1
|
Zhang H, Gao J, Zhao Y, Zhao M, Yuan Y, Sun L. Effects of different quaternary ammonium compounds on intracellular and extracellular resistance genes in nitrification systems under the pre-contamination of benzalkyl dimethylammonium compounds. BIORESOURCE TECHNOLOGY 2025; 418:131867. [PMID: 39612960 DOI: 10.1016/j.biortech.2024.131867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
As the harm of benzalkyl dimethylammonium compounds (BACs) on human health and environment was discovered, alkyltrimethyl ammonium compound (ATMAC) and dialkyldimethyl ammonium compound (DADMAC), which belong to quaternary ammonium compounds (QACs), were likely to replace BACs as the main disinfectants. This study simulated the iterative use of QACs to explore their impact on resistance genes (RGs) in nitrification systems pre-contaminated by BACs. ATMAC could initiate and maintain partial nitrification. DADMAC generated higher levels of reactive oxygen species and lactate dehydrogenase, leading to increased biological toxicity in bacteria. The abundance of intracellular RGs of sludge was higher with the stress of QACs. DADMAC also induced higher extracellular polymeric substance secretion. Moreover, it facilitated the transfer of RGs from sludge to water, with ATMAC disseminating RGs through si-tnpA-04 and DADMAC through si-intI1. Sediminibacterium might be potential hosts for RGs. This study offered insights into disinfectant usage in the post-COVID-19 era.
Collapse
Affiliation(s)
- Haoran Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Mingyan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yukun Yuan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Lixin Sun
- D·SMART Environmental Technology (Beijing) Co., Ltd., China.
| |
Collapse
|
2
|
Zhang Y, Gao J, Zhao J, Zhao Y, Liu Y, Guo Y, Xie T. Phenacetin enhanced the inorganic nitrogen removal performance of anammox bacteria naturally in-situ enriched system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177586. [PMID: 39566627 DOI: 10.1016/j.scitotenv.2024.177586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Among the earliest synthetic antipyretic drugs, phenacetin (PNCT) could be used as the novel partial nitrification (PN) inhibitor to effectively inhibit nitrite-oxidizing bacteria (NOB). In practical application, the rapidly starting of PN could provide stable source of nitrite for anaerobic ammonium oxidation (anammox) process. However, impact of PNCT on anaerobic ammonia oxidizing bacteria (AnAOB) and its underlying mechanisms were not clear. In this research, totally 14 times of PNCT aerobic soaking treatment were performed in the AnAOB naturally enrichment system to improve total inorganic nitrogen removal efficiency (TINRE). After once of PNCT treatment, TINRE rose from 61.89 % to 79.93 %. After 14 times of PNCT treatment, NOB Nitrospira relative abundance decreased from 9.82 % to 0.71 %, though Candidatus Brocadia relative abundance also declined, it might gradually adjust to PNCT by converting the leading oligotype species. The activity and relative abundances of NOB were reduced by PNCT via decreasing the abundances of genes amoA and nxrB, enzymes NxrA and NxrB. Moreover, Candidatus Jettenia and Ca. Brocadia might be the potential host of qacH-01 and they played the crucial role in the shaping profile of antibiotic resistance genes (ARGs). The explosive propagation or transmission of ARGs might not take place after PNCT treatment.
Collapse
Affiliation(s)
- Yi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Jingqiang Zhao
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Ying Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yi Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Tian Xie
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
3
|
Wang H, Gao J, Ren H, Zhao Y, Wang Y, An J, Chen H, Wang Q. Whatever does not kill them makes them stronger: Using quaternary ammonia antimicrobials to alleviate the inhibition of ammonia oxidation under perfluorooctanoic acid stress. WATER RESEARCH 2024; 263:122171. [PMID: 39098155 DOI: 10.1016/j.watres.2024.122171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Perfluorooctanoic acid (PFOA), benzalkyl dimethylammonium compounds (BAC) and antibiotic resistance genes (ARGs) have negative effects on biological sewage treatment. The performance of nitrification systems under stress of PFOA (0.1-5 mg/L) or/and BAC (0.2-10 mg/L) was explored during 84-day experiments using four sequencing batch reactors, in this study. Low (0.1 mg/L) concentration PFOA had a positive influence on ammonia removal, while medium and high (2 and 5 mg/L) concentrations PFOA caused severe inhibition. Meanwhile, PFOA stress resulted in the enrichment of ARGs in water (w-ARGs). BAC (0-10 mg/L) had no obvious influence on ammonia removal. However, BAC promoted the reduction of ARGs and the bacterial community was the main participator (48.07%) for the spread of ARGs. Interestingly, the joint stress of PFOA and BAC increased the ammonia-oxidizing bacteria (AOB) activity from 5.81 ± 0.19 and 6.05 ± 0.79 mg N/(g MLSS·h) to 7.09 ± 0.87 and 7.23 ± 0.29 mg N/(g MLSS·h) in medium and high concentrations, compared to single stress of PFOA, which was observed for the first time. BAC could reduce bioavailability of PFOA through competitive adsorption and decreasing sludge hydrophobicity by the lower β-Sheet and α-Helix in tightly bound protein. Furthermore, the joint stress of PFOA and BAC was able to intensify the proliferation of w-ARGs and extracellular ARGs in sludge, and developed the most active horizontal gene transfer mediated by intl1 compared to single stress of PFOA or BAC. The batch tests verified the detoxification capacity of BAC on nitrification under 2.5 mg/L PFOA (48 h exposing), and the maximum alleviation of AOB activity was achieved at BAC and PFOA mass ratio of 2:1. In summary, BAC could be used to alleviate the inhibition of PFOA on ammonia oxidation, providing an efficient and sustainable approach in wastewater treatment.
Collapse
Affiliation(s)
- Hanyi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Hairong Ren
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuxuan Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiawen An
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hao Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qian Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
4
|
Zhang F, Du Z, Wang J, Du Y, Peng Y. Acidophilic partial nitrification (pH<6) facilitates ultra-efficient short-flow nitrogen transformation: Experimental validation and genomic insights. WATER RESEARCH 2024; 260:121921. [PMID: 38924807 DOI: 10.1016/j.watres.2024.121921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Partial nitrification (PN) represents an energy-efficient bioprocess; however, it often confronts challenges such as unstable nitrite accumulation, nitrite oxidizing bacteria shocks, and slow reaction rate. This study established an acidophilic PN with self-sustained pH as low as 5.36. Over 120-day monitoring, nitrite accumulation rate (NAR) was stabilized at more than 97.9 %, and an ultra-high ammonia oxidation rate of 0.81 kg/m3·d was achieved. Notably, least NAR of 77.8 % persisted even under accidental nitrite oxidizing bacteria invasion, aeration delay, alkalinity fluctuations, and cooling shocks. During processing, despite detrimental effects on bacterial diversity, there was a discernible increase in acid-tolerant bacteria responsible for nitrification. Candidatus Nitrosoglobus, gradually dominated in nitrifying guild (2.15 %), with the substantially reduction or disappearance of typical nitrifying microorganisms. Acidobacteriota, a key player in nitrogen cycling of soil, significantly increased from 0.45 % to 9.98 %, and its associated nitrogen metabolism genes showed a substantial 215 % rise. AmoB emerged as the most critical functional gene influencing acidophilic PN, exhibiting significantly higher unit gene expression than other nitrification genes. Blockade tricarboxylic acid cycle, DNA damage, and presence of free nitrous acid exert substantial effects on nitrite-oxidizing bacteria (NOB), serving as internal driving forces for acidophilic PN. This highlights the reliable potential for shortening nitrogen transformation process.
Collapse
Affiliation(s)
- Fangzhai Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Ziyi Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jiahui Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yujia Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
5
|
Zhang Y, Wu Z, Gao Y, Gao J, Bao F, Zhao Y, Guo Y, Liu Y. Phenacetin promoted the rapid start-up and stable maintenance of partial nitrification: Responses of nitrifiers and antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173190. [PMID: 38744392 DOI: 10.1016/j.scitotenv.2024.173190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Phenacetin (PNCT) belongs to one of the earliest synthetic antipyretics. However, impact of PNCT on nitrifying microorganisms in wastewater treatment plants and its potential microbial mechanism was still unclear. In this study, PN could be initiated within six days by PNCT anaerobic soaking treatment (8 mg/L). In order to improve the stable performance of PN, 21 times of PNCT aerobic soaking treatment every three days was conducted and PN was stabilized for 191 days. After PN was damaged, ten times of PNCT aerobic soaking treatment every three days was conducted and PN was recovered after once soaking, maintained over 88 days. Ammonia oxidizing bacteria might change the dominant oligotype to gradually adjust to PNCT, and the increase of abundance and activity of Nitrosomonas promoted the initiation of PN. For nitrite-oxidizing bacteria (NOB), the increase of Candidatus Nitrotoga and Nitrospira destroyed PN, but PN could be recovered after once aerobic soaking illustrating NOB was not resistant to PNCT. KEGG and COG analysis suggested PNCT might disrupt rTCA cycle of Nitrospira, resulting in the decrease of relative abundance of Nitrospira. Moreover, PNCT did not lead to the sharp increase of absolute abundances of antibiotic resistance genes (ARGs), and the risk of ARGs transmission was negligible.
Collapse
Affiliation(s)
- Yi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Zejie Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongqing Gao
- Research and Development Center of Beijing Drainage Group Co. Ltd, Beijing 100124, China.
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Fangbo Bao
- Research and Development Center of Beijing Drainage Group Co. Ltd, Beijing 100124, China
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yi Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Ying Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
6
|
Li G, Yu Y, Li X, Jia H, Ma X, Opoku PA. Research progress of anaerobic ammonium oxidation (Anammox) process based on integrated fixed-film activated sludge (IFAS). ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13235. [PMID: 38444262 PMCID: PMC10915381 DOI: 10.1111/1758-2229.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/18/2024] [Indexed: 03/07/2024]
Abstract
The integrated fixed-film activated sludge (IFAS) process is considered one of the cutting-edge solutions to the traditional wastewater treatment challenges, allowing suspended sludge and attached biofilm to grow in the same system. In addition, the coupling of IFAS with anaerobic ammonium oxidation (Anammox) can further improve the efficiency of biological denitrification. This paper summarises the research progress of IFAS coupled with the anammox process, including partial nitrification anammox, simultaneous partial nitrification anammox and denitrification, and partial denitrification anammox technologies, and describes the factors that limit the development of related processes. The effects of dissolved oxygen, influent carbon source, sludge retention time, temperature, microbial community, and nitrite-oxidising bacteria inhibition methods on the anammox of IFAS are presented. At the same time, this paper gives an outlook on future research focus and engineering practice direction of the process.
Collapse
Affiliation(s)
- Guang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | - Yunyong Yu
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | - Xingyu Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | - Hongsheng Jia
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | - Xiaoning Ma
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | | |
Collapse
|
7
|
Yuan Y, Wang K, Liu Y, Jiang M, Jiang Y, Qiu J. Isolation and Characterization of the Wastewater Micropollutant Phenacetin-Degrading Bacterium Rhodococcus sp. Strain PNT-23. Microorganisms 2023; 11:1962. [PMID: 37630522 PMCID: PMC10458748 DOI: 10.3390/microorganisms11081962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Phenacetin, an antipyretic and analgesic drug, poses a serious health risk to both humans and aquatic organisms, which is of concern since this micropollutant is frequently detected in various aquatic environments. However, rare pure bacterial cultures have been reported to degrade phenacetin. Therefore, in this study, the novel phenacetin-degrading strain PNT-23 was isolated from municipal wastewater and identified as a Rhodococcus sp. based on its morphology and 16S rRNA gene sequencing. The isolated strain could completely degrade 100 mg/L phenacetin at an inoculum concentration of OD600 1.5 within 80 h, utilizing the micropollutant as its sole carbon source for growth. Strain PNT-23 exhibited optimal growth in LB medium at 37 °C and a pH of 7.0 with 1% NaCl, while the optimal degradation conditions in minimal medium were 30 °C and a pH of 7.0 with 1% NaCl. Two key intermediates were identified during phenacetin biodegradation by the strain PNT-23: N-acetyl-4-aminophenol and 4-aminophenol. This study provides novel insights into the biodegradation of phenacetin using a pure bacterium culture, expands the known substrate spectra of Rhodococcus strains and presents a potential new candidate for the microbial removal of phenacetin in a diverse range of environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Guo Y, Gao J, Zhao Y, Liu Y, Zhao M, Li Z. Mitigating the inhibition of antibacterial agent chloroxylenol on nitrification system-The role of Rhodococcus ruber in a bioaugmentation system. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130758. [PMID: 36640510 DOI: 10.1016/j.jhazmat.2023.130758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/19/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The chloroxylenol (PCMX) degrading strain was successfully isolated from sludge and identified as Rhodococcus ruber (R. ruber). Afterwards, a bioaugmentation system was constructed by seeding R. ruber into nitrifying sludge to fasten degradation efficiency of highly toxic PCMX from wastewater. Results showed that R. ruber presented high PCMX-degrading performance under aerobic conditions, 25 °C, pH 7.0 and inoculum sizes of 4% (v/v). These optimized conditions were used in subsequent bioaugmentation experiment. In bioaugmentation system, R. ruber could detoxify nitrifiers by degrading PCMX, and the content of polysaccharide in extracellular polymeric substances increased. The quantitative polymerase chain reaction results exhibited that the absolute abundance of 16S rRNA gene and ammonia oxidizing bacteria (AOB) slightly elevated in bioaugmentation system. After analyzing the results of high-throughput sequencing, it was found that the loaded R. ruber can colonize successfully and turn into dominant strains in sludge system. Molecular docking simulation showed that PCMX had a weaker suppressed effect on AOB than nitrite oxidizing bacteria, and R. ruber can alleviate the adverse effect. This study could provide a novel strategy for potential application in reinforcement of PCMX removal in wastewater treatment.
Collapse
Affiliation(s)
- Yi Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Ying Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Mingyan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Ziqiao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
9
|
Zhang H, Gao J, Zhao M, Wang Z, Li D, Wu Z, Zhang Y, Liu Y. The spread of different resistance genes fractions in nitrification system under chronic exposure to varying alkyl chain length benzalkyl dimethylammonium compounds. BIORESOURCE TECHNOLOGY 2023; 371:128588. [PMID: 36623575 DOI: 10.1016/j.biortech.2023.128588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Benzalkyl dimethylammonium compounds (BACs) are generally applied as surfactants and disinfectants. In this study, the nitrification systems were exposed to different alkyl chain lengths (C12-C16) and different levels of BACs (0-5 mg/L), respectively, totally 120 days and to explore the chronic effect of BACs on resistance genes (RGs). RGs were classified into four fractions based on activated sludge properties. Ammonia oxidation performance were not significantly affected by BACs, whereas BACs increased the absolute abundance of most intracellular RGs in sludge (si-RGs). Under the exposure of BACs, extracellular RGs in water (we-RGs) showed a decrease trend and si-RGs tended to be converted to we-RGs. Tightly bound-Tyrosine side chain was significantly correlated with most we-RGs, and we-intI1 might contribute to the propagation of RGs. Therefore, the risk of transmission of different fractions of RGs in the nitrification system under the stress of BACs should be taken seriously.
Collapse
Affiliation(s)
- Haoran Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Mingyan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Dingchang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zejie Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Ying Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
10
|
Zhao Y, Gao J, Wang Z, Zhang Y, Cui Y, Guo Y, Wu Z. Metatranscriptome Revealed the Efficacy and Safety of a Prospective Approach for Agricultural Wastewater Reuse: Achieving Ammonia Retention during Biological Treatment by a Novel Natural Inhibitor Epsilon-Poly-l-Lysine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2538-2547. [PMID: 36720085 DOI: 10.1021/acs.est.2c06977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Appropriate inhibitors might play important roles in achieving ammonia retention in biological wastewater treatment and its reuse in agriculture. In this study, the feasibility of epsilon-poly-l-lysine (ε-PL) as a novel natural ammonia oxidation inhibitor was investigated. Significant inhibition (ammonia oxidation inhibition rate was up to 96.83%) was achieved by treating the sludge with ε-PL (400 mg/L, 12 h soaking) only once and maintaining for six cycles. Meanwhile, the organic matter and nitrite removal was not affected. This method was effective under the common environmental conditions of biological wastewater treatment. Metatranscriptome uncovered the possible action mechanisms of ε-PL. The ammonia oxidation inhibition was due to the co-decrease of Nitrosomonas abundance, ammonia oxidation genes, and the cellular responses of Nitrosomonas. Thauera and Dechloromonas could adapt to ε-PL by stimulating stress responses, which maintained the organic matter and nitrite removal. Importantly, ε-PL did not cause the enhancement of antibiotic resistance genes and virulent factors. Therefore, ε-PL showed a great potential of ammonia retention, which could be applied in the biological treatment of wastewater for agricultural reuse.
Collapse
Affiliation(s)
- Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yingchao Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yi Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zejie Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
11
|
Wu H, Li A, Wang J, Li X, Cui M, Yang N, Liu Y, Zhang L, Wang X, Zhan G. A novel electrochemical sensor based on autotropic and heterotrophic nitrifying biofilm for trichloroacetic acid toxicity monitoring. ENVIRONMENTAL RESEARCH 2022; 210:112985. [PMID: 35192804 DOI: 10.1016/j.envres.2022.112985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/22/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Trichloroacetic acid (TCA), a toxic substance produced in the disinfection process of wastewater treatment plants, will accumulate in the receiving water. The detection of TCA in the water can achieve the purpose of early warning. However, currently there are few reports on microbial sensors used for TCA detection, and the characteristics of their microbial communities are still unclear. In this work, a toxicity monitoring microbial system (TMMS) with nitrifying biofilm as a sensing element and cathode oxygen reduction as a current signal was successfully constructed for TCA detection. The current and nitrification rate showed a linear relationship with low TCA concentration from 0 to 50 μg/L (R2current = 0.9892, R2nitrification = 0.9860), and high concentration range from 50 to 5000 μg/L (R2current = 0.9883, R2nitrification = 0.9721). High-throughput sequencing revealed that the TMMS was composed of autotrophic/heterotrophic nitrifying and denitrifying microorganisms. Further analysis via symbiotic relationship network demonstrated that Arenimonas and Hyphomicrobium were the core nodes for maintaining interaction between autotropic and heterotrophic nitrifying bacteria. Kyoto Encyclopedia of Genes and Genomes analysis showed that after adding TCA to TMMS, the carbon metabolism and the abundance of the tricarboxylic acid cycle pathway were reduced, and the activity of microorganisms was inhibited. TCA stress caused a low abundance of nitrifying and denitrifying functional enzymes, resulting in low oxygen consumption in the nitrification process, but more oxygen supply for cathode oxygen reduction. This work explored a novel sensor combined with electrochemistry and autotrophic/heterotrophic nitrification, which provided a new insight into the development of microbial monitoring of toxic substances.
Collapse
Affiliation(s)
- Heng Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jingting Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Xiaoyun Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Mengyao Cui
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Nuan Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Yiliang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Xiaomei Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| |
Collapse
|
12
|
Wu Z, Gao J, Cui Y, Wang Z, Zhao Y, Zhang H, Guo Y, Li Z. Feeding low-level benzethonium chloride can promote the start-up, fast recovery and long-term stable maintenance of partial nitrification for low-ammonium wastewater. BIORESOURCE TECHNOLOGY 2022; 353:127152. [PMID: 35421565 DOI: 10.1016/j.biortech.2022.127152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
The establishment of stable partial nitrification (PN) is beneficial to promote the application of anaerobic ammonium oxidation, especially for low-ammonium wastewater. This study demonstrated an innovative approach for achieving PN through feeding low-level benzethonium chloride (BZC). PN was started and maintained for 125 days after the sequential feeding of 0.2 and 1 mg/L BZC for 50 days. The damaged PN recovered rapidly within eight days by feeding 2 mg/L BZC, and it thrived for more than 172 days, indicating that nitrite-oxidizing bacteria did not adapt to BZC. The removal of BZC changed from adsorption to degradation gradually. Increased extracellular polymeric substances secretion and altered protein secondary structures explained sludge granulation during BZC feeding, which may be closely related to long-term stable maintenance of PN. PICRUSt2 revealed the underlying microbial mechanisms in depth. Overall, this research proposed a novel scheme to achieve robust PN treating low-ammonium wastewater through feeding low-level BZC.
Collapse
Affiliation(s)
- Zejie Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Yingchao Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Haoran Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yi Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Ziqiao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
13
|
Zhang W, Zhou X, Cao X, Li S. Accelerating anammox nitrogen removal in low intensity ultrasound-assisted ASBBR: Performance optimization, EPS characterization and microbial community analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152989. [PMID: 35026268 DOI: 10.1016/j.scitotenv.2022.152989] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/19/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Efficient enrichment of slow-growing anammox species is essential for rapid start-up and stable operation of high-rate anammox reactors. Herein, a low intensity ultrasound (LIU) was introduced into anaerobic sequencing batch biofilm reactors (ASBBRs) to enhance anammox nitrogen removal from nitrogen-rich wastewater. Operation results demonstrated that the maximum total nitrogen (TN) removal efficiency of 91.5% were achieved under the optimal ultrasonic parameters (32.7 °C water temperature, 0.18 W/cm2 ultrasonic intensity and 25.7 min ultrasonication time). Moreover, significant increases of extracellular polymeric substances (EPS) components and contents were observed via the ultrasonication stimulation. A close correlation between nitrogen removal and shifts in transformation and intensity of spectrum peaks was also verified by three-dimensional excitation-emission matrix spectroscopy (3D-EEM) analysis. High-throughput sequencing revealed that the relative abundance of Candidatus Kuenenia as the key anammox consortium significantly increased after applying optimal ultrasonication condition. Furthermore, enhancement mechanisms and future prospect of the LIU-assisted anammox process was elucidated and discussed. This research provides a viable and promising acceleration strategy for anammox-based process in practice.
Collapse
Affiliation(s)
- Wei Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China
| | - Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China.
| | - Xiwei Cao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China
| | - Shuhan Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China
| |
Collapse
|
14
|
Sun H, Zhang H, Zhang F, Yang H, Lu J, Ge S, Ding J, Liu Y. Response of substrate kinetics and biological mechanisms to various pH constrains for cultured Nitrobacter and Nitrospira in nitrifying bioreactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114499. [PMID: 35065378 DOI: 10.1016/j.jenvman.2022.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Nitrite (NO2-) oxidation is an essential step of biological nitrogen cycling in natural ecosystems, and is performed by chemolithoautotrophic nitrite-oxidizing bacteria (NOB). Although Nitrobacter and Nitrospira are regarded as representative NOB in nitrification systems, little attention has focused on kinetic characterisation of the coexistence of Nitrobacter and Nitrospira at various pH values. Here, we evaluate the substrate kinetics, biological mechanism and microbial community dynamics of an enrichment culture including Nitrobacter (17.5 ± 0.9%) and Nitrospira (7.2 ± 0.6%) in response to various pH constrains. Evaluation of the Monod equation at pH 6.0, 6.5, 7.0, 7.5, 8.0 and 8.5 showed that the enrichment had maximum rate (rmax) and maximum substrate affinity (KS) for NO2- oxidation at pH 7.0, which was also supported by the largest absolute abundance of Nitrobacter nxrA (5.26 × 107 copies per g wet sludge) and Nitrospira nxrB (1.975 × 109 copies per g wet sludge) genes. Moreover, the predominant species for the Nitrobacter-like nxrA were N. vulgaris and N. winogradskyi, while for the Nitrospira-like nxrB, the predominant species were N. japonica, N. calida and Ca. N. bockiana. Furthermore, the rmax was strongly and positively correlated with the abundance of the Nitrobacter nxrA or Nitrospira nxrB genes, or N. winogradsk, whereas KS was positively correlated with the abundance of Nitrobacter nxrA or Nitrospira nxrB genes or Ca. N. bockiana. Overall, this study could improve basis kinetic parameters and biological mechanism of NO2- oxidation in WWTPs.
Collapse
Affiliation(s)
- Hongwei Sun
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong, 264005, China
| | - Hui Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong, 264005, China
| | - Feng Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong, 264005, China
| | - Hao Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jianbo Lu
- School of Civil Engineering, Yantai University, Yantai, Shandong, 264005, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong, 264005, China
| | - Yucan Liu
- School of Civil Engineering, Yantai University, Yantai, Shandong, 264005, China.
| |
Collapse
|