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingqing Liu
- Department of Municipal Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Stefan DS, Bosomoiu M, Teodorescu G. The Behavior of Polymeric Pipes in Drinking Water Distribution System-Comparison with Other Pipe Materials. Polymers (Basel) 2023; 15:3872. [PMID: 37835921 PMCID: PMC10575437 DOI: 10.3390/polym15193872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The inner walls of the drinking water distribution system (DWDS) are expected to be clean to ensure a safe quality of drinking water. Complex physical, chemical, and biological processes take place when water comes into contact with the pipe surface. This paper describes the impact of leaching different compounds from the water supply pipes into drinking water and subsequent risks. Among these compounds, there are heavy metals. It is necessary to prevent these metals from getting into the DWDS. Those compounds are susceptible to impacting the quality of the water delivered to the population either by leaching dangerous chemicals into water or by enhancing the development of microorganism growth on the pipe surface. The corrosion process of different pipe materials, scale formation mechanisms, and the impact of bacteria formed in corrosion layers are discussed. Water treatment processes and the pipe materials also affect the water composition. Pipe materials act differently in the flowing and stagnation conditions. Moreover, they age differently (e.g., metal-based pipes are subjected to corrosion while polymer-based pipes have a decreased mechanical resistance) and are susceptible to enhanced bacterial film formation. Water distribution pipes are a dynamic environment, therefore, the models that are used must consider the changes that occur over time. Mathematical modeling of the leaching process is complex and includes the description of corrosion development over time, correlated with a model for the biofilm formation and the disinfectants-corrosion products and disinfectants-biofilm interactions. The models used for these processes range from simple longitudinal dispersion models to Monte Carlo simulations and 3D modeling. This review helps to clarify what are the possible sources of compounds responsible for drinking water quality degradation. Additionally, it gives guidance on the measures that are needed to maintain stable and safe drinking water quality.
Collapse
Affiliation(s)
- Daniela Simina Stefan
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; (D.S.S.); (G.T.)
| | - Magdalena Bosomoiu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; (D.S.S.); (G.T.)
| | - Georgeta Teodorescu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; (D.S.S.); (G.T.)
- Doctoral School, Specialization of Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| |
Collapse
|
24
|
He H, Li F, Liu K, Zhan J, Wang X, Lai C, Yang X, Huang B, Pan X. The disinfectant residues promote the leaching of water contaminants from plastic pipe particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121577. [PMID: 37023886 DOI: 10.1016/j.envpol.2023.121577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Disinfection treatment is an indispensable water purification process, but it can leave trace concentrations of disinfectant in the purified water. Disinfectants oxidation can age plastic pipes and release hazardous microplastics and chemicals into drinking water. Lengths of commercially-available unplasticized polyvinyl chloride and polypropylene random copolymer water pipe were ground into particles and exposed to micro-molar concentrations of ClO2, NaClO, trichloroisocyanuric acid, or O3 for up to 75 days. The disinfectants aged the plastic and changed its surface morphology and functional groups. Meanwhile, disinfectants could significantly promote the release of organic matter from plastic pipes into the water. ClO2 generated the highest concentrations of organic matter in the leachates from both plastics. Plasticizers, antioxidants and low molecular weight organic matter were detected in all of the leachates. Leachate samples inhibited the proliferation of CT26 mouse colon cancer and induced oxidative stress in the cells. Even trace concentrations of residual disinfectant can constitute a drinking water risk.
Collapse
Affiliation(s)
- Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Fan Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Kunqian Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Juhong Zhan
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China
| | - Xiaoxia Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaoxia Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, China.
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, China
| |
Collapse
|
25
|
Râpă M, Darie-Niță RN, Matei E, Predescu AM, Berbecaru AC, Predescu C. Insights into Anthropogenic Micro- and Nanoplastic Accumulation in Drinking Water Sources and Their Potential Effects on Human Health. Polymers (Basel) 2023; 15:polym15112425. [PMID: 37299225 DOI: 10.3390/polym15112425] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Anthropogenic microplastics (MPs) and nanoplastics (NPs) are ubiquitous pollutants found in aquatic, food, soil and air environments. Recently, drinking water for human consumption has been considered a significant pathway for ingestion of such plastic pollutants. Most of the analytical methods developed for detection and identification of MPs have been established for particles with sizes > 10 μm, but new analytical approaches are required to identify NPs below 1 μm. This review aims to evaluate the most recent information on the release of MPs and NPs in water sources intended for human consumption, specifically tap water and commercial bottled water. The potential effects on human health of dermal exposure, inhalation, and ingestion of these particles were examined. Emerging technologies used to remove MPs and/or NPs from drinking water sources and their advantages and limitations were also assessed. The main findings showed that the MPs with sizes > 10 μm were completely removed from drinking water treatment plants (DWTPs). The smallest NP identified using pyrolysis-gas chromatography-mass spectrometry (Pyr-GC/MS) had a diameter of 58 nm. Contamination with MPs/NPs can occur during the distribution of tap water to consumers, as well as when opening and closing screw caps of bottled water or when using recycled plastic or glass bottles for drinking water. In conclusion, this comprehensive study emphasizes the importance of a unified approach to detect MPs and NPs in drinking water, as well as raising the awareness of regulators, policymakers and the public about the impact of these pollutants, which pose a human health risk.
Collapse
Affiliation(s)
- Maria Râpă
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Raluca Nicoleta Darie-Niță
- Physical Chemistry of Polymers Department, Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Ecaterina Matei
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Andra-Mihaela Predescu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Andrei-Constantin Berbecaru
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Cristian Predescu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| |
Collapse
|
26
|
Gálvez-Blanca V, Edo C, González-Pleiter M, Albentosa M, Bayo J, Beiras R, Fernández-Piñas F, Gago J, Gómez M, Gonzalez-Cascon R, Hernández-Borges J, Landaburu-Aguirre J, Martínez I, Muniategui-Lorenzo S, Romera-Castillo C, Rosal R. Occurrence and size distribution study of microplastics in household water from different cities in continental Spain and the Canary Islands. WATER RESEARCH 2023; 238:120044. [PMID: 37156103 DOI: 10.1016/j.watres.2023.120044] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
The purpose of this study was to investigate the occurrence of microplastics (MPs) in drinking water in Spain by comparing tap water from different locations using common sampling and identification procedures. We sampled tap water from 24 points in 8 different locations from continental Spain and the Canary Islands by means of 25 μm opening size steel filters coupled to household connections. All particles were measured and spectroscopically characterized including not only MPs but also particles consisting of natural materials with evidence of industrial processing, such as dyed natural fibres, referred insofar as artificial particles (APs). The average concentration of MPs was 12.5 ± 4.9 MPs/m3 and that of anthropogenic particles 32.2 ± 12.5 APs/m3. The main synthetic polymers detected were polyamide, polyester, and polypropylene, with lower counts of other polymers including the biopolymer poly(lactic acid). Particle size and mass distributions were parameterized by means of power law distributions, which allowed performing estimations of the concentration of smaller particles provided the same scaling parameter of the power law applies. The calculated total mass concentration of the identified MPs was 45.5 ng/L. The observed size distribution of MPs allowed an estimation for the concentration of nanoplastics (< 1 µm) well below the ng/L range; higher concentrations are not consistent with scale invariant fractal fragmentation. Our findings showed that MPs in the drinking water sampled in this work do not represent a significant way of exposure to MPs and would probably pose a negligible risk for human health.
Collapse
Affiliation(s)
- Virginia Gálvez-Blanca
- Department of Chemical Engineering, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Carlos Edo
- Department of Chemical Engineering, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Miguel González-Pleiter
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Marina Albentosa
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Calle Varadero, 1, 30740, San Pedro del Pinatar, Murcia, Spain
| | - Javier Bayo
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44, E-30203, Cartagena, Spain
| | - Ricardo Beiras
- entro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Ecology and Animal Biology, University of Vigo, Vigo, Galicia, Spain
| | - Francisca Fernández-Piñas
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid. C Darwin 2, 28049 Madrid, Spain
| | - Jesús Gago
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - May Gómez
- Grupo de Ecofisiología de Organismos Marinos (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Rosario Gonzalez-Cascon
- Department of Environment, National Institute for Agriculture and Food Research and Technology (INIA), 28040 Madrid, Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, Spain
| | | | - Ico Martínez
- Grupo de Ecofisiología de Organismos Marinos (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Soledad Muniategui-Lorenzo
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Department of Chemistry. Faculty of Sciences. A Coruña 15071, Spain
| | - Cristina Romera-Castillo
- Instituto de Ciencias del Mar-CSIC, Paseo Maritimo de la Barceloneta, 37, 08003, Barcelona, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
27
|
Acarer S. Abundance and characteristics of microplastics in drinking water treatment plants, distribution systems, water from refill kiosks, tap waters and bottled waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163866. [PMID: 37142004 DOI: 10.1016/j.scitotenv.2023.163866] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Limited research studies have revealed the presence of microplastics (MPs) of different polymer types, shapes, and sizes in drinking water sources, influents of drinking water treatment plants (DWTPs), effluents of DWTPs, tap water, and bottled water. Reviewing the available information on MP pollution in waters, which is becoming more worrying in correlation with the increasing plastic production in the world every year, is noteworthy for understanding the current situation, identifying the deficiencies in the studies, and taking the necessary measures for public health as soon as possible. Therefore, this paper, in which the abundance, characteristics, and removal efficiencies of MPs in the processes from raw water to tap water and/or bottled water are reviewed is a guide for dealing with MP pollution in drinking water. In this paper, firstly, the sources of MPs in raw waters are briefly reviewed. In addition, the abundance, and characteristics (polymer type, shape, and size) of MPs in influents and effluents of DWTPs in different countries are reviewed and the effects of treatment stages (coagulation, flocculation, sedimentation, sand filtration, disinfection, and membrane filtration) of DWTPs on MP removal efficiency and the factors that are effective in removal are discussed. Moreover, studies on the factors affecting MP release from drinking water distribution systems (DWDSs) to treated water and the abundance and characteristics of MPs in tap water, bottled water and water from refill kiosks are reviewed. Finally, the deficiencies in the studies dealing with MPs in drinking water were identified and recommendations for future studies are presented.
Collapse
Affiliation(s)
- Seren Acarer
- Department of Environmental Engineering, Faculty of Engineering, İstanbul University-Cerrahpaşa, Avcılar, 34320 İstanbul, Turkey.
| |
Collapse
|
28
|
Peng Z, Li J, Zhao W, Tian Y. Stability of arsenic(Ⅲ, Ⅴ) in galvanized steel pipe scales coexisting with colloidal polystyrene microplastics under drinking water conditions. CHEMOSPHERE 2023; 330:138762. [PMID: 37088206 DOI: 10.1016/j.chemosphere.2023.138762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
The stability of metalloid arsenic (As(Ⅲ)) and As(V) in corrosion scales of drinking water distribution systems (DWDS) is closely related to drinking water safety. The effects of colloidal microplastics entering the DWDS on the stability of As(Ⅲ) and As(V) have not been understood. This study investigated the migration and transformation behaviors of As (Ⅲ) and As(V) in the galvanized steel pipe scales employing speciation simulation and sequential extraction methods. The stability of As(Ⅲ) and As(V) in the pipe scales coexisting with colloidal polystyrene microplastics (CPMPs) under drinking water conditions was studied for the first time from the release behaviors and form distributions. Finally, the optimum water quality conditions for As(Ⅲ) and As(V) fixation were summarized. The existing forms of As(Ⅲ) and As(V) under different pH conditions, the competitive action of anions, and the hydrolysis of cations all would significantly affect the stability of As(Ⅲ) and As(V). Sequential extraction method results revealed that the content of As fractions increased in different forms after the pipe scales adsorbed As(Ⅲ) and As(V). The contents of As and iron (Fe) in the form of residual fractions increased in the presence of CPMPs. The effect of three cations on the stability of As(Ⅲ) and As(V) was Fe3+ > Zn2+ > Ca2+. Neutral to weak alkalescence, proper Cl- and cation concentrations were conducive to the fixation of As in DWDS. Notably, the presence of CPMPs could increase the stability of As(Ⅲ) and As(V) in corrosion scales, thus reducing the risk of metalloid As release in DWDS.
Collapse
Affiliation(s)
- Zhu Peng
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Jiaxin Li
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, China; Southwest Municipal Engineering Design & Research Institute of China, 11 Xinghui Middle Road, Jinniu District, Chengdu, Sichuan, 610081, China
| | - Weigao Zhao
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, China.
| | - Yimei Tian
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
29
|
Muhib MI, Uddin MK, Rahman MM, Malafaia G. Occurrence of microplastics in tap and bottled water, and food packaging: A narrative review on current knowledge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161274. [PMID: 36587673 DOI: 10.1016/j.scitotenv.2022.161274] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/08/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Nowadays, microplastic has been detected in many environmental samples, including aquatic and terrestrial environments. However, few studies recently have addressed their attention to microplastic contamination in different drinking sources and food packages. This review paper has narrated those few findings in brief. Literature showed that different pieces of microplastic fragments, e.g., polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyethylene (PE), high-density polyethylene (HDPE), low-density polyethylene (LDPE), etc. are detected in plastic drinking bottle, tap water, and food packaging containers. Microplastic fragmentation may be associated with mechanical stress, UV radiation, low plastic material quality, aging factor, and atmospheric deposition. Besides these, microplastic is a hub of different chemical compounds and can also retain other complex materials from the surroundings. This makes the microplastic contamination even more complicated and difficult to detect them accurately in a single method. Additionally, one of the common practices at the community level is the long-time repeated usage of plastic drinking bottles and food boxes that subsequently cause microplastic leaching and potential health threats to consumers. This narrative study summarizes the current scenario of microplastic contamination from drinking bottles and food containers and emphasizes doing more quality research in this subtle but highly imposed field to understand potential exposure better.
Collapse
Affiliation(s)
- Md Iftakharul Muhib
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Md Khabir Uddin
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh; Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh.
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
30
|
Antohi VM, Ionescu RV, Zlati ML, Iticescu C, Georgescu PL, Calmuc M. Regional Regression Correlation Model of Microplastic Water Pollution Control Using Circular Economy Tools. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4014. [PMID: 36901030 PMCID: PMC10002311 DOI: 10.3390/ijerph20054014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 06/12/2023]
Abstract
Water pollution caused by microplastics represents an important challenge for the environment and people's health. The weak international regulations and standards in this domain support increased water pollution with microplastics. The literature is unsuccessful in establishing a common approach regarding this subject. The main objective of this research is to develop a new approach to necessary policies and ways of action to decrease water pollution caused by microplastics. In this context, we quantified the impact of European water pollution caused by microplastics in the circular economy. The main research methods used in the paper are meta-analysis, statistical analysis and an econometric approach. A new econometric model is developed in order to assist the decision makers in increasing efficiency of public policies regarding water pollution elimination. The main result of this study relies on combining, in an integrated way, the Organisation for Economic Co-operation and Development's (OECD) data on microplastic water pollution and identifying relevant policies to combat this type of pollution.
Collapse
Affiliation(s)
- Valentin Marian Antohi
- Department of Business Administration, Dunarea de Jos University of Galati, 800001 Galati, Romania
- Department of Finance, Accounting and Economic Theory, Transylvania University of Brasov, 500036 Brasov, Romania
| | - Romeo Victor Ionescu
- Department of Administrative Sciences and Regional Studies, Dunarea de Jos University of Galati, 800201 Galati, Romania
| | - Monica Laura Zlati
- Department of Business Administration, Dunarea de Jos University of Galati, 800001 Galati, Romania
| | - Catalina Iticescu
- Department of Chemistry, Physics and Environment, REXDAN Research Infrastructure, Dunarea de Jos University of Galati, 800008 Galati, Romania
| | - Puiu Lucian Georgescu
- Department of Chemistry, Physics and Environment, REXDAN Research Infrastructure, Dunarea de Jos University of Galati, 800008 Galati, Romania
| | - Madalina Calmuc
- REXDAN Research Infrastructure, Dunarea de Jos University of Galati, 800008 Galati, Romania
| |
Collapse
|
31
|
Nayeri D, Mousavi SA, Almasi A, Asadi A. Microplastic abundance, distribution, and characterization in freshwater sediments in Iran: a case study in Kermanshah city. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49817-49828. [PMID: 36781678 DOI: 10.1007/s11356-023-25620-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023]
Abstract
This paper focuses on abundance, distribution, and characteristics of microplastics (MPs) in freshwater sediments of Sarab Niloofar Lake, Kermanshah, Iran. After selecting an appropriate method for extraction of MPs, the characterization such as polymer types, surface morphology, and trace elements has been determined using Fourier transform infrared spectroscopy, scanning electron microscopic, and energy-dispersive X-ray spectroscopic analysis, respectively. The results highlighted that all sampling locations were contaminated by MP abundance ranged from 1733.33 to 4400 items kg-1 d.w with an average of 2483.59 ± 805.30 items kg-1 d.w. MPs with a size range of 0.025 to 1 mm (25-1000 μm) were the most frequently detected MPs in size (62%). Furthermore, the MPs found in this area mainly contain fiber (61%), fragment (19%), film (9%), foam (6%), and pallet (5%). The main color for detected MPs in sampling stations was black (51%) and followed by white/transparent (27%), red (11%), blue (7%), and yellow (4%). The results of polymer identification revealed that the polyethylene, polystyrene, polyurethane, and polypropylene were the principal polymers. This research work emphasized that various types of MPs have been distributed in freshwater sediments of Sarab Niloofar Lake, which is a first useful data for MPs in one the most important Kermanshah's tourist area.
Collapse
Affiliation(s)
- Danial Nayeri
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyyed Alireza Mousavi
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Almasi
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Anvar Asadi
- Environmental Health Research Center, Research Institute for Health Department, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
32
|
Mamun AA, Prasetya TAE, Dewi IR, Ahmad M. Microplastics in human food chains: Food becoming a threat to health safety. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159834. [PMID: 36461575 DOI: 10.1016/j.scitotenv.2022.159834] [Citation(s) in RCA: 156] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
While versatile application of plastics has generated huge benefits in our life, the 'plastic end-of-life' comes with downsides of emerging concern is plastic particles within all parts of environments. Plastics are highly resistant to degradation and sustain in the environment for a prolonged period resulting in easy access of microplastics into human food chain. Microplastic exposure to humans is caused by foods of both animal and plant origin, food additives, drinks, and plastic food packaging. Living organisms can accumulate microplastics in cells and tissues which results in threats of chronic biological effects and potential health hazards for humans including body gastrointestinal disorders, immunity, respiratory problem, cancer, infertility, and alteration in chromosomes. Because of the threat of microplastics on human health, it is essential to ensure food safety as well as control plastic use with strict regulation of proper management. This study aims to enlighten future research into the core component of microplastics, their exposure to human food, prevention to human food chain, and biological reactions in human body. Finally, it is recommended to consider the presence of microplastics in different foods, as most of the existing research mainly focused on sea foods. And it is important to study the mechanism of toxicity with pathways in the human body based on the different types, shapes, and sizes of plastic particles.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Faculty of Public Health, Universitas Airlangga, Campus C, Surabaya 60115, East Java, Indonesia.
| | - Tofan Agung Eka Prasetya
- Health Department, Faculty of Vocational Studies, Universitas Airlangga, Campus B, Surabaya 60286, East Java, Indonesia.
| | - Indiah Ratna Dewi
- Centre for Leather, Rubber and Plastics, Yogyakarta 55166, Indonesia.
| | - Monsur Ahmad
- Department of Applied Chemistry and Chemical Technology, Chattogram Veterinary and Animal Sciences University, Chittagong 4225, Bangladesh
| |
Collapse
|
33
|
Sewwandi M, Wijesekara H, Rajapaksha AU, Soysa S, Vithanage M. Microplastics and plastics-associated contaminants in food and beverages; Global trends, concentrations, and human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120747. [PMID: 36442819 DOI: 10.1016/j.envpol.2022.120747] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
Microplastics has become a global concern due to their ubiquitous presence which poses unavoidable human exposure risks. Geographical distribution and yearly trends of research on microplastics, food, and beverages do not exist. Thus, no overall account is available regarding the presence of microplastics and plastics-associated contaminants in food and beverages. Hence, this attempt is to review the geographical distribution of studies through a brief bibliometric analysis and the plastics-associated contaminants including plasticizers and microplastics in food and beverages. Estimated microplastic consumption has been listed for the pool of publications reviewed here. Further, this review discusses the ingestion potency of micropollutants associated with microplastics, possible health impacts, and existing challenges. Global trend in research exponentially increased after 2018 and China is leading. Studies on microplastics were limited to a few beverages and food; milk, beer, tea, refreshing drinks, salt, sugar, honey, etc., whereas seafood and drinking water have been extensively studied. Publications on plastic-additives were reported in two ways; migration of plastic-additives from packaging by leaching and the presence of plastic-additives in food and beverages. Bisphenol A and bis(2-Ethylhexyl) phthalate were the most frequently reported both in food and beverages. Exposure of packaging material to high temperatures predominantly involves plastic-additive contamination in food and beverages. Microplastics-bound micropollutants can also be ingested through food and beverages; however, a lack of knowledge exists. The complex matrix of food or beverages and the absence of standard procedures for analysis of microplastics and micropollutants exist as challenges. More investigations on the presence of microplastics and plastic-additives in food and beverage are urgent needs to a better assessment of potential human exposure and human health risk.
Collapse
Affiliation(s)
- Madushika Sewwandi
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya, 70140, Sri Lanka
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Sasimali Soysa
- Department of Physical Sciences and Technology, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya, 70140, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Institute of Agriculture, University of Western Australia, Perth, WA6009, Australia.
| |
Collapse
|
34
|
Pan Y, Gao SH, Ge C, Gao Q, Huang S, Kang Y, Luo G, Zhang Z, Fan L, Zhu Y, Wang AJ. Removing microplastics from aquatic environments: A critical review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100222. [PMID: 36483746 PMCID: PMC9722483 DOI: 10.1016/j.ese.2022.100222] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 05/13/2023]
Abstract
As one of the typical emerging contaminants, microplastics exist widely in the environment because of their small size and recalcitrance, which has caused various ecological problems. This paper summarizes current adsorption and removal technologies of microplastics in typical aquatic environments, including natural freshwater, marine, drinking water treatment plants (DWTPs), and wastewater treatment plants (WWTPs), and includes abiotic and biotic degradation technologies as one of the removal technologies. Recently, numerous studies have shown that enrichment technologies have been widely used to remove microplastics in natural freshwater environments, DWTPs, and WWTPs. Efficient removal of microplastics via WWTPs is critical to reduce the release to the natural environment as a key connection point to prevent the transfer of microplastics from society to natural water systems. Photocatalytic technology has outstanding pre-degradation effects on microplastics, and the isolated microbial strains or enriched communities can degrade up to 50% or more of pre-processed microplastics. Thus, more research focusing on microplastic degradation could be carried out by combining physical and chemical pretreatment with subsequent microbial biodegradation. In addition, the current recovery technologies of microplastics are introduced in this review. This is incredibly challenging because of the small size and dispersibility of microplastics, and the related technologies still need further development. This paper will provide theoretical support and advice for preventing and controlling the ecological risks mediated by microplastics in the aquatic environment and share recommendations for future research on the removal and recovery of microplastics in various aquatic environments, including natural aquatic environments, DWTPs, and WWTPs.
Collapse
Affiliation(s)
- Yusheng Pan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Chang Ge
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Sijing Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yuanyuan Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Gaoyang Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Ziqi Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yongming Zhu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
35
|
Chu X, Tian Y, Liu J, Jia S, Zhao W, Zhao P. The effect of adsorption on the fate of colloidal polystyrene microplastics in drinking water distribution system pipe scales. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129680. [PMID: 36104907 DOI: 10.1016/j.jhazmat.2022.129680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
With microplastics (MPs) being continuously found in various environments, the pollution of water supply systems by MPs is receiving increasing attention. As the sediment in drinking water distribution systems (DWDSs), pipe scales act as the interface for complex reactions between bulk water and pipe surfaces. Consequently, the fate of MPs in pipe scales requires exploration, especially colloidal MPs. In this study, MPs were detected in different pipe scale layers, with concentrations of 0.32-3.10 items g-1. Subsequently, the adsorption interaction mechanisms between pipe scales and colloidal polystyrene microplastics (PSMPs) were investigated through batch adsorption experiments. The findings indicated that pipe scales showed a potential adsorption capacity for PSMPs. The adsorption kinetics and isotherms results demonstrated that the PSMP adsorption process was physically dominant and complicated. van der Waals and electrostatic interactions, hydrogen bonding, and pore filling were the main adsorption mechanisms. These results verify that colloidal MPs can be adsorbed by pipe scales, demonstrating that pipe scales play an essential role in the fate of colloidal MPs in DWDSs and the quality and security of drinking water. The secondary release of MPs from pipe scales is also worthy of attention due to the environmental and health risks.
Collapse
Affiliation(s)
- Xianxian Chu
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yimei Tian
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jing Liu
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shichao Jia
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Weigao Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Peng Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
36
|
Mohammadi A, Dobaradaran S, Schmidt TC, Malakootian M, Spitz J. Emerging contaminants migration from pipes used in drinking water distribution systems: a review of the scientific literature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75134-75160. [PMID: 36127528 DOI: 10.1007/s11356-022-23085-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Migration of emerging contaminants (ECs) from pipes into water is a global concern due to potential human health effects. Nevertheless, a review of migration ECs from pipes into water distribution systems is presently lacking. This paper reviews, the reported occurrence migration of ECs from pipes into water distribution systems in the world. Furthermore, the results related to ECs migration from pipes into water distribution systems, their probable sources, and their hazards are discussed. The present manuscript considered the existing reports on migration of five main categories of ECs including microplastics (MPs), bisphenol A (BPA), phthalates, nonylphenol (NP), perfluoroalkyl, and polyfluoroalkyl substances (PFAS) from distribution network into tap water. A focus on tap water in published literature suggests that pipes type used had an important role on levels of ECs migration in water during transport and storage of water. For comparison, tap drinking water in contact with polymer pipes had the highest mean concentrations of reviewed contaminants. Polyvinyl chloride (PVC), polyamide (PA), polypropylene (PP), polyethylene (PE), and polyethylene terephthalate (PET) were the most frequently detected types of microplastics (MPs) in tap water. Based on the risk assessment analysis of ECs, levels of perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) were above 1, indicating a potential non-carcinogenic health risk to consumers. Finally, there are still scientific gaps on occurrence and migration of ECs from pipes used in distribution systems, and this needs more in-depth studies to evaluate their exposure hazards on human health.
Collapse
Affiliation(s)
- Azam Mohammadi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
- Systems Environmental Health and Energy Research Center, Boostan 19 Alley, Imam Khomeini Street, Bushehr, 7514763448, Iran.
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany
- Centre for Water and Environmental Research (ZWU) Universitätsstraße 5, 45141, Essen, Germany
| | - Mohammad Malakootian
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Jörg Spitz
- Akademie Für Menschliche Medizin GmbH, Krauskopfallee 27, 65388, Schlangenbad, Germany
| |
Collapse
|
37
|
Ahmad T, Amjad M, Iqbal Q, Batool A, Noor A, Jafir M, Hussain H, Irfan M. Occurrence of Microplastics and Heavy Metals in Aquatic and Agroecosystem: A Case Study. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:266-271. [PMID: 35451601 DOI: 10.1007/s00128-022-03523-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
A case study was conducted to evaluate the microplastics and heavy metals distribution in Pakistani farmland. Wastewater, soil, and vegetable samples were collected from four locations that received raw effluents for irrigation in the Faisalabad district. The average MPs abundances found in soil was 2790.75 items/kg, FSD-S has higher MPs (3865 items/kg) which is almost 34.62% from the total. However, the highest metal pollution (3.666 mg/kg) was recorded in the FSD-E zone, Cr showed the highest transfer factor about 34.24% in FSD-N in comparison with other sites. This research establishes a benchmark for estimating the environmental harm posed by microplastics and heavy metals in this rapidly emerging field of study.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Department of Horticulture, MNS University of Agriculture, Multan, 60000, Pakistan
| | - Muhammad Amjad
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Qumer Iqbal
- Fiblast, LLC, 1602 Mizell Road Tuskegee, Alabama, 36083, USA
| | - Asmat Batool
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Anam Noor
- Department of Horiculture, BZU, Multan, 60800, Pakistan
| | - Muhammad Jafir
- Department of Entomology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Hammad Hussain
- Department of Horticulture, MNS University of Agriculture, Multan, 60000, Pakistan
| | - Muhammad Irfan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, People's Republic of China.
| |
Collapse
|
38
|
Gambino I, Bagordo F, Grassi T, Panico A, De Donno A. Occurrence of Microplastics in Tap and Bottled Water: Current Knowledge. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5283. [PMID: 35564678 PMCID: PMC9103198 DOI: 10.3390/ijerph19095283] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/21/2022]
Abstract
A narrative review was carried out to describe the current knowledge related to the occurrence of MPs in drinking water. The reviewed studies (n = 21) showed the presence of microplastics (MPs) in tap (TW) and bottled (BW) water, increasing concerns for public health due to the possible toxicity associated with their polymeric composition, additives, and other compounds or microorganism adsorbed on their surface. The MP concentration increase by decreasing particles size and was higher in BW than in TW. Among BW, reusable PET and glass bottles showed a higher MP contamination than other packages. The lower MP abundance in TW than in natural sources indicates a high removal rate of MPs in drinking water treatment plants. This evidence should encourage the consumers to drink TW instead of BW, in order to limit their exposure to MPS and produce less plastic waste. The high variability in the results makes it difficult to compare the findings of different studies and build up a general hypothesis on human health risk. A globally shared protocol is needed to harmonize results also in view of the monitoring plans for the emerging contaminants, including MPs, introduced by the new European regulation.
Collapse
Affiliation(s)
| | | | - Tiziana Grassi
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (I.G.); (F.B.); (A.P.); (A.D.D.)
| | | | | |
Collapse
|
39
|
Ding T, Wei L, Hou Z, Li J, Zhang C, Lin D. Microplastics altered contaminant behavior and toxicity in natural waters. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127908. [PMID: 34883377 DOI: 10.1016/j.jhazmat.2021.127908] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) have received an increasing attention because of their ubiquitous presence and aquatic toxicity associated with MPs and MP-bound contaminants in the natural water. This review is to critically examine the chemical additives leached from MPs, the altered contaminant behaviors and the resulting changes in their aquatic ecotoxicity. Available data suggest that heavy metals Zn, Cr, Pb, and Cd regulated and present in plastics at the sub-mg g-1 to mg g-1 level can leach a significant amount depending on MPs size, aging, pH, and salinity conditions. MP-bound organic contaminants are primarily additive-derived (e.g., brominated diphenyl ethers, nonylphenol, and bisphenol A) at the µg g-1 to mg g-1 level, and secondarily pyrogenic and legacy origins (e.g., PAHs and PCBs) in the range of ng g-1 and mg g-1. MPs tend to have higher but more variable sorption capacities for organic compounds than metals (1.77 ± 2.34 vs. 0.82 ± 0.94 mg g-1). MPs alter the behavior of heavy metals through the electrostatic interactions and surface complexation, while the transport of additive derived organic compounds are altered primarily through hydrophobic effect as supported by a positive correlation (R2 = 0.71) between the logarithmic MPs-adsorbed concentrations and octanol/water partition coefficients (KOW) of organic compounds. MPs constitute less than 0.01% of the total mass of aquatic particulates in typical waters, but play a discernible role in the local partitioning and long-distance movement of contaminants. MPs alone exert higher toxicity to invertebrates than algae; however, when MPs co-occur with pollutants, both synergistic and antagonistic toxicities are observed depending mainly on the ingestibility of MPs, the extent of sorption, MPs as a transport vector or a sink to scavenge pollutants. We finally suggest several key areas of future research directions and needed data concerning the role of MPs in mitigating pollutant leaching, transport and risk under conditions mimicking natural and polluted waters.
Collapse
Affiliation(s)
- Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Liyan Wei
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhangming Hou
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston 77058, TX, United States
| | - Daohui Lin
- Department of Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
40
|
Cherniak SL, Almuhtaram H, McKie MJ, Hermabessiere L, Yuan C, Rochman CM, Andrews RC. Conventional and biological treatment for the removal of microplastics from drinking water. CHEMOSPHERE 2022; 288:132587. [PMID: 34662634 DOI: 10.1016/j.chemosphere.2021.132587] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
This study examines the removal of microplastics and other anthropogenic particles (>10 μm) from surface water by a full-scale conventional drinking water treatment plant. The treatment process is composed of coagulation with aluminum hydroxide, flocculation, anthracite-sand filtration, and chlorination. Samples were also collected from pilot-scale biological filters consisting of anthracite-sand or granular activated carbon (GAC) media operated with or without pre-ozonation and at a range of different empty-bed contact times (EBCTs). Particles in 10 L water samples collected in duplicate using a fully enclosed sampling apparatus were separated using sieves with 500 μm, 300 μm, 125 μm, and 45 μm openings followed by filtration through 10 μm polycarbonate filters. Particles were counted using stereomicroscopy and characterized using μ-Raman spectroscopy. Full-scale conventional treatment removed 52 % of anthropogenic particles when comparing raw (42 ± 18 particles/L) and finished water (20 ± 8 particles/L). Coagulation, flocculation, and sedimentation accounted for the highest removal (70 %) of any individual unit process. Overall removal was reduced to 52 %, the difference being attributed to airborne particle deposition that occurred while water was detained in a clearwell (exposed to atmosphere via ventilation) that was used to achieve the required contact time for disinfection. The majority of the particles (>80 %) were identified as fibers 10-45 μm; microplastics were predominantly composed of polyester while the non-plastic anthropogenic particles were primarily cellulose. None of the pilot filter configurations examined resulted in significantly fewer microplastics when compared to full-scale conventional filtration. This study illustrates that the removal efficiency of conventional treatment may be limited when considering microfibers <45 μm in size.
Collapse
Affiliation(s)
- Samuel L Cherniak
- University of Toronto, Department of Civil and Mineral Engineering, 35 St George Street, Toronto, ON, M5S 1A4, Canada
| | - Husein Almuhtaram
- University of Toronto, Department of Civil and Mineral Engineering, 35 St George Street, Toronto, ON, M5S 1A4, Canada.
| | - Michael J McKie
- University of Toronto, Department of Civil and Mineral Engineering, 35 St George Street, Toronto, ON, M5S 1A4, Canada
| | - Ludovic Hermabessiere
- University of Toronto, Department of Civil and Mineral Engineering, 35 St George Street, Toronto, ON, M5S 1A4, Canada; University of Toronto, Department of Ecology and Evolutionary Biology, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Chuqiao Yuan
- University of Toronto, Department of Civil and Mineral Engineering, 35 St George Street, Toronto, ON, M5S 1A4, Canada
| | - Chelsea M Rochman
- University of Toronto, Department of Ecology and Evolutionary Biology, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Robert C Andrews
- University of Toronto, Department of Civil and Mineral Engineering, 35 St George Street, Toronto, ON, M5S 1A4, Canada
| |
Collapse
|