1
|
Yang A, Pei H, Zhang M, Jin Y, Xu H. Molecular mechanisms by which polyethylene terephthalate (PET) microplastic and PET leachate promote the growth of benthic cyanobacteria. WATER RESEARCH 2025; 280:123476. [PMID: 40088856 DOI: 10.1016/j.watres.2025.123476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Toxic blooms of benthic cyanobacteria greatly threaten freshwater ecological health and drinking water safety. Meanwhile, microplastic pollution is becoming increasingly severe and microplastics accumulate in large quantities at the bottom of lakes and rivers, widely coexisting with algae. However, impacts of microplastics on benthic cyanobacteria are still unknown. This study investigated effects of microplastic polyethylene terephthalate (PET) - which is commonly found at the bottom of lakes and rivers - and its leachate at environmentally relevant concentration (0.3 mg/L) and high exposure concentration (3.0 mg/L) on typical benthic cyanobacteria (Oscillatoria sp. and Pseudanabaena sp.), and clarified the related molecular mechanisms through transcriptomic analysis. Results show that PET or PET leachate (PET-L) can promote benthic cyanobacterial growth and promotive effect of PET-L is more obvious than that of PET system. Promotion effect of PET or PET-L is more significant at environmentally relevant concentration (39-63 % increase compared with the control) compared with high exposure concentration (21-58 % increase compared with the control). In the presence of PET or PET-L, due to an increase in the number of cyanobacterial cells, concentrations of harmful metabolites (cylindrospermopsin, geosmin, and 2-methylisoborneol) in water also increased. Although PET particles may not be conducive to benthic cyanobacterial growth due to shading effect and mechanical damage, photosynthetic efficiency of algae was improved and dysregulated genes related to photosynthesis and extracellular transport of glycolipid were upregulated according to transcriptome analysis. Moreover, PET decomposition components, such as terephthalic acid and ethylene glycol, may be able to serve as carbon sources for cyanobacterial growth. Upregulation of genes associated with glycolysis, oxidative phosphorylation, and translation revealed that PET can promote the growth of benthic cyanobacteria. This study has important value in evaluating the impact of benthic cyanobacteria on aquatic ecological health and drinking water safety with the coexistence of microplastics.
Collapse
Affiliation(s)
- Aonan Yang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China
| | - Ming Zhang
- Gaomi Municipal Public Utilities Service Center, Weifang 261041, China
| | - Yan Jin
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Hangzhou Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China.
| |
Collapse
|
2
|
Cao J, Wu Q, Liu X, Zhu X, Huang C, Wang X, Song Y. Mechanistic insight on nanomaterial-induced reactive oxygen species formation. J Environ Sci (China) 2025; 151:200-210. [PMID: 39481933 DOI: 10.1016/j.jes.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 11/03/2024]
Abstract
Reactive oxygen species (ROS) are closely related to cell death, proliferation and inflammation. However, excessive ROS levels may exceed the cellular oxidative capacity and cause irreversible damage. Organisms are often inadvertently exposed to nanomaterials (NMs). Therefore, elucidating the specific routes of ROS generation induced by NMs is crucial for comprehending the toxicity mechanisms of NMs and regulating their potential applications. This paper provides a comprehensive review of the toxicity mechanisms and applications of NMs from three perspectives: (1) Organelle perspective. Investigating the impact of NM-mediated ROS on mitochondria, unraveling mechanisms at the organelle level. (2) NMs' perspective. Exploring the broad applications and biosafety considerations of Nanozymes, a unique class of NMs. (3) Cellular system. Examining the toxic effects and mechanisms of NMs in cells at a holistic cellular level. Expanding on these perspectives, the paper scrutinizes the regulation of Fenton reactions by NMs in organisms. Furthermore, it introduces diseases resulting from NM-mediated ROS at the organism level. This comprehensive review aims to provide valuable insights for studying NM-mediated mechanisms at both cellular and organism levels, offering considerations for the safe design of nanomaterials.
Collapse
Affiliation(s)
- Jianzhong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingchun Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuting Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyu Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunfeng Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Lee YJ, Kim WR, Park EG, Lee DH, Kim JM, Jeong HS, Roh HY, Choi YH, Srivastava V, Mishra A, Kim HS. Phenotypic and Gene Expression Alterations in Aquatic Organisms Exposed to Microplastics. Int J Mol Sci 2025; 26:1080. [PMID: 39940847 PMCID: PMC11817008 DOI: 10.3390/ijms26031080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The use of plastics, valued for its affordability, durability, and convenience, has grown significantly with the advancement of industry. Paradoxically, these very properties of plastics have also led to significant environmental challenges. Plastics are highly resistant to decomposition, resulting in their accumulation on land, where they eventually enter aquatic environments, due to natural processes or human activities. Among these plastics, microplastics, which are tiny plastic particles, are particularly concerning when they enter aquatic ecosystems, including rivers and seas. Their small size makes them easily ingestible by aquatic organisms, either by mistake or through natural feeding behaviors, which poses serious risks. Moreover, microplastics readily adsorb other pollutants present in aquatic environments, creating pollutant complexes that can have a synergistic impact, magnifying their harmful effects compared to microplastics or pollutants acting alone. As a result, extensive research has focused on understanding the effects of microplastics on aquatic organisms. Numerous studies have demonstrated that aquatic organisms exposed to microplastics, either alone or in combination with other pollutants, exhibit abnormal hatching, development, and growth. Additionally, many genes, particularly those associated with the antioxidant system, display abnormal expression patterns in these conditions. In this review, we examine these impacts, by discussing specific studies that explore changes in phenotype and gene expression in aquatic organisms exposed to microplastics, both independently and in combination with adsorbed pollutants.
Collapse
Affiliation(s)
- Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea (J.-m.K.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea (J.-m.K.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea (J.-m.K.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea (J.-m.K.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea (J.-m.K.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hyeon-su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea (J.-m.K.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun-Young Roh
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea (J.-m.K.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden;
| | - Anshuman Mishra
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, 590 53 Ulrika, Sweden
- International Institute of Water, Air Force Radar Road, Bijolai, Jodhpur 342003, India
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Thi Nhu Bui Q, Kim T, Kim HS, Ki JS. Defensive responses of most antioxidant genes in the freshwater dinoflagellate Palatinus apiculatus to cadmium stress and their implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117380. [PMID: 39622126 DOI: 10.1016/j.ecoenv.2024.117380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 01/26/2025]
Abstract
Photosynthetic dinoflagellates are one of the major microalgal taxa, playing essential roles in biogeochemical cycles and food webs in aquatic environments. Some freshwater dinoflagellates are known to be sensitive to environmental conditions, like water quality and contaminants; however, their molecular toxicological responses are insufficiently discovered. In the present study, we evaluated the physiological and transcriptomic responses of the freshwater dinoflagellate Palatinus apiculatus exposed to cadmium (Cd), focusing on stress-responsive genes. The cell number of P. apiculatus decreased significantly at Cd concentrations above 0.25 mg/L after 72 h, with an estimated EC50 value of 1.35 mg/L. In addition, we constructed 87,207 transcriptomic contigs from the P. apiculatus cells exposed to the Cd. Differential expression gene analysis showed that 21.0 % of total contigs were statistically significant, including 8647 up-regulated and 4195 down-regulated genes. Gene Ontology enrichment results revealed that genes responsive to stress and external stimuli were highly expressed in Cd-treated cells. Moreover, Cd significantly induced reactive oxygen species (ROS) production in P. apiculatus cells, and their patterns were similar to the expressions of certain antioxidant genes. Among the selected genes, GR expression levels were down-regulated, which may lead to the failure of cell defense against heavy metals. These results showed molecular defense pathways of the freshwater dinoflagellate P. apiculatus against the heavy metal that could be served as potential sensitive biomarkers for evaluating molecular toxicity in freshwater ecosystems.
Collapse
Affiliation(s)
- Quynh Thi Nhu Bui
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea
| | - Taehee Kim
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
5
|
Jiao P, Zhou Y, Zhang X, Jian H, Zhang XX, Ma L. Mechanisms of horizontal gene transfer and viral contribution to the fate of intracellular and extracellular antibiotic resistance genes in anaerobic digestion supplemented with conductive materials under ammonia stress. WATER RESEARCH 2024; 267:122549. [PMID: 39368190 DOI: 10.1016/j.watres.2024.122549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
The addition of conductive materials (CMs) is an effective strategy for mitigating ammonia inhibition during anaerobic digestion (AD). However, the introduction of CMs can result in increased antibiotic resistance genes (ARGs) pollution, potentially facilitated by enhanced horizontal gene transfer (HGT). The complex dynamics of intracellular and extracellular ARGs (iARGs/eARGs) and the mechanisms underlying their transfer, mediated by CMs, in ammonia-stressed AD systems remain unclear. In this study, we investigated the effects of three commonly used CMs-nano magnetite (Mag), nano zero-valent iron (nZVI), and granular activated carbon (GAC)-on the fate of iARGs and eARGs during the AD of waste activated sludge under ammonia stress. The results revealed an unexpected enrichment of iARGs by 1.5 %-10.9 % and a reduction of eARGs by 14.1 %-25.2 % in CM-supplemented AD. This discrepancy in the dynamics of iARGs and eARGs may be attributed to changes in microbial hosts and the horizontal transfer of ARGs. Notably, CMs activated prophages within antibiotic-resistant bacteria (ARB) and their symbiotic partners involved in vitamin B12 provision, leading to the lysis of ARB and the subsequent release of eARGs for transformation. Additionally, the abundance of potentially mobile ARGs, which co-occurred with mobile genetic elements, increased by 56.6 %-134.5 % with CM addition, highlighting an enhanced potential for the HGT of ARGs. Specifically, Mag appeared to promote both transformation and conjugation processes, while nZVI only promoted conjugation. Moreover, none of the three CMs had any discernible impact on transduction. GAC proved superior to both nano Mag and nZVI in controlling the enrichment of iARGs, reducing eARGs, and limiting HGTs simultaneously. Overall, these findings provide novel insights into the role of viruses and the mechanisms of ARG spread in CM-assisted AD, offering valuable information for developing strategies to mitigate ARG pollution in practical applications.
Collapse
Affiliation(s)
- Pengbo Jiao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Ying Zhou
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Xingxing Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Liping Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai, 200062, China.
| |
Collapse
|
6
|
Chen X, Zhu Y, Zhang Y. Effects of polystyrene microplastics on the extracellular and intracellular dissolved organic matter released by Skeletonema costatum using a novel in situ method. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124604. [PMID: 39053803 DOI: 10.1016/j.envpol.2024.124604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Microplastics (MPs) affect the physicochemical algal-dissolved organic matter properties, indirectly influencing the environmental behavior of contaminants including persistent organic pollutants and heavy metals. Limited research is available on the roles played by intracellular- and extracellular-dissolved organic matter (I-DOM and E-DOM) in the processes that affect the environmental behavior of contaminants. Furthermore, the effects of MPs on the production of I-DOM and E-DOM, as well as their environmental behaviors, remain uncertain. A critical issue lies in the challenge of quantitatively identifying I-DOM and E-DOM in situ. In this work, a new fluorescence ratio method was developed and applied to in situ examine the impacts of polystyrene (PS) MPs (50, 500 nm, and 5 μm) on the I-DOM and E-DOM released by Skeletonema costatum (S. costatum). The experimental results indicated that the detection limits were 0.06 mg L-1, with the respective minimum detectable proportions being 2% for both E-DOM and I-DOM. The suppressive effects of 10-50 mg L-1 of 50 and 500 nm PS MPs on the cell proliferation of S. costatum and the E-DOM secretion were most pronounced on day 6. And the rates of suppression of E-DOM secretion were 10.1%-18.2% and 4.2%-13.9%, respectively. The exposure of algal cells to 50 mg L-1 of 50 and 500 nm PS MPs led to cell rupture and the leakage of I-DOM on day 6. This suggests that the developed method in the laboratory could offer a promising approach for studying the generation of E-DOM and I-DOM in situ, as well as their environmental behaviors affected by MPs.
Collapse
Affiliation(s)
- Xixue Chen
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Yaxian Zhu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
7
|
Yang F, Kong D, Liu W, Huang D, Wu H, Che X, Pan Z, Li Y. Benzophenone-4 inhibition in marine diatoms: Physiological and molecular perspectives. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117021. [PMID: 39265266 DOI: 10.1016/j.ecoenv.2024.117021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Benzophenone-4 (BP-4), a widely utilized organic ultraviolet (UV) filter, is recognized as a pseudo-persistent contaminant in aquatic environments. To elucidate the effects and mechanisms of BP-4 on marine diatoms, an investigation was conducted on the growth rate, photosynthetic pigment content, photosynthetic parameters, antioxidant enzyme activity, malondialdehyde (MDA) levels, cellular structure, and transcriptome profile of the model species, Phaeodactylum tricornutum. The results showed a pronounced inhibition of algal growth upon exposure to BP-4, with a 144 h-EC50 value of 201 mg·L-1. In addition, BP-4 exposure resulted in a significant reduction in biomass, disruption of cell membrane integrity, and increased MDA accumulation, with levels escalating 3.57-fold at 125 mg·L-1 of BP-4. In the BP-4-treated samples, 1556 differentially expressed genes (DEGs) were identified, of which 985 were upregulated and 571 were downregulated. Gene ontology and KEGG pathway enrichment analysis revealed that the carbon fixation and carbon metabolism processes in P. tricornatum were disrupted in response to BP-4 exposure, along with excessive reactive oxygen species (ROS) production. The upregulation of genes associated with photosynthetic pigment (chlorophyll and carotenoids) synthesis, phospholipid synthesis, ribosome biogenesis, and translation-related pathways may be regarded as a component of P. tricornatum's tolerance mechanism towards BP-4. These results provide preliminary insights into the toxicity and tolerance mechanisms of BP-4 on P. tricornatum. They will contribute to a better understanding of the ecotoxicological impacts of BP-4 on the marine ecosystem and provide valuable information for elimination of BP-4 in aquatic environment by bioremediation.
Collapse
Affiliation(s)
- Feifei Yang
- Jiangsu Provincial Key Laboratory of Marine Bioresources and Environment/Marine Biotechnology; Jiangsu Institute of Marine Resources Development; Co-Innovation Center of Jiangsu Marine Bio-industry Technology; College of Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Dexin Kong
- Jiangsu Provincial Key Laboratory of Marine Bioresources and Environment/Marine Biotechnology; Jiangsu Institute of Marine Resources Development; Co-Innovation Center of Jiangsu Marine Bio-industry Technology; College of Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wenhao Liu
- Jiangsu Provincial Key Laboratory of Marine Bioresources and Environment/Marine Biotechnology; Jiangsu Institute of Marine Resources Development; Co-Innovation Center of Jiangsu Marine Bio-industry Technology; College of Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Dazhi Huang
- Jiangsu Provincial Key Laboratory of Marine Bioresources and Environment/Marine Biotechnology; Jiangsu Institute of Marine Resources Development; Co-Innovation Center of Jiangsu Marine Bio-industry Technology; College of Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hailong Wu
- Jiangsu Provincial Key Laboratory of Marine Bioresources and Environment/Marine Biotechnology; Jiangsu Institute of Marine Resources Development; Co-Innovation Center of Jiangsu Marine Bio-industry Technology; College of Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xingkai Che
- Jiangsu Province Engineering Research Center for Marine Bioresources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Zhenyi Pan
- Jiangsu Provincial Key Laboratory of Marine Bioresources and Environment/Marine Biotechnology; Jiangsu Institute of Marine Resources Development; Co-Innovation Center of Jiangsu Marine Bio-industry Technology; College of Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yongfu Li
- Jiangsu Province Engineering Research Center for Marine Bioresources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210098, China.
| |
Collapse
|
8
|
Pu C, Liu Y, Wang L, Ma J, Lv H, Song J, Wang B, Wang A, Zhu A, Shao P, Zhang C. Exploring the mechanism of intestinal injury induced by Bisphenol S in freshwater crayfish (Procambarus clarkii): Molecular and biochemical approaches. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 274:107035. [PMID: 39106612 DOI: 10.1016/j.aquatox.2024.107035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Bisphenol S (BPS) is extensively utilized in various industries such as plastic manufacturing, food packaging, and electronics. The release of BPS into aquatic environments has been observed to have negative impacts on aquatic ecosystems. Research has shown that exposure to BPS can have adverse effects on the health of aquatic animals. This study aimed to explore the mechanism of oxidative stress and endoplasmic reticulum stress induced in freshwater crayfish (Procambarus clarkii) by exposure to BPS (0 µg/L, 1 µg/L, 10 µg/L, and 100 µg/L) for 14 days. The results showed that BPS exposure resulted in elevated levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and severe intestinal histological damage. In addition, oxidative stress can occur in the body by inhibiting the activity of antioxidant enzymes and the expression of related genes. BPS exposure induced a significant increase in the relative mRNA expression levels of inflammatory cytokines (NF-κB and TNF-α) and key unfolded protein response (UPR) related genes (Bip, Ire1, and Xbp1). At the same time, BPS exposure also induced up-regulation of apoptosis genes (Cytc and Casp3), suggesting that UPR and Nrf2-Keap1 signaling pathways may play a protective role in the process of apoptosis and oxidative stress. In conclusion, Our findings present the initial evidence that exposure to environmentally relevant levels of BPS can lead to intestinal injury through various pathways, highlighting concerns about the potential harm at a population level from BPS and other bisphenol analogs.
Collapse
Affiliation(s)
- Changchang Pu
- Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Yuanyi Liu
- Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Lu Wang
- Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Jianshuang Ma
- Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Haolei Lv
- Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Jianyong Song
- Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Bingke Wang
- Henan Academy of Fishery Sciences, Zhengzhou, Henan, PR China
| | - Aimin Wang
- Yancheng Institute of Technology, Yancheng, Jiangsu, PR China
| | - Aimin Zhu
- Yancheng Fisheries Research Institute, Yancheng, Jiangsu, PR China
| | - Peng Shao
- Yancheng Shangshui Environmental Biotechnology Engineering Co., Ltd 224005, PR China
| | - Chunnuan Zhang
- Henan University of Science and Technology, Luoyang, Henan, PR China.
| |
Collapse
|
9
|
Yang W, Gao P, Ye Z, Chen F, Zhu L. Micro/nano-plastics and microalgae in aquatic environment: Influence factor, interaction, and molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173218. [PMID: 38761949 DOI: 10.1016/j.scitotenv.2024.173218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/25/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Micro/nano-plastics, as emerging persistent pollutant, are frequently detected in aquatic environments together with other environmental pollutants. Microalgae are the major primary producers and bear an important responsibility for maintaining the balance of aquatic ecosystems. Numerous studies have been conducted on the influence of micro/nano-plastics on the growth, photosynthesis, oxidative stress, gene expression and metabolites of microalgae in laboratory studies. However, it is difficult to comprehensively evaluate the toxic effects of micro/nano-plastics on microalgae due to different experimental designs. Moreover, there is a lack of effective analysis of the aforementioned multi-omics data and reports on shared biological patterns. Therefore, the purpose of this review is to compare the acute, chronic, pulsed, and combined effect of micro/nano-plastics on microalgae and explore hidden rules in the molecular mechanisms of the interaction between them. Results showed that the effect of micro/nano-plastics on microalgae was related to exposure mode, exposure duration, exposure size, concentration, and type of micro/nano-plastics. Meanwhile, the phenomenon of poisoning and detoxification between micro/nano-plastics and microalgae was found. The inhibitory mechanism of micro/nano-plastics on algal growth was due to the micro/nano-plastics affected the photosynthesis, oxidative phosphorylation, and ribosome pathways of algal cells. This brought the disruption of the functions of chloroplasts, mitochondria, and ribosome, as well as impacted on energy metabolism and translation pathways, eventually leading to impairment of cell function. Besides, algae resisted this inhibitory effect by regulating the alanine, aspartate, and glutamate metabolism and purine metabolism pathways, thereby increasing the chlorophyll synthesis, inhibiting the increase of reactive oxygen species, delaying the process of lipid peroxidation, balancing the osmotic pressure of cell membrane.
Collapse
Affiliation(s)
- Wenfeng Yang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, Hubei 430079, PR China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Zongda Ye
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Ministry of Natural Resources, Nanning, Guangxi 530028, PR China; Natural Resources Ecological Restoration Center of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530029, PR China
| | - Funing Chen
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Ministry of Natural Resources, Nanning, Guangxi 530028, PR China; Natural Resources Ecological Restoration Center of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530029, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, Hubei 430079, PR China.
| |
Collapse
|
10
|
Xu M, Gao P, Gao Y, Xiong SJ, Chen HQ, Shen XX. Impacts of microplastic type on the fate of antibiotic resistance genes and horizontal gene transfer mechanism during anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121090. [PMID: 38772228 DOI: 10.1016/j.jenvman.2024.121090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) are important pollutants in waste activated sludge (WAS), but their interactions during anaerobic digestion (AD) still need to be further explored. This study investigated variations in ARGs, mobile genetic elements (MGEs), and host bacteria during AD under the pressure of polyamide (PA), polyethylene (PE), and polypropylene (PP). The results showed that the MPs increased methane production by 11.7-35.5%, and decreased ARG abundance by 5.6-24.6%. Correlation analysis showed that the decrease of MGEs (plasmid, prophage, etc.) promoted the decrease of the abundance of multidrug, aminoglycoside and tetracycline resistance genes. Metagenomic annotation revealed that the reduction of key host bacteria (Arenimonas, Lautropia, etc.) reduced the abundance of major ARGs (rsmA, rpoB2, etc.). Moreover, PP MPs contributed to a reduction in the abundance of functional genes related to the production of reactive oxygen species, ATP synthesis, and cell membrane permeability, which was conducive to reducing the potential for horizontal gene transfer of ARGs. These findings provide insights into the treatment of organic waste containing MPs.
Collapse
Affiliation(s)
- Ming Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Peng Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Yuan Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Shi-Jin Xiong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Hao-Qiang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiao-Xiao Shen
- Institute of Water Science and Technology, Hohai University, Nanjing, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
11
|
Deng L, Cheung S, Liu J, Chen J, Chen F, Zhang X, Liu H. Nanoplastics impair growth and nitrogen fixation of marine nitrogen-fixing cyanobacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123960. [PMID: 38608853 DOI: 10.1016/j.envpol.2024.123960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/09/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Nanoplastics pollution is a growing environmental problem worldwide. Recent research has demonstrated the toxic effects of nanoplastics on various marine organisms. However, the influences of nanoplastics on marine nitrogen-fixing cyanobacteria, a critical nitrogen source in the ocean, remained unknown. Here, we report that nanoplastics exposure significantly reduced growth, photosynthetic, and nitrogen fixation rates of Crocosphaera watsonii (a major marine nitrogen-fixing cyanobacterium). Transcriptomic analysis revealed that nanoplastics might harm C. watsonii via downregulation of photosynthetic pathways and DNA damage repair genes, while genes for respiration, cell damage, nitrogen limitation, and iron (and phosphorus) scavenging were upregulated. The number and size of starch grains and electron-dense vacuoles increased significantly after nanoplastics exposure, suggesting that C. watsonii allocated more resources to storage instead of growth under stress. We propose that nanoplastics can damage the cell (e.g., DNA, cell membrane, and membrane-bound transporters), inhibit nitrogen and carbon fixation, and hence lead to nutrient limitation and impaired growth. Our findings suggest the possibility that nanoplastics pollution could reduce the new nitrogen input and hence affect the productivity in the ocean. The impact of nanoplastics on marine nitrogen fixation and productivity should be considered when predicting the ecosystem response and biogeochemical cycling in the changing ocean.
Collapse
Affiliation(s)
- Lixia Deng
- Department of Ocean Science, The Hong Kong University of Science and Technology, China
| | - Shunyan Cheung
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Jiaxing Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jiawei Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, China
| | - Fengyuan Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, China; SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
| | - Xiaodong Zhang
- Department of Ocean Science, The Hong Kong University of Science and Technology, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, China.
| |
Collapse
|
12
|
Xu SY, Mo YH, Liu YJ, Wang X, Li HY, Yang WD. Physiological and genetic responses of the benthic dinoflagellate Prorocentrum lima to polystyrene microplastics. HARMFUL ALGAE 2024; 136:102652. [PMID: 38876530 DOI: 10.1016/j.hal.2024.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
Microplastics are well known as contaminants in marine environments. With the development of biofilms, most microplastics will eventually sink and deposit in benthic environment. However, little research has been done on benthic toxic dinoflagellates, and the effects of microplastics on benthic dinoflagellates are unknown. Prorocentrum lima is a cosmopolitan toxic benthic dinoflagellate, which can produce a range of polyether metabolites, such as diarrhetic shellfish poisoning (DSP) toxins. In order to explore the impact of microplastics on marine benthic dinoflagellates, in this paper, we studied the effects of polystyrene (PS) on the growth and toxin production of P. lima. The molecular response of P. lima to microplastic stress was analyzed by transcriptomics. We selected 100 nm, 10 μm and 100 μm PS, and set three concentrations of 1 mg L-1, 10 mg L-1 and 100 mg L-1. The results showed that PS exposure had limited effects on cell growth, but increased the OA and extracellular polysaccharide content at high concentrations. After exposure to PS MPs, genes associated with DSP toxins synthesis, carbohydrate synthesis and energy metabolism, such as glycolysis, TCA cycle and pyruvate metabolism, were significantly up-regulated. We speculated that after exposure to microplastics, P. lima may increase the synthesis of DSP toxins and extracellular polysaccharides, improve the level of energy metabolism and gene expression of ABC transporter, thereby protecting algal cells from damage. Our findings provide new insights into the effects of microplastics on toxic benthic dinoflagellates.
Collapse
Affiliation(s)
- Si-Yuan Xu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yan-Hang Mo
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yu-Jie Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Xiang Wang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
13
|
Wei L, Li J, Wang Z, Wu J, Wang S, Cai Z, Lu Y, Su C. Evaluating effects of tetrabromobisphenol A and microplastics on anaerobic granular sludge: Physicochemical properties, microbial metabolism, and underlying mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121077. [PMID: 38718604 DOI: 10.1016/j.jenvman.2024.121077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/07/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Tetrabromobisphenol A (TBBPA) and microplastics are emerging contaminants of widespread concern. However, little is known about the effects of combined exposure to TBBPA and microplastics on the physicochemical properties and microbial metabolism of anaerobic granular sludge. This study investigated the effects of TBBPA, polystyrene microplastics (PS MP) and polybutylene succinate microplastics (PBS MP) on the physicochemical properties, microbial communities and microbial metabolic levels of anaerobic granular sludge. The results showed that chemical oxygen demand (COD) removal of sludge was lowest in the presence of TBBPA alone and PS MP alone with 33.21% and 30.06%, respectively. The microorganisms promoted the secretion of humic substances under the influence of TBBPA, PS MP and PBS MP. The lowest proportion of genes controlling glycolytic metabolism in sludge was 1.52% when both TBBPA and PS MP were added. Microbial reactive oxygen species were increased in anaerobic granular sludge exposed to MPS. In addition, TBBPA treatment decreased electron transfer of the anaerobic granular sludge and disrupted the pathway of anaerobic microorganisms in acquiring adenosine triphosphate, and MPs attenuated the negative effects of TBBPA on the acetate methanogenesis process of the anaerobic granular sludge. This study provides a reference for evaluating the impact of multiple pollutants on anaerobic granular sludge.
Collapse
Affiliation(s)
- Lixin Wei
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Junjian Li
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Zi Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Jinyan Wu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Shuying Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Zhexiang Cai
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Yuxiang Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chengyuan Su
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China.
| |
Collapse
|
14
|
Xuan L, Wang Y, Qu C, Yi W, Yang J, Pan H, Zhang J, Chen C, Bai C, Zhou PK, Huang R. Exposure to polystyrene nanoplastics induces abnormal activation of innate immunity via the cGAS-STING pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116255. [PMID: 38552388 DOI: 10.1016/j.ecoenv.2024.116255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024]
Abstract
Endogenous immune defenses provide an intrinsic barrier against external entity invasion. Microplastics in the environment, especially those at the nanoscale (nanoplastics or NPs), may pose latent health risks through direct exposure. While links between nanoplastics and inflammatory processes have been established, detailed insights into how they may perturb the innate immune mechanisms remain uncharted. Employing murine and macrophage (RAW264.7) cellular models subjected to polystyrene nanoplastics (PS-NPs), our investigative approach encompassed an array of techniques: Cell Counting Kit-8 assays, flow cytometric analysis, acridine orange/ethidium bromide (AO/EB) fluorescence staining, cell transfection, cell cycle scrutiny, genetic manipulation, messenger RNA expression profiling via quantitative real-time PCR, and protein expression evaluation through western blotting. The results showed that PS-NPs caused RAW264.7 cell apoptosis, leading to cell cycle arrest, and activated the cGAS-STING pathway. This resulted in NF-κB signaling activation and increased pro-inflammatory mediator expression. Importantly, PS-NPs-induced activation of NF-κB and its downstream inflammatory cascade were markedly diminished after the silencing of the STING gene. Our findings highlight the critical role of the cGAS-STING pathway in the immunotoxic effects induced by PS-NPs. We outline a new mechanism whereby nanoplastics may trigger dysregulated innate immune and inflammatory responses via the cGAS/STING pathway.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Yin Wang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Can Qu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China
| | - Wensen Yi
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China
| | - Jingjing Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China
| | - Huiji Pan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Jing Zhang
- Clinical Medical Oncology, Xiangya Medical College, Central South University, China.
| | - Cuimei Chen
- School of Public Health, Xiang Nan University, Chenzhou, Hunan 423000, China.
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| |
Collapse
|
15
|
Wang J, Tan L, Li Q, Wang J. Toxic effects of nSiO 2 and mPS on diatoms Nitzschia closterium f. minutissima. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106298. [PMID: 38101202 DOI: 10.1016/j.marenvres.2023.106298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
To investigate the toxic mechanism of SiO2 nanoparticles (nSiO2) and polystyrene microplastics (mPS) on microalgae Nitzschia closterium f. minutissima, growth inhibition tests were carried out. The growth and biological responses of the algae exposed to nSiO2 (0.5, 1, 2, 5, 10, 30 mg L-1) and mPS (1, 5, 10, 30 and 75 mg L-1) were explored in f/2 media for 96 h. Both micro-/nano-particles (MNPs) inhibited the growth of N. closterium f. minutissima in a concentration- and time-dependent manner. The toxic effect of mPS on N. closterium f. minutissima is higher than that of nSiO2, because silicon is essential for diatoms to maintain cell wall integrity, and the addition of appropriate amounts of nSiO2 can be absorbed and used as a nutrient to promote diatom growth and protect the integrity of the siliceous shell to some extent. Both MNPs induce the production of excess oxidation and activate the cellular antioxidant defense system, leading to increased SOD and CAT activity as a means to resist oxidative damage to the cell, and eliminating excess ROS and maintaining normal cell morphology and metabolism. SEM is consistent with the results of MDA, showing that mPS with high concentrations attach to the surface of algal cells to produce heterogeneous aggregates and disrupt the cell wall and cell membrane, causing the cells to expand and rupture. This study contributes to the understanding of the size effect of MNPs on the growth of marine diatom.
Collapse
Affiliation(s)
- Jiayin Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Qi Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
16
|
Sheng Y, Cai J, Yang Z, Du H, Bi R, Liu W, Li P. Microplastic size-dependent biochemical and molecular effects in alga Heterosigma akashiwo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115673. [PMID: 37979358 DOI: 10.1016/j.ecoenv.2023.115673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
Micro- and nano-plastics (MNPs) are increasingly prevalent contaminants in marine ecosystems and have a variety of negative impacts on marine organisms. While their toxic impact on freshwater microalgae has been well-documented, limited research has been conducted on the influence of MNPs on marine red tide algae, despite their significant implications for human health and coastal ecological stability. This study investigated the physiological, biochemical and molecular reactions of the common harmful algal species, Heterosigma akashiwo, when exposed to polystyrene (PS) MNPs of 80 nm and 1 µm in size with the concentrations of 0, 1, 10, and 20 mg L-1 in 12 days. The results showed that 80 nm-sized MNPs (at concentrations of 10 mg L-1 and 20 mg L-1) inhibited algal growth. Despite the increased superoxide dismutase (SOD) activity and up-regulation of glutathione metabolism, exposure-induced oxidative stress remained the main cause of the inhibition. Up-regulation of aminoacyl-tRNA biosynthesis and amino acid biosynthesis pathways provide the necessary amino acid feedstock for the synthesis of antioxidant enzymes such as SOD. 1 µm sized PS MNPs increased chlorophyll a (Chl-a) content without significant effects on other parameters. In addition, H. akashiwo have an effective self-regulation ability to defend against two sized MNPs stress at concentrations of 1 mg L-1 by upregulating gene expression related to endocytosis, biotin metabolism, and oxidative phosphorylation. These results provided evidence that H. akashiwo was able to resist exposure to 1 µm MPs, whereas 80 nm NPs exerted a toxic effect on H. akashiwo. This study deepens our understanding of the interaction between MNPs and marine harmful algal at the transcriptional level, providing valuable insights for further evaluating the potential impact of PS MNPs on harmful algal blooms in marine ecosystems.
Collapse
Affiliation(s)
- Yangjie Sheng
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Provention, Shantou University, Shantou, Guangdong 515063, China
| | - Jingting Cai
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Provention, Shantou University, Shantou, Guangdong 515063, China
| | - Zhenxiong Yang
- South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou 510300, China
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Provention, Shantou University, Shantou, Guangdong 515063, China
| | - Ran Bi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Provention, Shantou University, Shantou, Guangdong 515063, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Provention, Shantou University, Shantou, Guangdong 515063, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Provention, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
17
|
Roussel A, Mériot V, Jauffrais T, Berteaux-Lecellier V, Lebouvier N. OMICS Approaches to Assess Dinoflagellate Responses to Chemical Stressors. BIOLOGY 2023; 12:1234. [PMID: 37759633 PMCID: PMC10525455 DOI: 10.3390/biology12091234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 09/29/2023]
Abstract
Dinoflagellates are important primary producers known to form Harmful Algae Blooms (HABs). In water, nutrient availability, pH, salinity and anthropogenic contamination constitute chemical stressors for them. The emergence of OMICs approaches propelled our understanding of dinoflagellates' responses to stressors. However, in dinoflagellates, these approaches are still biased, as transcriptomic approaches are largely conducted compared to proteomic and metabolomic approaches. Furthermore, integrated OMICs approaches are just emerging. Here, we report recent contributions of the different OMICs approaches to the investigation of dinoflagellates' responses to chemical stressors and discuss the current challenges we need to face to push studies further despite the lack of genomic resources available for dinoflagellates.
Collapse
Affiliation(s)
- Alice Roussel
- ISEA, EA7484, Campus de Nouville, Université de la Nouvelle Calédonie, Noumea 98851, New Caledonia; (A.R.); (V.M.)
| | - Vincent Mériot
- ISEA, EA7484, Campus de Nouville, Université de la Nouvelle Calédonie, Noumea 98851, New Caledonia; (A.R.); (V.M.)
- Ifremer, IRD, CNRS, Univ. de la Réunion, Univ. de la Nouvelle Calédonie, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, Noumea 98897, New Caledonia;
| | - Thierry Jauffrais
- Ifremer, IRD, CNRS, Univ. de la Réunion, Univ. de la Nouvelle Calédonie, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, Noumea 98897, New Caledonia;
| | - Véronique Berteaux-Lecellier
- CNRS, Ifremer, IRD, Univ. de la Réunion, Univ. de la Nouvelle Calédonie, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, Noumea 98897, New Caledonia;
| | - Nicolas Lebouvier
- ISEA, EA7484, Campus de Nouville, Université de la Nouvelle Calédonie, Noumea 98851, New Caledonia; (A.R.); (V.M.)
| |
Collapse
|
18
|
Nath J, De J, Sur S, Banerjee P. Interaction of Microbes with Microplastics and Nanoplastics in the Agroecosystems-Impact on Antimicrobial Resistance. Pathogens 2023; 12:888. [PMID: 37513735 PMCID: PMC10386327 DOI: 10.3390/pathogens12070888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Microplastics (MPs) and nanoplastics (NPs) are hotspots for the exchange of antimicrobial resistance genes (ARGs) between different bacterial taxa in the environment. Propagation of antimicrobial resistance (AMR) is a global public health issue that needs special attention concerning horizontal gene transfer (HGT) under micro-nano plastics (MNPs) pressure. Interactions between MNPs and microbes, or mere persistence of MNPs in the environment (either water or soil), influence microbial gene expressions, affecting autochthonous microbiomes, their resistomes, and the overall ecosystem. The adsorption of a range of co-contaminants on MNPs leads to the increased interaction of pollutants with microbes resulting in changes in AMR, virulence, toxin production, etc. However, accurately estimating the extent of MNP infestation in agroecosystems remains challenging. The main limitation in estimating the level of MNPs contamination in agroecosystems, surface and subsurface waters, or sediments is the lack of standardized protocols for extraction of MPs and analytical detection methods from complex high organic content matrices. Nonetheless, recent advances in MPs detection from complex matrices with high organic matter content are highly promising. This review aims to provide an overview of relevant information available to date and summarize the already existing knowledge about the mechanisms of MNP-microbe interactions including the different factors with influence on HGT and AMR. In-depth knowledge of the enhanced ARGs propagation in the environment under the influence of MNPs could raise the needed awareness, about future consequences and emergence of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Jayashree Nath
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jayita De
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shantanu Sur
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
19
|
Annenkov VV, Pal'shin VA, Annenkova NV, Zelinskiy SN, Danilovtseva EN. Uptake and Effects of Nanoplastics on the Dinoflagellate Gymnodinium corollarium. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1124-1133. [PMID: 36920033 DOI: 10.1002/etc.5604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/03/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Plastic nanoparticles (NPs) are the final state of plastic degradation in the environment before they disintegrate into low-molecular-weight organic compounds. Unicellular organisms are highly sensitive to the toxic effects of nanoplastics, because they are often capable of phagotrophy but are unable to consume a foreign material such as synthetic plastic. We studied the effect of polystyrene, poly(vinyl chloride), poly(methyl acrylate), and poly(methyl methacrylate) NPs on the photosynthetic dinoflagellate Gymnodinium corollarium Sundström, Kremp et Daugbjerg. Fluorescent tagged particles were used to visualize plastic capture by dinoflagellate cells. We found that these dinoflagellates are capable of phagotrophic nutrition and thus should be regarded as mixotrophic species. This causes their susceptibility to the toxic effects of plastic NPs. Living cells ingest plastic NPs and accumulate in the cytoplasm as micrometer-level aggregates, probably in food vacuoles. The action of nanoplastics leads to a dose-dependent increase in the level of reactive oxygen species in dinoflagellate cells, indicating plastic degradation in the cells. The introduction of a methyl group into the main chain in the α-position in the case of poly(methyl methacrylate) causes a drastic reduction in toxicity. We expect that such NPs can be a tool for testing unicellular organisms in terms of heterotrophic feeding ability. We suggest a dual role of dinoflagellates in the ecological fate of plastic waste: the involvement of nanoplastics in the food chain and its biochemical destruction. Environ Toxicol Chem 2023;42:1124-1133. © 2023 SETAC.
Collapse
Affiliation(s)
- Vadim V Annenkov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Viktor A Pal'shin
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Nataliia V Annenkova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Stanislav N Zelinskiy
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Elena N Danilovtseva
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
20
|
Zhao T, Tan L, Han X, Ma X, Lin K, Wang J. Energy metabolism response induced by microplastic for marine dinoflagellate Karenia mikimotoi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161267. [PMID: 36608820 DOI: 10.1016/j.scitotenv.2022.161267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/12/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Microplastic contaminations threaten the entire marine ecosystem and cause severe ecological stress. This study explored the energy metabolism change of Karenia mikimotoi under exposure to nanoplastics (NPs) and microplastics (MPs) (65 nm, 100 nm, and 1 μm polystyrene (PS), and 100 nm polymethyl methacrylate (PMMA)) at a concentration of 10 mg L-1. Membrane potential, esterase activity, polysaccharide content, and ATPase activity were detected to assess the energy metabolism of K. mikimotoi under MPs/NPs exposure. Transcriptome and metabolomic analyses were used to investigate the intrinsic mechanisms of energy metabolism changes. Smaller PS particles caused greater damage to the cell membrane potential, increased the polysaccharide content, and resulted in a heavier weakening of the ATPase enzymatic activity in K. mikimotoi cells, suggesting that smaller-sized PS had more influence on esterase activity and energy metabolism than the bigger-sized PS. The results evidenced that energy metabolism relates to the size and type of MPs/NPs, and nano-scale plastic particles could induce greater metabolic changes.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xiaotian Han
- Changjiang River Estuary Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | - Kun Lin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
21
|
Luo T, Dai X, Chen Z, Wu L, Wei W, Xu Q, Ni BJ. Different microplastics distinctively enriched the antibiotic resistance genes in anaerobic sludge digestion through shifting specific hosts and promoting horizontal gene flow. WATER RESEARCH 2023; 228:119356. [PMID: 36423550 DOI: 10.1016/j.watres.2022.119356] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/01/2022] [Accepted: 11/12/2022] [Indexed: 06/03/2023]
Abstract
Both microplastics (MPs) and antibiotic resistance genes (ARGs) are intensively detected in waste activated sludge (WAS). However, the distinctive impacts of different MPs on ARGs emergence, dissemination, and its potential mechanisms remain unclear. In this study, long-term semi-continuous digesters were performed to examine the profiles of ARGs and antibiotic-resistant bacteria (ARB) in response to two different typical MPs (polyethylene (PE) and polyvinyl chloride (PVC)) in anaerobic sludge digestion. Metagenomic results show that PE- and PVC-MPs increase ARGs abundance by 14.8% and 23.6% in digester, respectively. ARB are also enriched by PE- and PVC-MPs, Acinetobacter sp. and Salmonella sp. are the dominant ARB. Further exploration reveals that PVC-MPs stimulates the acquisition of ARGs by human pathogen bacteria (HPB) and functional microorganisms (FMs), but PE-MPs doesn't. Network analysis shows that more ARGs tend to co-occur with HBP and FMs after MPs exposure, and more importantly, new bacteria are observed to acquire ARGs possibly via horizontal gene flow (HGF) in MPs-stressed digester. The genes involved in the HGF process, including reactive oxygen species (ROS) production, cell membrane permeability, extracellular polymeric substances (EPS) secretion, and ATP synthesis, are also enhanced by MPs, thereby attributing to the promoted ARGs dissemination. These findings offer advanced insights into the distinctive contribution of MPs to fate, host, dissemination of ARGs in anaerobic sludge digestion.
Collapse
Affiliation(s)
- Tianyi Luo
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qiuxiang Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
22
|
Zhang J, Kong L, Zhao Y, Lin Q, Huang S, Jin Y, Ma Z, Guan W. Antagonistic and synergistic effects of warming and microplastics on microalgae: Case study of the red tide species Prorocentrum donghaiense. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119515. [PMID: 35609842 DOI: 10.1016/j.envpol.2022.119515] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Bibliometric network analysis has revealed that the widespread distribution of microplastics (MPs) has detrimental effects on marine organisms; however, the combined effects of MPs and climate change (e.g., warming) is not well understood. In this study, Prorocentrum donghaiense, a typical red tide species in the East China Sea, was exposed to different MP concentrations (0, 1, 5, and 10 mg L-1) and temperatures (16, 22, and 28 °C) for 7 days to investigate the combined effects of MPs and simulated ocean warming by measuring different physiological parameters, such as cell growth, pigment contents (chlorophyll a and carotenoid), relative electron transfer rate (rETR), reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), and adenosine triphosphate (ATP). The results demonstrated that MPs significantly decreased cell growth, pigment contents, and rETRmax, but increased the MDA, ROS, and SOD levels for all MP treatments at low temperature (16 °C). However, high temperatures (22 and 28 °C) increased the pigment contents and rETRmax, but decreased the SOD and MDA levels. Positive and negative effects of high temperatures (22 or 28 °C) were observed at low (1 and 5 mg L-1) and high MP (10 mg L-1) concentrations, respectively, indicating the antagonistic and synergistic effects of combined warming and MP pollution. These results imply that the effects of MPs on microalgae will likely not be substantial in future warming scenarios if MP concentrations are controlled at a certain level. These findings expand the current knowledge of microalgae in response to increasing MP pollution in future warming scenarios.
Collapse
Affiliation(s)
- Jiazhu Zhang
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lingwei Kong
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Yan Zhao
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qingming Lin
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shaojie Huang
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yafang Jin
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zengling Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
23
|
Yin K, Wang D, Zhao H, Wang Y, Zhang Y, Liu Y, Li B, Xing M. Polystyrene microplastics up-regulates liver glutamine and glutamate synthesis and promotes autophagy-dependent ferroptosis and apoptosis in the cerebellum through the liver-brain axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119449. [PMID: 35550135 DOI: 10.1016/j.envpol.2022.119449] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 05/20/2023]
Abstract
Microplastics (MPs), which are emerging environmental pollutants, remain uncertainties in their toxic mechanism. MPs have been linked to severe liver metabolic disorders and neurotoxicity, but it is still unknown whether the abnormal metabolites induced by MPs can affect brain tissue through the liver-brain axis. Exposed to MPs of chickens results in liver metabolic disorders and increased glutamine and glutamate synthesis. The relative expression of glutamine in the C group was -0.862, the L-PS group was 0.271, and the H-PS group was 0.592. The expression of tight junction proteins in the blood-brain barrier (BBB) was reduced by PS-MPs. Occludin protein expression decreased by 35.8%-41.2%. Claudin 3 decreased by 19.6%-42.3%, and ZO-1 decreased by 28.3%-44.6%. Excessive glutamine and glutamate cooperated with PS-MPs to inhibit the Nrf2-Keap1-HO-1/NQO1 signaling pathway and triggered autophagy-dependent ferroptosis and apoptosis. GPX protein expression decreased by 30.9%-38%. LC3II/LC3I increased by 54%, and Caspase 3 increased by 45%. Eventually, the number of Purkinje cells was reduced, causing neurological dysfunction. In conclusion, this study provides new insights for revealing the mechanism of nervous system damaged caused by PS-MPs exposed in chickens.
Collapse
Affiliation(s)
- Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Baoying Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
24
|
Zha Y, Li Z, Zhong Z, Ruan Y, Sun L, Zuo F, Li L, Hou S. Size-dependent enhancement on conjugative transfer of antibiotic resistance genes by micro/nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128561. [PMID: 35278945 DOI: 10.1016/j.jhazmat.2022.128561] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Recently micro/nanoplastics (MNPs) have raised intensive concerns due to their possible enhancement effect on the dissemination of antibiotic genes. Unfortunately, data is still lacking to verify the effect. In the study, the influence of polystyrene MNPs on the conjugative gene transfer was studied by using E. coli DH5ɑ with RP4 plasmid as the donor bacteria and E. coli K12 MG1655 as the recipient bacteria. We found that influence of MNPs on gene transfer was size-dependent. Small MNPs (10 nm in radius) caused an increase and then a decrease in gene transfer efficiency with their concentration increasing. Moderate-sized MNPs (50 nm in radius) caused an increase in gene transfer efficiency. Large MNPs (500 nm in radius) had almost no influence on gene transfer. The gene transfer could be further enhanced by optimizing mating time and mating ratio. Scavenging reactive oxygen species (ROS) production did not affect the cell membrane permeability, indicating that the increase in cell membrane permeability was not related to ROS production. The mechanism of the enhanced gene transfer efficiency was attributed to a combined effect of the increased ROS production and the increased cell membrane permeability, which ultimately regulated the expression of corresponding genes.
Collapse
Affiliation(s)
- Yingying Zha
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 510632, China; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ziwei Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 510632, China
| | - Zheng Zhong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 510632, China
| | - Yiming Ruan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 510632, China
| | - Lili Sun
- Guangzhou Inspection Testing and Certification Group Co., Ltd., China
| | - Fangfang Zuo
- Guangzhou Inspection Testing and Certification Group Co., Ltd., China; Key Laboratory for Quality Research and Evaluation of Medical Textile Protective Products, Guangdong Medical Products Administration, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Sen Hou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 510632, China; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
25
|
Zhang C, Li H, Li Y, Li Z, Mo F, Deng N, Xu J, Wang P. Toxicity of BPNSs against Chlorella vulgaris: Oxidative damage, physical damage and self-protection mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 174:63-72. [PMID: 35149438 DOI: 10.1016/j.plaphy.2022.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Black phosphorus nanosheets (BPNSs) has extensive application prospect in the fields of optoelectronics and biomedicine, due to its unique physicochemical properties. Therefore, a systematic toxic study is necessary to assess its environmental safety. Herein, BPNSs was prepared by liquid exfoliation procedure, the primary producer Chlorella vulgaris (C. vulgaris) was used as a test subject. After the exposure for 120 h at 15, 45 and 75 mg/L BPNSs, the cell viabilities were 45.05%, 18.86% and 4.60% for each treatment group, respectively. The extent of lipid peroxidation and peroxidative damage in C. vulgaris was confirmed by measuring reactive oxygen species (ROS) levels, superoxide dismutase (SOD) and catalase (CAT) activities, followed by determination of malondialdehyde (MDA) content. Morphological analysis results (i.e., SEM and TEM) showed that BPNSs adhered to the cell surface and enter the cell to severely damage cell structure. Furthermore, BPNSs were shown to accelerate apoptosis in C. vulgaris by flow cytometry analysis. Finally, GC-MS was used to explore the metabolic regulatory mechanism of C. vulgaris in response to BPNSs stress. The results of this study can provide theoretical support for subsequent studies on the potential enrichment risk of BPNSs in the water environmental food chain.
Collapse
Affiliation(s)
- Chenxi Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Zhe Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Fan Mo
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ningcan Deng
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Jianing Xu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Pengkai Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| |
Collapse
|