1
|
Wang S, Shao Z, Chen G, Lin B, Li D, Chen J. Assessment of chlorine and hydrogen peroxide on airborne bacteria: Disinfection efficiency and induction of antibiotic resistance. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134697. [PMID: 38823102 DOI: 10.1016/j.jhazmat.2024.134697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Airborne pathogens severely threaten public health worldwide. Air disinfection is essential to ensure public health. However, excessive use of disinfectants may endanger environmental and ecological security due to the residual disinfectants and their by-products. This study systematically evaluated disinfection efficiency, induction of multidrug resistance, and the underlying mechanisms of disinfectants (NaClO and H2O2) on airborne bacteria. The results showed that airborne bacteria were effectively inactivated by atomized NaClO (>160 μg/L) and H2O2 (>320 μg/L) after 15 min. However, some bacteria still survived after disinfection by atomized NaClO (0-80 μg/L) and H2O2 (0-160 μg/L), and they exhibited significant increases in antibiotic resistance. The whole-genome sequencing of the resistant bacteria revealed distinct mutations that were responsible for both antibiotic resistance and virulence. This study also provided evidences and insights into possible mechanisms underlying the induction of antibiotic resistance by air disinfection, which involved intracellular reactive oxygen species formation, oxidative stress responses, alterations in bacterial membranes, activation of efflux pumps, and the thickening of biofilms. The present results also shed light on the role of air disinfection in inducing antibiotic resistance, which could be a crucial factor contributing to the global spread of antibiotic resistance through the air.
Collapse
Affiliation(s)
- Siyi Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zhiwei Shao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Guang Chen
- Shanghai Chengtou Sewage Treatment Co., LtD., Shanghai 201203, China
| | - Bingjie Lin
- Shanghai Chengtou Sewage Treatment Co., LtD., Shanghai 201203, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Combe M, Cherif E, Deremarque T, Rivera-Ingraham G, Seck-Thiam F, Justy F, Doudou JC, Carod JF, Carage T, Procureur A, Gozlan RE. Wastewater sequencing as a powerful tool to reveal SARS-CoV-2 variant introduction and spread in French Guiana, South America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171645. [PMID: 38479523 DOI: 10.1016/j.scitotenv.2024.171645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/19/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
The origin of introduction of a new pathogen in a country, the evolutionary dynamics of an epidemic within a country, and the role of cross-border areas on pathogen dynamics remain complex to disentangle and are often poorly understood. For instance, cross-border areas represent the ideal location for the sharing of viral variants between countries, with international air travel, land travel and waterways playing an important role in the cross-border spread of infectious diseases. Unfortunately, monitoring the point of entry and the evolutionary dynamics of viruses in space and time within local populations remain challenging. Here we tested the efficiency of wastewater-based epidemiology and genotyping in monitoring Covid-19 epidemiology and SARS-CoV-2 variant dynamics in French Guiana, a tropical country located in South America. Our results suggest that wastewater-based epidemiology and genotyping are powerful tools to monitor variant introduction and disease evolution within a tropical country but the inclusion of both clinical and wastewater samples could still improve our understanding of genetic diversity co-circulating. Wastewater sequencing also revealed the cryptic transmission of SARS-CoV-2 variants within the country. Interestingly, we found some amino acid changes specific to the variants co-circulating in French Guiana, suggesting a local evolution of the SARS-CoV-2 variants after their introduction. More importantly, our results showed that the proximity to bordering countries was not the origin of the emergence of the French Guianese B.1.160.25 variant, but rather that this variant emerged from an ancestor B.1.160 variant introduced by European air plane travelers, suggesting thus that air travel remains a significant risk for cross-border spread of infectious diseases. Overall, we suggest that wastewater-based epidemiology and genotyping provides a cost effective and non-invasive approach for pathogen monitoring and an early-warning tool for disease emergence and spread within a tropical country.
Collapse
Affiliation(s)
- Marine Combe
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France.
| | - Emira Cherif
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| | | | - Georgina Rivera-Ingraham
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France; Centre IRD de Cayenne, Guyane Française, France
| | | | | | | | - Jean-François Carod
- Laboratoire et Pôle Appui aux Fonctions Cliniques, Centre Hospitalier de l'Ouest Guyanais (CHOG), 97320 Saint-Laurent du Maroni, Guyane Française, France
| | - Thierry Carage
- Laboratoire de Biologie Médicale Carage de Kourou, 6 avenue Leopold Heder, 97310 Kourou, Guyane Française, France
| | - Angélique Procureur
- Laboratoire de Biologie Médicale Carage de Kourou, 6 avenue Leopold Heder, 97310 Kourou, Guyane Française, France
| | | |
Collapse
|
3
|
Xue B, Guo X, Cao J, Yang S, Qiu Z, Wang J, Shen Z. The occurrence, ecological risk, and control of disinfection by-products from intensified wastewater disinfection during the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165602. [PMID: 37478942 DOI: 10.1016/j.scitotenv.2023.165602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Increased disinfection of wastewater to preserve its microbiological quality during the coronavirus infectious disease-2019 (COVID-19) pandemic have inevitably led to increased production of toxic disinfection by-products (DBPs). However, there is limited information on such DBPs (i.e., trihalomethanes, haloacetic acids, nitrosamines, and haloacetonitriles). This review focused on the upsurge of chlorine-based disinfectants (such as chlorine, chloramine and chlorine dioxide) in wastewater treatment plants (WWTPs) in the global response to COVID-19. The formation and distribution of DBPs in wastewater were then analyzed to understand the impacts of these large-scale usage of disinfectants in WWTPs. In addition, potential ecological risks associated with DBPs derived from wastewater disinfection and its receiving water bodies were summarized. Finally, various approaches for mitigating DBP levels in wastewater and suggestions for further research into the environmental risks of increased wastewater disinfection were provided. Overall, this study presented a comprehensive overview of the formation, distribution, potential ecological risks, and mitigating approaches of DBPs derived from wastewater disinfection that will facilitate appropriate wastewater disinfection techniques selection, potential ecological risk assessment, and removal approaches and regulations consideration.
Collapse
Affiliation(s)
- Bin Xue
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, China
| | - Jinrui Cao
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Shuran Yang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China.
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China.
| |
Collapse
|
4
|
Shaffer M, Fischer RJ, Gallogly S, Ginn O, Munster V, Bibby K. Environmental Persistence and Disinfection of Lassa Virus. Emerg Infect Dis 2023; 29:2285-2291. [PMID: 37877545 PMCID: PMC10617325 DOI: 10.3201/eid2911.230678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Lassa fever, caused by Lassa virus (LASV), is endemic to West Africa, where ≈300,000 illnesses and ≈5,000 deaths occur annually. LASV is primarily spread by infected multimammate rats via urine and fomites, highlighting the need to understand the environmental fate of LASV. We evaluated persistence of LASV Josiah and Sauerwald strains on surfaces, in aqueous solutions, and with sodium hypochlorite disinfection. Tested strains were more stable in deionized water (first-order rate constant [k] for Josiah, 0.23 days; for Sauerwald, k = 0.34 days) than primary influent wastewater (Josiah, k = 1.3 days; Sauerwald, k = 1.9 days). Both strains had similar decay rates on high-density polyethylene (Josiah, k = 4.3 days; Sauerwald, k = 2.3 days) and stainless steel (Josiah, k = 5.3 days; Sauerwald, k = 2.7 days). Sodium hypochlorite was highly effective at inactivating both strains. Our findings can inform future risk assessment and management efforts for Lassa fever.
Collapse
|
5
|
Al-Hazmi HE, Mohammadi A, Hejna A, Majtacz J, Esmaeili A, Habibzadeh S, Saeb MR, Badawi M, Lima EC, Mąkinia J. Wastewater reuse in agriculture: Prospects and challenges. ENVIRONMENTAL RESEARCH 2023; 236:116711. [PMID: 37487927 DOI: 10.1016/j.envres.2023.116711] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Sustainable water recycling and wastewater reuse are urgent nowadays considering water scarcity and increased water consumption through human activities. In 2015, United Nations Sustainable Development Goal 6 (UN SDG6) highlighted the necessity of recycling wastewater to guarantee water availability for individuals. Currently, wastewater irrigation (WWI) of crops and agricultural land appears essential. The present work overviews the quality of treated wastewater in terms of soil microbial activities, and discusses challenges and benefits of WWI in line with wastewater reuse in agriculture and aquaculture irrigation. Combined conventional-advanced wastewater treatment processes are specifically deliberated, considering the harmful impacts on human health arising from WWI originating from reuse of contaminated water (salts, organic pollutants, toxic metals, and microbial pathogens i.e., viruses and bacteria). The comprehensive literature survey revealed that, in addition to the increased levels of pathogen and microbial threats to human wellbeing, poorly-treated wastewater results in plant and soil contamination with toxic organic/inorganic chemicals, and microbial pathogens. The impact of long-term emerging pollutants like plastic nanoparticles should also be established in further studies, with the development of standardized analytical techniques for such hazardous chemicals. Likewise, the reliable, long-term and extensive judgment on heavy metals threat to human beings's health should be explored in future investigations.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Ali Mohammadi
- Department of Engineering and Chemical Sciences, Karlstad University, 65188, Karlstad, Sweden.
| | - Aleksander Hejna
- Institute of Materials Technology, Poznan University of Technology, Poznań, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, University of Doha for Science and Technology (UDST), 24449, Arab League St, Doha, Qatar
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
6
|
Yinda CK, Morris DH, Fischer RJ, Gallogly S, Weishampel ZA, Port JR, Bushmaker T, Schulz JE, Bibby K, van Doremalen N, Lloyd-Smith JO, Munster VJ. Stability of Monkeypox Virus in Body Fluids and Wastewater. Emerg Infect Dis 2023; 29:2065-2072. [PMID: 37735747 PMCID: PMC10521604 DOI: 10.3201/eid2910.230824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
An outbreak of human mpox infection in nonendemic countries appears to have been driven largely by transmission through body fluids or skin-to-skin contact during sexual activity. We evaluated the stability of monkeypox virus (MPXV) in different environments and specific body fluids and tested the effectiveness of decontamination methodologies. MPXV decayed faster at higher temperatures, and rates varied considerably depending on the medium in which virus was suspended, both in solution and on surfaces. More proteinaceous fluids supported greater persistence. Chlorination was an effective decontamination technique, but only at higher concentrations. Wastewater was more difficult to decontaminate than plain deionized water; testing for infectious MPXV could be a helpful addition to PCR-based wastewater surveillance when high levels of viral DNA are detected. Our findings suggest that, because virus stability is sufficient to support environmental MPXV transmission in healthcare settings, exposure and dose-response will be limiting factors for those transmission routes.
Collapse
|
7
|
Sherchan S, Ikner LA, Gerba CP. Inactivation of SARS-CoV-2 in Water by Chlorination. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:262-264. [PMID: 37421543 DOI: 10.1007/s12560-023-09559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is present in both respiratory secretions and feces, creating its potential for transmission by swimming pools. Recreational water activity is known to be at increased risk of respiratory infections and respiratory viruses have caused been detected and have caused outbreaks in swimming pools. However, little is known regarding the chlorine inactivation of SARS-CoV-2 in water typical of swimming pools in the USA. In this study, the inactivation of SARS-CoV-2 Isolate hCoV-19/USA-WA1/2020 was observed in water by chlorination. All experiments were conducted within a BSL-3 laboratory at room temperature. Our results show that the virus was reduced by 3.5 log (> 99.9%) after 30 s of 2.05-mg/L free chlorine contact and greater than 4.17 log (limit of detection) (> 99.99%) within 2 min.
Collapse
Affiliation(s)
- Samendra Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA, 70112, USA.
- BioEnvironmental Science Program, Morgan State University, Baltimore, MD, 21251, USA.
| | - Luisa A Ikner
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Charles P Gerba
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
8
|
Kishimoto A, Ohtsubo R, Okada Y, Sugiyama K, Goda H, Yoshikawa T, Kohno M, Fukui K. Elucidation of composition of chlorine compounds in acidic sodium chlorite solution using ion chromatography. PLoS One 2023; 18:e0289534. [PMID: 37561805 PMCID: PMC10414608 DOI: 10.1371/journal.pone.0289534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
With the spread of coronavirus infections, the demand for disinfectants, such as a sodium chlorite solution, has increased worldwide. Sodium chlorite solution is a food additive and is used in a wide range of applications. There is evidence that chlorous acid or sodium chlorite is effective against various bacteria, but the actual mechanism is not well understood. One reason for this is that the composition of chlorine-based compounds contained in sodium chlorite solutions has not been clearly elucidated. The composition can vary greatly with pH. In addition, the conventional iodometric titration method, the N,N-diethyl-p-phenylenediamine sulfate (DPD) method and the absorption photometric method cannot clarify the composition. In this study, we attempted to elucidate the composition of a sodium chlorite solution using absorption spectrophotometry and ion chromatography (IC). IC is excellent for qualitative and quantitative analysis of trace ions. Through this, we aimed to develop an evaluation method that allows anyone to easily determine the bactericidal power of sodium chlorite. We found that commercially available sodium chlorite solution is 80% pure, with the remaining 20% potentially containing sodium hypochlorite solution. In addition, when sodium chlorite solution became acidified, its absorption spectrum exhibited a peak at 365 nm. Sodium chlorite solution is normally alkaline, and it cannot be measured by the DPD method, which is only applicable under acidic conditions. The presence of a peak at 365 nm indicates that the acidic sodium chlorite solution contains species with oxidizing power. On the other hand, the IC analysis showed a gradual decrease in chlorite ions in the acidic sodium chlorite solution. These results indicate that chlorite ions may not react with this DPD reagent, and other oxidizing species may be present in the acidic sodium chlorite solution. In summary, when a sodium chlorite solution becomes acidic, chlorine-based oxidizing species produce an absorption peak at 365 nm. Sodium hypochlorite and sodium chlorite solutions have completely different IC peak profiles. Although there are still many problems to be solved, we believe that the use of IC will facilitate the elucidation of the composition of sodium chlorite solution and its sterilization mechanism.
Collapse
Affiliation(s)
- Ayuta Kishimoto
- Department of Bioscience and Engineering, Molecular Cell Biology Laboratory, College of System Engineering and Science, Shibaura Institute of Technology, Fukasaku, Minuma-ku, Saitama, Japan
| | - Ryosuke Ohtsubo
- Department of Systems Engineering and Science, Molecular Cell Biology Laboratory, Shibaura Institute of Technology, Graduate School of Engineering and Science, Fukasaku, Minuma-ku, Saitama, Japan
| | - Yuta Okada
- Department of Bioscience and Engineering, Molecular Cell Biology Laboratory, College of System Engineering and Science, Shibaura Institute of Technology, Fukasaku, Minuma-ku, Saitama, Japan
| | - Kenta Sugiyama
- Department of Bioscience and Engineering, Molecular Cell Biology Laboratory, College of System Engineering and Science, Shibaura Institute of Technology, Fukasaku, Minuma-ku, Saitama, Japan
| | | | - Toshikazu Yoshikawa
- Louis Pasteur Center for Medical Research, Tanaka Monzen-cho, Sakyo-ku, Kyoto, Japan
- Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Masahiro Kohno
- Department of Bioscience and Engineering, Molecular Cell Biology Laboratory, College of System Engineering and Science, Shibaura Institute of Technology, Fukasaku, Minuma-ku, Saitama, Japan
- Louis Pasteur Center for Medical Research, Tanaka Monzen-cho, Sakyo-ku, Kyoto, Japan
| | - Koji Fukui
- Department of Bioscience and Engineering, Molecular Cell Biology Laboratory, College of System Engineering and Science, Shibaura Institute of Technology, Fukasaku, Minuma-ku, Saitama, Japan
- Department of Systems Engineering and Science, Molecular Cell Biology Laboratory, Shibaura Institute of Technology, Graduate School of Engineering and Science, Fukasaku, Minuma-ku, Saitama, Japan
| |
Collapse
|
9
|
Lawal-Ayinde BM, Morita T, Oda K, Nazmul T, Kurose M, Nomura T, Yamamoto A, Higashiura A, Akita T, Tanaka J, Horiuchi I, Goda H, Sakaguchi T. Virus purification highlights the high susceptibility of SARS-CoV-2 to a chlorine-based disinfectant, chlorous acid. PLoS One 2023; 18:e0288634. [PMID: 37450488 PMCID: PMC10348549 DOI: 10.1371/journal.pone.0288634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/01/2023] [Indexed: 07/18/2023] Open
Abstract
Chlorous acid water (HClO2) is known for its antimicrobial activity. In this study, we attempted to accurately assess the ability of chlorous acid water to inactivate SARS-CoV-2. When using cell culture supernatants of infected cells as the test virus, the 99% inactivation concentration (IC99) for the SARS-CoV-2 D614G variant, as well as the Delta and Omicron variants, was approximately 10ppm of free chlorine concentration with a reaction time of 10 minutes. On the other hand, in experiments using a more purified virus, the IC99 of chlorous acid water was 0.41-0.74ppm with a reaction time of 1 minute, showing a strong inactivation capacity over 200 times. With sodium hypochlorite water, the IC99 was 0.54ppm, confirming that these chlorine compounds have a potent inactivation effect against SARS-CoV-2. However, it became clear that when using cell culture supernatants of infected cells as the test virus, the effect is masked by impurities such as amino acids contained therein. Also, when proteins (0.5% polypeptone, or 0.3% BSA + 0.3% sheep red blood cells, or 5% FBS) were added to the purified virus, the IC99 values became high, ranging from 5.3 to 76ppm with a reaction time of 10 minutes, significantly reducing the effect. However, considering that the usual usage concentration is 200ppm, it was shown that chlorous acid water can still exert sufficient disinfection effects even in the presence of proteins. Further research is needed to confirm the practical applications and effects of chlorous acid water, but it has the potential to be an important tool for preventing the spread of SARS-CoV-2.
Collapse
Affiliation(s)
| | - Tomoko Morita
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kosuke Oda
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tanuza Nazmul
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miuko Kurose
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshihito Nomura
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima, Japan
| | - Akima Yamamoto
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akifumi Higashiura
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control, and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control, and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
10
|
He H, Li F, Liu K, Zhan J, Wang X, Lai C, Yang X, Huang B, Pan X. The disinfectant residues promote the leaching of water contaminants from plastic pipe particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121577. [PMID: 37023886 DOI: 10.1016/j.envpol.2023.121577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Disinfection treatment is an indispensable water purification process, but it can leave trace concentrations of disinfectant in the purified water. Disinfectants oxidation can age plastic pipes and release hazardous microplastics and chemicals into drinking water. Lengths of commercially-available unplasticized polyvinyl chloride and polypropylene random copolymer water pipe were ground into particles and exposed to micro-molar concentrations of ClO2, NaClO, trichloroisocyanuric acid, or O3 for up to 75 days. The disinfectants aged the plastic and changed its surface morphology and functional groups. Meanwhile, disinfectants could significantly promote the release of organic matter from plastic pipes into the water. ClO2 generated the highest concentrations of organic matter in the leachates from both plastics. Plasticizers, antioxidants and low molecular weight organic matter were detected in all of the leachates. Leachate samples inhibited the proliferation of CT26 mouse colon cancer and induced oxidative stress in the cells. Even trace concentrations of residual disinfectant can constitute a drinking water risk.
Collapse
Affiliation(s)
- Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Fan Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Kunqian Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Juhong Zhan
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China
| | - Xiaoxia Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaoxia Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, China.
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, China
| |
Collapse
|
11
|
Parida VK, Saidulu D, Bhatnagar A, Gupta AK, Afzal MS. A critical assessment of SARS-CoV-2 in aqueous environment: Existence, detection, survival, wastewater-based surveillance, inactivation methods, and effective management of COVID-19. CHEMOSPHERE 2023; 327:138503. [PMID: 36965534 PMCID: PMC10035368 DOI: 10.1016/j.chemosphere.2023.138503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 06/01/2023]
Abstract
In early January 2020, the causal agent of unspecified pneumonia cases detected in China and elsewhere was identified as a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was the major cause of the COVID-19 outbreak. Later, the World Health Organization (WHO) proclaimed the COVID-19 pandemic a worldwide public health emergency on January 30, 2020. Since then, many studies have been published on this topic. In the present study, bibliometric analysis has been performed to analyze the research hotspots of the coronavirus. Coronavirus transmission, detection methods, potential risks of infection, and effective management practices have been discussed in the present review. Identification and quantification of SARS-CoV-2 viral loads in various water matrices have been reviewed. It was observed that the viral shedding through urine and feces of COVID-19-infected patients might be a primary mode of SARS-CoV-2 transmission in water and wastewater. In this context, the present review highlights wastewater-based epidemiology (WBE)/sewage surveillance, which can be utilized as an effective tool for tracking the transmission of COVID-19. This review also emphasizes the role of different disinfection techniques, such as chlorination, ultraviolet irradiation, and ozonation, for the inactivation of coronavirus. In addition, the application of computational modeling methods has been discussed for the effective management of COVID-19.
Collapse
Affiliation(s)
- Vishal Kumar Parida
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Duduku Saidulu
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland.
| | - Ashok Kumar Gupta
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Mohammad Saud Afzal
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
12
|
Gh Jeelani P, Muzammil Munawar S, Khaleel Basha S, Krishna P G, Joshua Sinclair B, Dharshini Jenifer A, Ojha N, Mossa AT, Chidambaram R. Exploring possible strategies for treating SARS-CoV-2 in sewage wastewater: A review of current research and future directions. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2023; 6:100056. [PMID: 37131485 PMCID: PMC10088352 DOI: 10.1016/j.heha.2023.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023]
Abstract
The advent of acute respiratory coronavirus disease (COVID-19) is convoyed by the shedding of the virus in stool. Although inhalation from person-to-person and aerosol/droplet transmission are the main modes of SARS-Coronavirus-2 (SARS-CoV-2) transmission, currently available evidence indicates the presence of viral RNA in the sewerage wastewater, which highlights the need for more effective corona virus treatment options. In the existing COVID-19 pandemic, a substantial percentage of cases shed SARS-CoV-2 viral RNA in their faeces. Hence the treating this sewerage wastewater with proper surveillance is essential to contain this deadly pathogen from further transmission. Since, the viral disinfectants will not be very effective on sewerage waste as organic matter, and suspended solids in water can protect viruses that adsorb to these particles. More effective methods and measures are needed to prevent this virus from spreading. This review will explore some potential methods to treat the SARS-CoV-2 infected sewerage wastewater, current research and future directions.
Collapse
Affiliation(s)
- Peerzada Gh Jeelani
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Syed Muzammil Munawar
- C. Abdul Hakeem College, (Automous) Melvisharam - 632 509, Ranipet District, Tamilnadu, India
| | - S Khaleel Basha
- C. Abdul Hakeem College, (Automous) Melvisharam - 632 509, Ranipet District, Tamilnadu, India
| | - Gopi Krishna P
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Bruce Joshua Sinclair
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - A Dharshini Jenifer
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Nupur Ojha
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai 600036 Tamil Nadu, India
| | - Abdel-Tawab Mossa
- National Research Centre, Egypt | Cairo, Egypt | NRC 33 El Buhouth St 'Ad Doqi, Dokki, Cairo Governorate 12622, Egypt
| | - Ramalingam Chidambaram
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Division of Industrial Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014 Tamil Nadu, India
| |
Collapse
|
13
|
Mare R, Mare C, Hadarean A, Hotupan A, Rus T. COVID-19 and Water Variables: Review and Scientometric Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:957. [PMID: 36673718 PMCID: PMC9859563 DOI: 10.3390/ijerph20020957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
COVID-19 has changed the world since 2020, and the field of water specifically, boosting scientific productivity (in terms of published articles). This paper focuses on the influence of COVID-19 on scientific productivity with respect to four water variables: (i) wastewater, (ii) renewable water resources, (iii) freshwater withdrawal, and (iv) access to improved and safe drinking water. The field's literature was firstly reviewed, and then the maps were built, emphasizing the strong connections between COVID-19 and water-related variables. A total of 94 countries with publications that assess COVID-19 vs. water were considered and evaluated for how they clustered. The final step of the research shows that, on average, scientific productivity on the water topic was mostly conducted in countries with lower COVID-19 infection rates but higher development levels as represented by gross domestic product (GDP) per capita and the human development index (HDI). According to the statistical analysis, the water-related variables are highly significant, with positive coefficients. This validates that countries with higher water-related values conducted more research on the relationship with COVID-19. Wastewater and freshwater withdrawal had the highest impact on the scientific productivity with respect to COVID-19. Access to safe drinking water becomes insignificant in the presence of the development parameters.
Collapse
Affiliation(s)
- Roxana Mare
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| | - Codruța Mare
- Department of Statistics-Forecasts-Mathematics, Faculty of Economics and Business Administration, Babes-Bolyai University, 58-60 Teodor Mihali Str., 400591 Cluj-Napoca, Romania
- Interdisciplinary Centre for Data Science, Babes-Bolyai University, 68 Avram Iancu Str., 4th Floor, 400083 Cluj-Napoca, Romania
| | - Adriana Hadarean
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| | - Anca Hotupan
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| | - Tania Rus
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Puggioni G, Milia S, Unali V, Ardu R, Tamburini E, Balaguer MD, Pous N, Carucci A, Puig S. Effect of hydraulic retention time on the electro-bioremediation of nitrate in saline groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157236. [PMID: 35810909 DOI: 10.1016/j.scitotenv.2022.157236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical systems (BES) have proven their capability to treat nitrate-contaminated saline groundwater and simultaneously recover value-added chemicals (such as disinfection products) within a circular economy-based approach. In this study, the effect of the hydraulic retention time (HRT) on nitrate and salinity removal, as well as on free chlorine production, was investigated in a 3-compartment BES working in galvanostatic mode with the perspective of process intensification and future scale-up. Reducing the HRT from 30.1 ± 2.3 to 2.4 ± 0.2 h led to a corresponding increase in nitrate removal rates (from 17 ± 1 up to 131 ± 1 mgNO3--N L-1d-1), although a progressive decrease in desalination efficiency (from 77 ± 13 to 12 ± 2 %) was observed. Nitrate concentration and salinity close to threshold limits indicated by the World Health Organization for drinking water, as well as significant chlorine production were achieved with an HRT of 4.9 ± 0.4 h. At such HRT, specific energy consumption was low (6.8·10-2 ± 0.3·10-2 kWh g-1NO3--Nremoved), considering that the supplied energy supports three processes simultaneously. A logarithmic equation correlated well with nitrate removal rates at the applied HRTs and may be used to predict BES behaviour with different HRTs. The bacterial community of the bio-cathode under galvanostatic mode was dominated by a few populations, including the genera Rhizobium, Bosea, Fontibacter and Gordonia. The results provide useful information for the scale-up of BES treating multi-contaminated groundwater.
Collapse
Affiliation(s)
- Giulia Puggioni
- University of Cagliari, Department of Civil-Environmental Engineering and Architecture (DICAAR), Via Marengo 2-09123, Cagliari, Italy; Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain
| | - Stefano Milia
- National Research Council of Italy, Institute of Environmental Geology and Geoengineering (CNR-IGAG), Via Marengo 2-09123, Cagliari, Italy.
| | - Valentina Unali
- National Research Council of Italy, Institute of Environmental Geology and Geoengineering (CNR-IGAG), Via Marengo 2-09123, Cagliari, Italy
| | - Riccardo Ardu
- University of Cagliari, Department of Civil-Environmental Engineering and Architecture (DICAAR), Via Marengo 2-09123, Cagliari, Italy; DiSB, Department of Biomedical Sciences, University of Cagliari, Cittadella universitaria, 09042 Monserrato, CA, Italy
| | - Elena Tamburini
- DiSB, Department of Biomedical Sciences, University of Cagliari, Cittadella universitaria, 09042 Monserrato, CA, Italy
| | - M Dolors Balaguer
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain
| | - Narcís Pous
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain
| | - Alessandra Carucci
- University of Cagliari, Department of Civil-Environmental Engineering and Architecture (DICAAR), Via Marengo 2-09123, Cagliari, Italy; National Research Council of Italy, Institute of Environmental Geology and Geoengineering (CNR-IGAG), Via Marengo 2-09123, Cagliari, Italy
| | - Sebastià Puig
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain
| |
Collapse
|
15
|
Cimolai N. Disinfection and decontamination in the context of SARS-CoV-2-specific data. J Med Virol 2022; 94:4654-4668. [PMID: 35758523 PMCID: PMC9350315 DOI: 10.1002/jmv.27959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022]
Abstract
Given the high transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as witnessed early in the coronavirus disease 2019 (COVID-19) pandemic, concerns arose with the existing methods for virus disinfection and decontamination. The need for SARS-CoV-2-specific data stimulated considerable research in this regard. Overall, SARS-CoV-2 is practically and equally susceptible to approaches for disinfection and decontamination that have been previously found for other human or animal coronaviruses. The latter have included techniques utilizing temperature modulation, pH extremes, irradiation, and chemical treatments. These physicochemical methods are a necessary adjunct to other prevention strategies, given the environmental and patient surface ubiquity of the virus. Classic studies of disinfection have also allowed for extrapolation to the eradication of the virus on human mucosal surfaces by some chemical means. Despite considerable laboratory study, practical field assessments are generally lacking and need to be encouraged to confirm the correlation of interventions with viral eradication and infection prevention. Transparency in the constitution and use of any method or chemical is also essential to furthering practical applications.
Collapse
Affiliation(s)
- Nevio Cimolai
- Department of Pathology and Laboratory Medicine, Faculty of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Pathology and Laboratory MedicineChildren's and Women's Health Centre of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
16
|
Al-Hazmi HE, Shokrani H, Shokrani A, Jabbour K, Abida O, Mousavi Khadem SS, Habibzadeh S, Sonawane SH, Saeb MR, Bonilla-Petriciolet A, Badawi M. Recent advances in aqueous virus removal technologies. CHEMOSPHERE 2022; 305:135441. [PMID: 35764113 PMCID: PMC9233172 DOI: 10.1016/j.chemosphere.2022.135441] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 05/09/2023]
Abstract
The COVID-19 outbreak has triggered a massive research, but still urgent detection and treatment of this virus seems a public concern. The spread of viruses in aqueous environments underlined efficient virus treatment processes as a hot challenge. This review critically and comprehensively enables identifying and classifying advanced biochemical, membrane-based and disinfection processes for effective treatment of virus-contaminated water and wastewater. Understanding the functions of individual and combined/multi-stage processes in terms of manufacturing and economical parameters makes this contribution a different story from available review papers. Moreover, this review discusses challenges of combining biochemical, membrane and disinfection processes for synergistic treatment of viruses in order to reduce the dissemination of waterborne diseases. Certainly, the combination technologies are proactive in minimizing and restraining the outbreaks of the virus. It emphasizes the importance of health authorities to confront the outbreaks of unknown viruses in the future.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Hanieh Shokrani
- Department of Chemical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Karam Jabbour
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Otman Abida
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | | | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Shirish H Sonawane
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal, 506004, Telangana, India
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | | | - Michael Badawi
- Université de Lorraine, Laboratoire de Physique et Chimie Théoriques LPCT UMR CNRS, 7019, Nancy, France.
| |
Collapse
|
17
|
Zarza E, Diego-García E, García LV, Castro R, Mejía G, Herrera D, Cuevas R, Palomeque Á, Iša P, Guillén K. Monitoring SARS-CoV-2 in the Wastewater and Rivers of Tapachula, a Migratory Hub in Southern Mexico. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:199-211. [PMID: 35508751 PMCID: PMC9067545 DOI: 10.1007/s12560-022-09523-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/20/2022] [Indexed: 05/11/2023]
Abstract
The COVID-19 pandemic has been monitored by applying different strategies, including SARS-CoV-2 detection with clinical testing or through wastewater-based epidemiology (WBE). We used the latter approach to follow SARS-CoV-2 dispersion in Tapachula city, located in Mexico's tropical southern border region. Tapachula is a dynamic entry point for people seeking asylum in Mexico or traveling to the USA. Clinical testing facilities for SARS-CoV-2 monitoring are limited in the city. A total of eighty water samples were collected from urban and suburban rivers and sewage and a wastewater treatment plant over 4 months in Tapachula. We concentrated viral particles with a PEG-8000-based method, performed RNA extraction, and detected SARS-CoV-2 particles through RT-PCR. We considered the pepper mild mottle virus as a fecal water pollution biomarker and analytical control. SARS-CoV-2 viral loads (N1 and N2 markers) were quantified and correlated with official regional statistics of COVID-19 bed occupancy and confirmed cases (r > 91%). Our results concluded that WBE proved a valuable tool for tracing and tracking the COVID-19 pandemic in tropical countries with similar water temperatures (21-29 °C). Monitoring SARS-CoV-2 through urban and suburban river water sampling would be helpful in places lacking a wastewater treatment plant or water bodies with sewage discharges.
Collapse
Affiliation(s)
- Eugenia Zarza
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
- Investigadoras CONACyT- El Colegio de la Frontera Sur, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Benito Juárez, 03940, Mexico City, Mexico
| | - Elia Diego-García
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
- Investigadoras CONACyT- El Colegio de la Frontera Sur, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Benito Juárez, 03940, Mexico City, Mexico
| | - Luz Verónica García
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
| | - Ricardo Castro
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
| | - Gamaliel Mejía
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
| | - David Herrera
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
| | - Raúl Cuevas
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
| | - Ángeles Palomeque
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
| | - Pavel Iša
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico
| | - Karina Guillén
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico.
| |
Collapse
|
18
|
Owen C, Wright-Foulkes D, Alvarez P, Delgado H, Durance EC, Wells GF, Poretsky R, Shrestha A. Reduction and discharge of SARS-CoV-2 RNA in Chicago-area water reclamation plants. FEMS MICROBES 2022; 3:xtac015. [PMID: 37332512 PMCID: PMC10117756 DOI: 10.1093/femsmc/xtac015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/14/2022] [Accepted: 05/05/2022] [Indexed: 08/24/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA is commonly excreted in the feces and urine of infected individuals and is, therefore, detected in wastewaters where infection is present in the surrounding population. Water reclamation plants (WRPs) that treat these wastewaters commonly discharge treated effluents into the surrounding environment, yet little is known about the removal or persistence of SARS-CoV-2 RNA through wastewater treatment systems and potential for eventual release into the environment. We collected 361 24-hour composite influent and effluent samples from seven WRPs in the Greater Chicago Area in Illinois. Samples were collected over a period of 21 weeks for three large WRPs (with design max flows of 1.89-2.32 billion gallons per day and serving a combined population of 4.62 million people) and 11 weeks for four smaller WRPs (with design max flows of 96.3-186 million gallons per day and serving a combined population of >0.5 million people). A total of two of the larger WRPs implemented seasonal disinfection (using UV light or chlorination/dechlorination) for 8 weeks of this sampling period. SARS-CoV-2 RNA was quantified in the influent and effluent samples by reverse-transcription quantitative PCR (RT-qPCR) of the N1 and N2 targets of the nucleocapsid (N) gene. Although SARS-CoV-2 RNA was regularly detected in influent and effluent from all WRPs, viral RNA concentrations in the effluent samples were considerably lower, with mean effluent: influent gene copy concentration ratios ranging from 1:160 to 1:2.95 between WRPs. Samples collected while disinfection was active vs. inactive did not show any significant difference in the portion of RNA persisting through the treatment process (P > .05).
Collapse
Affiliation(s)
- Christopher Owen
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, United States
| | - Dorothy Wright-Foulkes
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois Chicago, Chicago, IL 60610, United States
| | - Prisila Alvarez
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, United States
| | - Haidy Delgado
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, United States
| | - Eva C Durance
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, United States
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, United States
| | - Rachel Poretsky
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, United States
| | - Abhilasha Shrestha
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois Chicago, Chicago, IL 60610, United States
| |
Collapse
|
19
|
Tesfaldet YT, Ndeh NT. Assessing face masks in the environment by means of the DPSIR framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152859. [PMID: 34995587 PMCID: PMC8724021 DOI: 10.1016/j.scitotenv.2021.152859] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 05/05/2023]
Abstract
The use of face masks outside the health care facility dates back a century ago. However, face masks use noticeably soared due to the COVID-19 (Coronavirus disease 2019) pandemic. As a result, an unprecedented influx of discarded face masks is ending up in the environment. This review paper delves into face masks in the environment using the DPSIR (driving forces, pressures, states, impacts, and responses) framework to simplify and communicate the environmental indicators. Firstly, the historical, and briefly the economic trajectory of face masks are discussed. Secondly, the main driving forces of face masks use with an emphasis on public health are explored. Then, the pressures exerted by efforts to fulfill the human needs (driving forces) are investigated. In turn, the state of the environment due to the influx of masks along with the impacts are examined. Furthermore, the upstream, and downstream societal responses to mitigate the environmental damages of the driving forces, pressures, states, and impacts are reviewed. In summary, it has been shown from this review that the COVID-19 pandemic has been causing a surge in face mask usage, which translates to face masks pollution in both terrestrial and aquatic environments. This implies proper usage and disposal of face masks is paramount to the quality of human health and the environment, respectively. Moreover, further research on eco-friendly face masks is indispensable to mitigating the environmental damages occurring due to the mass use of surgical masks worldwide.
Collapse
Affiliation(s)
- Yacob T Tesfaldet
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Nji T Ndeh
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|