1
|
Zhou Y, Wang Y, Qiu C, Man Y, Zhu X, Tan S, Zeng H, Guo X, Zhang Z. Associations among blood heavy metals, neurofilament light chains and cognition function in US adults: NHANES 2013-2014. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118369. [PMID: 40412247 DOI: 10.1016/j.ecoenv.2025.118369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 05/07/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND Heavy metals could induce neurotoxicity, leading to cognitive function and motor deficiencies. Serum neurofilament light chain (sNfL) is a promising biomarker for neurological injury, and it may indicate nerve damage from heavy metals exposure. However, there's limited research exploring the associations among heavy metals, sNfL, and cognitive function in adults, and the existing findings are inconsistent. OBJECTIVE 959 participants were enrolled from the National Health and Nutrition Examination Surveys (NHANES) 2013-2014. This study was aimed to investigate the possible associations among heavy metals, sNfL, and cognitive function in adults. METHODS We utilized data from the National Health and Nutrition Examination Survey (NHANES) 2013-2014, comprising 959 participants. Heavy metals were detected in blood samples including lead (Pb), cadmium (Cd), mercury (Hg), manganese (Mn), and selenium (Se), with measurements taken using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) technology. The level of sNfL was quantified via an innovative high-throughput immunoassay technology developed by Siemens Healthineers. Cognitive function were assessed using the Animal Fluency Test (AFT), the Consortium to Establish a Registry for Alzheimer's Disease (CERAD), and the Digit Number Symbol Substitution Test (DSST). Additionally, generalized linear models (GLMs), weighted quantile sum regression (WQS), Bayesian kernel machine regression (BKMR), quantile-based g computation (qgcomp), and restricted cubic splines (RCS) analyses were employed to examine the associations between heavy metals exposure and sNfL level. Finally, a mediation analysis to explore the interaction among heavy metals, sNfL, and cognitive function in adults aged 60 and above. RESULTS The generalized linear models exhibited a positive correlation between blood Pb or Cd levels and sNfL (β = 0.14, 95 % CI: 0.08-0.20; β = 0.14, 95 % CI: 0.07-0.20), in total population. Both WQS and BKMR analysis consistently showed a strong correlation between higher levels of the blood heavy metals mixture and increased sNfL (OR=0.051, 95 %CI: 0.025-0.090). The qgcomp model indicated that Cd had a significant positive correlation with sNfL, while Mn and Se showed a significant negative correlation with sNfL. Moreover, we have identified a significant relationship between sNfL or Cd and cognitive function scores (AFT, DSST) in adults aged 60 and above. The mediation analysis further revealed that sNfL partially mediated the relationship between Cd and AFT or DSST scores, with interpretive efficiencies of 23.35 % and 32.7 %, respectively. CONCLUSION This study is the first to utilize sNfL data to establish a link between heavy metals exposure and cognitive function. The finding highlight the the positive correlation between Pb or Cd and sNfL, the negative correlation between Se and sNfL. The impact of Cd exposure on cognitive function in individuals older than 60 was partially explained by sNfL. Further investigations are required to validate these findings, considering the constraints of the NHANES study.
Collapse
Affiliation(s)
- YuYan Zhou
- School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| | - YaKun Wang
- School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| | - ChunFang Qiu
- Department of Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - YuXuan Man
- School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| | - XiaoNian Zhu
- School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China; Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi 541004, China
| | - ShengKui Tan
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi 541004, China; School of Public Health, Youjiang Medical College for Nationalities, Baise, Guangxi 533000, China
| | - HuaiCai Zeng
- School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China; Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi 541004, China
| | - XueFeng Guo
- School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China; Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi 541004, China.
| | - ZhengBao Zhang
- School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China; Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi 541004, China.
| |
Collapse
|
2
|
He Y, Wang M, An M, Kulyar MF, Li M, Xu H, Wang Y. Maternal lead exposure impairs offspring growth and intestinal microbiota via AMPK/ULK1 pathway activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118345. [PMID: 40409191 DOI: 10.1016/j.ecoenv.2025.118345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 05/12/2025] [Accepted: 05/15/2025] [Indexed: 05/25/2025]
Abstract
The pervasive presence and bioaccumulation of lead (Pb2 +) in living organisms pose a significant risk to human health. Extensive research has been conducted on the neurotoxicity and reproductive toxicity of lead, but the impact of maternal lead exposure on subsequent generations still needs to be addressed. Therefore, we aimed to explore the adverse effects and mechanisms of lead exposure in pregnant mice on the next generation. The present study indicated that lead exposure decreased growth performance and impaired the function of the colon, spleen, testes, and kidneys in the next generation of mice. Furthermore, we found that lead exposure activated autophagy by regulating the AMPK/ULK1 pathway and reduced the relative expression levels of tight junction proteins in a dose-dependent manner. Moreover, the composition of the gut microbiota showed significant alterations compared to the control group. These changes were characterized by a marked reduction in the relative abundance of beneficial bacteria, including Variovorax, Harryflintia, and Romboutsi, while the abundance of pathogenic bacteria such as Mucispirillum and Klebsiella was significantly increased. Such shifts in microbial composition indicated a disruption in microbial homeostasis, contributing to health impairments. In summary, our study indicated that lead exposure in pregnant mice not only decreased the growth performance and impaired multiple organs in the next generation of mice but also disrupted gut microbial homeostasis and induced autophagy via activating the AMPK/ULK1 pathway, resulting in adverse health outcomes in offspring. Additionally, the current study provides a solid experimental foundation for environmental agencies worldwide to implement effective strategies to mitigate lead contamination.
Collapse
Affiliation(s)
- Yuanyuan He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Miaosen Wang
- Zhengzhou Railway Vocational and Technical College, Zhengzhou 450000, PR China
| | - Miao An
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Md F Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China.
| | - Yaping Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China.
| |
Collapse
|
3
|
Zhang L, Wang S, Zhang Y, Zhang X, Xi J, Wu J, Fang J, Zhao H, Zhang B. Troglitazone as a Novel Nrf2 Activator to Attenuate Oxidative Stress and Exert Neuroprotection. ACS Chem Neurosci 2025; 16:1604-1616. [PMID: 40135498 DOI: 10.1021/acschemneuro.5c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
Nuclear factor erythroid 2 related factor 2 (Nrf2) is closely associated with neurodegenerative diseases, and the Nrf2-mediated activation of antioxidant response elements (AREs) brings about validated strategies for treating neurodegenerative diseases. Here, we discovered that troglitazone, a clinical medication for diabetes mellitus, could serve as a Nrf2 activator to rescue neuronal damages both in vitro and in vivo. The mechanism of troglitazone action involves binding with kelch-like ECH-associated protein 1 (Keap1) and the activation of Nrf2. This process leads to the migration of Nrf2 to the cell nucleus and transactivates the AREs. Troglitazone exhibits significant alleviation of oxidative stress in PC12 cells induced by hydrogen peroxide or 6-hydroxydopamine (6-OHDA). In vivo studies indicate that troglitazone could rescue the motor activity and neurodevelopmental deficiency in zebrafish induced by 6-OHDA. Additionally, mass spectrometry imaging demonstrates that troglitazone could cross the zebrafish blood-brain barrier, supporting the application of troglitazone in treating neurodegenerative diseases. Overall, this work reveals that the novel Nrf2 activator troglitazone has potential therapeutic value for neurodegeneration and provides a foundation for its repurposing.
Collapse
Affiliation(s)
- Linjie Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shuang Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Yanxia Zhang
- Center of Analysis and Testing, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaopeng Zhang
- School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Xi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jun Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Jedličková A, Kristeková D, Husáková Z, Coufalík P, Vrlíková L, Smutná T, Capandová M, Alexa L, Lusková D, Křůmal K, Jakešová V, Večeřa Z, Zezula N, Kanický V, Hampl A, Vaculovič T, Mikuška P, Dumková J, Buchtová M. Inhaled Lead Nanoparticles Enter the Brain through the Olfactory Pathway and Induce Neurodegenerative Changes Resembling Tauopathies. ACS NANO 2025; 19:12799-12826. [PMID: 40130682 DOI: 10.1021/acsnano.4c14571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Lead nanoparticles (PbNPs) in air pollution pose a significant threat to human health, especially due to their neurotoxic effects. In this study, we exposed mice to lead(II) oxide nanoparticles (PbONPs) in inhalation chambers to mimic real-life exposure and assess their impact on the brain. PbONPs caused the formation of Hirano bodies and pathological changes related to neurodegenerative disorders through cytoskeletal disruptions without the induction of inflammation. Damage to astrocytic endfeet and capillary endothelial cells indicated a compromised blood-brain barrier (BBB), allowing PbONPs to enter the brain. Additionally, NPs were detected along the olfactory pathway, including fila olfactoria, suggesting that at least a proportion of PbNPs enter the brain directly by passing through the olfactory epithelium. PbNP inhalation severely damaged the apical parts of olfactory epithelial cells, including the loss of microtubules in their ciliary distal segments. Inhalation of PbONPs led to the rapid accumulation of lead in the brain, while more soluble lead(II) nitrate NPs did not accumulate significantly until 11 weeks of exposure. PbNPs induced disruption of the BBB at multiple levels, ranging from ultrastructural changes to functional impairments of the barrier; however, they did not induce systemic inflammation in the brain. The clearance ability of the brain to remove Pb was very low for both types of NPs, with significant pathological effects persisting even after a long clearance period. Cation-binding proteins (ZBTB20 and calbindin1) were distributed unevenly in the brain, with the strongest signal located in the hippocampus, which exhibited the greatest defects in nuclear architecture, indicating that this area is the most sensitive structure for PbNP exposure. PbNP exposure also altered the PI3K/Akt/mTOR signaling pathway, and tau phosphorylation in the hippocampus and inhibition of tau phosphorylation by GSK-3 inhibitor rescued the negative effect of PbONPs on the intracellular calcium level in trigeminal ganglion cultures. In zebrafish larvae, PbONPs affected locomotor activity and reduced calcium levels in the medium enhanced negative effect of PbONP on animal mobility, even increasing lethality. These findings suggest that cytoskeletal disruption and calcium dysregulation are key factors in PbNP-induced neurotoxicity, providing potential targets for therapeutic intervention to prevent neurodegenerative changes following PbNP exposure.
Collapse
Affiliation(s)
- Adriena Jedličková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Daniela Kristeková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Zuzana Husáková
- Department of Chemistry, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Pavel Coufalík
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Lucie Vrlíková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Tereza Smutná
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Michaela Capandová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Lukáš Alexa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Denisa Lusková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Kamil Křůmal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Veronika Jakešová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Zbyněk Večeřa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Nikodém Zezula
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Viktor Kanický
- Department of Chemistry, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Tomáš Vaculovič
- Department of Chemistry, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Mlynska dolina, Ilkovičova 6, Bratislava 4 842 15, Slovakia
| | - Pavel Mikuška
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Jana Dumková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| |
Collapse
|
5
|
Kim MJ, Lee KM, Hur SP, Choi CY, Kim JH. Toxic Effects of Waterborne Pb Exposure on Hematological Parameters and Plasma Components in Starry Flounder, Platichthys stellatus. Animals (Basel) 2025; 15:932. [PMID: 40218326 PMCID: PMC11987771 DOI: 10.3390/ani15070932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/08/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025] Open
Abstract
Lead (Pb) is a non-essential toxic metal that accumulates in aquatic environments, negatively impacting fish health. This study evaluated the acute toxicity of Pb in starry flounders (Platichthys stellatus). Fish (41 ± 8.1 g, 14 ± 0.9 cm) were exposed to Pb concentrations of 0, 10, 20, 40, 80, 160, 320, and 640 mg Pb2+/L for 96 h. The lethal concentration (96 h LC50) was determined to be 227 mg Pb2+/L. Hematological analysis showed significant decreases in RBC counts, hemoglobin, and hematocrit, while MCH and MCHC increased at ≥160 mg Pb2+/L. Plasma calcium levels significantly decreased following Pb exposure, and AST activity was reduced. These findings suggest that acute waterborne Pb exposure adversely affects survival, hematological parameters, and plasma components in P. stellatus, providing insight into Pb toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Min-Jung Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea; (M.-J.K.); (S.-P.H.)
| | - Kyung Mi Lee
- Aquaculture Industry Division, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon 22383, Republic of Korea;
| | - Sung-Pyo Hur
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea; (M.-J.K.); (S.-P.H.)
| | - Cheol Young Choi
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Jun-Hwan Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea; (M.-J.K.); (S.-P.H.)
- Department of Aquatic Life Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
6
|
Wang S, Zou M, Zhu Z, Wang Z, Li K, Ruan J, Zhao B, Pan C, Lan X, Zhang S, Foulkes NS, Zhao H. Oseltamivir phosphate (Tamiflu) alters neurobehavior of zebrafish larvae by inducing mitochondrial dysfunction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177077. [PMID: 39461536 DOI: 10.1016/j.scitotenv.2024.177077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Antiviral drugs are widely used, yet their potential risks during early development, particularly within the central nervous system, remain contentious. Oseltamivir phosphate (OSE), a commonly prescribed antiviral, is increasingly detected in various environments. However, its toxicity to organisms and the underlying mechanisms are not well understood. In this study, we employed the zebrafish model to evaluate the developmental neurotoxic effects of OSE at environmentally and therapeutically relevant doses, through high-throughput behavioral analysis, in vivo two-photon imaging, transcriptomic sequencing, pharmacological intervention, and biochemical and molecular assays. Our results indicated that OSE exposure increased heart rate and induced pericardial edema in zebrafish larvae. Additionally, OSE-exposed larvae exhibited hyperactive behavior, impaired social interactions, and reduced habitual learning capacity. Although OSE at our selected levels did not significantly affect neuron count in the brain, it activated neuroinflammatory responses, altered blood vessel morphology, modulated neurotransmitter levels and the expression of neurodevelopment-related genes. Transcriptomic analysis revealed upregulation of mitochondria-related genes associated with oxidative phosphorylation. Further assessments of mitochondrial function demonstrated altered activities of respiratory chain complexes, reduced mitochondrial membrane potential (MMP), and decreased ATP content. Notably, co-treatment with mitochondrial protectants acetyl-l-carnitine-hydrochloride (ALC) or nicotinamide riboside (NR) effectively mitigated OSE-induced neurobehavioral disorders. These findings suggest that overuse of OSE can pose neurodevelopmental risks for both humans and animals, potentially attributable to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shuang Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Minjian Zou
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Zhirui Zhu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Zuo Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Kemin Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Jiayi Ruan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Bixi Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Chuanyin Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Haiyu Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
7
|
Zhang X, Sun L, Dapar MLG, Zhang Q. Novel plasma cytokines identified and validated in children during lead exposure according to the new updated BLRV. Sci Rep 2024; 14:30323. [PMID: 39639084 PMCID: PMC11621361 DOI: 10.1038/s41598-024-81215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Lead is a pervasive environmental contaminant with significant health risks, particularly to children. It is known for its neurotoxic and immunotoxic effects, causing developmental, cognitive, and behavioral impairments. Despite extensive research, the mechanisms of lead toxicity remain unclear. Cytokines, which are critical in immune response and inflammation, have emerged as potential biomarkers for lead toxicity. The recent Centers for Disease Control and Prevention (CDC) update to the blood lead reference value (BLRV) to 3.5 µg/dL emphasizes the need to explore novel biomarkers and mechanisms. The study involved 100 healthy children aged 1 to 5 years, divided into two groups based on BLRV: elevated (≥ 3.5 µg/dL) and low (< 3.5 µg/dL). The research consisted of two phases: discovery and validation. Plasma samples were analyzed using RayBio® Human Cytokine Antibody Arrays and Enzyme-linked immunosorbent assay (ELISA) for cytokine levels. Ethical approval was obtained, and statistical analyses included t-tests, chi-squared tests, pearson correlations, and multivariate logistic regression. Protein-protein interaction (PPI), Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to explore the roles of significant differentially expressed proteins (DEPs). No significant differences in age, gender, or BMI between the two groups, but BLRV levels were significantly higher in the elevated BLRV group compared to the low BLRV group. In the discovery phase, significant changes in cytokine expression were identified, including increased levels of IL-6, IL-8, and IL-17, and decreased levels of BDNF, BMP-4, IGF-1, IL-7, IL-10, and Leptin. These findings were validated in the second phase using ELISA. Significant positive correlations were found between BLRV and IL-6, IL-8, and IL-17. Negative correlations were observed with BDNF, BMP-4, IGF-1, IL-7, IL-10, and Leptin. Multivariate regression confirmed that BLRV significantly affects these cytokine levels. PPI networks revealed that DEPs had strong interactions with multiple proteins, indicating their central role in lead toxicity. GO and KEGG analyses highlighted pathways related to neurotoxicity and inflammatory responses, including "negative regulation of myotube differentiation," "neurotrophin signaling pathway," and "alcoholism." This study provides insights into the role of cytokines as biomarkers for lead toxicity and offers a comprehensive analysis of the mechanisms involved. The findings underscore the importance of early detection and intervention based on updated BLRV thresholds.
Collapse
Affiliation(s)
- Xuezhong Zhang
- Department of Laboratory Medicine, Zibo Central Hospital, Zibo, 255036, Shandong, China
| | - Lingling Sun
- Student/Adolescent Mental Health Center and Special needs ward, Zibo Mental Health Center (Fifth People's Hospital of Zibo City), Zibo, 255100, Shandong, China
| | | | - Qingchun Zhang
- Department of Laboratory Medicine, Zibo Central Hospital, Zibo, 255036, Shandong, China.
| |
Collapse
|
8
|
Madesh S, Sudhakaran G, Meenatchi R, Manikandan K, Dhayanithi NB, Almutairi MH, Almutairi BO, Guru A, Arockiaraj J. Neurobehavioral and bioaccumulative toxicity in adult in-vivo zebrafish model due to prolonged cadmium exposure in the presence of ketoprofen. J Biochem Mol Toxicol 2024; 38:e70005. [PMID: 39403942 DOI: 10.1002/jbt.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/01/2024] [Accepted: 10/02/2024] [Indexed: 01/12/2025]
Abstract
Increasing industrial activity causes the release of chemical compounds into aquatic habitats, including toxic heavy metals like cadmium and medications like ketoprofen, posing considerable ecological concerns. Although previous studies have shown that cadmium and ketoprofen individually cause cognitive impairment, there is a lack of information on the combined neurological effects of the two substances. We investigated the neurological consequences of persistent cadmium exposure in the presence of ketoprofen on adult zebrafish, providing an essential model for understanding cumulative impacts on vertebrate organisms. Behavioral assessments, bioaccumulation rates, biochemical studies, and histopathological exams were conducted over 42 days in authentic environmental settings. The results of our study show that cadmium (10 µg/L) and ketoprofen (10 and 100 µg/L) at environmentally relevant concentrations had a significant impact on locomotor activity, social interactions, and cognitive responses, indicating cumulative neurotoxicity in co-exposure groups compared to single pollutant groups. Biochemical tests show disturbances in antioxidant defense systems, while histological examinations reveal structural changes in zebrafish brain regions. Ketoprofen influences cadmium accumulation in the brain, underscoring the importance of conducting complete evaluations to understand the intricate interactions between environmental pollutants. This study improves our understanding of the complex interactions between heavy metals and medications, stressing the need to consider combined exposure when assessing the neurological effects on vertebrate models.
Collapse
Affiliation(s)
- S Madesh
- Department of Biotechnology, Toxicology and Pharmacology Laboratory, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Ramu Meenatchi
- Department of Biotechnology, Toxicology and Pharmacology Laboratory, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, India
| | - K Manikandan
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, India
| | | | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, Toxicology and Pharmacology Laboratory, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, India
| |
Collapse
|
9
|
Lautarescu A, Bonthrone AF, Bos B, Barratt B, Counsell SJ. Advances in fetal and neonatal neuroimaging and everyday exposures. Pediatr Res 2024; 96:1404-1416. [PMID: 38877283 PMCID: PMC11624138 DOI: 10.1038/s41390-024-03294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 06/16/2024]
Abstract
The complex, tightly regulated process of prenatal brain development may be adversely affected by "everyday exposures" such as stress and environmental pollutants. Researchers are only just beginning to understand the neural sequelae of such exposures, with advances in fetal and neonatal neuroimaging elucidating structural, microstructural, and functional correlates in the developing brain. This narrative review discusses the wide-ranging literature investigating the influence of parental stress on fetal and neonatal brain development as well as emerging literature assessing the impact of exposure to environmental toxicants such as lead and air pollution. These 'everyday exposures' can co-occur with other stressors such as social and financial deprivation, and therefore we include a brief discussion of neuroimaging studies assessing the effect of social disadvantage. Increased exposure to prenatal stressors is associated with alterations in the brain structure, microstructure and function, with some evidence these associations are moderated by factors such as infant sex. However, most studies examine only single exposures and the literature on the relationship between in utero exposure to pollutants and fetal or neonatal brain development is sparse. Large cohort studies are required that include evaluation of multiple co-occurring exposures in order to fully characterize their impact on early brain development. IMPACT: Increased prenatal exposure to parental stress and is associated with altered functional, macro and microstructural fetal and neonatal brain development. Exposure to air pollution and lead may also alter brain development in the fetal and neonatal period. Further research is needed to investigate the effect of multiple co-occurring exposures, including stress, environmental toxicants, and socioeconomic deprivation on early brain development.
Collapse
Affiliation(s)
- Alexandra Lautarescu
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alexandra F Bonthrone
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Brendan Bos
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Ben Barratt
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Serena J Counsell
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| |
Collapse
|
10
|
Chong SG, Ismail IS, Chong CM, Mad Nasir N, Saleh Hodin NA. 1H NMR-metabolomics studies on acute toxicity effect of lead in adult zebrafish ( Danio rerio) model. Drug Chem Toxicol 2024; 47:573-586. [PMID: 38726945 DOI: 10.1080/01480545.2024.2346751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 09/04/2024]
Abstract
Zebrafish (Danio rerio) is ideal for studying the effects of toxins like lead or plumbum (Pb) which persist in the environment and harm body systems when absorbed. Increasing Pb concentration could result in a higher mortality rate and alteration of behavior and metabolism. The present study evaluates the acute toxicity effect of Pb on metabolome and behavior in adult zebrafish. The zebrafish were exposed to various Pb concentrations ranging from 0 to 30 mg/L for different periods (24, 48, and 72 h) before the fish samples were subjected to Nuclear Magnetic Resonance (NMR)-multivariate data analysis (MVDA) with additional support from behavioral assessment. The behavior of zebrafish was significantly altered after Pb inducement and the differential metabolites increased in low (5 mg/L) while decreased in high (10 mg/L) Pb concentrations. An ideal Pb induction could be achieved by 5 mg/L concentration in 24 h, which induced significant metabolite changes without irreversible damage. Continuing research on the effects of lead toxicity is crucial to develop effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Siok-Geok Chong
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Intan Safinar Ismail
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Chou-Min Chong
- Department of Aquaculture, Faculty of Agricultural Sciences, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Nadiah Mad Nasir
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Nur Atikah Saleh Hodin
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| |
Collapse
|
11
|
Tang Q, Zhao B, Cao S, Wang S, Liu Y, Bai Y, Song J, Pan C, Zhao H, Lan X. Neurodevelopmental toxicity of a ubiquitous disinfection by-product, bromoacetic acid, in Zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135211. [PMID: 39024767 DOI: 10.1016/j.jhazmat.2024.135211] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Disinfection of public drinking water and swimming pools is crucial for preventing waterborne diseases, but it can produce harmful disinfection by-products (DBPs), increasing the risk of various diseases for those frequently exposed to such environments. Bromoacetic acid (BAA) is a ubiquitous DBP, with toxicity studies primarily focused on its in vitro cytotoxicity, and insufficient research on its neurodevelopmental toxicity. Utilizing zebrafish as a model organism, this study comprehensively explored BAA's toxic effects and uncovered the molecular mechanisms through neurobehavioral analysis, in vivo two-photon imaging, transcriptomic sequencing, pharmacological intervention and molecular biological detection. Results demonstrated BAA induced significant changes on various indicators in the early development of zebrafish. Furthermore, BAA disrupted behavioral patterns in zebrafish larvae across locomotion activity, light-dark stimulation, and vibration stimulation paradigms. Subsequent investigation focused on larvae revealed BAA inhibited neuronal development, activated neuroinflammatory responses, and altered vascular morphology. Transcriptomic analysis revealed BAA-stressed zebrafish exhibited downregulation of visual transduction-related genes and activation of ferroptosis and cellular apoptosis. Neurobehavioral disorders were recovered by inhibiting ferroptosis and apoptosis. This study elucidates the neurodevelopmental toxicity associated with BAA, which is crucial for understanding health risks of DBPs and for the development of more effective detection methods and regulatory strategies.
Collapse
Affiliation(s)
- Qi Tang
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Bixi Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Siqi Cao
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Shuang Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Yue Liu
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Yangyang Bai
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jiajun Song
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chuanying Pan
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Xianyong Lan
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
12
|
Huang W, Mo J, Li J, Wu K. Exploring developmental toxicity of microplastics and nanoplastics (MNPS): Insights from investigations using zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173012. [PMID: 38719038 DOI: 10.1016/j.scitotenv.2024.173012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/15/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Microplastics and nanoplastics (MNPs) have received increasing attention due to their high detection rates in human matrices and adverse health implications. However, the toxicity of MNPs on embryo/fetal development following maternal exposure remains largely unexplored. Zebrafish, sharing genetic similarities with human, boast a shorter life cycle, rapid embryonic development, and the availability of many transgenic strains, is a suitable model for environmental toxicology studies. This review comprehensively explores the existing research on the impacts of MNPs on zebrafish embryo development. MNPs exposure induces a wide array of toxic effects, encompassing neurodevelopmental toxicity, immunotoxicity, gastrointestinal effects, microbiota dysbiosis, cardiac dysfunctions, vascular toxicity, and metabolic imbalances. Moreover, MNPs disrupt the balance between reactive oxygen species (ROS) production and antioxidant capacity, culminating in oxidative damage and apoptosis. This study also offers insight into the current omics- and multi-omics based approaches in MNPs research, which greatly expedite the discovery of biochemical or metabolic pathways, and molecular mechanisms underlying MNPs exposure. Additionally, this review proposes a preliminary adverse outcome pathway framework to predict developmental toxicity caused by MNPs. It provides a comprehensive overview of pathways, facilitating a clearer understanding of the exposure and toxicity of MNPs, from molecular effects to adverse outcomes. The compiled data in this review provide a better understanding for MNPs effects on early life development, with the goal of increasing awareness about the risks posed to pregnant women by MNPs exposure and its potential impact on the health of their future generations.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, People's Republic of China.
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, People's Republic of China
| | - Jiejie Li
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, People's Republic of China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, People's Republic of China
| |
Collapse
|
13
|
Ren X, Liu Z, Zhang R, Shao Y, Duan X, Sun B, Zhao X. Nanoplastics aggravated TDCIPP-induced transgenerational developmental neurotoxicity in zebrafish depending on the involvement of the dopamine signaling pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104436. [PMID: 38599507 DOI: 10.1016/j.etap.2024.104436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/24/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Plastics pose a hazard to the environment. Although plastics have toxicity, microplastics (MPs) and nanoplastics (NPs) are capable of interacting with the rest pollutants in the environment, so they serve as the carriers and interact with organic pollutants to modulate their toxicity, thus resulting in unpredictable ecological risks. PS-NPs and TDCIPP were used expose from 2 h post-fertilization (hpf) to 150 days post-fertilization (dpf) to determine the bioaccumulation of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and its potential effects on neurodevelopment in F1 zebrafish (Danio rerio) offspring under the action of polystyrene nano plastics (PS-NPs). The exposure groups were assigned to TDCIPP (0, 0.4, 2 or 10 µg/L) alone group and the PS-NPs (100 µg/L) and TDCIPP co-exposed group. F1 embryos were collected and grown in clean water to 5 dpf post-fertilization. PS-NPs facilitated the bioaccumulation of TDCIPP in the gut, gill, head,gonad and liver of zebrafish in a sex-dependent manner and promoted the transfer of TDCIPP to their offspring, thus contributing to PS-NPs aggravated the inhibition of offspring development and neurobehavior of TDCIPP-induced. In comparison with TDCIPP exposure alone, the combination could notably down-regulate the levels of the dopamine neurotransmitter, whereas the levels of serotonin or acetylcholine were not notably different. This result was achieved probably because PS-NPs interfered with the TDCIPP neurotoxic response of zebrafish F1 offspring not through the serotonin or acetylcholine neurotransmitter pathway. The increased transfer of TDCIPP to the offspring under the action of PS-NPs increased TDCIPP-induced transgenerational developmental neurotoxicity, which was proven by a further up-regulation/down-regulation the key gene and protein expression related to dopamine synthesis, transport, and metabolism in F1 larvae, in contrast to TDCIPP exposure alone. The above findings suggested that dopaminergic signaling involvement could be conducive to the transgenerational neurodevelopmental toxicity of F1 larval upon parental early co-exposure to PS-NPs and TDCIPP.
Collapse
Affiliation(s)
- Xin Ren
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping 136000, China
| | - Zhibo Liu
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Ruiqi Zhang
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Yuting Shao
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Xiaoyue Duan
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping 136000, China
| | - Bo Sun
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Xuesong Zhao
- College of Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China.
| |
Collapse
|
14
|
Liu S, He Y, Yin J, Zhu Q, Liao C, Jiang G. Neurotoxicities induced by micro/nanoplastics: A review focusing on the risks of neurological diseases. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134054. [PMID: 38503214 DOI: 10.1016/j.jhazmat.2024.134054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
Pollution of micro/nano-plastics (MPs/NPs) is ubiquitously prevalent in the environment, leading to an unavoidable exposure of the human body. Despite the protection of the blood-brain barrier, MPs/NPs can be transferred and accumulated in the brain, which subsequently exert negative effects on the brain. Nevertheless, the potential neurodevelopmental and/or neurodegenerative risks of MPs/NPs remain largely unexplored. In this review, we provide a systematic overview of recent studies related to the neurotoxicity of MPs/NPs. It covers the environmental hazards and human exposure pathways, translocation and distribution into the brain, the neurotoxic effects, and the possible mechanisms of environmental MPs/NPs. MPs/NPs are widely found in different environment matrices, including air, water, soil, and human food. Ambient MPs/NPs can enter the human body by ingestion, inhalation and dermal contact, then be transferred into the brain via the blood circulation and nerve pathways. When MPs/NPs are present in the brain, they can initiate a series of molecular or cellular reactions that may harm the blood-brain barrier, cause oxidative stress, trigger inflammatory responses, affect acetylcholinesterase activity, lead to mitochondrial dysfunction, and impair autophagy. This can result in abnormal protein folding, loss of neurons, disruptions in neurotransmitters, and unusual behaviours, ultimately contributing to the initiation and progression of neurodegenerative changes and neurodevelopmental abnormalities. Key challenges and further research directions are also proposed in this review as more studies are needed to focus on the potential neurotoxicity of MPs/NPs under realistic conditions.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinling He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jia Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Cao X, Xie W, Feng M, Chen J, Zhang J, Luo J, Wang Y. Nanoplastic Exposure Mediates Neurodevelopmental Toxicity by Activating the Oxidative Stress Response in Zebrafish ( Danio rerio). ACS OMEGA 2024; 9:16508-16518. [PMID: 38617687 PMCID: PMC11007712 DOI: 10.1021/acsomega.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
The global accumulation and adverse effects of nanoplastics (NPs) are a growing concern for the environment and human health. In recent years, more and more studies have begun to focus on the toxicity of plastic particles for early animal development. Different particle sizes of plastic particles have different toxicities to biological development. Nevertheless, the potential toxicological effects of 20 nm NPs, especially on neurodevelopment, have not been well investigated. In this paper, we used fluorescence microscopy to determine neurotoxicity in zebrafish at different concentrations of NPs. Moreover, the behavioral analysis demonstrated that NPs induced abnormal behavior of zebrafish. The results revealed developmental defects in zebrafish embryos after exposure to different concentrations (0, 0.3, 3, and 9 mg/L) of NPs. The morphological deformities, including abnormal body length and the rates of heart, survival, and hatching, were induced after NP exposure in zebrafish embryos. In addition, the development of primary motor neurons was observed the inhibitory effects of NPs on the length, occurrence, and development of primary motor neurons in Tg(hb9:GFP). Quantitative polymerase chain reaction analysis suggested that exposure to NPs significantly affects the expression of the genes involved in the occurrence and differentiation of primary motor neurons in zebrafish. Furthermore, the indicators associated with oxidative stress and apoptosis were found to be modified in zebrafish embryos at 24 and 48 h following exposure to NPs. Our findings demonstrated that NPs could cause toxicity in primary motor neurons by activating the oxidative stress response and inducing apoptosis, consequently impairing motor performance.
Collapse
Affiliation(s)
- Xiaoqian Cao
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Wenjie Xie
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
- Engineering
Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Meilan Feng
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Juntao Chen
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Jiannan Zhang
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Juanjuan Luo
- Engineering
Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Yajun Wang
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|
16
|
Cao Q, Wei D, Ma X, Liu R, Samra, Qi Y, Yuan C, Huang D. Polystyrene microplastics mitigate lead-induced neurotoxicity by reducing heavy metal uptake in zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170790. [PMID: 38331279 DOI: 10.1016/j.scitotenv.2024.170790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
The combined pollution of lead (Pb) and polystyrene microplastics (PS-MPs) is common in aquatic environments. However, the combined neurotoxicity of these two pollutants is still poorly understood. In this study, zebrafish (Danio rerio) larvae were used to assess the combined neurotoxicity and mechanism of Pb and PS-MPs at environmentally relevant concentrations. The results showed that Pb (10 μg/L) induced abnormal behavior including significantly reduced movement distance, maximum acceleration, and average velocity (P < 0.05) along with altered expression of neurodevelopment-related genes (gap43 and α1-tubulin) (P < 0.05). PS-MPs (25 μg/L, 250 μg/L; diameter at 25 μm) co-exposure not only significantly reduced the concentration of Pb in the exposed solution (P < 0.01), but also decreased the uptake of Pb by downregulating the divalent metal transporter 1 gene (dmt1) (P < 0.01), thereby alleviating Pb-induced neurotoxicity. However, to demonstrate that PS-MPs alleviate the neurotoxicity of Pb by reducing Pb uptake, upregulation of dmt1 by addition of deferoxamine (DFO, an efficient iron chelator, 100 μM) significantly increased the Pb uptake and exacerbated neurotoxicity in zebrafish. In summary, our results demonstrated that PS-MPs alleviate Pb neurotoxicity by downregulating the mRNA level of dmt1 and decreasing the Pb uptake. This study provides a new insight into the combined neurotoxicity and underlying mechanisms of PS-MPs and Pb on zebrafish.
Collapse
Affiliation(s)
- Qiyue Cao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China; Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Dongqiong Wei
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Xuan Ma
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Rongjian Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Samra
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Cong Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China.
| |
Collapse
|
17
|
Chen H, Wang Y, Liang H. The combined neurotoxicity of DBP and nano-TiO 2 in embryonic zebrafish (Danio rerio) revealed by oxidative activity, neuro-development genes expression and metabolomics changes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 269:106881. [PMID: 38430782 DOI: 10.1016/j.aquatox.2024.106881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Dibutyl phthalate (DBP) is a commonly used plasticizer that is frequently detected in water samples due to its widespread use. Titanium dioxide nanoparticles (n-TiO2) have been found to enhance the harmful effects of organic contaminants by increasing their bioavailability in aquatic environments. However, the combined toxic effects of DBP and n-TiO2 on aquatic organisms remain unclear. This study aimed to investigate the neurotoxicity of DBP and n-TiO2 synergistic exposure during the early life stage of zebrafish. The results of the study revealed that co-exposure of DBP and n-TiO2 led to an increase in deformities and a significant reduction in the active duration of zebrafish larvae. Furthermore, the co-exposure of DBP and n-TiO2 resulted in elevated levels of oxidative stress and altered gene expression related to neurodevelopment and apoptosis. Notably, n-TiO2 exacerbated the oxidative damage and apoptosis induced by DBP alone exposure. Additionally, co-exposure of the 1.0 mg/L DBP and n-TiO2 significantly affected the expression of genes associated with neurodevelopment. Moreover, disturbances in amino acid metabolism and interference with lipid metabolism were observed as a result of DBP and n-TiO2 co-exposure. In general, n-TiO2 aggravated the neurotoxicity of DBP in the early life stage of zebrafish by increasing oxidative stress, apoptosis, and disrupting amino acid synthesis and lipid metabolism. Therefore, it is essential to consider the potential risks caused by DBP and nanomaterials co-existence in the aquatic environment.
Collapse
Affiliation(s)
- Haiyue Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, Hohhot, 010021, China
| | - Yingjia Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, Hohhot, 010021, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, Hohhot, 010021, China.
| |
Collapse
|
18
|
Shao X, Xiao D, Yang Z, Jiang L, Li Y, Wang Y, Ding Y. Frontier of toxicology studies in zebrafish model. J Appl Toxicol 2024; 44:488-500. [PMID: 37697940 DOI: 10.1002/jat.4543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Based on the 87 original publications only from quartiles 1 and 2 of Journal Citation Report (JCR) collected by the major academic databases (Science Direct, Web of Science, PubMed, and Wiley) in 2022, the frontier of toxicology studies in zebrafish model is summarized. Herewith, a total of six aspects is covered such as developmental, neurological, cardiovascular, hepatic, reproductive, and immunizing toxicities. The tested samples involve chemicals, drugs, new environmental pollutants, nanomaterials, and its derivatives, along with those related mechanisms. This report may provide a frontier focus benefit to researchers engaging in a zebrafish model for environment, medicine, food, and other fields.
Collapse
Affiliation(s)
- Xinting Shao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Dandan Xiao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Zhaoyi Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Lulu Jiang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
19
|
Cao Y, Zhao W, Zhong Y, Jiang X, Mei H, Chang Y, Wu D, Dou J, Vasquez E, Shi X, Yang J, Jia Z, Tan X, Li Q, Dong Y, Xie R, Gao J, Wu Y, Liu Y. Effects of chronic low-level lead (Pb) exposure on cognitive function and hippocampal neuronal ferroptosis: An integrative approach using bioinformatics analysis, machine learning, and experimental validation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170317. [PMID: 38301787 DOI: 10.1016/j.scitotenv.2024.170317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Lead (Pb), a pervasive and ancient toxic heavy metal, continues to pose significant neurological health risks, particularly in regions such as Southeast Asia. While previous research has primarily focused on the adverse effects of acute, high-level lead exposure on neurological systems, studies on the impacts of chronic, low-level exposure are less extensive, especially regarding the precise mechanisms linking ferroptosis - a novel type of neuron cell death - with cognitive impairment. This study aims to explore the potential effects of chronic low-level lead exposure on cognitive function and hippocampal neuronal ferroptosis. This research represents the first comprehensive investigation into the impact of chronic low-level lead exposure on hippocampal neuronal ferroptosis, spanning clinical settings, bioinformatic analyses, and experimental validation. Our findings reveal significant alterations in the expression of genes associated with iron metabolism and Nrf2-dependent ferroptosis following lead exposure, as evidenced by comparing gene expression in the peripheral blood of lead-acid battery workers and workers without lead exposure. Furthermore, our in vitro and in vivo experimental results strongly suggest that lead exposure may precipitate cognitive dysfunction and induce hippocampal neuronal ferroptosis. In conclusion, our study indicates that chronic low-level lead exposure may activate microglia, leading to the promotion of ferroptosis in hippocampal neurons.
Collapse
Affiliation(s)
- Yingsi Cao
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wenjing Zhao
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yanqi Zhong
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaofan Jiang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Huiya Mei
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuanjin Chang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dongqin Wu
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - JianRui Dou
- Center for Disease Control and Prevention of Yangzhou, Yangzhou, China
| | - Emely Vasquez
- School of Medicine, The City University of New York School of Medicine, New York, USA
| | - Xian Shi
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jiatao Yang
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhongtang Jia
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaochao Tan
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Qian Li
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuying Dong
- Center for Disease Control and Prevention of Yangzhou, Yangzhou, China
| | - Ruijin Xie
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ju Gao
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
| | - Yu Wu
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, China.
| | - Yueying Liu
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
20
|
Ni A, Fang L, Xi M, Li J, Qian Q, Wang Z, Wang X, Wang H, Yan J. Neurotoxic effects of 2-ethylhexyl diphenyl phosphate exposure on zebrafish larvae: Insight into inflammation-driven changes in early motor behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170131. [PMID: 38246379 DOI: 10.1016/j.scitotenv.2024.170131] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
The extensive utilization and potential adverse impacts of the replacement flame-retardant 2-Ethylhexyl Diphenyl Phosphate (EHDPP) have raised concerns. Currently, there is limited knowledge regarding the developmental, neurological, and immunotoxic consequences of EHDPP exposure, as well as its potential behavioral outcomes. In this study, we undertook a comprehensive examination and characterization of the toxic effects over the EHDPP concentration range of 14-1400 nM. Our findings unveiled that EHDPP, even at an environmentally relevant concentration of 14 nM, exhibited excitatory neurotoxicity, eliciting a 13.5 % increase in the swimming speed of zebrafish larvae. This effect might be attributed to the potential influence of EHDPP on the release of neurotransmitters like serotonin and dopamine, which, in turn, mediated anxiety-like behavior in the zebrafish larvae. Conversely, sublethal dose EHDPP (1400 nM) exposure significantly suppressed the swimming vigor of zebrafish larvae, accompanied by morphological changes, abnormal behaviors, and alterations in intracerebral molecules. Transcriptomics revealed the underlying mechanism. The utilization of pathway inhibitors reshaped the inflammatory homeostasis and alleviated the toxicity induced by EHDPP exposure, anchoring the pivotal role played by the TLR4/NF-κB signaling pathway in EHDPP-induced adverse changes in zebrafish behavior and neurophysiology. This study observed the detrimental effects of EHDPP on fish sustainability at environmentally relevant concentrations, highlighting the practical significance for EHDPP risk management. Elucidating the toxic mechanisms of EHDPP will contribute to a deeper comprehension of how environmental pollutants can intricately influence human health.
Collapse
Affiliation(s)
- Anyu Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lu Fang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miaocui Xi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jinyun Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zejun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
21
|
Huang M, Liu Y, Duan R, Yin J, Cao S. Effects of continuous and pulse lead exposure on the swimming behavior of tadpoles revealed by brain-gut axis analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133267. [PMID: 38150764 DOI: 10.1016/j.jhazmat.2023.133267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Lead (Pb) is present in aquatic environments with a continuous or pulse form due to the regular or irregular discharge of wastewater. These two modes of exposure result in different toxicological effects on aquatic animals. To compare the effects of Pb exposure mode on the swimming behavior of amphibian larvae, this study proposed a combination method to examine the brain-gut axis (gut bacteria, histopathology, metabolomics, and ethology) in order to evaluate the ecotoxic differences in Pelophylax nigromaculatus tadpoles (Gs 21-28) when exposed to continuous (CE100) versus pulse exposure (PE100) of environmental concentrations of Pb (100 μg/L). The results showed that: 1) CE100 significantly decreased the movement distance and swimming activity of the tadpoles compared to PE100 and the control, while there were no significant differences between the control group and PE100. 2) At the phyla level, compared to PE100, CE100 treatment significantly decreased the abundance of Actinobacteria, Firmicutes, Proteobacteria, and Bacteroidetes and increased the abundance of Fusobacteria in the gut. At the genus level, compared to PE100, CE100 significantly increased the abundance of U114 and decreased the abundance of Anaerorhabdus, Exiguobacterium and Microbacterium. 3) Compared to PE100, CE100 changed the metabolites of the brain-gut axis pathway, such as quinolinic acid, L-valine, L-dopa, L-histidine, urocanic acid, L-threonine, γ-aminobutyric acid (GABA), L-glutamate (Glu), acetylcholine (Ach), L-tyrosine (Tyr), L-tryptophan (Trp), and levodopa (DOPA). 4) CE100 and PE100 played a repressive role in the histidine metabolism and tyrosine metabolism pathways and played a promoting role in the purine metabolism and pyrimidine metabolism pathways. This study provides a method for evaluating the toxic effects of heavy metal exposure via two different exposure modes (pulse versus continuous) which tadpoles may encounter in the natural environment from a combined study examining the brain-gut axis.
Collapse
Affiliation(s)
- Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Agricultural Resource Development, Utilisation and Quality and Safety Control of Hunan Characteristics in Hunan Universities, Loudi 417000, China
| | - Yang Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Agricultural Resource Development, Utilisation and Quality and Safety Control of Hunan Characteristics in Hunan Universities, Loudi 417000, China.
| | - Jiawei Yin
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Songle Cao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| |
Collapse
|
22
|
Gu J, Guo L, Chen C, Ji G, Wang L. Neurobehavioral toxic effects and mechanisms of 2-aminobenzothiazole exposure on zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169495. [PMID: 38142985 DOI: 10.1016/j.scitotenv.2023.169495] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
2-Aminobenzothiazole (NTH), a benzothiazole derivative, exhibits potent biochemical activities and plays a significant role in modern industry. Widespread and intensive utilization of NTH has led to its detection in aquatic environments, encompassing both groundwater and surface water. Despite its wide usage, the effect of NTH on developmental neurotoxicity in aquatic organisms remains uncharted. Therefore, the aim of this investigation was to create exposure models for short- and long-term studies in order to analyze the neurobehavioral toxic impact of NTH (0, 50, 500, and 5000 μg/L) on zebrafish, which includes motor function, anxiety, and memory performance, as well as to examine the mechanism of neurotoxicity. The results revealed a significant suppression of initial embryonic mobility by NTH. However, during short-term exposure experiments, it did not significantly impact the developmental neurobehavioral functions of zebrafish. In addition, significant effects on zebrafish were observed after long-term exposure to 50 and 500 μg/L NTH, mainly impacting locomotion, social behavior, anxiety, and cognitive functions. Moreover, NTH caused oxidative damage in adult zebrafish brain tissue, which was accompanied by abnormal expression of oxidative damage-related genes. Furthermore, the Real-Time PCR results indicated a significant suppression of genes related to exposure to NTH, specifically those in the GABA synthesis pathway (gabrg2, gad2, gad1b, and abat) and the 5-HT synthesis pathway (tph2, tph1b, pet1, and htr1aa). Taken together, this study demonstrates for the first time that chronic exposure to NTH decreases the expression of genes associated with the zebrafish GABA synthesis pathway and the 5-HT synthesis pathway. This suppression is accompanied by oxidative damage, ultimately resulting in neurobehavioral changes related to motor ability, anxiety, and memory performance.
Collapse
Affiliation(s)
- Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Liguo Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Chen Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Lei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
23
|
Takemura Mariano MV, Paganotto Leandro L, Gomes KK, Dos Santos AB, de Rosso VO, Dafre AL, Farina M, Posser T, Franco JL. Assessing the disparity: comparative toxicity of Copper in zebrafish larvae exposes alarming consequences of permissible concentrations in Brazil. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:166-184. [PMID: 38073470 DOI: 10.1080/15287394.2023.2290630] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Copper (Cu) is a naturally occurring metal with essential micronutrient properties. However, this metal might also pose increased adverse environmental and health risks due to industrial and agricultural activities. In Brazil, the maximum allowable concentration of Cu in drinking water is 2 mg/L. Despite this standard, the impact of such concentrations on aquatic organisms remains unexplored. This study aimed to evaluate the toxicity of CuSO4 using larval zebrafish at environmentally relevant concentrations. Zebrafish (Danio rerio) larvae at 72 hr post-fertilization (hpf) were exposed to nominal CuSO4 concentrations ranging from 0.16 to 48 mg/L to determine the median lethal concentration (LC50), established at 8.4 mg/L. Subsequently, non-lethal concentrations of 0.16, 0.32, or 1.6 mg/L were selected for assessing CuSO4 -induced toxicity. Morphological parameters, including body length, yolk sac area, and swim bladder area, were adversely affected by CuSO4 exposure, particularly at 1.6 mg/L (3.31 mm ±0.1, 0.192 mm2 ±0.01, and 0.01 mm2 ±0.05, respectively). In contrast, the control group exhibited values of 3.62 mm ±0.09, 0.136 mm2 ±0.013, and 0.3 mm2 ±0.06, respectively. Behavioral assays demonstrated impairments in escape response and swimming capacity, accompanied by increased levels of reactive oxygen species (ROS) and lipid peroxidation. In addition, decreased levels of non-protein thiols and reduced cellular viability were noted. Data demonstrated that exposure to CuSO4 at similar concentrations as those permitted in Brazil for Cu adversely altered morphological, biochemical, and behavioral endpoints in zebrafish larvae. This study suggests that the permissible Cu concentrations in Brazil need to be reevaluated, given the potential enhanced adverse health risks of exposure to environmental metal contamination.
Collapse
Affiliation(s)
- Maria Vitória Takemura Mariano
- Oxidative Stress and Cell Signaling Research Group. Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, Brazil
| | - Luana Paganotto Leandro
- Oxidative Stress and Cell Signaling Research Group. Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, Brazil
- Department of Molecular Biology and Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Karen Kich Gomes
- Oxidative Stress and Cell Signaling Research Group. Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, Brazil
| | - Ana Beatriz Dos Santos
- Oxidative Stress and Cell Signaling Research Group. Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, Brazil
| | - Vitor Oliveira de Rosso
- Oxidative Stress and Cell Signaling Research Group. Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, Brazil
| | - Alcir Luiz Dafre
- Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Marcelo Farina
- Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Thaís Posser
- Oxidative Stress and Cell Signaling Research Group. Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, Brazil
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group. Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, Brazil
| |
Collapse
|
24
|
Wang X, Li S, Zhang C, Xu W, Wu M, Cheng J, Li Z, Tao L, Zhang Y. Stereoselective toxicity of acetochlor chiral isomers on the nervous system of zebrafish larvae. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133016. [PMID: 37992503 DOI: 10.1016/j.jhazmat.2023.133016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Acetochlor (ACT) is a widely detected pesticide globally, and the neurotoxic effects of its chiral isomers on humans and environmental organisms remain uncertain. Zebrafish were used to study the neurotoxicity of ACT and its chiral isomers. Our study reveals that the R-ACT, Rac-ACT, and S-ACT induce neurotoxicity in zebrafish larvae by impairing vascular development and disrupting the blood-brain barrier. These detrimental effects lead to apoptosis in brain cells, hindered development of the central nervous system, and manifest as altered swimming behavior and social interactions in the larvae. Importantly, the neurotoxicity caused by the S-ACT exhibits the most pronounced impact and significantly diverges from the effects induced by the R-ACT. The neurotoxicity associated with the Rac-ACT falls intermediate between that of the R-ACT and S-ACT. Fascinatingly, we observed a remarkable recovery in the S-ACT-induced abnormalities in BBB, neurodevelopment, and behavior in zebrafish larvae upon supplementation of the Wnt/β-catenin signaling pathway. This observation strongly suggests that the Wnt/β-catenin signaling pathway serves as a major target of S-ACT-induced neurotoxicity in zebrafish larvae. In conclusion, S-ACT significantly influences zebrafish larval neurodevelopment by inhibiting the Wnt/β-catenin signaling pathway, distinguishing it from R-ACT neurotoxic effects.
Collapse
Affiliation(s)
- Xin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shoulin Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Zhang
- Department of Pathology, UT southwestern Medical Center, Dallas, TX 75390, United States
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mengqi Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
25
|
Parithathvi A, Choudhari N, Dsouza HS. Prenatal and early life lead exposure induced neurotoxicity. Hum Exp Toxicol 2024; 43:9603271241285523. [PMID: 39340316 DOI: 10.1177/09603271241285523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Lead (Pb) has become a major environmental contaminant. There are several ways in which lead can enter the human body and cause toxic effects on human health. This review focuses on the impact of lead toxicity at prenatal and early life stages and its effect on neurodevelopment. Lead exposure to the developing foetus targets foetal neural stem cells. Hence, it has detrimental effects on developing neural and glial cells, adversely influencing cognition and behaviour. Lead has a profound influence on the movement of calcium ions (Ca2+), which can be attributed to most of the mechanisms by which lead affects neurodevelopment. There is no known safe threshold of lead exposure for children. Lead can affect foetal neurodevelopment leading to various neurological disorders, and neurotoxic effects on behavioural and cognitive outcomes. In this review, we discuss prenatal and early-life lead exposure, its mechanism, and consequences for neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease in later stages of life. This review further highlights the importance of lead exposure during pregnancy and lactation periods as well as early development of the child in understanding the extent of lead-induced neurological damage to the foetus/children and the associated future risks.
Collapse
Affiliation(s)
- Aluru Parithathvi
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Neha Choudhari
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Herman S Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
26
|
Guo S, Zhang X, Zhang Y, Chen X, Zhang Y, Cao B, Xia D. Development of a rapid zebrafish model for lead poisoning research and drugs screening. CHEMOSPHERE 2023; 345:140561. [PMID: 39491111 DOI: 10.1016/j.chemosphere.2023.140561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Lead (Pb) contamination is a worldwide public health threaten. Besides close restraint of lead exposure, it's emergency to discover compounds that could help to cue toxicities caused by lead. Zebrafish embryos and early larvae can serve as valuable screening tools in early pre-clinical phase of drug screening and research. In order to establish a zebrafish lead poisoning model that could be used for drug screening and research, zebrafish embryos at 6 h post-fertilization (hpf) were treated with lead at different concentrations by soaking intermittently, raised in lead work solution at night while in fish water during the day. After treated for 90 h, death and severe trunk curvature were observed on zebrafish in 640 μM group, obvious dysplasia, blood toxicity, excessive reactive oxygen species (ROS), severe neurotoxicity, such as shorter length of peripheral motor neurons, neuronal apoptosis, and axonal injury, and neurobehavior impairment were induced by lead at 80, 160 and 320 μM, similar to phenotypes reported in rodent. Moreover, the mRNA level of genes related to neurodevelopment, memory, and antioxidation were significantly down regulated, and apoptosis-related genes were up regulated, consistent to zebrafish phenotypic change. Finally, zebrafish were intermittently exposed to 80 μM lead solution to establish the lead poisoning model, and the efficacy of a safe chelating agent Meso-2,3-Dimercaptosuccinic acid (DMSA) was tested at a series of concentrations to validate the zebrafish model. The result showed concentration-dependent decrease of lead content in zebrafish in DMSA treated groups compared with model group. The above data fully demonstrated a zebrafish model of lead poisoning suitable for drug screening was successfully developed, which was expected to provide a rapid and economic tools for discovering antidotes of lead and drugs of neuroprotection.
Collapse
Affiliation(s)
- Shengya Guo
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Hunter Biotechnology, Inc., Hangzhou, 310051, China
| | - Xiaoxi Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yong Zhang
- Hunter Biotechnology, Inc., Hangzhou, 310051, China; Schoool of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xinghui Chen
- Hunter Biotechnology, Inc., Hangzhou, 310051, China
| | - Yiwen Zhang
- Hunter Biotechnology, Inc., Hangzhou, 310051, China
| | - Bingbing Cao
- Hunter Biotechnology, Inc., Hangzhou, 310051, China
| | - Daozong Xia
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
27
|
Jurowski K. The toxicological assessment of hazardous elements (Pb, Cd and Hg) in low-cost jewelry for adults from Chinese E-commerce platforms: In situ analysis by portable X-ray fluorescence measurement. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132167. [PMID: 37619281 DOI: 10.1016/j.jhazmat.2023.132167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/24/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
This article focusses on the environmental implications of low-cost jewelry for adults from Chinese e-commerce platforms ((n = 8) with heavy metal impurities (Pb, Cd and Hg) and their potential impact on human health and the environment. The study highlights the advantages of using portable X-ray fluorescence (pXRF) analysis for rapid, non-destructive, and in situ analysis of heavy metals in jewelry. The results reveal that all products (n = 106) contained heavy metals at varying levels, Hg being the most commonly detected heavy metal. The fact that 71% of the samples exceeded the EU limit for Pb and 51% exceeded the EU limit for Cd is alarming and highlights the need for stricter regulations and monitoring of the jewelry industry to mitigate the risks posed by heavy metals in the environment. The study emphasizes the importance of using pXRF analysis to identify heavy metals in jewelry and address the literature gap in environmental risk assessments of Pb, Cd, and Hg in low-cost jewelry for adults from China. In general, the findings call for urgent action to ensure the safety of consumers and prevent environmental pollution by strengthening regulations and monitoring the jewelry industry.
Collapse
Affiliation(s)
- Kamil Jurowski
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland; Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland.
| |
Collapse
|
28
|
Lu W, Yang F, Meng Y, An J, Hu B, Jian S, Yang G, Lu H, Wen C. Immunotoxicity and transcriptome analysis of zebrafish embryos exposure to Nitazoxanide. FISH & SHELLFISH IMMUNOLOGY 2023; 141:108977. [PMID: 37579811 DOI: 10.1016/j.fsi.2023.108977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Nitazoxanide (NTZ) is a broad-spectrum immunomodulatory drug, and little information is about the immunotoxicity of aquatic organisms induced by NTZ. In the present study, reduced body length and decreased yolk sac absorption in the NTZ-treated group were observed. Meanwhile, the number of innate immune cells and adaptive immune cells was substantially reduced upon NTZ exposure, and the migration and retention of macrophages and neutrophils in the injured area were inhibited. Following NTZ stimulation, oxidative stress levels in the zebrafish increased obviously. Mechanistically, RNA-seq, a high-throughput method, was performed to analyze the global expression of differentially expressed genes (DEGs) in zebrafish embryos treated with NTZ. 531 DEGs were identified by comparative transcriptome analysis, including 121 up-regulated and 420 down-regulated genes in zebrafish embryos after NTZ exposure. The transcriptome sequences were further subjected to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) and analysis, showing phototransduction and metabolic pathway, respectively, and were most enriched. In addition, some immune-related genes were inhibited after NTZ exposure. RNA-seq results confirmed by qRT-PCR were used to verify the expression of the 6 selected genes. The other immune-related genes such as two pro-inflammatory cytokines (IL-1β, tnfα) and two chemokines (CXCL8b.3, CXCL-c1c) were further confirmed and were differentially regulated after NTZ exposure. In summary, NTZ exposure could lead to immunotoxicity and increased ROS in zebrafish embryos, this study provides valuable information for future elucidating the molecular mechanism of exogenous stimuli-induced immunotoxicity in aquatic ecosystems.
Collapse
Affiliation(s)
- Wuting Lu
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Fanhua Yang
- College of Food Science and Technology, Nanchang University, Nanchang, 330031, China
| | - Yunlong Meng
- Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jinhua An
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Baoqing Hu
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Shaoqing Jian
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Gang Yang
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, Ji'an, 343009, China.
| | - Chungen Wen
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China.
| |
Collapse
|
29
|
Lu X, He Y, Liu Y, Wang XP, Xue YL, Zheng ZY, Duan SY, Kong HL, Zhang RZ, Huang JL, Deng J, Duan P. Intergenerational toxic effects of parental exposure to [C n mim]NO 3 (n = 2,4,6) on nervous and skeletal development in zebrafish offspring. ENVIRONMENTAL TOXICOLOGY 2023; 38:2204-2218. [PMID: 37300850 DOI: 10.1002/tox.23858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/21/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Ionic liquids (ILs) are thought to have negative effects on human health. Researchers have explored the effects of ILs on zebrafish development during the early stages, but the intergenerational toxicity of ILs on zebrafish development has rarely been reported. Herein, parental zebrafish were exposed to different concentrations (0, 12.5, 25, and 50 mg/L) of [Cn mim]NO3 (n = 2, 4, 6) for 1 week. Subsequently, the F1 offspring were cultured in clean water for 96 h. [Cn mim]NO3 (n = 2, 4, 6) exposure inhibited spermatogenesis and oogenesis in F0 adults, even causing obvious lacunae in the testis and atretic follicle oocytes in ovary. After parental exposure to [Cn mim]NO3 (n = 2, 4, 6), the body length and locomotor behavior were measured in F1 larvae at 96 hours post-fertilization (hpf). The results showed that the higher the concentration of [Cn mim]NO3 (n = 2, 4, 6), the shorter the body length and swimming distance, and the longer the immobility time. Besides, a longer alkyl chain length of [Cn mim]NO3 had a more negative effect on body length and locomotor behavior. RNA-seq analysis revealed several downregulated differentially expressed genes (DEGs)-grin1b, prss1, gria3a, and gria4a-enriched in neurodevelopment-related pathways, particularly the pathway for neuroactive ligand-receptor interaction. Moreover, several upregulated DEGs, namely col1a1a, col1a1b, and acta2, were mainly associated with skeletal development. Expression of DEGs was tested by RT-qPCR, and the outcomes were consistent with those obtained from RNA-Seq. We provide evidence showing the effects of parental exposure to ILs on the regulation of nervous and skeletal development in F1 offspring, demonstrating intergenerational effects.
Collapse
Affiliation(s)
- Xin Lu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yan He
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Postgraduate Union training base of Jinzhou Medical University, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yue Liu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Postgraduate Union training base of Jinzhou Medical University, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xin-Ping Wang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yu-Ling Xue
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Postgraduate Union training base of Jinzhou Medical University, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Zi-Yi Zheng
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Su-Yang Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Hong-Liang Kong
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Rong-Zhi Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jiao-Long Huang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jie Deng
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Peng Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Pharmacy, Hubei University of Medicine, China
| |
Collapse
|
30
|
Gomes AR, de Matos LP, Guimarães ATB, Freitas ÍN, Luz TMD, Silva AM, Silva Matos SGD, Rodrigues ASDL, Ferreira RDO, Islam ARMT, Rahman MM, Ragavendran C, Kamaraj C, Mubarak NM, Arias AH, Gomes PCS, Silva FG, Malafaia G. Plant-ZnO nanoparticles interaction: An approach to improve guinea grass (Panicum maximum) productivity and evaluation of the impacts of its ingestion by freshwater teleost fish. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131173. [PMID: 36924744 DOI: 10.1016/j.jhazmat.2023.131173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
We aimed to evaluate the possible effects of the application of zinc oxide nanoparticles [ZnO NPs; 68.96 ± 33.71 nm; at 100 and 500 mg/kg in a soil mixture of the Typic Dystrophic Red Latosol type and sand (2:1 ratio)] in the cultivation of Panicum maximum (until 125 days), using different biomarkers in addition to evaluating the uptake of Zn by the plants. Furthermore, we assessed the possible transfer of ZnO NPs from P. maximum leaves to zebrafish and their potential. Plants cultivated in substrates with ZnO NPs at 500 mg/kg showed reduced germination rate and growth. However, at 100 mg/kg, plants showed higher biomass and productivity, associated with higher Zn uptake, without inducing oxidative and nitrosative stress. Zinc content in zebrafish was not associated with ingesting leaves of P. maximum cultivated in substrate containing ZnCl2 or ZnO NPs or with genotoxic, mutagenic, and biochemical effects. In conclusion, ZnO NPs (at 100 mg/kg) are promising in the cultivation of P. maximum, and their ingestion by zebrafish did not cause changes in the evaluated biomarkers. However, we recommend that studies with other animal models be conducted to comprehensively assess the ecotoxicological hazard associated with applying ZnO NPs in soil.
Collapse
Affiliation(s)
- Alex Rodrigues Gomes
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Agronomy, Goiano Federal Institute - Campus Rio Verde, GO, Brazil
| | - Letícia Paiva de Matos
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Ítalo Nascimento Freitas
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Abner Marcelino Silva
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | | | - Raíssa de Oliveira Ferreira
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Andrés Hugo Arias
- National University of the South Bahía Blanca, CONICET Instituto Argentino de Oceanografía (IADO), Argentina
| | - Paula Cristine Silva Gomes
- Post-Graduation Program in Environmental Engineering, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Fabiano Guimarães Silva
- Post-Graduation Program in Agronomy, Goiano Federal Institute - Campus Rio Verde, GO, Brazil
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Brazilian Academy of Young Scientists (ABJC), Brazil.
| |
Collapse
|
31
|
Briñez-Gallego P, da Costa Silva DG, Cordeiro MF, Horn AP, Hort MA. Experimental models of chemically induced Parkinson's disease in zebrafish at the embryonic larval stage: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:201-237. [PMID: 36859813 DOI: 10.1080/10937404.2023.2182390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra that results in a decrease in dopamine levels, resulting in motor-type disturbances. Different vertebrate models, such as rodents and fish, have been used to study PD. In recent decades, Danio rerio (zebrafish) has emerged as a potential model for the investigation of neurodegenerative diseases due to its homology to the nervous system of humans. In this context, this systematic review aimed to identify publications that reported the utilization of neurotoxins as an experimental model of parkinsonism in zebrafish embryos and larvae. Ultimately, 56 articles were identified by searching three databases (PubMed, Web of Science, and Google Scholar). Seventeen studies using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 4 1-methyl-4-phenylpyridinium (MPP+), 24 6-hydroxydopamine (6-OHDA), 6 paraquat/diquat, 2 rotenone, and 6 articles using other types of unusual neurotoxins to induce PD were selected. Neurobehavioral function, such as motor activity, dopaminergic neuron markers, oxidative stress biomarkers, and other relevant parameters in the zebrafish embryo-larval model were examined. In summary, this review provides information to help researchers determine which chemical model is suitable to study experimental parkinsonism, according to the effects induced by neurotoxins in zebrafish embryos and larvae.
Collapse
Affiliation(s)
- Paola Briñez-Gallego
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Dennis Guilherme da Costa Silva
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Marcos Freitas Cordeiro
- Programa de Pós-graduação em Biociências e Saúde, Universidade do Oeste de Santa Catarina - UNOESC, Joaçaba, SC, Brasil
| | - Ana Paula Horn
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Mariana Appel Hort
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| |
Collapse
|
32
|
Zhou R, Zhou D, Yang S, Shi Z, Pan H, Jin Q, Ding Z. Neurotoxicity of polystyrene nanoplastics with different particle sizes at environment-related concentrations on early zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162096. [PMID: 36791853 DOI: 10.1016/j.scitotenv.2023.162096] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Nanoplastics (NPs) have received global attention due to their wide application and detection in various environmental or biological media. NPs can penetrate physical barriers and accumulate in organisms after being ingested, producing a variety of toxic effects and possessing particle size-dependent effects, distinguishing them from traditional contaminants. This paper explored the neurotoxicity of polystyrene (PS)-NPs of different particle sizes on zebrafish (Danio rerio) embryos at environmental concentrations at the tissue and molecular levels using visualized transgenic zebrafish. Results showed that all particle sizes of PS-NPs produced developmental toxicity in zebrafish embryos and induced neuronal loss, axonal deletion/shortening/hybridization, and developmental and apoptotic-related genetic alterations, ultimately leading to behavioral abnormalities. PS-NPs with smaller sizes may have more severe neurotoxicity due to their entry into the embryo and brain through the chorionic pore before hatching. In addition, PS-NPs at 100 nm and 1000 nm can specifically interfere with GABAergic, cholinergic or serotonergic system and affect neuronal signaling. Our results reveal the neurotoxic risk of NPs, and smaller particle-size NPs may have a greater ecological risk. We anticipate that our study can provide a basis for exploring the toxicity mechanisms of NPs and the environmental risk assessment of NPs.
Collapse
Affiliation(s)
- Ranran Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Dao Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Shixin Yang
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Zhiqiao Shi
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Hui Pan
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Qijie Jin
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Zhuhong Ding
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China.
| |
Collapse
|
33
|
Wang J, Cao H, Shi Y, Tian H, Yu F, Liu M, Gao L. Exposure to nitrate induced growth, intestinal histology and microbiota alterations of Bufo raddei Strauch tadpoles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106477. [PMID: 36948065 DOI: 10.1016/j.aquatox.2023.106477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Nitrate (NO3-) is one of the ubiquitous environmental chemicals which multiplies negative impacts on aquatic life such as amphibian larvae. However, the data involving the dynamics of amphibians in response to NO3-N are scarce. This study investigated the effects of NO3-N on locomotor ability, growth performance, oxidative stress parameters, intestinal histology, and intestinal microbiota of Bufo raddei Strauch tadpoles. The tadpoles were chronically exposed to different concentrations of NO3-N (10, 50, 100, and 200 mg/L) from Gosner stage 26 to 38. Our results revealed that NO3-N exposure caused significantly reduced body weight and length, impaired locomotor activity, and severe oxidative damage to liver tissue. Moreover, the high NO3-N (50, 100, and 200 mg/L) exposure caused irregular arrangement and indistinct cell borders of mucosal epithelial cells in the tadpoles intestine. The NO3-N exposure significantly changed the structure of the intestinal microbiota. The phylum Cyanobacteria occupy the main niche of intestinal microbes and have a certain negative correlation with the growth and motility of tadpoles. In addition, the functional prediction revealed that NO3-N exposure obviously downregulated the metabolism of enzyme families in tadpoles. Our comprehensive research shows the toxicity of NO3-N exposure in B. raddei Strauch, explores the potential links between development and intestinal microbiota of tadpole, and provides a new framework for the potential health risk of nitrate in amphibians.
Collapse
Affiliation(s)
- Ji Wang
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Hanwen Cao
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Yongpeng Shi
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Huanbing Tian
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Feifei Yu
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Mingxin Liu
- College of Chemical Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Lan Gao
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
34
|
Yan R, Ding J, Yang Q, Zhang X, Han J, Jin T, Shi S, Wang X, Zheng Y, Li H, Zhang H, An Y. Lead acetate induces cartilage defects and bone loss in zebrafish embryos by disrupting the GH/IGF-1 axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114666. [PMID: 36812871 DOI: 10.1016/j.ecoenv.2023.114666] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Skeletal system toxicity due to lead exposure has attracted extensive attention in recent years, but few studies focus on the skeletal toxicity of lead in the early life stages of zebrafish. The endocrine system, especially the GH/IGF-1 axis, plays an important role in bone development and bone health of zebrafish in the early life. In the present study, we investigated whether lead acetate (PbAc) affected the GH/IGF-1 axis, thereby causing skeletal toxicity in zebrafish embryos. Zebrafish embryos were exposed to lead PbAc between 2 and 120 h post fertilization (hpf). At 120 hpf, we measured developmental indices, such as survival, deformity, heart rate, and body length, and assessed skeletal development by Alcian Blue and Alizarin Red staining and the expression levels of bone-related genes. The levels of GH and IGF-1 and the expression levels of GH/IGF-1 axis-related genes were also detected. Our data showed that the LC50 of PbAc for 120 h was 41 mg/L. Compared with the control group (0 mg/L PbAc), after PbAc exposure, the deformity rate increased, the heart rate decreased, and the body length was shortened at various time periods, in the 20-mg/L group at 120 hpf, the deformity rate increased by 50 fold, the heart rate decreased by 34%, and the body length shortened by 17%. PbAc altered cartilage structures and exacerbated bone loss in zebrafish embryos; in addition, PbAc exposure down-regulated the expression of chondrocyte (sox9a, sox9b), osteoblast (bmp2, runx2) and bone mineralization-related genes (sparc, bglap), and up-regulated the expression of osteoclast marker genes (rankl, mcsf). The GH level increased and the IGF-1 level declined significantly. The GH/IGF-1 axis related genes (ghra, ghrb, igf1ra, igf1rb, igf2r, igfbp2a, igfbp3, igfbp5b) were all decreased. These results suggested that PbAc inhibited the differentiation and maturation of osteoblasts and cartilage matrix, promoted the formation of osteoclasts, and ultimately induced cartilage defects and bone loss by disrupting the GH/IGF-1 axis.
Collapse
Affiliation(s)
- Rui Yan
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Jie Ding
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Qianlei Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Xiaoyun Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Junyu Han
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Tingxu Jin
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Shudi Shi
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Xirui Wang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Yu Zheng
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Heran Li
- Microwants International LTD, 999077, Hong Kong, China.
| | - Hengdong Zhang
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; Jiangsu Preventive Medicine Association, Nanjing 210009, China.
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
35
|
Zebrafish as a Potential Model for Neurodegenerative Diseases: A Focus on Toxic Metals Implications. Int J Mol Sci 2023; 24:ijms24043428. [PMID: 36834835 PMCID: PMC9959844 DOI: 10.3390/ijms24043428] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
In the last century, industrial activities increased and caused multiple health problems for humans and animals. At this moment, heavy metals are considered the most harmful substances for their effects on organisms and humans. The impact of these toxic metals, which have no biological role, poses a considerable threat and is associated with several health problems. Heavy metals can interfere with metabolic processes and can sometimes act as pseudo-elements. The zebrafish is an animal model progressively used to expose the toxic effects of diverse compounds and to find treatments for different devastating diseases that human beings are currently facing. This review aims to analyse and discuss the value of zebrafish as animal models used in neurological conditions, such as Alzheimer's disease (AD), and Parkinson's disease (PD), particularly in terms of the benefits of animal models and the limitations that exist.
Collapse
|
36
|
Wang Z, Li K, Xu Y, Song Z, Lan X, Pan C, Zhang S, Foulkes NS, Zhao H. Ferroptosis contributes to nickel-induced developmental neurotoxicity in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160078. [PMID: 36372175 DOI: 10.1016/j.scitotenv.2022.160078] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Nickel (Ni) is a widely utilized heavy metal that can cause environmental pollution and health hazards. Its safety has attracted the attention of both the environmental ecology and public health fields. While the central nervous system (CNS) is one of the main targets of Ni, its neurotoxicity and the underlying mechanisms remain unclear. Here, by taking advantage of the zebrafish model for live imaging, genetic analysis and neurobehavioral studies, we reveal that the neurotoxic effects induced by exposure to environmentally relevant levels of Ni are closely related to ferroptosis, a newly-described form of iron-mediated cell death. In vivo two-photon imaging, neurobehavioral analysis and transcriptome sequencing consistently demonstrate that early neurodevelopment, neuroimmune function and vasculogenesis in zebrafish larvae are significantly affected by environmental Ni exposure. Importantly, exposure to various concentrations of Ni activates the ferroptosis pathway, as demonstrated by physiological/biochemical tests, as well as the expression of ferroptosis markers. Furthermore, pharmacological intervention of ferroptosis via deferoxamine (DFO), a classical iron chelating agent, strongly implicates iron dyshomeostasis and ferroptosis in these Ni-induced neurotoxic effects. Thus, this study elucidates the cellular and molecular mechanisms underlying Ni neurotoxicity, with implications for our understanding of the physiologically damaging effects of other environmental heavy metal pollutants.
Collapse
Affiliation(s)
- Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Kemin Li
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Yanyi Xu
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Zan Song
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Shengxiang Zhang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
37
|
Nishimura Y, Kudoh T, Komada M. Editorial: Model organisms in predictive toxicology 2022. Front Pharmacol 2023; 14:1205945. [PMID: 37201026 PMCID: PMC10185904 DOI: 10.3389/fphar.2023.1205945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- *Correspondence: Yuhei Nishimura,
| | - Tetsuhiro Kudoh
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Munekazu Komada
- Mammalian Embryology, Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
| |
Collapse
|
38
|
Wang B, Chen J, Sheng Z, Lian W, Wu Y, Liu M. Embryonic exposure to fentanyl induces behavioral changes and neurotoxicity in zebrafish larvae. PeerJ 2022; 10:e14524. [PMID: 36540796 PMCID: PMC9760023 DOI: 10.7717/peerj.14524] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The use of fentanyl during pregnancy, whether by prescription or illicit use, may result in high blood levels that pose an early risk to fetal development. However, little is known regarding the neurotoxicity that might arise from excessive fentanyl exposure in growing organisms, particularly drug-related withdrawal symptoms. In this study, zebrafish embryos were exposed to fentanyl solutions (0.1, 1, and 5 mg/L) for 5 days post fertilization (dpf), followed by a 5-day recovery period, and then the larvae were evaluated for photomotor response, anxiety behavior, shoaling behavior, aggression, social preference, and sensitization behavior. Fentanyl solutions at 1 and 5 mg/L induced elevated anxiety, decreased social preference and aggressiveness, and behavioral sensitization in zebrafish larvae. The expression of genes revealed that embryonic exposure to fentanyl caused substantial alterations in neural activity (bdnf, c-fos) and neuronal development and plasticity (npas4a, egr1, btg2, ier2a, vgf). These results suggest that fentanyl exposure during embryonic development is neurotoxic, highlighting the importance of zebrafish as an aquatic species in research on the neurobehavioral effects of opioids in vertebrates.
Collapse
Affiliation(s)
- Binjie Wang
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Jiale Chen
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Zhong Sheng
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Wanting Lian
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Yuanzhao Wu
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Meng Liu
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Jiang Y, Geng N, Wang M, Wu W, Feng N, Zhang X. 5-HMF affects cardiovascular development in zebrafish larvae via reactive oxygen species and Wnt signaling pathways. Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109452. [PMID: 36067963 DOI: 10.1016/j.cbpc.2022.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022]
Abstract
5-Hydroxymethylfurfural (5-HMF) is a small molecule aldehyde compound produced by the Maillard reaction. As 5-HMF exists in a variety of foods and drugs and is easily ingested by humans, it has attracted extensive toxicological attention in recent years. Relevant research showed that 5-HMF has cytotoxicity, genotoxicity, and tumor effects. However, the cardiovascular effects of 5-HMF are unknown. To investigate the cardiovascular effects of 5-HMF in zebrafish, wild-type and transgenic embryos were treated with 10, 25, and 50 μg/mL of 5-HMF, followed by toxicological evaluation, histological observation, fluorescence observation, cell apoptosis staining, and gene quantitative analysis. High 5-HMF concentrations led to a significant increase in the heart rate and pericardial edema ratio, larger venous sinus-arterial bulb distance, more apoptosis of cardiac cells, cardiac linearization, defects in angiogenesis and cardiovascular development, and apoptosis-related gene expression disorders in zebrafish larvae. The abnormal phenotype caused by 5-HMF can be rescued by antioxidant N-acetyl-L-cysteine (NAC) and Wnt signaling pathway activator BML-284. It is inferred that high 5-HMF concentrations increased the level of reactive oxygen species, inhibited the transduction of the Wnt signaling pathway, and resulted in abnormal cardiovascular development in zebrafish larvae. This study provides a reference for understanding the mechanism of 5-HMF effects on cardiac development.
Collapse
Affiliation(s)
- Yu Jiang
- Department of General Practice, The Affiliated Wuxi Clinical College of Nantong University, Jiangsu, China; The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Nan Geng
- Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingyong Wang
- Murui Biological Technology Co., Ltd., Suzhou Industrial Park, No 11 Jinpu road, Suzhou, China
| | - Wen Wu
- Department of General Practice, The Affiliated Wuxi Clinical College of Nantong University, Jiangsu, China
| | - Ninghan Feng
- Department of General Practice, The Affiliated Wuxi Clinical College of Nantong University, Jiangsu, China.
| | - Xian Zhang
- Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, China.
| |
Collapse
|
40
|
Curcio V, Macirella R, Sesti S, Ahmed AIM, Talarico F, Pizzolotto R, Tagarelli A, Mezzasalma M, Brunelli E. The role of exposure window and dose in determining lead toxicity in developing Zebrafish. CHEMOSPHERE 2022; 307:136095. [PMID: 35995187 DOI: 10.1016/j.chemosphere.2022.136095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal contamination is recognized worldwide as a serious threat to human health and wildlife, and reducing their emissions is a priority of international and EU actions. Due to its persistence, high bioaccumulation tendency, and toxicity properties, lead (Pb) is one of the heavy metals of greatest concern. Even at low concentrations, lead induces various clinical and subclinical conditions in both humans and animals, and it has been included in the priority list of hazardous substances. In the present study, we used zebrafish's early stages as a model, given their well-acknowledged predictive value in the risk assessment of chemicals. This study was designed to investigate the morphological and morphometric alterations induced by Pb during zebrafish's early development and disclose the putative effects stage- and/or dose-dependent. We examined injuries induced by two environmentally relevant and extremely low concentrations of Pb (2.5 μg/L and 5 μg/L) during two exposure windows: early (between 1 and 7 dpf) and late (between 2 and 8 dpf). We clearly demonstrated that the incidence and severity of morphological abnormalities increased with increasing Pb dose and exposure time in both early and late-exposed groups. Furthermore, we revealed that malformation severity was significantly higher in the early exposed group than in the late exposure group at all exposure times and for both tested doses, thus highlighting the high sensitivity of zebrafish during the initial stages of development. The information presented in this paper emphasizes the effectiveness of morphological biomarkers in unveiling threatening situations and supports the role of zebrafish embryos and larvae in risk assessment and environmental monitoring.
Collapse
Affiliation(s)
- Vittoria Curcio
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Settimio Sesti
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Abdalmoiz I M Ahmed
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Federica Talarico
- Natural History Museum and Botanical Garden, University of Calabria, 87036 Rende, Italy
| | - Roberto Pizzolotto
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Antonio Tagarelli
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, 87036, Italy
| | - Marcello Mezzasalma
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy.
| |
Collapse
|
41
|
Chauhan S, Dahiya D, Sharma V, Khan N, Chaurasia D, Nadda AK, Varjani S, Pandey A, Bhargava PC. Advances from conventional to real time detection of heavy metal(loid)s for water monitoring: An overview of biosensing applications. CHEMOSPHERE 2022; 307:136124. [PMID: 35995194 DOI: 10.1016/j.chemosphere.2022.136124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The rapid growth of the industrial sector has expedited the accumulation of heavy metal(loid)s in the environment at hazardous levels. The elements such as arsenic, lead, mercury, cadmium and chromium are lethal in terms of toxicity with severe health impacts. With issues like water scarcity, limitations in wastewater treatment, and costs pertaining to detection in environmental matrices; their rapid and selective detection for reuse of effluents is of the utmost priority. Biosensors are the futuristic tool for the accurate qualitative and quantitative analysis of a specific analyte and integrate biotechnology, microelectronics and nanotechnology to fabricate a miniaturized device without compromising the sensitivity, specificity and accuracy. The characteristic features of supporting matrix largely affect the biosensing ability of the device and incorporation of highly sensitive and durable metal organic frameworks (MOFs) are reported to enhance the efficiency of advanced biosensors. Electrochemical biosensors are among the most widely developed biosensors for the detection of heavy metal(loids), while direct electron transfer approach from the recognition element to the electrode has been found to decrease the chances of interference. This review provides an insight into the recent progress in biosensor technologies for the detection of prevalent heavy metal(loid)s; using advanced support systems such as functional metal-based nanomaterials, carbon nanotubes, quantum dots, screen printed electrodes, glass beads etc. The review also delves critically in comparison of various techno-economic studies and the latest advances in biosensor technology.
Collapse
Affiliation(s)
- Shraddha Chauhan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India
| | - Digvijay Dahiya
- Department of Biotechnology, National Institute of Technology, Andhra Pradesh Tadepalligudem, 534101, India
| | - Vikas Sharma
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India
| | - Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | | | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh, 226029, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India.
| |
Collapse
|
42
|
Wnt/β-Catenin Signaling Pathway Is Strongly Implicated in Cadmium-Induced Developmental Neurotoxicity and Neuroinflammation: Clues from Zebrafish Neurobehavior and In Vivo Neuroimaging. Int J Mol Sci 2022; 23:ijms231911434. [PMID: 36232737 PMCID: PMC9570071 DOI: 10.3390/ijms231911434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Cadmium (Cd) is a toxic heavy metal and worldwide environmental pollutant which seriously threatens human health and ecosystems. It is easy to be adsorbed and deposited in organisms, exerting adverse effects on various organs including the brain. In a very recent study, making full use of a zebrafish model in both high-throughput behavioral tracking and live neuroimaging, we explored the potential developmental neurotoxicity of Cd2+ at environmentally relevant levels and identified multiple connections between Cd2+ exposure and neurodevelopmental disorders as well as microglia-mediated neuroinflammation, whereas the underlying neurotoxic mechanisms remained unclear. The canonical Wnt/β-catenin signaling pathway plays crucial roles in many biological processes including neurodevelopment, cell survival, and cell cycle regulation, as well as microglial activation, thereby potentially presenting one of the key targets of Cd2+ neurotoxicity. Therefore, in this follow-up study, we investigated the implication of the Wnt/β-catenin signaling pathway in Cd2+-induced developmental disorders and neuroinflammation and revealed that environmental Cd2+ exposure significantly affected the expression of key factors in the zebrafish Wnt/β-catenin signaling pathway. In addition, pharmacological intervention of this pathway via TWS119, which can increase the protein level of β-catenin and act as a classical activator of the Wnt signaling pathway, could significantly repress the Cd2+-induced cell cycle arrest and apoptosis, thereby attenuating the inhibitory effects of Cd2+ on the early development, behavior, and activity, as well as neurodevelopment of zebrafish larvae to a certain degree. Furthermore, activation and proliferation of microglia, as well as the altered expression profiles of genes associated with neuroimmune homeostasis triggered by Cd2+ exposure could also be significantly alleviated by the activation of the Wnt/β-catenin signaling pathway. Thus, this study provided novel insights into the cellular and molecular mechanisms of Cd2+ toxicity on the vertebrate central nervous system (CNS), which might be helpful in developing pharmacotherapies to mitigate the neurological disorders resulting from exposure to Cd2+ and many other environmental heavy metals.
Collapse
|
43
|
Komoike Y, Matsuoka M. Developmental adverse effects of trace amounts of lead: Evaluation using zebrafish model. Front Pharmacol 2022; 13:1014912. [PMID: 36210825 PMCID: PMC9532946 DOI: 10.3389/fphar.2022.1014912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Lead (Pb) is widely used as a raw material for various daily necessities in human civilization. However, Pb is a major toxicant and Pb poisoning has long been a global health concern. A large body of evidence has revealed that exposure to Pb causes a variety of adverse health effects. Meanwhile, experimental studies on the developmental effects caused by trace amounts of Pb remain to be fully conducted. Therefore, we aimed to provide direct experimental evidence of the adverse developmental effects of Pb exposure below the occupational regulatory standard concentrations using a zebrafish model. We also attempted to investigate the cellular stress response caused by such a trace amount of Pb at the individual level. Fertilized zebrafish eggs were exposed to 100 ppb Pb from 6 to 72 h post fertilization (hpf), the developmental period included within the mammalian implantation to birth. The embryos exposed to Pb did not show superficially evident morphological alterations or differences in viability compared with the controls until 72 hpf; however, they hatched earlier and were significantly shorter in body length than the controls at 48 and 72 hpf. Larvae that were exposed to Pb until 72 hpf and then cultured until 7 days post fertilization without Pb exhibited edema and inflation defects in the swim bladder. The reactive oxygen species level in the Pb-exposed embryos was similar at 24 hpf, slightly but significantly higher at 48 hpf, and lower than half that of the control at 72 hpf. Accordingly, the expression levels of oxidative stress response-related genes were analyzed, and five out of seven tested genes were upregulated in Pb-exposed embryos at 48 and 72 hpf. In addition, the endoplasmic reticulum (ER) stress related genes were upregulated at 48 hpf. These results indicate that exposure of embryos to trace amounts of Pb induces a transient increase in oxidative- and ER-stresses and results in weak hypotrophy and subsequent abnormalities later in development. Our findings may be key to understanding the total health effects of Pb exposure, and indicate that the zebrafish model is suitable for the investigation of developmental toxicity of pollutants such as Pb.
Collapse
|
44
|
Xi J, Zhang Z, Wang Z, Wu Q, He Y, Xu Y, Ding Z, Zhao H, Da H, Zhang F, Zhao H, Fang J. Hinokitiol functions as a ferroptosis inhibitor to confer neuroprotection. Free Radic Biol Med 2022; 190:202-215. [PMID: 35985562 DOI: 10.1016/j.freeradbiomed.2022.08.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/22/2022]
Abstract
The intrinsic link of ferroptosis to neurodegeneration, such as Parkinson's disease and Alzheimer's disease, has set promises to apply ferroptosis inhibitors for treatment of neurodegenerative disorders. Herein, we report that the natural small molecule hinokitiol (Hino) functions as a potent ferroptosis inhibitor to rescue neuronal damages in vitro and in vivo. The action mechanisms of Hino involve chelating irons and activating cytoprotective transcription factor Nrf2 to upregulate the antioxidant genes including solute carrier family 7 member 11, glutathione peroxidase 4 and Heme oxygenase-1. In vivo studies demonstrate that Hino rescues the deficits of locomotor activity and neurodevelopment in zebrafishes. In addition, Hino shows the efficient blood-brain barrier permeability in mice, supporting the application of Hino for brain disorders. Paclitaxel is one of the most widely used broad-spectrum antineoplastic agents. However, its neurotoxic side effect is a severe concern. We demonstrate that the neurotoxicity of paclitaxel is ferroptosis-related and Hino also alleviates the paclitaxel-induced neurotoxicity without compromising its cytotoxicity to cancer cells. Hino also salvages the neurobehavioral impairment by paclitaxel in zebrafishes. Collectively, the discovery of Hino as a novel ferroptosis inhibitor and disclosure of its action mechanisms establish a foundation for the further development of Hino as a neuroprotective agent.
Collapse
Affiliation(s)
- Junmin Xi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China
| | - Zhijun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China
| | - Qingfeng Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Ying He
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yanyi Xu
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China
| | - Zhenjiang Ding
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Huanhuan Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Honghong Da
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Fang Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| |
Collapse
|
45
|
The food preservative sodium propionate induces hyperglycaemic state and neurological disorder in zebrafish. Neurotoxicol Teratol 2022; 93:107123. [PMID: 36150581 DOI: 10.1016/j.ntt.2022.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/21/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
Propionate is an effective mould inhibitor widely used as a food preservative. In this study, we used zebrafish to explore the adverse effects of long-term exposure to low concentrations of sodium propionate and the underlying molecular mechanisms (from larvae to adult). When exposed for 3 months, we found that blood glucose, total cholesterol, and triglyceride levels increased, and zebrafish developed a hyperglycaemic state. New tank test results showed depression in zebrafish reduced 5-hydroxytryptamine levels in the brain and damaged the dopamine system. At the same time, the results of the color preference test showed that zebrafish had cognitive impairments. In addition, Hypothalamic-Pituitary-Adrenal axis analysis revealed abnormal gene expression, increased cortisol levels, and reduced glucocorticoid receptor mRNA levels, which were consistent with depressive behavior. We also observed abnormal transcription of inflammatory and apoptotic factors. Overall, we found that chronic exposure to sodium propionate induces depressive symptoms. This may be related to the activation of the HPA axis by the hyperglycaemic state, thereby inducing inflammation and disrupting the dopaminergic system. In summary, this study provides theoretical and technical support for the overlap of the emotional pathogenesis associated with diabetes.
Collapse
|
46
|
Huang A, Zhang J, Wu K, Liu C, Huang Q, Zhang X, Lin X, Huang Y. Exposure to multiple metals and the risk of dyslexia - A case control study in Shantou, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119518. [PMID: 35618141 DOI: 10.1016/j.envpol.2022.119518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/14/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023]
Abstract
Environmental heavy metal exposure has been considered to be the risk factor for neurodevelopmental disorders in children. However, the available data on the associations between multiple metals exposure and the risk of dyslexia in China are limited. The purpose of our study was to examine the associations between urinary metal concentrations and Chinese dyslexia risk. A total of 56 Chinese dyslexics and 60 typically developing children were recruited. The urinary concentration of 13 metals were measured by inductively coupled plasma-mass spectrometer (ICP-MS). Binary logistic regression and the Probit extension of Bayesian kernel machine regression (BKMR-P) were used to explore the associations between multiple metal exposure and the risk of Chinese dyslexia. Our results indicated that Co, Zn and Pb were significantly associated with Chinese dyslexia in the multiple-metal exposure model. After adjusting the covariates, a positive association was observed between Pb and the risk of Chinese dyslexia, with the odds ratio (OR) in the highest quartiles of 6.81 (95%CI: 1.07-43.19; p-trend = 0.024). Co and Zn were negatively associated with the risk of Chinese dyslexia. Compared to the lowest quartile, the ORs of Co and Zn in the highest quartile are 0.13 (95%CI: 0.02-0.72; p-trend = 0.026) and 0.18 (95%CI: 0.04-0.88; p-trend = 0.038), respectively. In addition, BKMR-P analysis indicated that with the cumulative level across Co, Zn and Pb increased, the risk of Chinese dyslexia gradually declined and then rebounded, albeit non-significantly, and Pb was the major contributor in this association. In general, the urinary concentrations of Co, Zn and Pb were significantly associated with Chinese dyslexia. More prospective studies are needed to confirm the health effects of multiple metals exposure in children with Chinese dyslexia.
Collapse
Affiliation(s)
- Anyan Huang
- Mental Health Center, Shantou University Medical College, North Taishan Road, Shantou, 515065, Guangdong Province, China
| | - Jingbing Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Caixia Liu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Qingjun Huang
- Mental Health Center, Shantou University Medical College, North Taishan Road, Shantou, 515065, Guangdong Province, China
| | - Xuanzhi Zhang
- Mental Health Center, Shantou University Medical College, North Taishan Road, Shantou, 515065, Guangdong Province, China
| | - Xuecong Lin
- Mental Health Center, Shantou University Medical College, North Taishan Road, Shantou, 515065, Guangdong Province, China
| | - Yanhong Huang
- Mental Health Center, Shantou University Medical College, North Taishan Road, Shantou, 515065, Guangdong Province, China
| |
Collapse
|
47
|
Morphological and Functional Alterations Induced by Two Ecologically Relevant Concentrations of Lead on Danio rerio Gills. Int J Mol Sci 2022; 23:ijms23169165. [PMID: 36012426 PMCID: PMC9409012 DOI: 10.3390/ijms23169165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Lead (Pb), due to its high toxicity and bioaccumulation tendency, is one of the top three pollutants of concern for both humans and wildlife and occupies second place in the Priority List of Hazardous Substances. In freshwater fish, Pb is mainly absorbed through the gills, where the greatest accumulation occurs. Despite the crucial role of gills in several physiological functions such as gas exchange, water balance, and osmoregulation, no studies evaluated the effects of environmentally relevant concentrations of Pb on this organ, and existing literature only refers to high levels of exposure. Herein we investigated for the first time the molecular and morphological effects induced by two low and environmentally relevant concentrations of Pb (2.5 and 5 μg/L) on the gills of Danio rerio, a model species with a high translational value for human toxicity. It was demonstrated that Pb administration at even low doses induces osmoregulatory dysfunctions by affecting Na+/K+-ATPase and AQP3 expression. It was also shown that Pb upregulates MTs as a protective response to prevent cell damage. Modulation of SOD confirms that the production of reactive oxygen species is an important toxicity mechanism of Pb. Histological and morphometric analysis revealed conspicuous pathological changes, both dose- and time-dependent.
Collapse
|
48
|
Bi Y, Feng W, Kang Y, Wang K, Yang Y, Qu L, Chen H, Lan X, Pan C. Detection of mRNA Expression and Copy Number Variations Within the Goat Fec B Gene Associated With Litter Size. Front Vet Sci 2021; 8:758705. [PMID: 34733908 PMCID: PMC8558618 DOI: 10.3389/fvets.2021.758705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
The Booroola fecundity (Fec B ) gene, as the first major fecundity gene identified in Booroola sheep, has attracted careful attention. So far, previous research have uncovered the FecB mutation (Q249R) as the main mutation by virtue of which sheep exhibits multiple lambing phenomena. This mutation is now being intensively studied and widely used. However, such effect of the FecB mutation has not been applied to goats, and similar types of the Fec B gene in goats still need to be studied. Thus, the current study attempted to verify potential mutations in the goat Fec B gene as well as investigate their functions related to fecundity. First, Fec B expression was investigated in six different goat tissues, and we found that Fec B expression was highest in the mammary gland, followed by the ovary. Next, the influence of the Fec B gene was analyzed from a new perspective, where five potential copy number variations (CNVs) (CNV1-5) within the Fec B gene were identified for the first time, and then their effects on litter size were measured. Our results point out that CNV3 (P = 3.44E-4) and CNV5 (P = 0.034) could significantly influence the litter size of goats. Identically, the combination genotype of CNV3 and CNV5 which consisted of their dominant genotypes was also significantly associated with goat litter size (P = 7.80E-5). Hence, CNV3 and CNV5 could serve as potential DNA molecular markers applied to DNA editing and DNA microarray. Additionally, the abovementioned study has laid a theoretical foundation for the detection of potential fertility-related quantitative trait loci within the goat Fec B gene.
Collapse
Affiliation(s)
- Yi Bi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Weijie Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yuxin Kang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Ke Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yuta Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China.,Life Science Research Center, Yulin University, Yulin, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|